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ABSTRACT 

 

A GENOME-FIRST APPROACH TO INVESTIGATING THE BIOLOGICAL  

AND CLINICAL RELEVANCE OF EXOME-WIDE RARE CODING VARIATION  

USING ELECTRONIC HEALTH RECORD PHENOTYPES 

Joseph Park 

Daniel J. Rader and Marylyn D. Ritchie 

 

Genome-wide association studies (GWAS) have successfully described the roles of 

common genetic variation on human diseases by analyzing large populations recruited based on 

a shared phenotype, but the biological and clinical relevance of numerous genes remain 

incompletely described through these ‘phenotype-first’ methodologies. Much of the unexplained 

genetic contribution to disease risk and variability in complex traits may belong to the very rare 

and private spectrum of alleles, a range traditionally ignored by GWAS. Furthermore, the 

phenotype-first approach is likely to miss unexpected phenotypic consequences of genetic 

variants, such as those that may not be feasible to study in a phenotype-first approach due to 

rarity of the condition. The Penn Medicine BioBank, a healthcare system-based database of 

genotype, whole-exome sequencing, and electronic health record data, allows for an unbiased, 

‘genome-first’ approach to describing the relationships between genetic variants and human 

disease traits captured in the clinical setting. Through ‘gene burden’ tests that interrogate the 

cumulative effects of multiple rare and private variants in a gene that are predicted to affect gene 

function, this dissertation aims to characterize the clinical manifestations of diseases and traits 

caused by rare, predicted loss-of-function and predicted deleterious missense variants on an 

exome-wide and/or phenome-wide scale. These analyses uncover previously unsuspected 

medical and biological consequences of loss-of-function variants in multiple genes. In summary, 

this dissertation will investigate the biological and clinical relevance of disease-associated genes 
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by investigating the association of rare coding variation found in whole-exome sequencing with 

phenotypes derived from the EHR. 

  



viii 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGMENT ......................................................................................... iv 

ABSTRACT .......................................................................................................... vi 

LIST OF TABLES ............................................................................................... xii 

LIST OF ILLUSTRATIONS ................................................................................ xiii 

LIST OF APPENDICES ..................................................................................... xiv 

CHAPTER 1. Introduction: Transitioning from a phenotype-first to a 
genome-first era of genetic association studies .............................................. 1 

CHAPTER 2. A genome-first approach to aggregating rare genetic variants 
in LMNA for association with electronic health record phenotypes .............. 7 

2.1. Abstract .................................................................................................................. 7 
2.2. Introduction ........................................................................................................... 8 
2.3. Materials and Methods ......................................................................................... 9 

2.3.1. Setting and study participants ........................................................................... 9 
2.3.2. Exome sequencing ......................................................................................... 10 
2.3.3. Variant annotation and selection for gene burden association testing ........... 11 
2.3.4. Clinical data collection .................................................................................... 11 
2.3.5. Phenome-wide association studies ................................................................. 12 
2.3.6. Statistical analyses ......................................................................................... 13 

2.4. Results ................................................................................................................. 14 
2.4.1. Phenome-wide association studies for gene burden of deleterious variants in 

LMNA ........................................................................................................................ 14 
2.4.2. Association of LMNA gene burden with cardiovascular imaging and clinical 

laboratory data .......................................................................................................... 19 
2.5. Discussion ........................................................................................................... 23 

CHAPTER 3. A genome-first approach to rare variants in hypertrophic 
cardiomyopathy genes MYBPC3 and MYH7 in a medical biobank .............. 26 



ix 

 

3.1. Abstract ................................................................................................................ 26 
3.2. Introduction ......................................................................................................... 27 
3.3. Materials and Methods ....................................................................................... 28 

3.3.1. Setting and study participants ......................................................................... 28 
3.3.2. Whole-exome sequencing .............................................................................. 29 
3.3.3. Variant annotation and selection for gene burden association testing ........... 29 
3.3.4. Clinical data collection .................................................................................... 30 
3.3.5. Phenome-wide association studies ................................................................. 30 
3.3.6. Statistical analyses ......................................................................................... 31 
3.3.7. Review of clinical charts .................................................................................. 32 

3.4. Results ................................................................................................................. 32 
3.4.1. pLOF variants in MYBPC3 were strongly associated with HCM ..................... 32 
3.4.2. Predicted deleterious missense (pDM) variants in MYBPC3 were not 

associated with HCM ................................................................................................ 36 
3.4.3. pLOF variants in MYH7 were not significantly associated with HCM but had 

suggestive associations with other cardiac phenotypes ........................................... 38 
3.4.4. Predicted deleterious missense (pDM) variants in MYH7 were strongly 

associated with HCM ................................................................................................ 40 
3.4.5. Gene burden of pLOF and pDM variants in MYH7 was also associated with a 

skeletal muscle phenotype ........................................................................................ 41 
3.5. Discussion ........................................................................................................... 43 

CHAPTER 4. Exome-wide evaluation of rare coding variants using 
electronic health records identifies new gene-phenotype associations ..... 48 

4.1. Abstract ................................................................................................................ 48 
4.2. Introduction ......................................................................................................... 49 
4.3. Materials and Methods ....................................................................................... 50 

4.3.1. Setting and study participants ......................................................................... 50 
4.3.2. Genetic sequencing ........................................................................................ 50 
4.3.3. Variant annotation and selection for association testing ................................. 52 
4.3.4. Clinical data collection .................................................................................... 53 
4.3.5. Association studies ......................................................................................... 54 
4.3.6. Undercalling of variants in UK Biobank ........................................................... 56 



x 

  

4.3.7. Statistical analyses of clinical measurements ................................................. 56 
4.3.8. Chart review to validate robust gene-phenotype associations ........................ 57 
4.3.9. Analysis of publicly available expression datasets from NCBI GEO ............... 57 
4.3.10. In silico analyses for PPP1R13L expression in ocular tissues ...................... 58 
4.3.11. Gene expression in DBA/2J mouse ocular tissues ....................................... 58 
4.3.12. Immunolocalization of PPP1R13L in human retina ....................................... 59 
4.3.13. Human iPSC-RGC cultures .......................................................................... 59 
4.3.14. Evaluating oxidative stress in iPSC-RGCs ................................................... 60 
4.3.15. Single-cell RNA-seq of human pancreatic islets in type 1 diabetes and 

control subjects ......................................................................................................... 60 
4.3.16. Single-cell RNA-seq of mouse aorta ............................................................. 63 
4.3.17. Single-cell RNA-seq of human aorta ............................................................. 65 

4.4. Results and Discussion ...................................................................................... 66 
4.4.1. Discovery: ExoPheWAS in PMBB .................................................................. 66 
4.4.2. Replication in PMBB, other medical biobanks, and UK Biobank .................... 70 
4.4.3. Positive control gene-phenotype associations ................................................ 71 
4.4.4. Novel gene-phenotype associations ............................................................... 74 
4.4.5. Conclusions .................................................................................................... 78 

CHAPTER 5. Exome-wide association of rare coding variants with hepatic 
fat derived from CT imaging in a medical biobank ........................................ 81 

5.1. Abstract ................................................................................................................ 81 
5.2. Introduction ......................................................................................................... 82 
5.3. Materials and Methods ....................................................................................... 83 

5.3.1. Setting and study participants ......................................................................... 83 
5.3.2. Clinical data collection .................................................................................... 83 
5.3.3. Quantification of hepatic fat ............................................................................ 84 
5.3.4. Phenome-wide association of hepatic fat with EHR diagnoses and traits ...... 84 
5.3.5. Whole-exome sequencing, variant annotation, and selection for association 

testing ....................................................................................................................... 85 
5.3.6. Exome-wide association studies for hepatic fat .............................................. 86 
5.3.7. Replication analyses in the UK Biobank (UKB) .............................................. 87 
5.3.8. Statistical analyses ......................................................................................... 88 



xi 

 

5.3.9. Analysis of publicly available expression datasets ......................................... 88 
5.4. Results ................................................................................................................. 89 

5.4.1. Hepatic fat extracted from clinical CT scans is highly significantly associated 

with a range of cardiometabolic diseases and traits ................................................. 89 
5.4.2. Exome-wide analyses of single coding variants identify novel variants 

associated with hepatic fat ........................................................................................ 91 
5.4.3. A gene burden of rare pLOFs in LMF2 is associated with increased hepatic fat 

in PMBB and UKB ..................................................................................................... 93 
5.5. Discussion ........................................................................................................... 95 

CHAPTER 6. Conclusions and future directions .......................................... 101 

BIBLIOGRAPHY ............................................................................................... 107 
 

 

  



xii 

 

LIST OF TABLES 

 

Table 2.1. Demographics, clinical characteristics, and significant cardiovascular Phecode 

associations for individuals in PMBB carrying a predicted deleterious LMNA variant...................17 

Table 2.2. Cardiac architecture for carriers of presumed deleterious variants in LMNA is 

consistent with dilated cardiomyopathy.........................................................................................19 

Table 2.3. Clinical laboratory measurements for carriers of presumed deleterious variants in 

LMNA is consistent with subclinical features of partial lipodystrophy and renal disease...............21 

Table 2.4. Renal clinical laboratory measurements for carriers of presumed deleterious variants 

in LMNA are consistent with primary renal disease.......................................................................22 

Table 3.1. Penn Medicine BioBank whole exome-sequenced cohort characteristics...................34 

Table 3.2. Association of MYBPC3 and MYH7 gene burdens with HCM in PMBB.......................36 

Table 3.3. Echocardiographic analyses for MYBPC3 and MYH7 in PMBB...................................40 

Table 4.1. Demographics and disease prevalence of the PMBB discovery cohort.......................67 

Table 4.2. List of robust exome-by-phenome-wide significant gene-phenotype associations.......73 

Table 5.1. PMBB discovery cohort characteristics........................................................................90 

 

 

 

  



xiii 

 

LIST OF ILLUSTRATIONS 

 

Figure 1.1. Flow chart summarizing each experimental dissertation chapter.................................4 

Figure 2.1. Phenome-wide association studies (PheWAS) of predicted deleterious LMNA 

variants..........................................................................................................................................15 

Figure 3.1. Distribution of disease-associated variants in MYH7 and MYBPC3...........................35 

Figure 3.2. Gene burden PheWAS of pLOF and adjudicated pathogenic missense variants in 

MYBPC3........................................................................................................................................39 

Figure 3.3. Gene burden PheWAS of pLOF + pDM variants in MYH7.........................................43 

Figure 4.1. Flow chart for exome-by-phenome-wide association analysis using electronic health 

record phenotypes.........................................................................................................................69 

Figure 4.2. ExoPheWAS plot exhibits the landscape of gene-phenotype associations across the 

exome and phenome in the Penn Medicine BioBank....................................................................70 

Figure 5.1. Manhattan plot of single variant discovery in PMBB...................................................91 

Figure 5.2. Manhattan plot of rare pLOF gene burden discovery in PMBB..................................94 

 

 

 

 

  



xiv 

 

LIST OF APPENDICES 

 

Appendix A. Supplementary Figures S1-S6 and Supplementary Tables S1-S6 for Chapter 2 

Appendix B. Supplementary Figures S1-S7 and Supplementary Tables S1-S6 for Chapter 3 

Appendix C. Supplementary Figures S1-S7 and Supplementary Tables S1-S25 for Chapter 4 

Appendix D. Supplementary Figures S1-S6 and Supplementary Tables S1-S9 for Chapter 5 

 

 

 

 



1 

 

CHAPTER 1. Introduction: Transitioning from a phenotype-first 

to a genome-first era of genetic association studies 

 

 The study of the genetic basis of human disease has traditionally utilized a ‘phenotype-

first’ approach in which individuals who share a phenotypic disease trait are recruited for 

genotyping or sequencing to identify gene variants that may be associated with or causal for the 

phenotype of interest. Within this realm, how we have historically studied human genetic variation 

can be broadly organized by minor allele frequency (MAF) into studies of common variants 

versus rare variants. On one end of the allele frequency spectrum, we have studied common 

(MAF > 1%) genetic variants in populations recruited based on a shared phenotype using 

methods like genome-wide association studies (GWAS) to describe how these common variants 

of small effect can contribute to common complex diseases, such as coronary artery disease, 

type 2 diabetes, and cancer.1-3 However, GWAS have not historically interrogated low-frequency 

(0.1% < MAF ≤ 1%) and rare (MAF ≤ 0.1%) coding variation given its reliance on genotype arrays 

that include common single nucleotide polymorphisms (SNPs), and more extensive exome or 

genome sequencing to capture rare genetic variants had been limited to relatively small sample 

sizes. On the other end of the allele frequency spectrum, rare variants, which are predicted to 

have larger effect sizes, have been studied mostly in the context of Mendelian disorders such as 

cystic fibrosis, familial hypercholesterolemia, and muscular dystrophy.4,5 Identification of rare loss 

of gene function variants through high-throughput DNA sequencing in such human cohorts has 

allowed for the discovery of novel gene associations with various Mendelian diseases. However, 

because these variants are rare, it is difficult to study their clinical implications using traditional 

GWAS analysis approaches due to lack of statistical power especially when using a phenotype-

first approach, and thus the clinical implications of most rare variants are unknown. 
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To address these limitations in traditional phenotype-first approaches to genetic 

association studies, this dissertation tackles the issue of how to systematically search for rare 

genetic variants that confer risk for or resilience to human disease. A ‘genome-first’ approach in 

which sequencing is first applied to large heterogeneous populations with subsequent 

determination of the associated phenotypes is of recent interest, and transitioning to this 

approach may help fill in additional puzzle pieces in the missing heritability of many human 

diseases and also provide new insights into the role of many genes in human biology and 

phenotypes.6,7 To overcome the issue of statistical power while maintaining a high prevalence of 

human diseases, this approach can be applied to healthcare populations with extensive electronic 

health record (EHR) phenotype data.8 Furthermore, this would permit an unbiased approach to 

‘phenome-wide association studies’ (PheWAS), in which a single DNA variant is associated with 

various phenotypes to determine the clinical impact of specific genetic variants on the human 

disease phenome.9 Importantly, a genome-first approach to PheWAS has the advantage of 

testing for pleiotropy in addition to discovering new genotype-phenotype relationships.10 Thus, if 

we could combine whole-exome sequencing (WES) with EHR phenotype data, it would allow for 

a genome-first approach to associating rare human genetic variants with various phenotypic data 

captured natively in the documentation of clinical care.  

But because rare variants are often too rare to study in a univariate association test due 

to lack of statistical power,11 genome-first approaches to genetic association tests like those 

utilizing PheWAS have traditionally focused on single common variants.12 However, gene-based 

association studies that aggregate rare and private variants per gene into a ‘gene burden’ could 

allow us to overcome the issue of statistical power and interrogate the association of a single 

gene with various phenotypes.13 There are various ways to collapse genetic variants into gene 

burdens to conduct genetic association studies for rare variants. One apparent place to start is to 

test the most damaging variants in a gene by collapsing rare predicted loss-of-function (pLOF) 

variants, which include frameshift insertions/deletions, gain of stop codon (nonsense), and splice 
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site dinucleotides, into a gene burden such that each individual is scored based on the number of 

rare pLOF alleles carried to ultimately compare rare pLOF carriers versus non-carriers. 

Importantly, rare pLOF variants are predicted to have the largest effect on phenotypes through a 

mechanism of haploinsufficiency for heterozygous carriers, whether it be via nonsense-mediated 

decay or truncated proteins with altered function. Another approach is to assess predicted 

deleterious missense (pDM) variants, although they may have smaller effects on phenotypes and 

their directionality of effect may not always be predictable when compared to pLOF variants. For 

example, one may select pDM variants for inclusion into gene burdens according to clinical 

classifications of pathogenicity (e.g. ClinVar, InterVar)14,15 and/or in silico algorithmic predictions 

of probability for being damaging to the gene product (e.g. SIFT, PolyPhen2 HumDiv/HumVar, 

LRT, MutationTaster, REVEL).16-20 Yet another method for variant selection for gene burden 

testing could be to select variants defined by a specific maximum minor allele frequency 

threshold. Clearly, the list is not limited to these examples, and there are various additional ways 

to select rare coding variants for inclusion in gene burden tests of association.8,10,21  

This dissertation entails extensive genome-first analyses that detail various ways to 

collapse genetic variants into gene burdens to conduct gene-based association studies, whether 

it be unbiased using a PheWAS approach or targeted to selected quantitative and/or qualitative 

phenotypes (Figure 1.1). These analyses leveraged the Penn Medicine BioBank (PMBB, 

University of Pennsylvania), a large academic medical biobank enriched for various human 

diseases with WES data linked to EHR phenotype data, to test the performance of variant 

selection methods and to conduct gene burden association tests to uncover new gene biology 

and function. Importantly, because the PMBB is a healthcare population of ~60,000 individuals 

with a higher prevalence of disease compared to other population-based biobanks like the UK 

Biobank, there is more potential for discovery of novel gene-phenotype relationships.22 PMBB is 

also an ancestrally diverse population, with about a quarter of the population being of African 

ancestry. While previous genetic association studies have typically focused on European 
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ancestry individuals, PMBB’s ancestral diversity allows us to characterize previously undescribed 

genetic variants that are enriched among individuals of African ancestry. 

 

Figure 1.1. Flow chart summarizing each experimental dissertation chapter 

This dissertation explores genome-first approaches to variant selection methods and 

gene burdening strategies for rare coding variants to conduct gene burden PheWAS in PMBB. 

Importantly, Chapters 2 and 3 entail application of the unbiased genome-first approach to 

‘positive control’ genes with known phenotype associations which represent valuable systems for 

comparison of variant selection methods and gene burdening strategies. More specifically, 

Chapter 2 focuses on the gene LMNA, in which pathogenic variants are known to be highly 

pleiotropic and cause several rare diseases including dilated cardiomyopathy. This chapter shows 

how we found the ensemble tool REVEL20 outperformed other in silico prediction algorithms in 

Chapter 2. A genome-first approach to 
aggregating rare genetic variants in LMNA 

for association with electronic health 
record phenotypes

Chapter 3. A genome-first approach to rare 
variants in hypertrophic cardiomyopathy 

genes MYBPC3 and MYH7 in a 
medical biobank

Exploring variant selection methods and gene burdening 
strategies for rare variants to conduct gene burden PheWAS 

using ‘positive control’ cardiomyopathy genes

Chapter 4. Exome-wide evaluation of rare 
coding variants using electronic health records 

identifies new gene-phenotype associations

Chapter 5. Exome-wide association of rare 
coding variants with hepatic fat derived from

CT imaging in a medical biobank

Exome-wide association analyses of rare coding variants
to discover new gene-disease relationships and reveal

new insights into human biology and disease
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selecting pDM variants for inclusion in the LMNA gene burden to achieve the strongest 

association with the expected dilated cardiomyopathy phenotype. Subsequent follow-up PheWAS 

analyses on the ideal LMNA gene burden as well as review of clinical charts revealed that 

pathogenic LMNA variants are an underdiagnosed cause of cardiomyopathy and that LMNA loss-

of-function may be a primary cause of renal disease. Similarly, Chapter 3 focuses on the two 

genes for which pathogenic variants account for up to 50% of all clinically recognized cases for 

hypertrophic cardiomyopathy, namely MYBPC3 and MYH7. This chapter shows how we found 

that the approach to aggregating rare variants for these two genes produced drastically different 

results: pLOFs but not pDM variants in MYBPC3 were strongly associated with HCM, whereas 

pDM but not pLOF variants in MYH7 were strongly associated with HCM. Importantly, this 

chapter shows the importance of evaluating both pLOF and pDM variants for gene burden testing 

for discovery of new gene-disease relationships and identification of new pathogenic loss-of-

function variants across the human genome.  

Then, in Chapters 4 and 5, the variant selection and gene burdening strategies 

interrogated in Chapters 2 and 3 are applied on an exome-wide scale to conduct exome-wide 

association studies for a variety of EHR-derived phenotypes in PMBB. Chapter 4 evaluates rare 

pLOF variants for each individual gene on an exome-wide scale by applying gene burden 

PheWAS to every adequately powered gene, essentially representing the first ‘exome-by-

phenome-wide association study’ in a medical biobank. In addition to verifying several ‘positive 

control’ gene-phenotype associations, Chapter 4 details how this approach led to discovery of 21 

novel and robustly replicated gene-phenotype relationships through interrogation of pLOF and 

pDM variants in PMBB, several other medical biobanks, and the population-based UK Biobank. 

Finally, Chapter 5 evaluates rare variant gene burdens as well as single low-frequency and 

common coding variants on an exome-wide scale for association with hepatic fat quantifications 

derived from abdominal CT scans in PMBB, representing the first exome-wide association study 

for hepatic fat in a medical biobank. Importantly, Chapter 5 confirms that the approaches taken in 
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Chapters 2-4 for qualitative phenotypes can also be applied to quantitative phenotypes, verifies 

‘positive control’ single variants which have previously been associated with differences in hepatic 

fat or risk for non-alcoholic fatty liver disease (NAFLD), and discovers new single variants and 

rare variant gene burdens associated with differences in hepatic fat.  

In summary, as the genome-first approach is becoming increasingly utilized in parallel to 

the traditional phenotype-first approach, and the prevalence of high-throughput sequencing in 

healthcare-based biobank populations rises and subsequently identifies more rare coding 

variants, this dissertation explores the value and importance of genome-first approaches to 

investigating the biological and clinical relevance of exome-wide rare coding variation using EHR 

phenotypes in medical biobanks.  
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CHAPTER 2. A genome-first approach to aggregating rare 

genetic variants in LMNA for association with electronic health 

record phenotypes 

 

This chapter was adapted from:  

Park J, Levin MG, Haggerty CM, Hartzel DN, Judy R, Kember RL, Reza N; Regeneron Genetics 

Center, Ritchie MD, Owens AT, Damrauer SM, Rader DJ. A genome-first approach to 

aggregating rare genetic variants in LMNA for association with electronic health record 

phenotypes. Genetics in Medicine. 2020 Jan;22(1):102-111. Doi: 10.1038/s41436-019-0625-8. 

 

2.1. Abstract 

Purpose: ‘Genome-first’ approaches, in which genetic sequencing is agnostically linked to 

associated phenotypes, can enhance our understanding of rare variants’ contributions to disease. 

Loss-of-function variants in LMNA cause a range of rare diseases, including cardiomyopathy.  

Methods: We leveraged exome sequencing from 10,996 unselected individuals in the Penn 

Medicine BioBank to associate rare variants in LMNA with diverse EHR-derived phenotypes. We 

used REVEL to annotate rare missense variants, clustered predicted deleterious and loss-of-

function variants into a ‘gene burden’ (N=72 individuals), and performed a phenome-wide 

association study (PheWAS). Major findings were replicated in DiscovEHR. 

Results: The LMNA gene burden was significantly associated with primary cardiomyopathy 

(p=1.78E-11) and cardiac conduction disorders (p=5.27E-07). Most patients had not been 

clinically diagnosed with LMNA cardiomyopathy. We also noted an association with chronic 

kidney disease (p=1.13E-06). Regression analyses on echocardiography and serum labs 

revealed that LMNA variant carriers had dilated cardiomyopathy and primary renal disease. 
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Conclusion: Pathogenic LMNA variants are an underdiagnosed cause of cardiomyopathy. We 

also find that LMNA loss-of-function may be a primary cause of renal disease. Finally, we show 

the value of aggregating rare, annotated variants into a ‘gene burden’ and using PheWAS to 

identify novel ontologies for pleiotropic human genes. 

 

2.2. Introduction 

The study of the genetic basis of human disease has traditionally utilized a ‘phenotype-

first’ approach in which persons with phenotypic disease traits are genotyped or sequenced to 

identify gene variants that may be associated with or causal for disease.4,5 A ‘genome-first’ 

approach in which sequencing is applied to large heterogeneous populations with subsequent 

determination of the associated phenotypes is of interest.6,7 This approach can be applied to 

healthcare populations with extensive electronic health record (EHR) phenotype data, thus 

permitting an unbiased approach to ‘phenome-wide association studies’ (PheWAS) to determine 

the clinical impact of specific genetic variants.8,23 In addition to identifying previously unsuspected 

gene ontologies, this approach may also reveal that many patients with single-gene Mendelian 

disorders are not clinically diagnosed.24 

Large-scale exome sequencing allows for the identification of rare exonic variants. 

Statistical aggregation tests that interrogate the cumulative effects of multiple rare variants in a 

gene (i.e. ‘gene burden’) increase the statistical power of regression analyses and enable gene-

based association studies to describe the implications of mutated genes in human disease. Gene 

burden PheWAS in large healthcare populations could increase the potential to uncover novel 

consequences of gene variants in the human disease phenome. One approach to gene burden 

PheWAS is to focus only on predicted loss-of-function (pLOF) variants,8 but could lead to lack of 

power due to their infrequency. To address this issue, private and very rare missense variants 
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could be added to substantially increase the number of genotypic cases. However, a major 

challenge is deciding which missense variants to include in gene burden tests of association. 

The unbiased genome-first approach is an ideal system for studying the effects of rare 

variants in genes with known pleiotropy. Pathogenic variants in LMNA are highly pleiotropic and 

cause several rare diseases including dilated cardiomyopathy, familial partial lipodystrophy type 

2, and Emery-Dreifuss muscular dystrophy, among others.25-28 We leveraged the Penn Medicine 

BioBank (PMBB, University of Pennsylvania), a large academic biobank with exome sequencing 

linked to EHR data, to evaluate in detail the phenotypes associated with rare pLOF and 

annotated deleterious missense variants in LMNA. In addition to mining qualitative ICD-based 

diagnosis codes, we interrogated EHR data for quantitative phenotypic traits via analyses of 

clinical imaging and laboratory measurements. Our findings represent the first report of a 

genome-first approach to examining the clinical effects of pLOF and predicted deleterious 

missense (pDM) variants in LMNA. 

 

2.3. Materials and Methods 

2.3.1. Setting and study participants  

All individuals recruited for the Penn Medicine BioBank (PMBB) are patients of clinical 

practice sites of the University of Pennsylvania Health System. Appropriate consent was obtained 

from each participant regarding storage of biological specimens, genetic sequencing, and access 

to all available EHR data. The study was approved by the Institutional Review Board of the 

University of Pennsylvania and complied with the principles set out in the Declaration of Helsinki. 

The DiscovEHR cohort was used to replicate major findings. DiscovEHR is a 

collaboration between the Geisinger Health System and Regeneron Genetics Center in which 



10 

 

exome sequencing was performed on biospecimens collected and linked to EHR data through 

Geisinger’s MyCode Community Health Initiative.29  

 

2.3.2. Exome sequencing 

 This study included a subset of 11,451 individuals in PMBB who had exome sequencing. 

We extracted DNA from stored buffy coats and then obtained exome sequences as generated by 

the Regeneron Genetics Center (Tarrytown, NY). These sequences were mapped to GRCh37 as 

previously described.30 For subsequent phenotypic analyses, we removed samples with low 

exome sequencing coverage (i.e. less than 75% of targeted bases achieving 20x coverage; 

N=46), high missingness (i.e. greater than 5% of targeted bases; N=14), high heterozygosity 

(N=97), dissimilar reported and genetically determined sex (N=104), genetic evidence of sample 

duplication (N=89), and cryptic relatedness (i.e. closer than 3rd degree relatives; N=145) with 

overlap among categories, leading to a total of 455 removed from our database for a total study 

set of 10,996 individuals. Of note, among the 72 individuals identified as carrying one of pLOF 

variants or missense variants with Rare Exome Variant Ensemble Learner (REVEL)20 scores of at 

least 0.65 who were used for the primary analyses of this work, four individuals were removed 

from subsequent analyses due to low coverage (N=2), sex discordance (N=1), and being part of a 

parent-child pair (N=1).  

 Exome sequencing in the DiscovEHR cohort was also performed by the Regeneron 

Genetics Center, as previously described.8,31 In addition to exclusions for sequence quality, 

sample duplicates, and sex discordance, we excluded 31,399 individuals with closer than 3rd 

degree relatedness, yielding a study set of 61,056 individuals.  
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2.3.3. Variant annotation and selection for gene burden association testing 

For both PMBB and DiscovEHR, variants were annotated using ANNOVAR32 as 

predicted loss-of-function (pLOF) or missense variants. pLOFs were defined as frameshift 

insertions or deletions, gain or loss of stop codon, and disruption of canonical splice site 

dinucleotides. Only variants with minor allele frequencies (MAF) ≤ 0.1% per the Genome 

Aggregation Database (gnomAD) were considered for inclusion in the gene burden association 

testing. Several approaches to inclusion of rare variants in the gene burden were applied, 

including pLOFs only, additional ClinVar pathogenic variants, and inclusion of missense variants 

that were scored deleterious by 5/5 algorithms (SIFT,16 PolyPhen2 HumDiv, Polyphen2 

HumVar,17 LRT,18 MutationTaster19). To capture additional individuals with potentially pathogenic 

missense variants, we utilized an ensemble method for predicting the pathogenicity of missense 

variants called REVEL to score rare missense variants in LMNA.20  

 

2.3.4. Clinical data collection 

International Classification of Diseases Ninth Revision (ICD-9) and Tenth Revision (ICD-

10) diagnosis codes and procedural billing codes, medications, and clinical imaging and 

laboratory measurements were extracted from the patients’ EHR. All laboratory values measured 

in the outpatient setting were extracted for participants from the time of enrollment in the Biobank 

until March 3, 2018; all units were converted to their respective clinical Traditional Units. 

Minimum, median, and maximum measurements of each measurement were recorded per 

individual. Glomerular filtration rate (GFR) estimates were calculated using the CKD-EPI 

Creatinine equation, given its superiority to the MDRD equation in patient populations with normal 

or mildly reduced eGFR. Inpatient and outpatient echocardiography measurements were 

extracted if available for participants from January 1, 2010 until September 9, 2016; outliers for 

each echocardiographic parameter (less than Q1 – 1.5*IQR or greater than Q3 + 1.5*IQR) were 
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removed. Similarly, minimum, median, and maximum values for each parameter were recorded 

per patient. 

For DiscovEHR, phenotypes were retrieved from Geisinger’s Phenomic-Initiative 

database, which incorporates numerous sources (including the EHR) into a common data model. 

Patient demographics and ICD-10 codes from inpatient and outpatient encounters were retrieved 

as of November 28, 2018. ICD-9 codes were mapped to equivalent ICD-10 codes using 

underlying diagnosis codes.  

 

2.3.5. Phenome-wide association studies 

A PheWAS approach was used to determine the phenotypes associated with predicted 

deleterious variants in LMNA carried by individuals in PMBB.33 ICD-10 encounter diagnoses were 

mapped to ICD-9 via the Center for Medicare and Medicaid Services 2017 General Equivalency 

Mappings (https://www.cms.gov/Medicare/Coding/ICD10/2017-ICD-10-CM-and-GEMs.html) and 

manual curation. Phenotypes for each individual were then determined by mapping ICD-9 codes 

to distinct disease entities (i.e. Phecodes) using the R package “PheWAS”.34 Patients were 

determined to have a certain Phecode if they had the corresponding ICD diagnosis on 2 or more 

dates, while phenotypic controls consisted of individuals who never had the ICD code. Individuals 

with an ICD diagnosis on only one date as well as individuals under control exclusion criteria 

based on PheWAS phenotype mapping protocols were not considered in statistical analyses. 

Each disease phenotype was tested for association with the LMNA gene burden using a 

logistic regression model adjusted for age, age2, gender, and the first ten principal components of 

genetic ancestry. We used an additive genetic model to collapse predictably deleterious LMNA 

variants via an extension of the fixed threshold approach.35 Given the relatively high percentage 

of individuals of African ancestry present in PMBB, PheWAS analyses were performed separately 

by European and African genetic ancestry and combined with inverse variance weighted meta-
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analysis. Our association analyses considered only disease phenotypes with at least 200 cases 

(≥ ~1.75% prevalence in the cohort), based on a prior simulation study for power analysis of 

PheWAS.36 This led to the interrogation of 333 total phenotypes, and we used a Bonferroni 

correction to adjust for multiple testing (p=0.05/333≈1.5E-04). 

Replication of major PheWAS findings in DiscovEHR was performed using a logistic 

regression model adjusted for age, age2, sex, and the first four principal components of ancestry. 

Dilated cardiomyopathy was defined as two or more encounter diagnoses of I42.0 (“Dilated 

cardiomyopathy”), or two or more instances of I42.8 (“Other cardiomyopathies”)/I42.9 

(“Cardiomyopathy, unspecified”) diagnoses and mention of “dilated” in the underlying diagnosis 

code. Chronic kidney disease was defined as two or more encounter diagnoses of N18.3 

(“Chronic kidney disease, stage 3 (moderate)”). For both phenotypes, patients with only one 

encounter diagnosis were excluded from analysis.  

 

2.3.6. Statistical analyses 

To compare available echocardiographic and serum laboratory measurements between 

carriers of predicted deleterious LMNA variants and genotypic controls, we used a nonparametric 

statistical model to compare each clinical measurement between the two groups using the 

Wilcoxon rank-sum test (i.e. Mann-Whitney U test). Additionally, comparisons were made using 

robust linear regression, adjusted for age, age2, gender, and the first ten principal components of 

genetic ancestry, in both the overall population and individuals of European ancestry alone. 

Furthermore, 95% confidence intervals and p-values were corrected by bootstrapping with 1000 

replicates via the adjusted percentile method. All statistical analyses, including PheWAS, were 

completed using R version 3.3.1 or version 3.5 (Vienna, Austria). 

 



14 

 

2.4. Results 

2.4.1. Phenome-wide association studies for gene burden of deleterious variants in LMNA 

Among 10,996 individuals in PMBB with exome sequencing included in this study, we 

identified a total of 11 individuals carrying one of nine different pLOF variants (including five 

frameshift insertions/deletions, one gain of stop codon, and three variants disrupting canonical 

splice site dinucleotides) in LMNA (Appendix A, Table S1). All 11 individuals carrying pLOF 

variants were cases for Phecodes “primary/intrinsic cardiomyopathy,” “cardiac conduction 

disorders,” or both, confirming that heterozygous pLOF variants in LMNA have a high penetrance 

for cardiomyopathy. Interestingly, only four of these 11 individuals had received clinical genetic 

testing to confirm their laminopathies.  

A PheWAS on the 11 carriers for pLOFs alone showed a signal for cardiomyopathy 

(Appendix A, Figure S1) but had insufficient power; furthermore, most known pathogenic LMNA 

variants are missense variants. Therefore, we identified 167 individuals with one of 88 rare (MAF 

≤ 0.1% in gnomAD) missense variants in LMNA (Appendix A, Table S1). We aggregated pLOF 

variants and missense variants annotated as “Pathogenic” in ClinVar (N=9 different variants, 20 

carriers) and performed PheWAS (N=33 carriers), resulting in a stronger signal for 

cardiomyopathy that was significant (Appendix A, Figure S2). Given that many of the rare LMNA 

variants were of unknown pathogenicity, we combined missense variants predicted to be 

deleterious by a consensus of 5/5 algorithms (SIFT,16 PolyPhen2 HumDiv, Polyphen2 HumVar,17 

LRT,18 MutationTaster19), one of the standard approaches for combining pLOF variants with 

computationally predicted pathogenic missense variants8 (N=14 different variants, 24 carriers; 

Appendix A, Table S1), in a gene burden PheWAS (N=35 carriers; Figure 2.1.A). The signal for 

cardiomyopathy diagnoses was even stronger, additionally identifying related Phecodes such as 

“first degree AV block”, “sinoatrial node dysfunction”, and “congestive heart failure”.  
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Figure 2.1. Phenome-wide association studies (PheWAS) of predicted deleterious LMNA variants. 
Gene burden tests of association for predicted loss-of-function (pLOF) variants and predicted deleterious 

missense (pDM) variants in LMNA. (A) Gene burden PheWAS of pLOF variants (N=11 carriers) and 

missense variants predicted to be deleterious by 5/5 algorithms (SIFT, PolyPhen2 HumDiv, Polyphen2 

HumVar, MutationTaster, and LRT; N=24). The blue line represents a p-value of 0.05, and the red line 

represents the Bonferroni corrected significance threshold to adjust for multiple testing (p=0.05/333). (B) Plot 

of p-value for gene burden association with “primary/intrinsic cardiomyopathy” using pLOF variants and 

missense variants predicted to be deleterious per various REVEL cutoff scores as well as 5/5 algorithms. 

Each point is labeled with the number of exome-sequenced individuals who are carriers for missense 

variants in each threshold category without using a minor allele frequency threshold. (C) Venn diagram of 

number of exome-sequenced carriers for missense variants predicted to be deleterious by 5/5 algorithms 

and/or with a REVEL score ≥ 0.65. (D) Gene burden PheWAS of pLOF variants (N=11) and missense 

variants with REVEL scores of at least 0.65 (N=61). The blue line represents a p-value of 0.05, and the red 

line represents the Bonferroni corrected significance threshold to adjust for multiple testing (p=0.05/333). 
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However, we noted that there were a substantial number of carriers for rare missense 

variants in LMNA that did not meet the 5/5 criteria who were diagnosed with “primary/intrinsic 

cardiomyopathy” (Appendix A, Table S1), suggesting that this algorithmic filter was too stringent. 

To capture more individuals with pathogenic missense variants, we utilized REVEL, which has 

been reported to more accurately distinguish pathogenic from neutral missense variants, 

particularly those with MAFs less than 0.5%, compared to other predictive methods.20 Analysis of 

variance on ClinVar-annotated variants showed that REVEL scores correlate with clinical 

pathogenicity (Appendix A, Table S2). While a threshold of 0.5 has been suggested,20 we 

experimented with REVEL score thresholds in bins of 0.05 to evaluate the optimal score cutoff for 

capturing the most robust association with cardiomyopathy as a positive control (Figure 2.1.B). Of 

note, all REVEL cutoff scores of at least 0.5 performed better in identifying association with 

“primary/intrinsic cardiomyopathy” compared to the usage of 5/5 algorithms.  

We chose a REVEL cutoff score of 0.65 given its optimal p-value for association with 

“primary/intrinsic cardiomyopathy” (Figure 2.1.B) while maintaining relatively high numbers of 

carriers for predictably deleterious LMNA variants. This cutpoint included 19 of the 24 carriers (11 

of the 14 variants) that met the 5/5 criteria, but also included 42 additional carriers (21 variants) 

that did not meet the 5/5 criteria (Figure 2.1.C). PheWAS of the LMNA gene burden of pLOF 

variants plus missense variants with REVEL scores of at least 0.65 (N=72 carriers) revealed a 

much more robust signal for cardiomyopathy and related phenotypes (Figure 2.1.D, Table 2.1). 

Of note, the signal was more statistically robust compared to other recently developed ensemble 

methods for predicting pathogenicity such as VEST337,38 (Appendix A, Figure S3), M-CAP39 

(Appendix A, Figure S4), and CADD40 (Appendix A, Figure S5). Furthermore, we addressed 

potential issues of small sample sizes by using Firth’s penalized likelihood approach, and found 

that beta and p-value estimates were consistent with exact logistic regression (Appendix A, Table 

S3). Importantly, only six of the 35 individuals with a rare deleterious variant in LMNA and a 

Phecode diagnosis of “primary/intrinsic cardiomyopathy” had been molecularly diagnosed with a 
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LMNA variant (Table 2.1), indicating that LMNA cardiomyopathy is substantially underdiagnosed. 

Furthermore, 15 missense variants with REVEL scores > 0.5 that are annotated as variants of 

uncertain significance or having conflicting interpretations of pathogenicity had at least one carrier 

with a Phecode diagnosis of “primary/intrinsic cardiomyopathy” and/or “cardiac conduction 

disorder” (Appendix A, Table S1). 

 

Basic demographics LMNA+/- LMNA+/+ OR p-value 
N 68 10928 - - 
Male, N (%) 38 (55.9) 6489 (59.4) - 0.625 
Median Age (at biobank entry), yr 63.4 67.9 - 0.021 

Race     
AFR, N (%) 12 (17.6) 2191 (20.0) - - 
AMR, N (%) 4 (5.9) 303 (2.8) - - 
EAS, N (%) 0 (0) 79 (0.7) - - 
EUR, N (%) 51 (75.0) 8208 (75.1) - - 
SAS, N (%) 1 (1.5) 114 (1.0) - - 

Clinical Cardiometabolic Diagnoses     
Diabetes Mellitus, N (%) 26 (38.2) 3508 (32.1) 1.31 0.298 
Hypertension, N (%) 51 (75.0) 7957 (72.8) 1.12 0.785 
Coronary Artery Disease, N (%) 32 (47.1) 4765 (43.6) 1.15 0.624 
Myocardial Infarction, N (%) 14 (20.6) 2214 (20.3) 0.98 0.881 
Heart Failure, N (%) 41 (60.3) 4159 (38.1) 2.47 2.40E-04 
Dilated Cardiomyopathy, N (%) 19 (27.9) 610 (5.6) 8.57 4.48E-09 
Heart Transplant, N (%) 14 (20.6) 379 (3.5) 7.21 1.00E-07 

PheCodes     
Primary/intrinsic cardiomyopathy, N (%) 35 (58.3) 1608 (18.3) 6.37 1.78E-11 
Cardiac conduction disorders, N (%) 42 (82.4) 2594 (44.4) 7.13 5.27E-07 
Atrial fibrillation, N (%) 39 (81.3) 3352 (50.8) 5.64 1.42E-05 
Atrioventricular (AV) block, N (%) 15 (62.5) 565 (14.8) 14.02 1.22E-08 
Sinoatrial node dysfunction (bradycardia), N (%) 15 (62.5) 544 (14.4) 13.67 4.89E-08 
Paroxysmal ventricular tachycardia, N (%) 27 (75.0) 1318 (28.9) 7.59 1.09E-06 
Cardiac pacemaker/device in situ, N (%) 36 (80.0) 1849 (36.3) 8.53 7.90E-08 
Cardiac defibrillator in situ, N (%) 28 (75.7) 1263 (28.0) 9.20 6.65E-08 
Congestive heart failure; nonhypertensive, N 
(%) 

40 (64.5) 3504 (42.1) 3.38 1.29E-05 

Heart failure with reduced EF, N (%) 20 (47.6) 1415 (22.7) 3.82 8.23E-05 
Heart transplant/surgery, N (%) 15 (40.5) 472 (8.9) 6.67 1.27E-07 
Chronic Kidney Disease, Stage III, N (%) 15 (30.6) 746 (10.3) 4.91 1.13E-06 
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Table 2.1. Demographics, clinical characteristics, and significant cardiovascular Phecode 
associations for individuals in PMBB carrying a predicted deleterious LMNA variant.  
Top and middle: Basic demographic characteristics (top) and cardiometabolic diagnoses (middle) for 68 of 

72 heterozygous carriers of predicted loss-of-function (pLOF) variants (N=11) and missense variants with 

REVEL scores of at least 0.65 (N=61) (represented as LMNA+/-) compared to non-carriers in the overall 

PMBB population (represented as LMNA+/+). Each characteristic is labeled with count data in the LMNA 

carrier population and the rest of PMBB, as well as p-values for two-tailed Fisher’s exact tests. Of note, four 

of 72 carriers were not included due to additional genotypic quality-check measures (see Methods). Bottom: 

representative cardiovascular and renal Phecodes identified by gene burden PheWAS for predicted 

deleterious exonic variants in LMNA (predicted loss-of-function variants and missense variants with a 

REVEL score of at least 0.65, N=72). Patients were determined to have a certain Phecode if they had the 

corresponding ICD diagnosis on 2 or more dates, while phenotypic controls consisted of individuals who 

never had the ICD code. Individuals with an ICD diagnosis on only one date as well as individuals under 

control exclusion criteria based on PheWAS phenotype mapping protocols were not considered in statistical 

analyses. Each phenotype is labeled with count and proportion data in the LMNA carrier population and the 

rest of PMBB, as well as odds-ratios and p-values attributable to LMNA carrier status via logistic regression 

adjusted for age, age2, gender, and the first ten principal components of genetic ancestry. AFR-African, 

AMR-Mixed American, EAS-East Asian, EUR-European, SAS-South Asian 

 

Given the variety of cardiovascular traits that were highly significant in the REVEL-

informed gene burden PheWAS for LMNA, we addressed whether these are independent signals.  

After running association analyses among all individuals with a phenotype of “primary/intrinsic 

cardiomyopathy”, we found that the entire spectrum of cardiovascular PheWAS signals 

disappeared, suggesting that the other cardiac phenotypes were secondary to primary 

cardiomyopathy in carriers of the deleterious LMNA variants (Appendix A, Figure S6). 

In addition to cardiac disease phenotypes, our REVEL-informed LMNA gene burden 

PheWAS also identified phenome-wide significant disease phenotypes that are not typically 

defined as laminopathies, including “chronic kidney disease, stage III” (p=1.13E-06; Figure 2.1.D, 

Table 2.1). The relative persistence of the association signal for “chronic kidney disease, stage 

III” (p=1.33E-03) when controlling for primary cardiomyopathy suggests an independent 

pathophysiological mechanism for renal failure in the context of loss of function in LMNA 

(Appendix A, Figure S6).  
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We replicated these observations in the DiscovEHR cohort using the same approach 

(pLOFs plus REVEL score ≥ 0.65; Appendix A, Table S4A). There was a significant association 

between LMNA gene burden and dilated cardiomyopathy (OR: 4.2 [95% CI: 1.3 – 10.0], p = 

0.005; Table S4B). Furthermore, the association of LMNA gene burden with chronic kidney 

disease was also replicated (OR: 1.6 [95% CI: 1.1 – 2.5], p = 0.02; Appendix A, Table S4B).    

 

2.4.2. Association of LMNA gene burden with cardiovascular imaging and clinical laboratory data 

 To build upon the PheWAS findings, we took a deeper dive into the cardiovascular 

imaging and laboratory EHR data. First, we analyzed the cardiac structures of these individuals 

by interrogating available echocardiography data. By doing so, we also aimed to better define the 

Phecode “primary/intrinsic cardiomyopathy,” which does not differentiate between the different 

types of primary cardiomyopathy. Carriers of rare deleterious LMNA variants had heart 

morphology consistent with dilated cardiomyopathy when compared to the rest of the PMBB 

population with echo data available (Table 2.2; Appendix A, Table S5A-B). More specifically, 

carriers had significantly increased left atrial volume indices, decreased left ventricular ejection 

fractions, decreased left ventricular outflow tract velocity time integrals, and increased mitral E/A 

ratios as an indication for weak atrial contraction.  

We also conducted similar quantitative analyses for select clinical laboratory 

measurements. Carriers of predicted deleterious LMNA variants had significantly elevated alanine 

transaminase (ALT) and aspartate transaminase (AST) levels when compared to individuals not 

carrying a predicted deleterious LMNA variant (Table 2.3; Appendix A, Table S6A). In the overall 

population, carrier status was significantly associated with increased total cholesterol levels 

(Table 2.3; Appendix A, Table S6A-B). Furthermore, maximum blood triglyceride levels trended to 

be elevated among carriers (p=0.0559; Table 2.3). These laboratory features are consistent with 

subclinical features of partial lipodystrophy, such as fatty liver and dyslipidemia. While only two of 
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the 72 carriers of predicted deleterious variants had an ICD diagnosis of “lipodystrophy,” there 

were 44 carriers with a phenotype of “hyperlipidemia,” 20 carriers with a diagnosis of “type 2 

diabetes”, and eight with “secondary diabetes mellitus”. Comprehensive investigation of physical 

exam notes written by healthcare providers for individuals with these related metabolic 

phenotypes showed no mention of loss of subcutaneous fat from the extremities, trunk, or gluteal 

region, which is the classic presentation specific to partial lipodystrophy type 2. 

Echo parameter LMNA+/- Median (IQR) 
N 

LMNA+/+ Median (IQR) 
N 

ß p 

Left atrial volume index, 

maximum 

 

52.592 (37.491, 60.381) 

20 

36.982 (27.329, 49.802) 

2648 

11.582 0.00649 

Left ventricular end systolic 

diameter PLAX, maximum (cm) 

 

4.010 (3.563, 4.637) 

31 

3.490 (2.970, 4.290) 

4643 

0.512 

 

0.0159 

 

Left ventricular diastolic 

diameter PLAX, maximum (cm) 

 

5.282 (4.792, 5.792) 

32 

4.980 (4.420, 5.591) 

4696 

0.188 

 

0.235 

 

Left ventricular ejection 

fraction (LVEF), minimum 

 

45.00 (40.00, 55.00) 

33 

55.00 (40.00, 65.00) 

5506 

-7.501 

 

0.0162 

 

Left ventricular outflow tract 

(LVOT) velocity time integral, 

minimum (cm) 

17.070 (14.200, 21.200) 

28 

19.100 (15.300, 23.175) 

3846 

-2.801 

 

0.0114 

 

Mitral E/A ratio, maximum 

 

1.753 (1.413, 2.541) 

26 

1.312 (0.942, 1.901) 

4529 

0.517 0.0124 

 

Table 2.2. Cardiac architecture for carriers of presumed deleterious variants in LMNA is consistent 
with dilated cardiomyopathy. Comparison of representative echocardiography parameters for cardiac size 

and functionality between heterozygous carriers of predicted loss-of-function variants and missense variants 

with REVEL scores of at least 0.65 (represented as LMNA+/-), and individuals in PMBB not carrying one of 

presumed deleterious variants with echocardiographic data available (represented as LMNA+/+). Data is 

represented as median, respective 1st and 3rd quartiles, the number of individuals from each population with 

available measurement data, and corresponding beta and p-value attributable to LMNA carrier status via 

robust linear regression adjusted for age, age2, gender, and the first ten principal components of genetic 

ancestry. 95% confidence intervals and p-values were corrected by bootstrapping with 1000 samples. 
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Lab parameter LMNA+/- Median (IQR) 
N 

LMNA+/+ Median (IQR) 
N 

p 

ALT, maximum (U/L) 58.50 (32.25, 143.50) 

50 

36.00 (23.00, 62.00) 

8459 

1.13E-04 

AST, maximum (U/L) 53.50 (35.50, 109.50) 

50 

35.00 (25.00, 63.00) 

8392 

1.48E-04 

Total cholesterol, maximum (mg/dL) 208.00 (180.00, 248.00) 

43 

196.00 (162.00, 231.00) 

6037 

0.0259 

LDL, maximum (mg/dL) 116.00 (90.50, 143.50) 

43 

114.00 (88.00, 145.00) 

5982 

0.998 

HDL, minimum (mg/dL) 41.00 (29.00, 50.75) 

42 

39.00 (31.00, 50.00) 

5978 

0.693 

Triglycerides, maximum (mg/dL) 185.00 (100.50, 319.00) 

43 

149.00 (102.00, 224.00) 

6189 

0.0559 

Creatine kinase, maximum 133.50 (85.00, 196.50) 

6 

113.00 (71.00, 183.00) 

1512 

0.541 

eGFR, minimum (mL/min/1.73 m2) 38.26 (18.26, 54.64) 

53 

56.94 (32.52, 79.05) 

8238 

5.20E-05 

Albumin (serum), minimum (g/dL) 3.00 (2.40, 3.70) 

50 

3.50 (2.90, 3.90) 

8049 

4.34E-03 

Urine protein, maximum (mg/dL) 41.00 (20.00, 262.50) 

8 

22.00 (9.00, 85.00) 

801 

0.162 

 

Table 2.3. Clinical laboratory measurements for carriers of presumed deleterious variants in LMNA is 
consistent with subclinical features of partial lipodystrophy and renal disease. Unadjusted 
comparison via Wilcoxon rank sum test of representative clinical laboratory parameters between 

heterozygous carriers of predicted loss-of-function variants and missense variants with REVEL scores of at 

least 0.65 (represented as LMNA+/-), and individuals in PMBB not carrying one of presumed deleterious 

variants with serum laboratory data available (represented as LMNA+/+). Data is represented as median, 

respective 1st and 3rd quartiles, the number of individuals from each population with available measurement 

data, and corresponding p-value for Wilcoxon rank sum test. 

 

Finally, regarding the identification of “chronic kidney disease, stage III” from our REVEL-

informed gene burden PheWAS, we compared quantitative markers of renal disease between 

carriers of predicted deleterious LMNA variants and non-carriers in PMBB. We found that carrier 

status was associated with significantly decreased eGFR and serum albumin levels (Table 2.3; 
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Appendix A, Table S6A-B). Furthermore, eGFR was still significantly decreased among carriers of 

predicted deleterious LMNA variants after adjusting for lifetime diagnosis of both congestive heart 

failure and diabetes mellitus, as well as adjusting for each diagnosis separately (Table 2.4). 

Additionally, serum albumin was also significantly decreased for carriers of predicted deleterious 

LMNA variants after adjusting for both heart failure and diabetes mellitus lifetime diagnoses 

(Table 2.4). 

 

Lab parameter ß p 

Adjusted for Heart Failure   

eGFR, minimum (mL/min/1.73 m2) -9.633 0.0149 

Albumin (serum), minimum (g/dL) -0.234 0.0842 

Adjusted for Diabetes Mellitus   

eGFR, minimum (mL/min/1.73 m2) -16.121 4.59E-05 

Albumin (serum), minimum (g/dL) -0.399 5.65E-04 

Adjusted for HF + DM   

eGFR, minimum (mL/min/1.73 m2) -10.648 0.00554 

Albumin (serum), minimum (g/dL) -0.264 0.0283 

 

Table 2.4. Renal clinical laboratory measurements for carriers of presumed deleterious variants in 
LMNA are consistent with primary renal disease. Comparison of estimated glomerular filtration rate 

(eGFR) and serum albumin between heterozygous carriers of predicted loss-of-function variants and 

missense variants with REVEL scores of at least 0.65, and individuals in PMBB not carrying one of 

presumed deleterious variants with serum laboratory data available, adjusted for lifetime congestive heart 

failure diagnosis (top), diabetes mellitus diagnosis (middle), and lifetime diagnoses of both heart failure and 

diabetes mellitus (bottom). Data is represented as beta and p-value attributable to LMNA carrier status via 

robust linear regression adjusted for lifetime diagnosis of heart failure and/or diabetes mellitus as well as the 

first ten principal components of genetic ancestry. 95% confidence intervals and p-values were corrected by 

bootstrapping with 1000 samples. eGFR not adjusted for age, age2, and gender given the dependence of 

eGFR on age and gender per the CKD-EPI equation. Serum albumin additionally adjusted for age and age2. 
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2.5. Discussion 

While exome-wide interrogation of patients with shared phenotypic traits has been 

successful in identifying many new genetic variants associated with rare human disease, proving 

causality of disease due to pathogenic genetic variants in humans in vivo remains enigmatic.41,42 

We attempt to address the limitations of traditional phenotype-first approaches through this study, 

which represents a genome-first approach to analyzing the clinical manifestations of predicted 

deleterious variants in LMNA by fully utilizing available EHR data. Our study serves as an 

example of a genome-first approach for studying the medical consequences of rare pLOF and 

deleterious missense genetic variants in specific genes within the context of large healthcare 

biobanks linked to extensive EHR phenotypic data.  

 An important area of research in precision medicine initiatives is to create a platform by 

which healthcare providers can make accurate diagnoses based on a wide variety of 

personalized health data, including individuals’ genetic information. However, current genetic 

panels offered at most healthcare institutions cover only a small portion of genetic variants 

implicated in rare human diseases.43 We suggest that the pipeline for interpretation of variants in 

LMNA identified via clinical genetic testing should be updated, as indicated by the number of 

variants of uncertain significance (VUS) identified in PMBB that we suggest may be pathogenic 

given the combination of their association with cardiomyopathy and/or arrhythmia and their 

predicted deleteriousness. Additionally, we found that important molecular diagnoses were 

missed, as many carriers for predicted deleterious variants in LMNA with dilated cardiomyopathy 

had not been sequenced for LMNA. In our analysis of PMBB, 35 individuals with a diagnosis of 

“primary/intrinsic cardiomyopathy” had a rare deleterious variant in LMNA and only six had been 

previously tested and molecularly diagnosed with a LMNA variant, suggesting that there is a lack 

of genetic testing for laminopathies in patients with cardiomyopathy of unknown etiology. 

Currently, LMNA genetic testing is not routinely offered to all patients with dilated cardiomyopathy 

unless a genetic cause is suspected to underlie dilated cardiomyopathy as a primary condition.44-
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46 Furthermore, all six individuals who received testing were identified as carriers for known 

pathogenic variants, suggesting that some carriers of potentially pathogenic variants annotated 

as VUS as well as novel variants would not have been identified even if offered genetic testing in 

the clinic. Similarly, familial partial lipodystrophy due to a pathogenic LMNA variant is also likely 

underdiagnosed.  

 Although there are no current therapies specific to LMNA cardiomyopathy, there is 

benefit to making the molecular diagnosis with regard to providing an etiology for the 

cardiomyopathy, predicting clinical course and complications, and testing other family members 

at risk. More effective molecular diagnoses can lead to change in medical management for these 

individuals who are at high risk for arrhythmic sudden cardiac death.47,48 In the clinical setting, 

dilated cardiomyopathy patients with confirmed pathogenic LMNA variants are often referred for 

electrophysiologic risk stratification earlier than other patients with non-genetic dilated 

cardiomyopathy. Thus, while evaluation of the contribution of individual variants remains clinically 

challenging and a definitive classification of pathogenicity for each presumed deleterious variant 

is hard to predict, our analyses suggest that earlier identification of laminopathies through an 

improved framework promoting genetic testing in the clinical setting using a comprehensive and 

updated variant panel is warranted to provide earlier, preventive treatments.  

Additionally, the increased number of specific pathogenic variants in LMNA identified 

through this genome-first approach will provide greater insight into LMNA structure-function.   

Interestingly, 19 of 29 known ClinVar-annotated pathogenic missense variants cause a deviation 

from arginine in various locations of the LMNA protein product, highlighting a potential importance 

of the positively-charged arginine in the LMNA protein structure, consistent with previous studies 

identifying arginine in many splicing binding sites for generating prelamin A and lamin C.49 

Notably, among novel missense variants discovered in this study, 8 of 18 variants with REVEL 

scores of at least 0.65 cause deviations from arginine, consistent with the prevalence of these 

changes in known clinically pathogenic missense variants.   
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This approach to inclusion of REVEL-annotated likely deleterious missense variants in a 

gene burden has the advantage of increasing the power for gene burden PheWAS analyses that 

can identify novel gene ontologies, as seen by the identification of advanced renal disease in the 

context of loss of function in LMNA. While renal abnormalities are possible direct clinical sequelae 

related to heart failure and diabetes mellitus, pathophysiological mechanisms for renal failure due 

to pathogenic LMNA variants through primary, non-cardiorenal processes have recently been 

suggested.50,51 We report impaired renal function and hypoalbuminemia in the context of loss of 

function in LMNA, even after adjusting for both a lifetime diagnosis of congestive heart failure and 

diabetes mellitus, suggesting a pathophysiology for renal failure due to a proteinuric, primary 

nephrotic clinical picture that may be confounded by, yet independent of, the pathophysiology of 

heart failure in dilated cardiomyopathy and the overlap with diabetes in partial lipodystrophy. Our 

results suggest a clinical or subclinical nephrotic phenotype due to loss-of-function variants in 

LMNA that may have been further masked by comorbid cardiac and metabolic disease traits, 

calling for follow-up studies interrogating primary renal disease as a potential novel laminopathy.  

 In conclusion, we used an approach to include pLOFs and REVEL-annotated deleterious 

missense variants in LMNA in a gene burden to show by PheWAS, using a relatively small 

number of carriers, significant associations with primary dilated cardiomyopathy, laboratory 

values consistent with partial lipodystrophy, and a novel finding of chronic kidney disease. We 

demonstrate the importance of deeply interrogating quantitative data in the EHR to uncover 

important clinical and subclinical information relevant to other rare laminopathies implicated by 

deleterious LMNA variants. Our approach suggests an expanded role for clinical genetic testing 

for patients who present with primary dilated cardiomyopathy or early pathophysiologic signs like 

conduction defects. Importantly, our study also lays a methodological framework by which future 

studies can uncover novel gene-disease relationships and identify novel pathogenic loss-of-

function variants across the human genome through genome-first analyses of large, 

heterogeneous healthcare-based populations.  
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CHAPTER 3. A genome-first approach to rare variants in 

hypertrophic cardiomyopathy genes MYBPC3 and MYH7 in a 

medical biobank 

 

This thesis chapter was adapted from: 

Park J, Packard EA, Levin MG, Judy RL, Regeneron Genetics Center, Damrauer SM, Day SM, 

Ritchie MD, Rader DJ. A genome-first approach to rare variants in hypertrophic cardiomyopathy 

genes MYBPC3 and MYH7 in a medical biobank. medRxiv. 2021.05.26.21257880. doi: 

10.1101/2021.05.26.21257880 

 

3.1. Abstract 

‘Genome-first’ approaches to analyzing rare variants can reveal new insights into human biology 

and disease. Because pathogenic variants are often rare, new discovery requires aggregating 

rare coding variants into ‘gene burdens’ for sufficient power. However, a major challenge is 

deciding which variants to include in gene burden tests. Pathogenic variants in MYBPC3 and 

MYH7 are well-known causes of hypertrophic cardiomyopathy (HCM), and focusing on these 

‘positive control’ genes in a genome-first approach could help inform variant selection methods 

and gene burdening strategies for other genes and diseases. Integrating exome sequences with 

electronic health records among 41,759 participants in the Penn Medicine BioBank, we evaluated 

the performance of aggregating predicted loss-of-function (pLOF) and/or predicted deleterious 

missense (pDM) variants in MYBPC3 and MYH7 for gene burden phenome-wide association 

studies (PheWAS). The approach to grouping rare variants for these two genes produced very 

different results: pLOFs but not pDM variants in MYBPC3 were strongly associated with HCM, 

whereas the opposite was true for MYH7. Detailed review of clinical charts revealed that only 
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38.5% of patients with HCM diagnoses carrying an HCM-associated variant in MYBPC3 or MYH7 

had a clinical genetic test result. Additionally, 26.7% of MYBPC3 pLOF carriers without HCM 

diagnoses had clear evidence of left atrial enlargement and/or septal/LV hypertrophy on 

echocardiography. Our study shows the importance of evaluating both pLOF and pDM variants 

for gene burden testing in future studies to uncover novel gene-disease relationships and identify 

new pathogenic loss-of-function variants across the human genome through genome-first 

analyses of healthcare-based populations.  

 

3.2. Introduction 

‘Genome-first’ approaches, in which genetic variants of interest are first identified and 

then analyzed for association with phenotypes, can be used to inform the genetic basis of human 

disease and reveal new insights into gene function and human biology.6 Particularly when applied 

to medical biobanks consisting of healthcare populations with DNA sequencing data linked to 

extensive electronic health record (EHR) phenotype data, genome-first approaches allow for 

agnostic phenome-wide association studies (PheWAS) to determine the clinical impact of specific 

genetic variants.8,9 With the rising use of large-scale whole-exome sequencing (WES) and 

identification of many rare coding variants predicted to impact protein structure or function, 

studies are increasingly interrogating the cumulative effect of multiple rare variants in a gene (i.e. 

‘gene burden’) to increase the statistical power of regression analyses and enable gene-based 

association studies to describe the implications of mutated genes in human disease.13  

We have previously shown that gene burden PheWAS applied to large healthcare 

populations has the potential to uncover novel consequences of rare coding variants in the 

human disease phenome.22 One approach to gene burden PheWAS is to focus only on predicted 

loss-of-function (pLOF) variants, but this could lead to lack of power due to their infrequency. 

Additional coding variation could be added to substantially increase the number of effect alleles, 
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but a major challenge is deciding which variants to include in gene burden tests of association. 

Furthermore, there are many in silico algorithms that can predict the probability that a variant may 

have a deleterious effect on its gene product as well as various filters that can be applied for 

variant selection based on variant type and frequency, but very little large-scale functional data 

that can be used to annotate missense variants.  

Application of the unbiased genome-first approach to ‘positive control’ genes with known 

phenotype associations represents a valuable system for comparison of variant selection 

methods and gene burdening strategies, as we previously showed for the gene LMNA and its 

association with dilated cardiomyopathy.10 Pathogenic variants in MYBPC3 and MYH7 are known 

to cause hypertrophic cardiomyopathy (HCM) and together account for up to 50% of all clinically 

recognized HCM cases and at least 75% of HCM cases for which a pathogenic variant is 

identified.52 We leveraged the Penn Medicine BioBank (PMBB, University of Pennsylvania), a 

large academic medical biobank with WES linked to EHR data, to evaluate in detail the 

performance of methods for aggregating pLOF and/or annotated predicted deleterious missense 

(pDM) variants in MYBPC3 and MYH7 for gene burden association studies. Additionally, we 

followed up on our genome-first approach with review of EHR charts to describe the clinical 

characteristics of variant carriers identified through this gene burden study. 

 

3.3. Materials and Methods 

3.3.1. Setting and study participants  

All individuals recruited for the Penn Medicine BioBank (PMBB) are patients of clinical 

practice sites of the University of Pennsylvania Health System. Appropriate consent was obtained 

from each participant regarding storage of biological specimens, genetic sequencing, and access 

to all available EHR data. This study was approved by the Institutional Review Board of the 

University of Pennsylvania and complied with the principles set out in the Declaration of Helsinki. 
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3.3.2. Whole-exome sequencing 

 This study included a subset of 43,731 individuals in the PMBB who had undergone 

whole-exome sequencing. We extracted DNA from stored buffy coats and then mapped exome 

sequences as generated by the Regeneron Genetics Center (Tarrytown, NY) to GRCh38 as 

previously described.10 Samples with low exome sequencing coverage, high missingness (i.e. 

greater than 5% of targeted bases), dissimilar reported and genetically determined sex, and 

genetic evidence of sample duplication were not included in this subset.10,22 For subsequent 

phenotypic association analyses, we removed samples with evidence of 1st and 2nd-degree 

relatedness, leading to a total of sample size of 41,759 for analysis.  

  

3.3.3. Variant annotation and selection for gene burden association testing 

For PMBB, variants were annotated using ANNOVAR32 as pLOF or missense variants. 

pLOFs were defined as frameshift insertions or deletions, gain of stop codon, and disruption of 

canonical splice site dinucleotides. For splicing variants, we removed those with SpliceAI scores 

< 0.2 for loss or gain of acceptor or donor site.53 Several approaches to inclusion of rare variants 

in the gene burden were applied, including pLOFs only, additional ClinVar pathogenic variants, 

and inclusion of predicted deleterious missense (pDM) variants that were scored deleterious by 

4/4 algorithms (SIFT16, PolyPhen2 HumDiv, Polyphen2 HumVar17,  MutationTaster19). To capture 

additional individuals with potentially pathogenic missense variants, we utilized an ensemble 

method for predicting the pathogenicity of missense variants called REVEL20 to score rare 

missense variants in MYBPC3 and MYH7. Finally, we overlapped a list of all 19 expert-

adjudicated pathogenic missense variants in MYBPC3 from the SHaRe Database to identify high-

confidence pathogenic missense variants in PMBB.54 
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3.3.4. Clinical data collection 

All International Classification of Diseases Ninth Revision (ICD-9) and Tenth Revision 

(ICD-10) diagnosis codes, clinical imaging and laboratory measurements were extracted from the 

patients’ EHR. All ICD diagnosis codes and outpatient laboratory measurements available up to 

July 2020 were extracted for PMBB participants. Inpatient and outpatient echocardiography 

measurements were extracted if available for participants from September 2005 until November 

2018. Outliers for each echocardiographic parameter (values >10 median absolute deviations 

from the median) were removed. Minimum, median, and maximum measurements of each 

quantitative trait were recorded per individual. 

 

3.3.5. Phenome-wide association studies 

A PheWAS approach was used to determine the phenotypes associated with predicted 

deleterious variants in MYBPC3 or MYH7 carried by individuals in PMBB33. ICD-10 encounter 

diagnoses were mapped to ICD-9 via the Center for Medicare and Medicaid Services 2017 

General Equivalency Mappings (https://www.cms.gov/Medicare/Coding/ICD10/2017-ICD-10-CM-

and-GEMs.html) and manual curation. Phenotypes for each individual were then determined by 

mapping ICD-9 codes to distinct disease entities (i.e. Phecodes) using the R package 

“PheWAS”34. Patients were determined to be a case for a certain Phecode if they had the 

corresponding ICD diagnosis on 2 or more dates, while controls consisted of individuals who 

never had the ICD code. Individuals with an ICD diagnosis on only one date as well as individuals 

meeting control exclusion criteria based on default PheWAS phenotype mapping protocols were 

not considered in statistical analyses. 

Each disease phenotype was tested for association with a gene burden of pLOF and/or 

pDM variants using a logistic regression model adjusted for age, sex, and the first ten principal 

components of genetic ancestry. We used an additive genetic model to aggregate variants into 
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gene burdens as previously described.22 PheWAS analyses were performed separately by 

African and European genetic ancestry and then combined with inverse variance weighted meta-

analysis. Our association analyses considered only disease phenotypes with at least 20 cases 

based on a prior simulation study for power analysis of rare variant gene burden PheWAS.22 This 

led to the interrogation of 1396 total Phecodes, and we used a Bonferroni correction to adjust for 

multiple testing (p=0.05/1396=3.58E-05). 

 

3.3.6. Statistical analyses 

We also created a single HCM phenotype by combining Phecodes “Hypertrophic 

obstructive cardiomyopathy” and “Other hypertrophic cardiomyopathy” for association with 

various gene burdens in conjunction with PheWAS, using a logistic regression model adjusted for 

age, sex, and the first ten principal components of genetic ancestry. These HCM-specific 

analyses were performed separately by African and European genetic ancestry and combined 

with inverse variance weighted meta-analysis. Additionally, to compare available 

echocardiographic and serum laboratory measurements between carriers of predicted deleterious 

variants and genotypic controls, we used linear regression adjusted for age, sex, and the first ten 

principal components of genetic ancestry. These analyses were performed separately by African 

and European genetic ancestry and combined with inverse variance weighted meta-analysis. For 

echocardiographic comparison of MYBPC3 pLOF and pathogenic missense variant carriers 

versus controls, MYH7 pLOF and REVEL-informed pDM variant carriers were removed from 

controls. Likewise, for echocardiographic comparison of carriers of pLOF and pDM with 

REVEL≥0.5 variants in MYH7 versus controls, carriers of MYBPC3 pLOF and pathogenic 

missense variants were removed from controls. All statistical analyses were completed using R 

version 3.5 (Vienna, Austria). 
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3.3.7. Review of clinical charts 

 We reviewed the clinical charts of patients with HCM who also carry a pLOF or pDM 

variant in MYBPC3 or MYH7 to assess the prevalence of clinical genetic testing for a molecular 

diagnosis of carrying a pathogenic MYBPC3 or MYH7 variant. We also reviewed the clinical 

charts of MYH7 pLOF carriers to characterize a cardiac phenotype among these individuals 

without an HCM diagnosis. Finally, we interrogated the clinical charts of cases for “muscular 

wasting and disuse atrophy” who also carried a pLOF or pDM variant in MYH7 to assess the 

prevalence of clinical genetic testing for a molecular diagnosis of MYH7-related myopathy.   

 

3.4. Results 

3.4.1. pLOF variants in MYBPC3 were strongly associated with HCM 

Among 41,759 unrelated individuals with WES in PMBB (Table 3.1), we identified 45 

individuals carrying one of 33 predicted loss-of-function (pLOF) variants in MYBPC3, including 13 

frameshift insertions/deletions, 9 gain of stop codon, and 11 splicing variants disrupting canonical 

splice site dinucleotides (Figure 3.1.A; Appendix B, Table S1). PheWAS of the gene burden of 

pLOF variants in MYBPC3 showed phenome-wide significant associations with HCM and related 

cardiac phenotypes such as cardiac conduction disorders, heart failure, heart transplant/surgery, 

and use of cardiac defibrillator (Table 3.2; Appendix B, Figure S1). 15 of the 45 individuals with a 

rare pLOF had a clinical diagnosis of HCM (Phecodes “Hypertrophic obstructive cardiomyopathy” 

or “Other hypertrophic cardiomyopathy”) (Appendix B, Table S1). 12 of 33 pLOFs were annotated 

in ClinVar as pathogenic or likely pathogenic (P/LP), and of the 18 carriers of these P/LP variants, 

6 had a clinical diagnosis of HCM. Of the 21 pLOF variants without a P/LP classification in 

ClinVar, 9 were carried by a total of 9 individuals with diagnoses of HCM (Appendix B, Table S1). 

 



33 

 

Basic demographics  
Total population, N 41759 

Female, N (%) 20731 (49.6) 

Median age, years 63 

  

Genetically informed ancestry  
AFR, N (%) 10217 (24.5) 

AMR, N (%) 572 (1.4) 

EAS, N (%) 672 (1.6) 

EUR, N (%) 29362 (70.3) 

SAS, N (%) 564 (1.4) 

  

Phecodes  
Primary/intrinsic cardiomyopathies, N (%) 2912 (7.6) 

Hypertrophic obstructive cardiomyopathy, N (%) 199 (0.6) 

Other hypertrophic cardiomyopathy, N (%) 184 (0.5) 

Cardiac dysrhythmias, N (%) 12130 (35.5) 

Atrial fibrillation, N (%) 5885 (21.0) 

Atrial flutter, N (%) 2324 (9.5) 

Paroxysmal ventricular tachycardia, N (%) 1960 (8.2) 

Ventricular fibrillation and flutter, N (%) 467 (2.1) 

Cardiac conduction disorders, N (%) 5688 (20.5) 

Cardiac pacemaker/device in situ, N (%) 3177 (12.6) 

Cardiac defibrillator in situ, N (%) 1945 (8.1) 

Congestive heart failure; nonhypertensive, N (%) 6224 (16.9) 

Heart transplant/surgery, N (%) 792 (2.5) 

Cardiac shunt/heart septal defect, N (%) 547 (1.4) 

Cardiogenic shock, N (%) 188 (0.5) 

Muscular wasting and disuse atrophy, N (%) 52 (0.1) 

 

Table 3.1. Penn Medicine BioBank whole exome-sequenced cohort characteristics. 
Basic demographic characteristics and representative Phecodes identified by gene burden PheWAS for 

MYBPC3 and MYH7. Each characteristic is labeled with count data and percent prevalence where 

appropriate. Individuals were determined to be a case for a Phecode if they had the corresponding ICD 

diagnosis on two or more dates, while controls consisted of individuals who never had the ICD code. 

Individuals with an ICD diagnosis on only one date as well as those under control exclusion criteria based on 

Phecode mapping protocols were not considered. AFR-African, AMR-Mixed American, EAS-East Asian, 

EUR-European, SAS-South Asian 
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Figure 3.1. Distribution of disease-associated variants in MYH7 and MYBPC3. A) Schematic of 

MYBPC3 gene with exons 1-35 (exons not to scale) above and domains below, with variants labeled in red 

denoting amino acid change (or location of splice variant) for pLOF or adjudicated missense variants that 

were associated with HCM in PMBB. B) Schematic of MYH7 gene with exons 1-41 (exons not to scale) 

above and domains below. Variants are labeled in red denoting amino acid change for pDM variants with 

REVEL≥0.5 that were associated with HCM in PMBB, and variants are labeled in blue denoting amino acid 

change (or location of splice variant) for pLOF or pDM variants with REVEL≥0.5 that were associated with 

“Muscular wasting and disuse atrophy” in PMBB. Note: exons 39-41, which do not encode for protein, are 

grayed out. Note 2: p.M982T in MYH7 was associated with both HCM and muscular wasting and disuse 

atrophy, but via different individuals, and is thus labeled in black. 

 

Review of clinical charts of the 15 pLOF carriers with a clinical diagnosis of HCM 

revealed that only 5 had a clinical genetic test report, all of which were concordant with the WES 

pLOF results. While all 5 individuals with clinical genetic testing had a family history of HCM, only 
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3 of 10 untested individuals had a family history of HCM noted in their charts. Chart review of the 

30 MYBPC3 pLOF carriers without a clinical HCM diagnosis revealed that 17 had received at 

least one transthoracic echocardiogram, and 8 of these individuals had left atrial enlargement 

and/or hypertrophy of the septum or another segment within the left ventricle. Additionally, 10 of 

30 pLOF carriers without a diagnosis of HCM had a history of atrial fibrillation.  

 

MYBPC3 

Gene Burden Beta SE OR P Carrier N HCM N 
ClinVar P/LP (pLOF + missense) 4.177 0.453 65.161 3.15E-20 45 8 

pLOF only 5.112 0.411 166.008 1.52E-35 45 15 

pDM (REVEL≥0.6) only 0.908 0.316 2.48 4.05E-03 628 10 

Adjudicated missense (SHaRe) 2.785 0.76 16.204 2.46E-04 22 2 

pLOF + pDM 1.949 0.214 7.023 7.99E-20 673 25 

pLOF + adjudicated missense 4.402 0.321 81.638 1.03E-42 67 17 

MYH7 

Gene Burden Beta SE OR P Carrier N HCM N 

ClinVar P/LP (pLOF + missense) 4.737 0.301 11.404 1.29E-55 77 22 

pLOF only -10.658 315.401 2.35E-05 9.73E-01 27 0 

pDM (REVEL≥0.5) only 2.059 0.183 7.839 2.01E-29 858 37 

pLOF + pDM 2.033 0.183 7.635 9.23E-29 885 37 
 

Table 3.2. Association of MYBPC3 and MYH7 gene burdens with HCM in PMBB. Summary statistics for 

gene burden associations with HCM (combining Phecodes “Hypertrophic obstructive cardiomyopathy” and 

“Other hypertrophic cardiomyopathy”) in PMBB using ClinVar P/LP, pLOF only, missense only (pDM and/or 

adjudicated), and pLOF + missense variants in MYBPC3 (top) and MYH7 (bottom). Each gene burden 

association is reported as beta, standard error (SE), odds-ratio (OR), p value, the number of carriers for 

variants included in the gene burden, and the number of carriers having the HCM phenotype.  
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3.4.2. Predicted deleterious missense (pDM) variants in MYBPC3 were not associated with HCM 

Based on ‘phenotype-first’ presentations of HCM, most pathogenic variants in MYBPC3 

are pLOF variants.55 ClinVar shows that 482 frameshift, nonsense, or splicing variants in 

MYBPC3 are classified as P/LP, whereas only 54 missense variants are annotated as P/LP.14 In 

PMBB, the gene burden of all nonsynonymous coding variants in MYBPC3 classified by ClinVar 

as P/LP (N=45 heterozygous carriers) was strongly associated with HCM as expected (Table 3.2; 

Appendix B, Figure S2). However, while a gene burden of just the 12 pLOF variants classified as 

P/LP (N=18 heterozygous carriers) also showed phenome-wide significant associations with 

HCM Phecodes (Appendix B, Figure S3A), a gene burden of the 17 missense variants classified 

as P/LP (N=27 heterozygous carriers) showed a much weaker association with HCM that was not 

phenome-wide significant (p=9.50E-05) (Appendix B, Figure S3B). We previously have shown 

that prediction of deleteriousness for missense variants using the ensemble tool REVEL20 is 

highly correlated with clinical annotations for missense variants in LMNA.10 We similarly applied 

REVEL to missense variants in MYBPC3 and found through an analysis of variance on ClinVar-

annotated variants that REVEL scores showed essentially no correlation with annotations of 

clinical pathogenicity for MYBPC3 (Appendix B, Table S2). We experimented with REVEL score 

thresholds in bins of 0.05 to evaluate the optimal score cutoff for capturing the most robust 

association of missense variants in MYBPC3 associated with HCM. We found that all REVEL 

cutoff thresholds showed very weak association with HCM, although a REVEL threshold score of 

0.6 was relatively optimal (Table 3.2; Appendix B, Figure S4). Additionally, application of the 

aggregation of predicted deleterious missense (pDM) variants chosen by a consensus of 

algorithms (SIFT, PolyPhen2 HumDiv, PolyPhen2 HumVar, and MutationTaster)—one of the 

standard approaches for predicting the deleteriousness of missense variants—also showed weak 

association with HCM (Appendix B, Figure S4).  

Given the weak or insignificant association of missense variants in MYBPC3 with HCM 

based on algorithms predicting deleteriousness of missense variants alone, we overlapped a list 
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of 19 expert-adjudicated pathogenic missense variants in MYBPC3 from the SHaRe Database to 

identify high-confidence pathogenic missense variants in PMBB.54 We identified 6 of these high-

confidence pathogenic missense variants in MYBPC3 carried by a total of 22 individuals among 

the PMBB WES cohort (Appendix B, Table S3). A gene burden including just these 6 missense 

variants showed a similar degree of association with HCM compared to a gene burden of ClinVar 

P/LP missense variants, and was more strongly associated with HCM compared to a burden of 

pDM variants based on all REVEL score thresholds as well as 4/4 algorithms (Table 3.2; 

Appendix B, Figure S4). 2 of the 22 carriers were diagnosed with HCM, and chart review of the 

20 carriers without an HCM diagnosis revealed 5 individuals with mild concentric hypertrophy or 

dilated atria noted on transthoracic echocardiography.  

Including pDMs together with pLOFs in a gene burden has the potential to increase 

power for finding phenotype associations. When we combined pLOFs with pDMs having 

REVEL≥0.6, we noted no improvement in the association of the gene burden with HCM (Table 

3.2). Only when the adjudicated pathogenic missense variants were included with pLOFs did we 

see a stronger association with HCM compared with pLOFs alone (Figure 3.2, Table 3.2). We 

further interrogated this MYBPC3 gene burden combining pLOFs and adjudicated pathogenic 

missense variants by analyzing available echocardiography data in PMBB. Carriers of pLOF and 

adjudicated pathogenic missense variants in MYBPC3 on average had increased left ventricular 

posterior wall (LVPW) diastolic thickness, interventricular septum (IVS) diastolic thickness, left 

atrial (LA) volume index, and left ventricular outflow tract (LVOT) peak gradient (Table 3.3) 

compared to non-carriers, although not always at clinically relevant thresholds.  
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Figure 3.2. Gene burden PheWAS of pLOF and adjudicated pathogenic missense variants in 
MYBPC3. Gene burden PheWAS of pLOF variants (N=45, Appendix B, Table S1) and adjudicated 

pathogenic missense variants from SHaRE (N=22, Appendix B, Table S3) in MYBPC3. Phecodes are 

plotted along the x axis to represent the phenome, and the association of the gene burden with each 

Phecode is plotted along the y axis representing –log10(p value). The red line represents the Bonferroni-

corrected significance threshold to adjust for multiple testing (p=3.58E-05), and the blue line represents a 

nominal significance threshold (p=0.05). 

 

3.4.3. pLOF variants in MYH7 were not significantly associated with HCM but had suggestive 

associations with other cardiac phenotypes  

We identified 27 individuals carrying one of 23 pLOF variants in MYH7, including 5 

frameshift insertion/deletions, 13 gain of stop codon, and 5 splicing variants (Appendix B, Table 

S4). Of note, none of these pLOF variants were in the last exon of MYH7. In contrast to MYBPC3, 
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PheWAS of the MYH7 pLOF only gene burden showed no association with HCM (p=0.973) 

(Table 3.2; Appendix B, Figure S5). We confirmed through chart review that none of the 27 pLOF 

carriers had an HCM diagnosis (Appendix B, Table S4). Interestingly, however, this pLOF gene 

burden had weak evidence for association with “Cardiac shunt/heart septal defect” (p=1.12E-04, 

N=3), suggesting the possibility of a cardiac phenotype among heterozygous carriers for pLOF 

variants in MYH7. Detailed review of the clinical charts of the 27 MYH7 pLOF carriers confirmed a 

history of patent foramen ovale or atrial septal defect in 3 pLOF carriers, and also revealed that 

13 of 27 had received echocardiograms, of which 5 individuals had mild concentric left ventricular 

hypertrophy.  

 

Echo Parameter MYBPC3 Median 
(IQR) 

Control Median 
(IQR) 

Beta SE P MYBPC3 
N 

Control 
N 

LVPW diastolic 
thickness, max 

(cm) 

1.320  
(1.160, 1.525) 

1.100  
(0.951, 1.284) 

0.257 0.043 2.86E-09 31 11928 

IVS diastolic 
thickness, max 

(cm) 

1.510  
(1.203, 1.871) 

1.150  
(0.989, 1.340) 

0.414 0.050 7.68E-17 30 11854 

LA volume index, 
max (mL/m^2) 

48.593  
(40.224, 52.374) 

33.725  
(24.929, 44.948) 

12.567 3.744 7.89E-04 22 8128 

LVOT peak 
gradient, max 

(mmHg) 

6.554  
(4.162, 9.000) 

4.410  
(3.254, 6.052) 

2.605 0.500 1.91E-07 29 8807 

Echo Parameter MYH7 Median 
(IQR) 

Control Median 
(IQR) 

Beta SE P MYH7 
N 

Control 
N 

LVPW diastolic 
thickness, max 

(cm) 

1.130  
(0.934, 1.285) 

1.100  
(0.951, 1.284) 

0.045 0.014 1.63E-03 303 11928 

IVS diastolic 
thickness, max 

(cm) 

1.190  
(1.001, 1.390) 

1.150  
(0.989, 1.340) 

0.071 0.016 1.09E-05 300 11854 

LA volume index, 
max (mL/m^2) 

36.796  
(27.763, 50.182) 

33.725  
(24.929, 44.948) 

5.235 1.242 2.51E-05 214 8128 

LVOT peak 
gradient, max 

(mmHg) 

4.801  
(3.467, 6.554) 

4.410  
(3.254, 6.052) 

0.458 0.187 1.41E-02 222 8807 

 

Table 3.3. Echocardiographic analyses for MYBPC3 and MYH7 in PMBB. Top: comparison of 

echocardiographic parameters representative of HCM with gene burden of pLOF variants and adjudicated 

pathogenic missense variants from SHaRE in MYBPC3 versus non-carriers. Carriers of pLOF variants and 
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pDM variants with REVEL≥0.5 in MYH7 were removed from this analysis. Median and interquartile ranges 

(IQR) for each echo parameter are listed for each test group, and association results are listed as beta, 

standard error (SE), and p value. The number of individuals with each echo parameter available are also 

listed per test group. Bottom: comparison of echocardiographic parameters representative of HCM with gene 

burden of pLOF variants and pDM variants with REVEL≥0.5 in MYH7 versus non-carriers. Carriers of pLOF 

variants and adjudicated pathogenic missense variants from SHaRE in MYBPC3 were removed from this 

analysis. Median and interquartile ranges (IQR) for each echo parameter are listed for each test group, and 

association results are listed as beta, standard error (SE), and p value. The number of individuals with each 

echo parameter available are also listed per test group. LVPW – left ventricule posterior wall, IVS – 

interventricular septum, LA – left atrial, LVOT – left ventricular outflow tract 

 

3.4.4. Predicted deleterious missense (pDM) variants in MYH7 were strongly associated with 

HCM  

Most known pathogenic variants in MYH7 are missense56, as exemplified by the ClinVar 

database which has classified 272 missense variants in MYH7 as P/LP, whereas there are only 

20 frameshift, nonsense, or splicing variants annotated as P/LP.14 In PMBB, we found a total of 

43 missense variants annotated by ClinVar as P/LP (N=75 heterozygous carriers) as well as just 

two pLOFs annotated as P/LP (N=2 carriers). As expected, a gene burden comprised only of 

these ClinVar P/LP nonsynonymous variants had a very strong association with HCM (Table 3.2; 

Appendix B, Figure S6). Of the 75 carriers with ClinVar P/LP missense variants, 22 had a 

diagnosis of HCM, while neither of the two carriers for pLOFs annotated in ClinVar as P/LP had 

an HCM diagnosis.  

We then asked how a computational approach to selecting MYH7 missense variants 

would perform and explored in detail the association of pDM variants in MYH7 with HCM and 

other phenotypes. We applied REVEL to missense variants in MYH7 and found through an 

analysis of variance on ClinVar-annotated variants that REVEL scores were highly correlated with 

annotations of clinical pathogenicity for MYH7 (Appendix B, Table S5). We then experimented 

with REVEL score thresholds in bins of 0.05 to evaluate the optimal score cutoff for capturing the 

most robust association of missense variants in MYH7 with HCM, with the goal of potentially 
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capturing deleterious missense variants in MYH7 that lack a pathogenic ClinVar classification. 

We found that a REVEL cutoff score of 0.5 had the optimal p value for association of MYH7 pDM 

variants with HCM (Table 3.2; Appendix B, Figure S7). Of note, this REVEL-based association 

was more strongly associated with HCM compared to the aggregation of pDM variants predicted 

deleterious by a consensus of algorithms (SIFT, PolyPhen2 HumDiv, PolyPhen2 HumVar, and 

MutationTaster), even while identifying more variants (303 variants with REVEL≥0.5 vs. 166 

variants passing consensus of algorithms) (Appendix B, Figure S7). The HCM-prevalent 

missense variants were concentrated among the globular S1 head and coiled-coil S2 domains of 

MYH7 (Figure 3.1.B; Appendix B, Table S6). Among 858 total carriers for pDM variants in MYH7 

with REVEL≥0.5, 37 heterozygous carriers for 33 different pDM variants had a diagnosis of HCM 

(Appendix B, Table S6). 15 MYH7 pDM variants with REVEL≥0.5 lacking a classification of P/LP 

in ClinVar were carried by individuals with a diagnosis of HCM (Appendix B, Table S6). Chart 

review of these 37 carriers confirmed the diagnosis of HCM and indicated that only 15 of the 37 

carriers had clinical genetic testing for HCM in their chart (all were concordant with the WES 

MYH7 variant). While 13 of 15 individuals with a clinical genetic test in the chart noted a family 

history of HCM, only half of untested individuals had a documented family history.  

 

3.4.5. Gene burden of pLOF and pDM variants in MYH7 was also associated with a skeletal 

muscle phenotype 

In order to increase power for finding associations, we aggregated the 23 pLOF variants 

in MYH7 (N=27 carriers) with the 303 pDM variants with REVEL≥0.5 in MYH7 (N=858 carriers) 

into a gene burden. PheWAS of this combined MYH7 gene burden showed, as expected, 

phenome-wide significant associations with HCM (Figure 3.3, Table 3.2), but the strength of this 

association was not greater than with a pDM gene burden alone. This expanded gene burden 

was also significantly associated with related cardiac phenotypes “Heart transplant/surgery” and 

“Cardiac defibrillator in situ” (Figure 3.3). We also linked the expanded gene burden with available 
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echocardiography data in PMBB, and found that carriers of pLOF and pDM variants in MYH7 on 

average had increased left ventricular posterior wall (LVPW) diastolic thickness, interventricular 

septum (IVS) diastolic thickness, left atrial (LA) volume index, and left ventricular outflow tract 

(LVOT) peak gradient (Table 3.3) compared to non-carriers, although not always at clinically 

relevant thresholds. 

 

Figure 3.3. Gene burden PheWAS of pLOF + pDM variants in MYH7. Gene burden PheWAS of pLOF 

variants (N=27, Appendix B, Table S4) and pDM variants with REVEL≥0.5 (N=858, Appendix B, Table S6) in 

MYH7. Phecodes are plotted along the x axis to represent the phenome, and the association of the gene 

burden with each Phecode is plotted along the y axis representing –log10(p value). The red line represents 

the Bonferroni-corrected significance threshold to adjust for multiple testing (p=3.58E-05), and the blue line 

represents a nominal significance threshold (p=0.05). 
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Additionally, we found a phenome-wide significant association with “Muscular wasting 

and disuse atrophy” with this expanded gene burden (Figure 3.3) that was not seen with the gene 

burden limited to ClinVar P/LP variants alone (Appendix B, Figure S6). We identified 1 pLOF 

variant and 4 missense variants with REVEL≥0.5 carried by a total of 7 individuals who had the 

Phecode of “Muscular wasting and disuse atrophy” (Figure 3.1.B; Appendix B, Table S4, Table 

S6). Of note, all 5 variants lacked a P/LP classification in ClinVar, and none of the 7 individuals 

had a diagnosis for HCM. Chart review of these individuals revealed secondary myopathy and 

generalized muscular wasting rather than a primary myopathy diagnosis. Of those individuals with 

electromyography performed, none revealed a primary neuromuscular diagnosis. We also 

compared available serum creatine kinase (CK) measurements between carriers for pLOF 

variants or pDM with REVEL≥0.5 in MYH7 (total of 73 carriers with CK available) versus all non-

carriers, and there was no significant association between the MYH7 gene burden and CK 

concentrations (p=0.549). 

 

3.5. Discussion 

Gene burden PheWAS applied to large healthcare-based biobanks has the potential to 

elucidate the medical consequences of gene variants on the human disease phenome.22 A logical 

first step is to perform PheWAS focused only on predicted loss-of-function (pLOF) variants, which 

has the advantage of interrogating the largest effect sizes that a gene burden may have on 

associated phenotypes, but could lead to lack of power due to their infrequency. In aggregating 

pLOF variants in MYBPC3 and MYH7 for gene burden PheWAS in PMBB, only the MYBPC3 

pLOF gene burden was associated with HCM, while the MYH7 pLOF gene burden was 

associated with other cardiac phenotypes and not HCM. This is an expected finding given that 

truncating variants account for >90% of cases of MYBPC3 HCM,57 while only missense MYH7 

variants have a demonstrated association with HCM.58 Furthermore, detailed review of clinical 
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charts confirmed a diagnosis of HCM among a subset of MYBPC3 pLOF carriers while revealing 

mild concentric left ventricular hypertrophy and patent foramen ovale or atrial septal defect 

among a subset of MYH7 pLOF carriers. Functional studies have shown that pLOF variants in 

MYBPC3 promote nonsense-mediated decay pathways to contribute to the pathogenesis of HCM 

through haploinsufficiency.55,59 pLOF variants in MYH7, on the other hand, are not associated 

with HCM; however, recently pLOF variants in MYH7 have been associated with left ventricular 

noncompaction cardiomyopathy, which has low diagnostic accuracy on echocardiography and 

thus could have been missed in our review of clinical charts.60 

In principle, missense variants could be combined with pLOFs to substantially increase 

the number of effect alleles and power for novel discovery, but a major challenge is deciding 

which variants to include in gene burden tests of association. Including predicted deleterious 

missense (pDM) variants based on in silico prediction algorithms in addition to pLOFs in gene 

burdens increases power for disease associations in some genes, but the performance of such 

algorithms for missense variants may not be consistent across all genes. Our interrogation of 

missense variants based on prediction algorithms like REVEL serves as a testament to this 

notion; while pDM variants in MYH7 showed strong correlation with clinical annotations of 

pathogenicity as well as strong associations with the expected HCM phenotype in PMBB, 

predictions of deleteriousness for missense variants in MYBPC3 did not correlate with clinical 

annotations of pathogenicity and were not associated with HCM. The difference in performance 

may be due to different mechisms of HCM pathogenesis. For example, MYH7 missense variants 

exert dominant negative effects on sarcomeric function, while haploinsufficiency and allelic 

imbalance in MYBPC3 is the major mechanism leading to HCM.61,62  

Importantly, these differences show that aggregating only pLOFs for gene burden 

association testing may be more appropriate for some genes like MYBPC3, while inclusion of 

additional pDM variants chosen based on in silico predictions may be more beneficial for 

increasing the number of effect alleles for others like MYH7, as we have similarly shown for 
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LMNA.10 Additionally for MYBPC3, in which in silico prediction of missense variants performed 

poorly, we show that expert-adjudication of annotations of pathogenicity for missense variants 

based on in vitro and in silico analyses of missense variants in SHaRe, the largest 

comprehensive HCM cohort assembled to date, is superior in selecting missense variants for 

addition to gene burden testing.54,57 For other genes in which in silico predictions perform poorly 

for missense variants, we suggest that high-confidence pathogenic missense variants be added 

after expert adjudication to a degree that essentially parallels a saturated mutagenesis 

experiment. 

 A key goal in precision medicine initiatives is to promote a platform by which healthcare 

providers can make accurate diagnoses based on a wide variety of personalized health data, 

including individuals’ genetic information. Genetic testing of patients with HCM can identify the 

precise genetic cause of disease, improve diagnostic accuracy in a patient with an ambivalent 

diagnosis, and allow for cascade screening in family members.63 However, pathogenic HCM-

causing variants found on more comprehensive sequencing can also be missed in clinical 

practice, which makes the genome-first approach applied to WES for review of clinical charts for 

carriers of pathogenic and potentially deleterious variants crucial.64 Our review of clinical charts 

revealed that a substantial number of patients clinically diagnosed with HCM did not appear to 

have had genetic testing, including those who were found in WES to have a pathogenic HCM-

associated variant in MYBPC3 or MYH7. We found that about a third of these HCM individuals 

without a genetic diagnosis were diagnosed with HCM before age 30. We also noted that patients 

with HCM without a genetic test in their chart had a significantly lower rate of a family history of 

HCM versus those who received genetic testing. While genetic testing is now routinely offered in 

specialized cardiomyopathy clinics, it is still broadly underutilized and patients may benefit from 

referral to specialized HCM clinics for genetic diagnosis and family screening.65 Additionally, we 

found that on average carriers for P/LP or predicted deleterious variants without a diagnosis of 

HCM had increased LA size and LV wall thickness compared to non-carriers, subclinical features 
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that may warrant clinical follow-up when noted on echocardiography. Importantly, many carriers 

for P/LP or predicted deleterious variants without a diagnosis of HCM had no clinical or 

echocardiographic evidence of cardiac disease, showing the value of a genome-first approach for 

estimating penetrance of single-gene Mendelian disorders like HCM. 

 A major advantage of the genome-first approach to conducting gene burden PheWAS is 

the potential to capture pleiotropy. We found that the pLOF + pDM (REVEL ≥ 0.5) gene burden 

for MYH7 had phenome-wide significant associations with both HCM and “Muscular wasting and 

disuse atrophy.” Importantly, while MYBPC3 is specifically expressed in the heart, MYH7 is also 

expressed in skeletal muscle,66 and MYH7-related myopathies are an emerging and 

underdiagnosed group of muscle diseases of childhood and adulthood.67 It has been reported 

that variants in MYH7 which cause skeletal muscle disorders may cluster in the distal regions of 

the rod domain (light meromyosin domain, LMM with or without cardiac involvement).67 We found 

that myopathy-associated variants in MYH7 were located in the neck and hinge (distal S1 and S2 

domains) of MYH7 from exons 18-24, suggesting that variants which affect skeletal muscle 

function may not be limited to the LMM domain. Of note, patients diagnosed with “muscular 

wasting and disuse atrophy” who carried a predicted deleterious MYH7 variant did not have a 

primary myopathy diagnosis but rather had secondary muscular wasting, indicating that MYH7-

related myopathy may be a ‘second hit’ phenomenon that can be unmasked by comorbidities.  

In conclusion, we used a genome-first approach to include pLOFs and selected missense 

variants in MYBPC3 and MYH7 in gene burdens to show their significant associations with HCM, 

as well as the MYH7-specific association with myopathy. We demonstrate gene-specific 

differences in appropriate coding variant selection for gene burden testing to uncover important 

clinical and subclinical features relevant to associated diseases implicated by predicted 

deleterious variants. Our approach also suggests an expanded opportunity for clinical genetic 

evaluation and referral to multidisciplinary HCM centers. Importantly, our study demonstrates the 

value of assessing both pLOF and pDM variants for gene burden testing in future studies to 
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uncover novel gene-disease relationships and identify novel pathogenic loss-of-function variants 

across the human genome through genome-first analyses of healthcare-based populations. 
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CHAPTER 4. Exome-wide evaluation of rare coding variants 

using electronic health records identifies new gene-phenotype 

associations 

 

This thesis chapter was adapted from: 

Park J, Lucas AM, Zhang X, Chaudhary K, Cho JH, Nadkarni G, Dobbyn A, Chittoor G, Josyula 

NS, Katz N, Breeyear JH, Ahmadmehrabi S, Drivas TG, Chavali VRM, Fasolino M, Sawada H, 

Daugherty A, Li Y, Zhang C, Bradford Y, Weaver J, Verma A, Judy RL, Kember RL, Overton JD, 

Reid JG, Ferreira MAR, Li AH, Baras A, LeMaire SA, Shen YH, Naji A, Kaestner KH, Vahedi G, 

Edwards TL, Chen J, Damrauer SM, Justice AE, Do R, Ritchie MD, Rader DJ. Exome-wide 

evaluation of rare coding variants using electronic health records identifies new gene-phenotype 

associations. Nature Medicine. 2021 Jan;27(1):66-72. doi: 10.1038/s41591-020-1133-8. 

 

4.1. Abstract 

The clinical impact of rare loss-of-function variants has yet to be determined for most genes. 

Integration of DNA sequencing data with electronic health records (EHR) could enhance our 

understanding of the contribution of rare genetic variation to human disease.8 By leveraging 

10,900 whole exome sequences linked to EHR data in the Penn Medicine BioBank (PMBB), we 

addressed the association of the cumulative effects of rare predicted loss-of-function (pLOF) 

variants per individual gene on human disease on an exome-wide scale, as assessed using a set 

of diverse EHR phenotypes. After discovering 97 genes with exome-by-phenome-wide significant 

phenotype associations (p < 10-6), we replicated 26 of these in PMBB, as well as in three other 

medical biobanks and the population-based UK Biobank (UKB). Of these 26 genes, five had 

associations that have been previously reported and represented positive controls, whereas 21 
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had phenotype associations not previously reported, among which were genes implicated in 

glaucoma, aortic ectasia, diabetes mellitus, muscular dystrophy, and hearing loss. These findings 

show the value of aggregating rare pLOF variants into “gene burdens” for identifying new gene-

disease associations using EHR phenotypes in a medical biobank. We suggest that application of 

this approach to even larger numbers of individuals will provide the statistical power required to 

uncover unexplored relationships between rare genetic variation and disease phenotypes. 

 

4.2. Introduction 

A “genome-first” approach, in which genetic variants of interest are identified and then 

subsequently associated with phenotypes, has the potential to inform the genetic basis of human 

disease and reveal new insights into gene function and human biology.6 This approach can be 

applied to “medical” biobanks consisting of healthcare populations with DNA sequence data 

linked to extensive EHR phenotype data, thus permitting “phenome-wide association studies” 

(PheWAS) as an agnostic approach to determining the clinical impact of specific genetic 

variants.9 Genome-first approaches utilizing PheWAS have primarily focused on individual 

common variants of modest effect.12 Very rare and private coding variants are more likely to have 

larger effect sizes and are of great interest, but are generally too rare to study in a univariate 

fashion.11 Aggregation of multiple rare variants in a gene (i.e. “gene burden”) not only increases 

the statistical power of regression analyses but also enables gene-based association studies to 

describe the clinical implications of loss of gene function in human disease.13  

Previously, we leveraged the Penn Medicine BioBank (PMBB, University of 

Pennsylvania), a large academic medical biobank with whole-exome sequencing (WES) data 

linked to EHR data, to show that aggregating rare, loss-of-function variants in a single gene or 

targeted sets of genes to conduct gene burden PheWAS has the potential to uncover novel 

pleiotropic relationships between the gene and human disease.10,68 We applied rare pLOF-based 
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gene burden PheWAS on an exome-wide scale, utilizing WES data to conduct exome-by-

phenome-wide association studies (ExoPheWAS) to evaluate in detail the clinical phenotypes 

(i.e. phecodes) associated with rare pLOF variants on a gene-by-gene basis across the human 

exome, and replicated our top results in several other medical biobanks. 

 

4.3. Materials and Methods 

4.3.1. Setting and study participants  

All individuals who were recruited for the Penn Medicine BioBank (PMBB) are patients of 

clinical practice sites of the University of Pennsylvania Health System. Appropriate consent was 

obtained from each participant regarding storage of biological specimens, genetic sequencing, 

access to all available electronic health record (EHR) data, and permission to recontact for future 

studies. The study was approved by the Institutional Review Board of the University of 

Pennsylvania and complied with the principles set out in the Declaration of Helsinki. 

In addition to our robustness validation analyses within PMBB, replication analyses were 

conducted using the WES dataset from an additional set of independent African-American 

individuals in PMBB (PMBB2), BioMe, DiscovEHR, UK Biobank (UKB), as well as imputed 

genotype data in BioVU, for evaluation of the robustness of gene-phenotype associations 

identified in PMBB. For replication analyses in BioMe, DiscovEHR, and BioVU, each study was 

approved by the Institutional Review Board of each respective biobank’s institution. Access to the 

UK Biobank for this project was from Application 32133. 

 

4.3.2. Genetic sequencing 

 This PMBB study dataset included a subset of 11,451 individuals in the PMBB who have 

undergone whole-exome sequencing (WES). For each individual, we extracted DNA from stored 
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buffy coats and then obtained exome sequences generated by the Regeneron Genetics Center 

(Tarrytown, NY). These sequences were mapped to GRCh37 as previously described.10 

Furthermore, for subsequent phenotypic analyses, we removed samples with low exome 

sequencing coverage (i.e. less than 75% of targeted bases achieving 20x coverage), high 

missingness (i.e. greater than 5% of targeted bases), high heterozygosity, dissimilar reported and 

genetically determined sex, genetic evidence of sample duplication, and cryptic relatedness (i.e. 

closer than 3rd degree relatives), leading to a total of 10,900 individuals.  

 For replication studies in PMBB2, we interrogated an additional 6,935 individuals of 

African American ancestry in PMBB who were exome-sequenced by the Regeneron Genetics 

Center. We focused our replication efforts on 6,432 individuals after removing samples with poor 

genotype quality, individuals closer than 3rd degree relatives, and those with dissimilar reported 

and genetically determined sex. These sequences were mapped to GRCh38. 

 For replication studies in BioMe, we interrogated 6,470 individuals of African ancestry, 

8,735 individuals of European ancestry, and 8,784 individuals of Hispanic ancestry with WES 

data linked to EHR diagnosis phenotypes after removing samples with poor genotype quality, 

individuals closer than 3rd degree relatives, and those with dissimilar reported and genetically 

determined sex. These sequences were mapped to GRCh38. 

 For replication studies in DiscovEHR, we interrogated 70,734 individuals of European 

ancestry exome-sequenced on the IDT platform and a separate set of 59,133 individuals of 

European ancestry exome-sequenced on the VCRome platform. We focused our replication 

efforts on 85,450 individuals (N=48,413 for IDT, N=37,037 for VCRome) after removing samples 

with poor genotype quality, individuals closer than 3rd degree relatives, those with dissimilar 

reported and genetically determined sex, and those that self-identified as Hispanic/Latino. These 

sequences were mapped to GRCh38. 
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For replication studies in UKB, we interrogated the 34,629 individuals of European 

ancestry (based on UKB’s reported genetic ancestry grouping) with ICD-10 diagnosis codes 

available among the 49,960 individuals who had WES data as generated by the Functional 

Equivalence (FE) pipeline. We focused our replication efforts on 32,268 individuals after removing 

samples with poor genotype quality, individuals closer than 3rd degree relatives, and those with 

dissimilar reported and genetically determined sex. The PLINK files for exome sequencing 

provided by UKB were based on mappings to GRCh38.  

 For replication studies in BioVU, which has genotype but not large-scale WES data, we 

focused on a select group of single variants that showed replication in PMBB, PMBB2, and/or 

UKB. We interrogated these variants for association with specific phecodes in 10,456 individuals 

of African American ancestry and 55,944 individuals of European ancestry after removing 

samples with poor genotype quality, individuals closer than 3rd degree relatives, and those with 

dissimilar reported and genetically determined sex. These sequences were mapped to GRCh37. 

 Additional information regarding population characteristics, recruitment, and ethical 

oversight can be found in the Life Sciences Reporting Summary of this study. 

 

4.3.3. Variant annotation and selection for association testing 

For all cohorts analyzed, genetic variants were annotated using ANNOVAR (version 

2018Apr16)32 as predicted loss-of-function (pLOF) or missense variants according to the NCBI 

Reference Sequence (RefSeq) database. pLOF variants were defined as frameshift 

insertions/deletions, gain/loss of stop codon, or disruption of canonical splice site dinucleotides. 

Predicted deleterious missense (pDM) variants were defined as those with Rare Exonic Variant 

Ensemble Learner (REVEL)20 scores ≥ 0.5. Minor allele frequencies for each variant were 

determined per Non-Finnish European, African, and Latino minor allele frequencies reported by 

the Genome Aggregation Database (gnomAD) v2.69 pLOF and REVEL-informed missense 



53 

 

variants were selected for gene burden testing or univariate association analyses per ancestry 

group in each cohort according to each ancestry’s corresponding ancestry-specific minor allele 

frequency thresholds (rare variants with MAF ≤ 0.1% for gene burden testing, single variants with 

MAF > 0.1%). 

 

4.3.4. Clinical data collection 

International Classification of Diseases Ninth Revision (ICD-9) and Tenth Revision (ICD-

10) disease diagnosis codes and procedural billing codes, medications, and clinical imaging and 

laboratory measurements were extracted from the patients’ EHR for PMBB. ICD-10 encounter 

diagnoses were mapped to ICD-9 via the Center for Medicare and Medicaid Services 2017 

General Equivalency Mappings (https://www.cms.gov/Medicare/Coding/ICD10/2017-ICD-10-CM-

and-GEMs.html) and manual curation. Phenotypes for each individual were then determined by 

mapping ICD-9 codes to distinct disease entities (i.e. phecodes) via Phecode Map 1.2 using the 

R package “PheWAS”.34 Patients were determined to have a certain disease phenotype if they 

had the corresponding ICD diagnosis on two or more dates, while phenotypic controls consisted 

of individuals who never had the ICD code. Individuals with an ICD diagnosis on only one date as 

well as individuals under control exclusion criteria based on PheWAS phenotype mapping 

protocols were not considered in statistical analyses.  

All laboratory values measured in the outpatient setting were extracted for participants 

from the time of enrollment in PMBB until March 20, 2019; all units were converted to their 

respective clinical Traditional Units. Minimum, median, and maximum measurements of each 

laboratory measurement were recorded for each individual and used for all association analyses. 

Inpatient and outpatient echocardiography measurements were extracted if available for 

participants from January 1, 2010 until September 9, 2016; outliers for each echocardiographic 

parameter (less than Q1 - 1.5*IQR or greater than Q3 + 1.5*IQR) were removed. Similarly, 
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minimum, median, and maximum values for each parameter were recorded for each patient and 

used for association analyses.  

ICD-9 and ICD-10 codes were similarly mapped to phecodes in PMBB2, BioMe, 

DiscovEHR, and BioVU for replication studies. For UKB, we used the provided ICD-10 disease 

diagnosis codes for replication studies, and individuals were determined to have a certain disease 

phenotype if they had one or more encounters for the corresponding ICD diagnosis given the lack 

of individuals with more than two encounters per diagnosis, while phenotypic controls consisted 

of individuals who never had the ICD code. Individuals under control exclusion criteria based on 

PheWAS phenotype mapping protocols were not considered in statistical analyses. 

 

4.3.5. Association studies 

A phenome-wide association study (PheWAS) approach was used to determine the 

phenotypes associated with rare (MAF ≤ 0.1% in gnomAD) pLOF variants carried by individuals 

in PMBB for the discovery experiment.33 Each disease phenotype was tested for association with 

each gene burden or single variant using a logistic regression model adjusted for age, age2, sex, 

and the first ten principal components (PCs) of genetic ancestry. We used an additive genetic 

model to collapse variants per gene via the fixed threshold approach.35 Given the high 

percentage of individuals of African ancestry present in the discovery PMBB cohort, association 

analyses were performed separately in European (N=8,198) and African (N=2,172) genetic 

ancestries and combined with inverse variance weighted meta-analysis. Only genes with at least 

25 carriers of pLOFs were analyzed in the discovery analysis (N=1,518). Our association 

analyses considered only disease phenotypes with at least 20 cases, leading to the interrogation 

of 1,000 total phecodes. All association analyses were completed using R version 3.3.1 (Vienna, 

Austria). Power analyses were conducted using QUANTO version 1.2.4.70  
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We further evaluated the robustness of our gene-phenotype associations in the same 

PMBB discovery cohort by 1) associating the aggregation of rare (MAF ≤ 0.1%) pDM variants in 

gene burden association tests and 2) testing pLOFs and pDM variants with MAF > 0.1 in 

univariate association tests. We ensured that individuals were non-overlapping across rare 

pLOFs, rare deleterious missense, and single variant groups. Rare deleterious missense gene 

burdens and single variants were analyzed for association with the specific phenotype identified 

in the pLOF-based gene burden discovery, as well as with related phenotypes in their 

corresponding phecode families (integer part of phecode). For example, to replicate an 

association of a gene burden with hypothetical phecode 123.45, we associated other variants in 

the same gene with phecode 123.45 as well as other related phenotypes under the phecode 

family 123 (e.g. 123.6). Notably, we checked for the presence of mutual carriers between each 

gene’s pLOF-based gene burdens and subsequently interrogated missense-based gene burdens 

or single variants due to linkage disequilibrium and/or rare chance, and only reported replications 

for which the significant phenotypes’ associations were not being driven by mutual carriers. All 

association studies in PMBB were based on a logistic regression model adjusted for age, age2, 

sex, and the first 10 PCs of genetic ancestry. 

Additionally, we replicated our findings in PMBB2, BioMe, DiscovEHR, and UKB for 

genes of interest using pLOF-based gene burden, REVEL-informed missense-based gene 

burden, and/or univariate association analyses from discovery in PMBB. A specific set of single 

variants were further replicated in BioVU.  Association statistics were calculated similarly to 

PMBB, such that each disease phenotype was tested for association with each gene burden or 

single variant using a logistic regression model adjusted for age, age2, sex, and the first 10 PCs 

of genetic ancestry. In BioMe, the summary statistics obtained from running the logistic 

regression model separately in individuals of European, African, and Hispanic ancestry were 

meta-analyzed. In DiscovEHR, the summary statistics obtained from running the logistic 

regression model separately in individuals of European ancestry on the IDT versus VCRome 
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platforms were meta-analyzed. In BioVU, the summary statistics obtained from running the 

logistic regression model separately in individuals of European and African ancestry were meta-

analyzed. All association analyses for PMBB, PMBB2, BioMe, DiscovEHR, UK Biobank, and 

BioVU were completed using R version 3.3.1 or later (Vienna, Austria). Further information about 

association studies in each cohort can be found in the Life Sciences Reporting Summary of this 

study. 

 

4.3.6. Undercalling of variants in UK Biobank 

 Given the undercalling of variants largely limited to ~3.25% of the exome target regions in 

the FE pipeline data, we found that 3 of the 97 genes having associations with p<E-06 from the 

discovery phase overlap with the undercalled exonic regions, namely CES5A, CYP2D6, and 

ZC3H3. While all other analyses in this study included variants with less than 5% missingness, 

we included variants with at least 65% call rate for these three genes, understanding that 

undercalling per variant is random per individual. 

 

4.3.7. Statistical analyses of clinical measurements 

In order to compare available measurements for echocardiographic parameters and 

serum laboratory values between carriers of predicted deleterious variants and genotypic controls 

in PMBB, we utilized linear regression adjusted for age, age2, sex, and the first 10 PCs of genetic 

ancestry in individuals of European ancestry only. These analyses were conducted with the 

minimum, median, and maximum value as the dependent variable for each echocardiographic 

parameter and clinical lab measure. All statistical analyses, including PheWAS, were completed 

using R version 3.3.1 or later (Vienna, Austria). 
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4.3.8. Chart review to validate robust gene-phenotype associations 

To confirm our curated list of robust exome-by-phenome-wide significant associations, 

we manually chart reviewed the EHR for each carrier of rare pLOF variants in genes that showed 

at least one mode of replication in any cohort. Importantly, for each gene, we aimed to adjudicate 

the diagnoses of carriers who were flagged as cases for the relevant associated phenotype. We 

removed associations for which chart review reduced the prevalence of the diagnosis among 

carriers and thus changed the association to p > E-06. Furthermore, we removed associations for 

which chart review could not identify a common underlying etiology among all cases for the 

diagnosis, paying special attention to phecodes that group “other” diagnoses that do not fit into 

disease-specific ICD codes (i.e. “other diseases of blood and blood-forming organs”). 

We discovered on chart review that individuals who were cases for phecodes 

“hypertrophic obstructive cardiomyopathy” or “other hypertrophic cardiomyopathy” in PMBB were 

patients with hypertrophic cardiomyopathy who were being assigned one of the codes due to the 

lack of a single ICD diagnosis code for hypertrophic cardiomyopathy. Thus, we defined a new 

phenotype for hypertrophic cardiomyopathy encompassing cases for either phecode, and 

repeated the association with the pLOF gene burdens of MYBPC3 (positive control) and BBS10 

(novel), and confirmed their associations as exome-by-phenome-wide significant (Appendix C, 

Table S22). 

 

4.3.9. Analysis of publicly available expression datasets from NCBI GEO 

 We interrogated microarray and RNA-seq data publicly available on the NCBI Gene 

Expression Omnibus (GEO) platform (https://www.ncbi.nlm.nih.gov/geo/).71 To investigate the 

novel association between CILP and aortic ectasia, we interrogated 11 different microarray and 

RNA-seq datasets of human fibroblasts from various tissues treated with TGF-ß (GSE1724, 

GSE65069, GSE64192, GSE39394, GSE79621, GSE68164, GSE97833, GSE97823, 
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GSE135065, GSE125519, GSE40266). Differential expression for each dataset was interrogated 

using the GEO2R software via a moderated t-statistic. Meta-analysis of differential expression 

across the datasets was achieved using the Fisher’s combined probability test. Visualization of 

the meta-analyzed differential expression was achieved using the R package “MetaVolcanoR 

1.0.1”. Identification of the top 1% of differentially expressed genes across all datasets was 

achieved using the Topconfects method.72   

We also analyzed microarray data from muscle biopsies in tibial muscular dystrophy 

patients versus control (GSE42806) to validate the novel association between MYCBP2 and 

muscle spasms. Differential expression was interrogated using the GEO2R software via a 

moderated t-statistic. 

 

4.3.10. In silico analyses for PPP1R13L expression in ocular tissues 

To understand the functional relevance of PPP1R13L in the eye, we evaluated its 

expression in human ocular tissues using the publicly available Ocular Tissue Database (OTDB; 

https://genome.uiowa.edu/otdb/).73 The OTDB consists of gene expression data for eye tissues 

from 20 normal human donors, generated using Affymetrix Human Exon 1.0 ST arrays and 

described as Probe Logarithmic Intensity Error (PLIER) values, where individual gene expression 

values are normalized with its expression in other tissues. 

 

4.3.11. Gene expression in DBA/2J mouse ocular tissues 

We assessed the gene expression of Ppp1r13l in mouse ocular tissues using the publicly 

available Glaucoma Discovery Platform (http://glaucomadb.jax.org/glaucoma). This platform 

provides an interactive way to analyze RNA sequencing data obtained from retinal ganglion cells 

(RGCs) isolated from retina and optic nerve head of a 9-month-old female D2 mouse, which is an 
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age-dependent model of ocular hypertension/glaucoma, and D2-Gpnmb+ mouse that do not 

develop high IOP/glaucoma.74 For transcriptomic studies, four distinct groups were compared 

based on axonal degeneration and gene expression patterns. The transcriptome of D2 group 1 is 

identical to the control strain (D2-Gpnmb+), while D2 groups 2–4 exhibit increasing levels of 

molecular changes relevant to axonal degeneration when compared to control group. We used 

the Datgan software to assess the differential expression of Ppp1r13l in the retina.75  

 

4.3.12. Immunolocalization of PPP1R13L in human retina 

To study the localization of PPP1R13L protein in different retinal layers of the human eye, 

we performed immunofluorescence on formalin-fixed paraffin-embedded section (N=3) obtained 

from normal 68-year old donor’s cadaver eyes with a commercially available antibody, anti-

PPP1R13L (Cat# 51141-1-AP, Proteintech, IL, USA). Antigen retrieval was performed in 1X 

citrate buffer (Life Technologies) warmed to 95°C for 30 minutes. Sections were allowed to cool to 

room temperature and subsequently blocked in 10% normal goat serum with 1% bovine serum 

albumin in 1X TBS buffer for one hour. The retinal distribution of PPP1R13L protein was 

visualized by incubating the retinal section with rabbit polyclonal anti-PPP1R13L antibody at 

1:300 dilution overnight at 4°C, followed by chicken anti-rabbit IgG conjugated with Alexa Fluor 

594 (Cat# A21442, Life Technologies, Carlsbad, CA) at 1:3000 dilution. Nuclei were stained with 

the use of Vectashield DAPI in the mounting media. The images were captured using a Zeiss 

Imager Z1 fluorescence microscope equipped with AxioVS40 software version 4.8.1.0.  

 

4.3.13. Human iPSC-RGC cultures 

The human iPSCs were generated from keratinocytes or blood cells via polycistronic 

lentiviral transduction (Human STEMCCA Cre-Excisable constitutive polycistronic [OKS/L-Myc] 
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Lentivirus Reprogramming Kit, Millipore) and characterized with a hES/iPS cell pluripotency RT-

PCR kit.76 The induced pluripotent stem cell-derived retinal ganglion cells (iPSC-RGCs) for our 

studies were derived using small molecules to inhibit BMP, TGF-beta (SMAD) and Wnt signaling 

to differentiate retinal ganglion cells (RGCs) from iPSCs. The iPSCs were differentiated into pure 

iPSC-RGCs with structural and functional features characteristic of native RGC cells based on a 

previous protocol.77 

 

4.3.14. Evaluating oxidative stress in iPSC-RGCs 

Induced pluripotent stem cell-derived retinal ganglion cells (iPSC-RGCs) were incubated 

with increasing amounts of H2O2 overnight before replacing the cultures with complete media. 

The cells were collected 24 hours after the H2O2 treatment, and levels of PPP1R13L transcripts 

were assessed using quantitative RT-PCR and gene expression primers, Fwd-5’- 

TGCCCCAATTCTGGAGTAGG-3’ and Rev-5’- CGGCACGTGGACACAGATT-3’ following 

previously established protocols.78 Mean expression levels (±standard error of mean) were 

calculated by analyzing at least three independent samples with replica reactions and presented 

on an arbitrary scale that represents the expression over the housekeeping gene ACTB. Relative 

gene expression was quantified using the comparative Ct method. The relative gene expression 

was compared against no treatment control to obtain normalized gene expression. A two-tailed 

unpaired Student’s t test was used for statistical analysis. 

 

4.3.15. Single-cell RNA-seq of human pancreatic islets in type 1 diabetes and control subjects 

Pancreatic islets were procured from the HPAP consortium under Human Islet Research 

Network (https://hirnetwork.org/) with approval from the University of Florida Institutional Review 

Board (IRB # 201600029) and the United Network for Organ Sharing (UNOS). A legal 
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representative for each donor provided informed consent prior to organ retrieval. For type 1 

diabetes (T1D) diagnosis, medical charts were reviewed and C-peptide was measured in 

accordance with the American Diabetes Association guidelines, leading to five individuals with 

T1D and six control individuals. T1D individuals were 50% female, and had a median age of 29.5 

and median BMI of 21.25. Control individuals were 60% female, and had a median age of 13 and 

median BMI of 17.3. All individuals were of Caucasian race. Organs were recovered and 

processed as previously described.79 Pancreatic islets were cultured and dissociated into single 

cells as previously described.80 Total dissociated cells were used for single-cell capture for each 

of the donors.  

 The Single Cell 3’ Reagent Kit v2 or v3 was used for generating scRNA-seq data. 3,000 

cells were targeted for recovery per donor. All libraries were validated for quality and size 

distribution using a BioAnalyzer 2100 (Agilent) and quantified using Kapa (Illumina). For samples 

prepared using The Single Cell 3’ Reagent Kit v2, the following chemistry was performed on an 

Illumina HiSeq4000: Read 1: 26 cycles, i7 Index: 8 cycles, i5 index: 0 cycles, and Read 2: 98 

cycles. For samples prepared using The Single Cell 3’ Reagent Kit v3, the following chemistry 

was performed on an Illumina HiSeq 4000: Read 1: 28 cycles, i7 Index: 8 cycles, i5 index: 0 

cycles, and Read 2: 91 cycles. Cell Ranger 2.1.0 (10x Genomics) was used for bcl2fastq 

conversion using the command “cellranger mkfastq --id= --run= --csv= --localmem=64 --

localcores=30”. Cell Ranger 2.1.0 was used for aligning, filtering, counting, and cell calling with 

the command “cellranger count --id= --transcriptome= --fastqs= --localmem=64 --localcores=35”. 

Samples were aggregated using Cell Ranger 2.1.0 using the command “cellranger aggr --id= --

csv=”.  

 Seurat 3.0.2 (http://satijalab.org/seurat/)81 was used for filtering, UMAP generation, and 

initial clustering. Genes were kept that were in 0.01% of cells (3 cells), resulting in 74% of genes 

remaining for analysis (24,986 of 33,694 genes). Cells with at least 200 genes were kept; 

however, all cells had at least 200 genes, so this filtering didn’t eliminate any of the 35,134 cells. 
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nFeature, nCount, percent.mt, nFeature vs nCount, and percent.mt vs nCount plots were 

generated to ascertain the lenient filtering criteria of 200 > nFeature < 7,500, percent.mt < 30, 

and nCount <100,000, which led to the filtering out of 66 cells (35,066 cells remaining). Data was 

then log-normalized, and the top 2,000 variable genes were detected using the “vst” selection 

method. The data was then linearly transformed, and PCA was carried out on the scaled data, 

using the 2,000 variable genes as input. To determine the dimensionality of the data (i.e. how 

many principal components to choose when clustering), we employed two approaches: (1) a 

Jackstraw-inspired resampling test that compares the distribution of p values of each PC against 

a null distribution and (2) an elbow plot that displays the standard deviation explained by each 

principal component. Based on these two approaches, 14 PCs with a resolution of 2 was used to 

cluster the cells, and non-linear dimensionality reduction (UMAP) was used with 14 PCs to 

visualize the dataset.   

DoubletFinder 2.082 was used to demarcate and remove potential doublets in the data as 

previously described, with the following details: paramSweep_v3 was used, doubletFinder_v3 

was used, 14 PCs were used for pK identification (no ground-truth), and the following parameters 

were used when running doubletFinder_v3: PCs = 14, pN = 0.25, pK =0.005, nExp = nEx_poi.adj, 

sct = FALSE. The doublets had higher nCount than the singlets identified using this method, and 

the 807 doublets were removed from further analyses.  

Following doublet removal, the raw data for the remaining 34,259 cells was log 

normalized, the top 2,000 variable genes were detected, the data underwent linear 

transformation, and PCA was carried out, as described above. Both the Jackstraw-inspired 

resampling test and an elbow plot of standard deviation explained by each principal component 

were used to determine the optimal dimensionality of the data, as described above. Based on 

these two approaches, 11 PCs with a resolution of 1.2 was used to cluster the cells, and UMAP 

was used with 11 PCs to visualize the 28 clusters detected.  
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Garnett was used for initial cell classification as previously described.83 In brief, a cell 

type marker file with 17 different cell types was compiled using various resources,80,81,84 and this 

marker file was checked for specificity using the “check_markers” function in Garnett by checking 

the ambiguity score and the relative number of cells for each cell type. A classifier was then 

trained using the marker file, with “num_unknown” set to 150, and this classifier was then used to 

classify cells and cell type assignments were extended to nearby cells, “clustering-extended type” 

(Louvain clustering).  

TooManyCells 2.0.0.0 was then used to cluster and visualize the 34,259 single cells, as 

previously described.85 Briefly, the raw data from the 34,259 cells were not filtered and were 

normalized by total count and gene normalization by median count followed by frequency-inverse 

document frequency (tf-idf) using the flags --normalization "BothNorm and --no-filter. The 

“clustering-extended type” cell labels from Garnett, as well as the demarcation of canonical cell 

markers, were used to identify broad classes of cell types found within the pancreas, of which we 

focused on four: Beta, Stellate, Endothelial, and Immune cells.  

 Differential genes were found using edgeR 3.24.3 through TooManyCells with the 

normalization “NoneNorm” to invoke edgeR single cell preprocessing, including normalization and 

filtering. Briefly, edgeR fits normalized expression data to a negative binomial model and uses an 

exact test with false discovery rate (FDR) control to determine differential expressed genes.86   

 

4.3.16. Single-cell RNA-seq of mouse aorta 

All animal experiments were performed following protocols approved by the Institutional 

Animal Care and Use Committee at Baylor College of Medicine in accordance with the guidelines 

of the National Institutes of Health. The Center for Comparative Medicine at Baylor College of 

Medicine monitors the environmental conditions in the animal husbandry rooms. All mice housed 

in standard ventilated cages, floor area 65 in2, maximum 4 mice per cage. Room temperatures 
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are maintained at 70˚F ± 2˚. Normal humidity for animal holding rooms ranges from 30% to 70%. 

The standard light timer is set on a 14-hour light cycle with the lights coming on at 6 AM and off at 

8 PM. 

Ascending aortic samples were harvested from Mef2c-Cre ROSA26RmT/mG male mice 

(N=5) and were pooled in Hanks’ Balanced Salt Solution (HBSS, #14175095, Thermo Fisher 

Scientific) with 10% fetal bovine serum. Extra aortic tissues were removed and the aortic tissues 

were cut into small pieces. To digest the aortas, samples were subsequently incubated with an 

enzyme cocktail (3 mg/ml collagenase type II (LS004176, Worthington); 0.15 mg/ml collagenase 

type XI (C7657, Sigma-Aldrich); 0.24 mg/ml hyaluronidase type I (H3506, Sigma-Aldrich); 0.1875 

mg/ml elastase (LS002290, Worthington); 2.38 mg/ml HEPES (H4034, Sigma-Aldrich)) in Ca/Mg 

contained-HBSS (#14025092, Thermo Fisher Scientific) for 60 minutes at 37 °C. The cell 

suspension was filtered through a 40 μm cell strainer (CLS431750-50EA, Sigma-Aldrich), 

centrifuged at 300 g for 10 minutes, and resuspended using cold HBSS (#14175095) with 5% 

fetal bovine serum. Cells were stained with DIPI and were sorted to select viable cells (≥ 95% 

viability) by flow cytometry (FACS Aria III, BD Biosciences). 

 The cells were dispensed onto the Chromium Controller (10x Genomics) and indexed 

single cell libraries were constructed by a Chromium Single Cell 3’ v2 Reagent Kit (10x 

Genomics). cDNA libraries were then sequenced in a pair-end fashion on an Illumina NovaSeq 

6000. Raw FASTQ data was aligned by Cell Ranger 3.0 with GRCh38. Mapped unique molecular 

identifier (UMI) counts were imported into Seurat 3.1.4 and built into Seurat objects using the 

“CreateSeuratObject” function. Cells expressing less than 200 or more than 5000 genes were 

filtered out for exclusion of non-cell or cell aggregates. Cells with more than 10% mitochondrial 

genes were also excluded. Data was then normalized and processed into scaled data. Principal 

component analysis (PCA) and non-linear dimensional reduction using t-Distributed Stochastic 

Neighbor Embedding (t-SNE) were performed to create clusters and those visualization. The 
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“FindAllMarkers” function in Seurat was used to identify the conserved marker genes in each 

cluster.  

 

4.3.17. Single-cell RNA-seq of human aorta 

The protocol for collecting human aortic tissue samples for scRNA-seq study was 

approved by the Institutional Review Board at Baylor College of Medicine. Written informed 

consent was provided by all participants before enrollment. All experiments conducted with 

human tissue samples were performed in accordance with the relevant guidelines and 

regulations. Ascending aortic samples were acquired from 3 controls (2 female and 1 male, heart 

transplant recipient or lung transplant donor) and 8 individuals with ascending thoracic aortic 

aneurysm (4 female and 4 male). Additional information can be found in the Life Sciences 

Reporting Summary of this study. For each sample, a piece of aortic tissue (1-2 cm2) was torn 

into thin layers and cut into small pieces in Hanks’ balanced salt solution (HBSS, without Ca2+ 

and Mg2+) (Gibco, Waltham, MA, USA) with 10% fetal bovine serum (FBS). Small pieces of tissue 

were then moved to enzyme cocktail prepared with 3 mg/ml collagenase type II (LS004176, 

Worthington Biochemical Corp., Lakewood, NJ, USA), 0.15 mg/ml collagenase type XI (H3506, 

Sigma Corp., Kanagawa, Japan), 0.25 mg/ml soybean trypsin inhibitor (LS003571, Worthington), 

0.1875 mg/ml elastase lyophilized (LS002292, Worthington), 0.24 mg/ml hyaluronidase type I 

(H3506, Sigma), and 2.38 mg/ml 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 

H4034, Sigma) in HBSS (with Ca2+ and Mg2+) (14025092, Thermo Fisher Scientific, Waltham, 

MA, USA) and were digested in a 37˚C water bath for 1 to 2 hours. Tissue dissociation was 

examined under a microscope. Cell suspensions were collected by using a 40-µm cell strainer 

(CLS431750-50EA, Corning, Inc., Corning, NY, USA), centrifuged at 300 g for 10 minutes, and 

resuspended in HBSS (without Ca2+ and Mg2+) (14175095, Thermo Fisher) with 5% FBS, 

followed with incubation on ice for 30 minutes. Cells were then stained by using a live and dead 

cell kit (L3224, Thermo Fisher) and were submitted for flow cytometry (BD) for the collection of 
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live singlet cells. The living cell rate was further examined under a microscope by using trypan 

blue (T8154, Sigma Corp., Kanagawa, Japan) staining. 

Single-cell suspensions were submitted to the 10X Genomics Chromium System (10x 

Genomics, Pleasanton, CA, USA), followed by the construction of 3’ gene expression v3 libraries 

and sequencing on an Illumina NovaSeq 6000. Raw FASTQ data alignment was processed by 

using Cell Ranger 3.0, with GRCh38 as a reference. Mapped unique molecular identifier (UMI) 

counts were loaded to R for further analysis. The single-cell sequencing data were filtered by 

using Seurat 3.0 with the following criteria: gene count per cell >200 and <4000 (or 5000), 

percentage of mitochondrial genes <10%, and no HBB gene detected in the cell. Data were then 

normalized and processed into scale data, linear dimensional reduction, cluster finding, and 

nonlinear dimensional reduction for visualization according to the Seurat manual. To identify 

clusters in multiple combined datasets, we performed additional integration after normalization 

and before scale. The conserved (marker) genes for each cluster were identified by using the 

function “FindAllMarkers” in Seurat. For reclustering, the UMI count of cells of interest were 

extracted and analyzed similarly to clusters identified in multiple combined datasets. 

 

4.4. Results and Discussion 

4.4.1. Discovery: ExoPheWAS in PMBB  

We interrogated a dataset of 10,900 individuals with WES data in PMBB (Table 4.1) for 

carriers of rare (MAF ≤ 0.1% in gnomAD) pLOF variants, which include frameshift insertions or 

deletions, gain or loss of stop codon, and disruption of canonical splice site dinucleotides. The 

distribution of the number of carriers for rare pLOF variants per gene was on a negative 

exponential distribution (Appendix C, Figure S1). We chose to interrogate genes with at least 25 

heterozygous carriers for rare pLOFs (N=1,518 genes), for which we show that statistical power 

to detect association is sufficient as a function of effect size and the associated phenotype’s 
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number of cases (Appendix C, Figure S2). We collapsed rare pLOF variants into gene burdens 

across these 1518 genes for ExoPheWAS analyses with 1000 binary phecodes with at least 20 

cases (Figure 4.1). Given that p values for gene burden association studies interrogating rare 

loss-of-function variants may be inflated due to their higher likelihood of increasing disease risk 

compared to other variants,87 we found that our associations roughly deviated from the fitted 

expected distribution at an observed p<E-06 (Appendix C, Figure S3). We identified 97 gene 

burdens with phenotype associations at p<E-06 (Figure 4.2; Appendix C, Table S1). We 

addressed potential inflation issues regarding small sample sizes by using Firth’s penalized 

likelihood approach, and found that beta and significance estimates were consistent with exact 

logistic regression (Appendix C, Table S1).  

 

Basic demographics  
N 10900 
Female, N (%)  4432 (40.7) 
Median Age (at biobank entry), yr 67.0 

Genetically informed ancestry  
AFR, N (%) 2172 (19.9) 
AMR, N (%) 304 (2.8) 
EAS, N (%) 79 (0.7) 
EUR, N (%) 8198 (75.2) 
SAS, N (%) 114 (1.0) 

Cardiovascular phenotypes  
Essential hypertension, N (%) 6441 (59.1) 
Ischemic Heart Disease, N (%) 5008 (45.9) 
Myocardial infarction, N (%) 1640 (15.0) 
Cardiomyopathy, N (%) 1976 (18.1) 
Congestive heart failure; nonhypertensive, N (%) 3695 (33.9) 
Heart transplant/surgery, N (%) 518 (4.8) 
Cardiac dysrhythmias, N (%) 5784 (53.1) 
Atrial fibrillation and flutter, N (%) 3782 (34.7) 
Cerebrovascular disease, N (%) 1706 (15.7) 
Peripheral vascular disease, N (%) 954 (8.8) 
Aortic aneurysm, N (%) 836 (7.7) 
Atherosclerosis, N (%) 539 (4.9) 
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Endocrine/metabolic phenotypes  
Type 2 diabetes, N (%) 2799 (25.7) 
Overweight, obesity and other hyperalimentation, N (%) 2275 (20.9) 
Hyperlipidemia, N (%) 6231 (57.2) 
Hypercholesterolemia, N (%) 2034 (18.7) 
Hypothyroidism, N (%) 1314 (12.1) 
Gout and other crystal arthropathies, N (%) 811 (7.4) 

Gastrointenstinal phenotypes  
Esophagitis, GERD and related diseases, N (%) 2526 (23.2) 
Gastrointestinal hemorrhage, N (%) 660 (6.1) 
Diverticulosis and diverticulitis, N (%) 610 (5.6) 
Chronic liver disease and cirrhosis, N (%) 449 (4.1) 

Renal phenotypes  
Chronic renal failure (CKD), N (%) 2135 (19.6) 
End stage renal disease, N (%) 510 (4.7) 
Kidney replaced by transplant, N (%) 283 (2.6) 

Neuropsychiatric phenotypes  
Mood disorders, N (%) 1353 (12.4) 
Anxiety, phobic and dissociative disorders, N (%) 1322 (12.1) 
Delirium dementia and amnestic and other cognitive disorders, N (%) 123 (1.1) 

Respiratory phenotypes  
Chronic airway obstruction, N (%) 1314 (12.1) 
Asthma, N (%) 920 (8.4) 
Obstructive sleep apnea, N (%) 1623 (14.9) 
Respiratory failure, insufficiency, arrest, N (%) 697 (6.4) 

Sensory phenotypes  
Cataract, N (%) 796 (7.3) 
Hearing loss, N (%) 579 (5.3) 
Glaucoma, N (%) 449 (4.1) 

Congenital phenotypes  
Cardiac and circulatory congenital anomalies, N (%) 780 (7.2) 
Genitourinary congenital anomalies, N (%) 151 (1.4) 
Cystic kidney disease, N (%) 108 (1.0) 

Congenital anomalies of great vessels, N (%) 77 (0.7) 
 

Table 4.1. Demographics and disease prevalence of the PMBB discovery cohort. Demographic 

information and clinical phenotypic counts for all individuals with whole-exome sequencing linked to 

electronic health records in the Penn Medicine BioBank (PMBB). Clinical phenotypes were defined by 

phecodes (see Materials and Methods). Data is represented as count data with percent prevalence in the 

population in parentheses, where appropriate. 
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Figure 4.1. Flow chart for exome-by-phenome-wide association analysis using electronic health 
record phenotypes. Flow chart diagram outlining the primary methodologies used for conducting the 

exome-by-phenome-wide association study and for evaluation of the robustness of the associations, 

indicating that 97 genes had associations at a significance level of p<E-06 via logistic regression. The 

pathways starting with short descending arrows represent the discovery phase, in which predicted loss-of-

function (pLOF)-based gene burdens were studied on an exome-by-phenome-wide scale in 10,900 

individuals from the Penn Medicine BioBank (PMBB). “Replication studies in PMBB” refers to analyses of 

gene-phenotype associations using REVEL-informed missense-based gene burdens and univariate 

analyses within the discovery PMBB cohort, as well as in an independent cohort of African Americans in the 

PMBB (the PMBB2 cohort; N=6,432). Additional replication studies included analyses of gene-phenotype 
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associations using pLOF-based gene burdens, REVEL-informed missense-based gene burdens, and 

univariate analyses in BioMe (N=23,989), DiscovEHR (N=85,450), and the UK Biobank (N=32,268), as well 

as univariate analyses in BioVU (N=66,400). 

 

 

Figure 4.2. ExoPheWAS plot exhibits the landscape of gene-phenotype associations across the 
exome and phenome in the Penn Medicine BioBank. Plot of the results of the exome-by-phenome-wide 

association study (ExoPheWAS) in the Penn Medicine BioBank for 1518 gene burdens of rare (MAF ≤ 0.1%) 

predicted loss-of-function (pLOF) variants. The x-axis represents the exome and is organized by 

chromosomal location. The location of each gene along the x-axis is according to the gene’s genomic 

location per Genome Reference Consortium Human Build 37 (GRCh37). The association of each gene 

burden with a set of 1,000 phecodes is plotted vertically above each gene, with the height of each point 

representing the –log10(p value) of the association between the gene burden and phecode using a logistic 

regression model. Each phecode point is color-coded according to the phecode group, and the directionality 

of each triangular point represents the direction of effect (DOE). The blue line represents the significance 

threshold at p=E-06 to account for multiple hypothesis testing. 

 

4.4.2. Replication in PMBB, other medical biobanks, and UK Biobank 

We evaluated the robustness of the significant gene-phenotype associations identified via 

our pLOF-based ExoPheWAS analyses by testing the associations in the same PMBB cohort 

between a separate group of rare likely deleterious exonic missense variants in the 97 significant 

genes with the same disease phenotypes that were identified in discovery (Figure 4.1). We 
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utilized REVEL, an ensemble method for predicting the pathogenicity of missense variants,20 to 

define predicted deleterious missense (pDM) variants (REVEL score ≥ 0.5) given the tool’s 

success in identifying likely pathogenic variants for gene burden association studies.10 First, we 

separately collapsed rare (MAF ≤ 0.1%), REVEL-informed pDM variants to test discovery-driven 

associations with their corresponding phenotypes (Appendix C, Table S2). We also interrogated 

single variants, including both pLOF variants and pDM (REVEL ≥ 0.5) variants, in the 97 genes 

identified in discovery that were of sufficient frequency (MAF > 0.1%) and therefore were not 

included in either of the gene burden analyses (Appendix C, Table S3).  

We also endeavored to replicate our significant ExoPheWAS discovery analysis 

associations (Figure 4.1) using a separate cohort of 6,432 African Americans in PMBB who were 

exome-sequenced (PMBB2; Appendix C, Table S4-6), as well as two additional medical biobanks 

with WES linked to EHR phenotypes, namely BioMe (Mount Sinai; Appendix C, Table S7-9) and 

DiscovEHR (Geisinger Health System; Appendix C, Table S10-12), and the population-based UK 

Biobank (UKB) (Appendix C, Table S13-15). For each of the 97 significant genes, we 

interrogated: 1) gene burdens after collapsing rare (MAF ≤ 0.1%) pLOF variants, 2) gene burdens 

after collapsing non-overlapping rare (MAF ≤ 0.1%) REVEL-informed pDM variants, and 3) single 

pLOF or REVEL-informed pDM variants with MAF > 0.1% for association with their discovery 

phenotypes. Finally, we further interrogated a targeted list of univariate replications in BioVU 

(Vanderbilt; Appendix C, Table S16). 

 

4.4.3. Positive control gene-phenotype associations 

We identified a total of 26 robust genes using a Diverse Convergent Evidence (DiCE) 

approach88 for ranking associations using a combination of the number of significant replications 

and functional validation (Table 4.2; Appendix C, Table S17). Five of these genes can be 

considered positive control gene-disease associations. A gene burden of rare pLOFs in CFTR 
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was significantly associated with cystic fibrosis (CF), a recessive condition caused by biallelic 

variants in CFTR. This was driven by individuals with a rare pLOF who had a second deleterious 

CFTR variant—predominantly ∆F508—that was not included in the pLOF gene burden. This 

association of the CFTR pLOF gene burden with CF was not replicated in other biobanks due to 

the extremely low case prevalence of CF (Appendix C, Table S18). The CFTR pLOF gene burden 

was also significantly associated with bronchiectasis independent of a CF diagnosis and occurred 

in individuals without a second CFTR variant; this finding replicated in all interrogated cohorts. 

While a predisposition to bronchiectasis due to haploinsufficiency of CFTR has been suggested,89 

our finding strengthens this observation. TTN is a known dilated cardiomyopathy gene that 

replicated convincingly across other cohorts. MYBPC3 is a known hypertrophic cardiomyopathy 

(HCM) gene that replicated in BioMe and DiscovEHR, but not in UKB, where HCM had a case-

control ratio of an order of magnitude lower than the medical biobanks (Appendix C, Table S18). 

These results indicate that medical biobanks have a different—and sicker—population that 

enables discovery of associations of human diseases driven by rare genetic variants. A pLOF 

gene burden in BRCA2 was associated with breast cancer and replicated in all biobanks. BRCA1 

was associated with breast cancer in discovery (p=1.29E-04) but due to power did not meet our 

significance threshold. Finally, CYP2D6 is a P450 enzyme known to metabolize opioids;90 we 

found that CYP2D6 was significantly associated with adverse effects of therapeutic opiate use.  
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Gene Phecode Description Discovery 
P 

Replications 
(N) 

Clinical and/or 
Experimental 

Evidence 

BRCA2 Breast cancer 1.72E-07 4 a 

CFTR Bronchiectasis 2.27E-07 10 a 

 Pseudomonal pneumonia 4.21E-11 5 a 

 Cystic fibrosis 1.05E-15 1 a 

CYP2D6 Opiates and related narcotics causing 
adverse effects in therapeutic use 1.50E-09 3 a 

MYBPC3 Hypertrophic cardiomyopathy 3.49E-15 5 a 

TTN Cardiomyopathy 7.83E-13 10 a 

 Cardiac conduction disorders 6.45E-09 10 a 

 Cardiac dysrhythmias 1.77E-08 12 a 

ABCA10 Benign neoplasm of brain, cranial nerves, 
meninges 7.26E-08 2  

 Abnormal results of function study of 
pulmonary system 1.54E-07 3  

BBS10 Hypertrophic cardiomyopathy 2.89E-08 1 a 

CES5A Abnormal coagulation profile 8.10E-08 5  

CILP Aortic ectasia 4.29E-08 3 a 

CTC1 Temporomandibular joint disorders 3.76E-07 3  

DNAH6 Lack of coordination 7.93E-10 2  

DNHD1 Aseptic necrosis of bone 2.67E-07 4  

EFCAB5 Prolapse of vaginal walls 3.19E-08 3  

EPPK1 Phlebitis and thrombophlebitis of lower 
extremities 9.19E-08 3  

FER1L6 Muscular wasting and disuse atrophy 7.18E-07 3 a 

FLG2 Stiffness of joint 1.76E-07 2  

MYCBP2 Spasm of muscle 2.08E-07 2 a 

PPP1R13L Primary open angle glaucoma 7.29E-07 2 a 

RGS12 Type 1 diabetes 6.48E-08 5 a 

RTKN2 Orthostatic hypotension 7.24E-07 5  

SCNN1D Cardiac conduction disorders 4.52E-07 5  

TGM6 Lipoma 2.77E-07 4  

TRDN Acquired toe deformities 3.90E-07 3  

WDR87 Ventral hernia 1.70E-07 4  

ZNF175 Tinnitus 3.24E-10 3 a 

ZNF334 Microscopic hematuria 1.69E-07 3  
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Table 4.2. List of robust exome-by-phenome-wide significant gene-phenotype associations. List of 

genes among 97 pLOF-based gene burdens with phenotype associations at p<E-06 in the Penn Medicine 

BioBank (PMBB) discovery cohort that were most robust according to a Diverse Convergent Evidence 

(DiCE) approach, which integrates successful replication of the association with clinical and experimental 

evidence. For replication studies, gene-phenotype associations were evaluated for their robustness by 

interrogating REVEL-informed missense-based gene burdens and single variants in the same discovery 

PMBB cohort, and pLOF-based gene burdens, REVEL-informed missense-based gene burdens, and single 

variants in an independent cohort of African Americans in PMBB (the PMBB2 cohort) as well as in BioMe, 

DiscovEHR, and the UK Biobank (UKB). Targeted single variants that showed successful replication in 

PMBB, PMBB2, and UKB were additionally analyzed in BioVU. Each gene-phecode association is labeled 

with the corresponding p value from logistic regression analyses in the discovery phase in PMBB as well as 

the number of total replications and existence of clinical/experimental evidence, as fully detailed in Appendix 

C, Table S17. Only associations with at least two total checkmarks in Appendix C, Table S17, where each 

successful mode of replication in a particular biobank (e.g. pLOF burden in BioMe) or the existence of 

clinical/experimental evidence is labeled with a checkmark, were deemed robust and were included in this 

table. Previously known associations were considered to represent positive controls and are listed at the top 

of the table, and are separated from novel associations by a double line. Positive control and novel 

associations are each ranked alphabetically by gene name. 

 

4.4.4. Novel gene-phenotype associations 

We identified 20 robust genes with novel disease associations that had at least two 

additional replications beyond the discovery experiment, and one strongly supported by the DiCE 

analysis (Table 4.2; Appendix C, Tables S2-S17). Some have prior biological plausibility, and for 

others we generated additional functional data supporting a biological basis to these associations. 

For example, a BBS10 gene burden was significantly associated with HCM. BBS10 is one of at 

least 19 genes implicated in autosomal recessive Bardet-Biedl Syndrome and accounts for ~20% 

of all cases.91 BBS10 is expressed in the heart66 and cardiac abnormalities have been reported in 

Bardet-Biedl Syndrome, including hypertrophy of the interventricular septum,92 but cardiac 

abnormalities due to haploinsufficiency of BBS10 have not been described. We interrogated 

echocardiography data in carriers of rare pLOF variants in BBS10 in PMBB compared with non-

carriers and found increased left ventricular outflow tract (LVOT) stroke volume, consistent with 

cardiac hypertrophy (Appendix C, Table S19). Rare pLOF variants in SCNN1D, which encodes 
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the delta subunit of the epithelial sodium channel (δENaC), were associated with cardiac 

conduction disorders and replicated robustly across medical biobanks. SCNN1D is expressed in 

the heart (unlike epithelial tissue-specific expression for SCNN1A and SCNN1B),93 there is an 

association between 1p36 deletions (which contains SCNN1D) and congenital heart defects,94 

and decreased expression of δENaC may contribute to disrupted Na+ and K+ homeostasis in 

ischemic heart diseases.95 The association between rare pLOFs in ZNF175 and tinnitus 

(additionally, hearing loss barely missed our significance threshold), which replicated in BioMe, 

DiscovEHR, and UKB, is supported by the finding that mice with loss-of-function in Zfp719 (the 

mouse ortholog) are profoundly deaf and have abnormal Preyer reflex (auditory startle 

response)96 as well as raised auditory brainstem response thresholds.97 Zfp719 is expressed in 

inner and outer hair cells of the mouse ear,98 and human ZNF175 has a suggested role in 

neurotrophin production and neuronal survival.99 

Rare pLOFs in FER1L6 were robustly associated with muscular wasting and disuse 

atrophy. FER1L6 is a member of the ferlin family of genes, and mutations in FER1L1 (dysferlin) 

are known to cause recessive forms of muscular dystrophy.100 Importantly, loss of the zebrafish 

ortholog Fer1l6 has been shown to lead to deformation of striated muscle and delayed cardiac 

development.101 Similarly, pLOFs in MYCBP2, an E3 ubiquitin-protein ligase critical in 

neuromuscular development in mice,102 Drosophila,103 and C. elegans,104 were associated with 

muscular spasms and dystrophy. Mice lacking the mouse ortholog Phr1 are lethal at birth without 

taking a breath due to incomplete innervation of the diaphragm by markedly narrower phrenic 

nerves that contain fewer axons than controls.102 We found that MYCBP2 showed significantly 

decreased expression in various lower extremity muscle tissues in tibial muscular dystrophy in 

humans (Appendix C, Figure S4). Our findings suggest that haploinsufficiency in FER1L6 or 

MYCBP2 increases the risk of developing dystrophic skeletal muscle.   

Rare pLOFs in CES5A were robustly associated with abnormal coagulation. Upon further 

investigation of EHR lab data in PMBB, we found that carriers of rare pLOF variants in CES5A 
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had increased international normalized ratios (INR; ß=8.2, p=2.13E-02, N=5,275) and partial 

thromboplastin times (PTT; ß=13.9, p=2.07E-02, N=3,786) compared to non-carriers. Through 

chart review, we found an enrichment of gastrointestinal bleeding episodes following use of anti-

platelet medications among carriers for rare pLOF variants in CES5A. CES5A is part of the family 

of carboxylesterases, which are known metabolizers of various orally bioavailable drugs, 

including the anti-platelet medications aspirin and clopidogrel.105 Given its predominant 

expression in the liver,66 it is thus plausible that haploinsufficiency of CES5A predisposes to 

adverse effects of anti-platelet medications.  

Another novel finding was that rare pLOF variants in PPP1R13L, one of the most 

evolutionarily conserved inhibitors of p53,106 were associated with primary open angle 

glaucoma—a disease of the optic nerve head (ONH) that causes progressive vision loss. We 

interrogated the expression of PPP1R13L in silico using the Ocular Tissue Database (OTDB) and 

found that it is highly expressed in ocular tissues, with optic nerve and the ONH among the 

highest (Appendix C, Table S20). Retinal ganglion cells (RGCs) are the primary cells affected by 

glaucoma, and cells in the ONH such as astroglia, microglia, and endothelial cells mediate RGC 

degeneration in response to stress such as increased intraocular pressure. We investigated 

whether Ppp1r13l is differentially expressed in the mouse ONH in glaucoma by comparing 

microarray gene expression datasets of the ONH.107 We found Ppp1r13l expression to be highest 

during late-early to moderate stages of glaucoma (Appendix C, Figure S5A). Additionally, 

inhibition of PPP1R13L has been shown to exacerbate retinal ganglion cell (RGC) death following 

axonal injury.108 We found that the PPP1R13L protein is predominantly localized to the ganglion 

cell layer in the adult human retina with some expression in the outer and inner plexiform layers, 

confirming its role in RGC function (Appendix C, Figure S5B). Using human induced pluripotent 

stem cell-derived RGCs (iPSC-RGCs), we found that oxidative stress markedly upregulated 

PPP1R13L expression (Appendix C, Figure S5C) to a much greater extent than even superoxide 

dismutase 1 (SOD1), which is known to be transcriptionally upregulated in response to oxidative 
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stress. Thus, PPP1R13L is expressed in RGCs, is significantly upregulated by oxidative stress, 

and may help to prevent RGC death from p53 activation and p53-mediated apoptosis in primary 

open angle glaucoma.109 Our results are consistent with the concept that haploinsufficiency of 

PPP1R13L in RGCs increases the visual consequences of primary open angle glaucoma.  

Another interesting novel finding was that rare pLOF variants in RGS12 were associated 

with type 1 diabetes mellitus and its complications. In PMBB, carriers of rare pLOFs in RGS12 

had higher median values for random serum glucose than non-carriers (ß=16.9, p=2.91E-02, 

N=5,389). RGS12, an inhibitor of signal transduction in G protein signaling, contains an N 

terminus PDZ domain which selectively binds to and represses the macrophage IL-8 receptor 

CXCR2.110 Activation of macrophage CXCR2 by IL-8 is pro-inflammatory, and its antagonism 

leads to attenuation of immune cell infiltration and cytokine release as well as a shift of 

macrophages to the anti-inflammatory M2 state, thereby counteracting inflammatory signal 

pathways in diabetes.111 To further investigate RGS12 in type 1 diabetes, we generated single-

cell RNA-seq data in human pancreatic islets from type 1 diabetes and control subjects collected 

by the Human Pancreas Analysis Program (HPAP; https://hpap.pmacs.upenn.edu) and 

interrogated RGS12 expression in distinct functional cells. We found that while RGS12 showed 

no significant differential expression in pancreatic endocrine or exocrine cells in type 1 diabetes 

versus control, there was a substantial reduction of expression of RGS12 in peri-islet CD45+ 

macrophages in type 1 diabetes (Appendix C, Figure S6). These results are consistent with a 

model that RGS12 dampens islet macrophage inflammatory responses and that 

haploinsufficiency of RGS12 predisposes to greater islet inflammation and higher risk of type 1 

diabetes.  

Additionally, rare pLOF variants in CILP were associated with aortic ectasia, or dilatation 

of the aorta often associated with connective tissue disorders. Chart review of CILP pLOF carriers 

showed an enrichment for ascending thoracic aortic aneurysms. CILP encodes an extracellular 

matrix protein and is best known for its expression in chondrocytes.112 However, CILP is also 
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expressed in the cardiovascular system,66 and has been shown to be involved in cardiac 

remodeling in response to pressure overload.113 We performed single-cell RNA-seq of normal 

mouse aorta and found that Cilp expression was localized mainly to adventitial fibroblasts in the 

aorta, but showed no significant expression in aortic smooth muscle cells (Appendix C, Figure 

S7A-B). Single-cell RNA-seq of human aorta confirmed that CILP is localized to aortic fibroblasts 

(Appendix C, Figure S7C-D). Importantly, CILP has been reported to modulate TGFB1 signaling 

and IGF1-induced proliferation,114 and dysregulated TGF-ß signaling has been shown to 

contribute to the pathogenesis of thoracic aortic aneurysm formation.115 To further interrogate the 

relationship between CILP and TGFB1 in human fibroblasts, we conducted a meta-analysis of 11 

independent microarray and RNA-seq datasets for human fibroblasts from various tissues treated 

with TGF-ß from the Gene Expression Omnibus (GEO). We found that CILP was in the top 1% of 

significantly upregulated genes in human fibroblasts when treated with TGF-ß (log2 fold change = 

1.964, p = 3.60E-29; Appendix C, Figure S7E), confirming its role in a functional feedback loop 

with TGF-ß as similarly seen in the context of chondrocyte metabolism.112 Furthermore, CILP was 

differentially co-expressed with IGF1 as well as genes implicated in aortic ectasia including 

SMAD3, ACTA2, MYH11, and ELN (Appendix C, Figure S7E).115 Our findings suggest that 

haploinsufficiency of CILP predisposes to the risk of developing thoracic aortic dilatation, perhaps 

through compromising the structural integrity of the aortic wall and contributing to dysregulation of 

TGF-ß signaling. 

 

4.4.5. Conclusions 

There has been a significant gap of knowledge regarding the clinical implications of 

genetic variants overrepresented among Africans due to the lack of ancestral diversity in the 

populations that have been studied in previous genetic association studies.116 Our discovery 

study included 19.9% African ancestry individuals, and three of our replication cohorts included 

substantial numbers of African-Americans (6,432 in PMBB2, 6,470 in BioMe, and 10,456 in 
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BioVU).  Interestingly, we identified 16 rare predicted deleterious single variants which are African 

ancestry-specific and that replicated associations with the same disease in which a pLOF gene 

burden was associated in discovery (Appendix C, Table S21). None of these rare variants exist in 

the GWAS catalog or have been previously mentioned in the published literature. Our findings 

suggest that larger experiments of this type in ethnically diverse cohorts are imperative for 

improving our understanding of the contribution of ancestry-specific rare genetic variants to 

human disease. 

A significant challenge in rare variant association studies is the difficulty of performing 

replication studies. Here we show the value of evaluating the robustness of gene burden 

associations by interrogating other deleterious variants in the same genes (but in different 

individuals) in the same biobank cohort. We also performed replication studies in another cohort 

in PMBB as well as in two other medical biobanks with WES data. These provided more 

replication than the UKB, which is a population-based biobank and is widely recognized to have a 

“healthy volunteer selection bias”117 and has lower prevalence of the specific diseases than the 

medical biobanks (Appendix C, Table S18). This may be one factor explaining the relative lack of 

novel findings in gene burden studies using UKB for discovery.21,118 Finally, we show that one 

should not expect a uniform fit for p values when interrogating the cumulative effect of rare pLOF 

variants, and that the validity of the results is due as much to robust replication in other cohorts as 

to the determination of a particular significance threshold. To this end, our study emphasizes the 

value of medical biobanks for discovery of novel gene-disease associations based on rare 

variants. 

In conclusion, we demonstrate the feasibility and value of aggregating rare pLOF variants 

into gene burdens on an exome-wide scale for association with EHR-derived phenotypes in a 

medical biobank for discovery of novel gene-disease relationships. Our compelling novel findings 

based on initial discovery in < 11,000 whole exomes suggest that much larger experiments of this 
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type are likely to be highly informative and will lead to many new insights into the biology of 

human phenotypes and diseases. 
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CHAPTER 5. Exome-wide association of rare coding variants 

with hepatic fat derived from CT imaging in a medical biobank 

 

5.1. Abstract 

Background: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver 

disease in Western countries and can lead to metabolic dysfunction, liver inflammation, end-stage 

liver disease. While hepatic fat is a highly heritable trait, previous genetic studies of hepatic fat 

quantifications derived from abdominal imaging scans have traditionally focused on common 

variants and have been largely underpowered for interrogation of additional rarer genetic 

variation.  

Methods: We linked whole-exome sequences (WES) to hepatic fat quantifications derived from 

clinical CT scans using machine learning in a subset of 10,283 individuals in the Penn Medicine 

BioBank (PMBB). We conducted exome-wide discovery analyses for single variants (MAF>0.1%) 

as well as for gene burdens of rare predicted loss-of-function (pLOF) variants (MAF≤0.1%) in 

PMBB. We also tested a burden of rare pLOF ± predicted deleterious missense (pDM) variants 

(REVEL≥0.5) for genes nominated by the single variant discovery. We performed replication in 

the UK Biobank (UKB) by linking WES to MRI-based liver proton density fat fractions (PDFF). 

Results: Exome-wide significant single variants confirmed previously described associations (e.g. 

variants in PNPLA3, TM6SF2, SAMM50) and revealed new variants in FGD5 and CITED2 

associated with hepatic fat. We also found that a gene burden of rare predicted deleterious 

coding variants in certain genes nominated by single variants (e.g. PNPLA3) were associated 

with hepatic fat. Additionally, a burden of rare pLOFs in LMF2 were exome-wide significant in 

their association with increased hepatic fat, a finding that replicated in UKB.   

Conclusion: We show the value and feasibility of conducting an exome-wide evaluation of 

common and rare variants for association with hepatic fat as quantitated from abdominal CT 
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scans via machine learning. Importantly, this work represents the first exome-wide association 

studies for hepatic fat quantifications in a medical biobank. In addition to confirming signals for 

single variants previously associated with hepatic fat, we also found new common and rare 

variants associated with hepatic fat which replicated in UKB. We suggest that this approach 

applied to larger ancestrally diverse populations will uncover new genetic modulators of 

intrahepatic fat. 

 

5.2. Introduction 

Hepatic steatosis, or excess accumulation of intrahepatic fat, is a major risk factor for 

metabolic dysfunction, liver inflammation, and end-stage liver disease accompanied by high 

morbidity and mortality.119 In particular, non-alcoholic fatty liver disease (NAFLD) is the most 

common cause of chronic liver disease in Western countries, and there is growing evidence that 

the clinical burden of NAFLD extends beyond liver-related morbidity and mortality such as 

increasing risk for type 2 diabetes mellitus, cardiovascular disease, and chronic kidney 

disease.120 While NAFLD has high heritability and our understanding of the genetic underpinnings 

of NAFLD has advanced, known genetic risk variants still explain only a small fraction of 

heritability, suggesting the existence of additional genetic variation that may confer risk for or 

protection from NAFLD which have yet to be uncovered.121   

Large-scale systematic quantification of hepatic fat derived from clinical imaging to 

measure the extent of hepatic steatosis has proven to be important for discovery of genetic 

variants that contribute to risk of developing NAFLD.122-124 However, genetic studies in this realm 

have traditionally focused on analysis of common variants and have been largely underpowered 

for interrogation of additional rare genetic variation. The Penn Medicine BioBank (PMBB) is a 

large academic medical biobank enriched for disease with genetic sequencing linked to electronic 

health record (EHR) phenotypes, in which a substantial number of participants have received 
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abdominal computed tomography (CT) scans in the course of routine clinical care. We automated 

hepatic fat quantification derived from abdominal CT scans using a machine learning approach. 

In this study, we present an exome-wide analysis of the association of rare coding variants with 

hepatic fat in a subset of ~10K individuals in the PMBB for whom CT-derived hepatic fat 

quantitation and whole exome sequence data were available. 

 

5.3. Materials and Methods 

5.3.1. Setting and study participants  

All individuals recruited for the Penn Medicine BioBank (PMBB) are patients of clinical 

practice sites of the University of Pennsylvania Health System. Appropriate consent was obtained 

from each participant regarding storage of biological specimens, genetic sequencing, and access 

to all available EHR data. These analyses focused on the subset of PMBB participants 

(N=10,283) who had both CT-derived hepatic fat quantitation and whole exome sequence data 

available (Table 5.1). This study was approved by the Institutional Review Board of the University 

of Pennsylvania and complied with the principles set out in the Declaration of Helsinki.  

 

5.3.2. Clinical data collection 

For PMBB, all International Classification of Diseases Ninth Revision (ICD-9) and Tenth 

Revision (ICD-10) diagnosis codes, clinical imaging and laboratory measurements were extracted 

from the patients’ EHR. All ICD diagnosis codes and outpatient laboratory measurements 

available up to July 2020 were extracted for PMBB participants. Non-contract abdominal CT 

images available up to March 2019 were extracted for PMBB participants if available (N=14,249). 

All laboratory values measured in the outpatient setting were extracted for participants from the 

time of enrollment in PMBB until July 2020; all units were converted to their respective clinical 
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Traditional Units. Minimum, median, and maximum measurements of each laboratory 

measurement were recorded per individual for association analyses. Minimum, median, and 

maximum values for hemoglobin A1C, alkaline phosphatase, ALT, AST, and triglycerides were 

log-transformed to normalize their distributions. 

 

5.3.3. Quantification of hepatic fat  

 In PMBB participants, hepatic fat was quantitated from abdominal CT scans using a fully 

automated image curation and organ labeling technique using deep learning as previously 

described.125 Hepatic fat was quantitated as the difference in mean Hounsfield Units (HU) 

between the spleen and liver (spleen HU – liver HU) to create a measure that is directly 

proportional to intrahepatic fat. Minimum, median, and maximum measurements of hepatic fat 

were recorded per individual given the multiple independent CT scans available per patient.  

 

5.3.4. Phenome-wide association of hepatic fat with EHR diagnoses and traits 

A phenome-wide association study (PheWAS) approach was used to determine the 

phenotypes associated with the quantitative trait of median hepatic fat in PMBB for the 10,283 

unrelated individuals in PMBB with both exome sequences and quantitated hepatic fat 

available.33 ICD-10 encounter diagnoses were mapped to ICD-9 via the Center for Medicare and 

Medicaid Services 2017 General Equivalency Mappings 

(https://www.cms.gov/Medicare/Coding/ICD10/2017-ICD-10-CM-and-GEMs.html) and manual 

curation. Phenotypes for each individual were then determined by mapping ICD-9 codes to 

distinct disease entities (i.e. Phecodes) using the R package “PheWAS”.34 Patients were 

determined to have a certain disease phenotype if they had the corresponding ICD diagnosis on 

2 or more dates, while phenotypic controls consisted of individuals who never had the ICD code. 
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Individuals with an ICD diagnosis on only one date as well as individuals under control exclusion 

criteria based on PheWAS phenotype mapping protocols were not considered in statistical 

analyses. Each Phecode was tested for association with quantitated hepatic fat using a logistic 

regression model adjusted for age, sex, and PC1-10 of genetic ancestry. PheWAS analyses were 

performed as trans-ancestral cosmopolitan analyses. Our association analyses considered only 

disease phenotypes with at least 20 cases based on a prior simulation study for power analysis.22 

This led to the interrogation of 1396 total Phecodes, and we used a Bonferroni correction to 

adjust for multiple testing (p=0.05/1396=3.58E-05).  

 

5.3.5. Whole-exome sequencing, variant annotation, and selection for association testing 

 This study included a subset of 43,731 individuals in the PMBB who had undergone 

whole-exome sequencing (WES). We extracted DNA from stored buffy coats and then mapped 

exome sequences as generated by the Regeneron Genetics Center (Tarrytown, NY) to GRCh38 

as previously described. Samples with low exome sequencing coverage, high missingness (i.e. 

greater than 5% of targeted bases), dissimilar reported and genetically determined sex, and 

genetic evidence of sample duplication were not included in this subset. For subsequent 

phenotypic association analyses, we removed samples with evidence of 1st and 2nd-degree 

relatedness, leading to a total of sample size of 41,759 for analysis.  

 Genetic variants were annotated using ANNOVAR (version 2019Oct24)32 for information 

regarding variant effect as determined by the NCBI Reference Sequence (RefSeq) database,126 

Rare Exonic Variant Ensemble Learner (REVEL) scores for missense variants,20 and allele 

frequencies reported by the Genome Aggregation (gnomAD) v2.69 Predicted loss-of-function 

(pLOF) variants were defined as frameshift insertions or deletions, gain of stop codon, and 

disruption of canonical splice site dinucleotides. For splicing variants, we removed those with 

SpliceAI scores < 0.2 for loss or gain of acceptor or donor site.53 For single variant association 
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tests in the PMBB discovery, all nonsynonymous coding variants and splicing variants with minor 

allele frequency (MAF) > 0.1% in Africans or non-Finnish Europeans in gnomAD were selected 

for association testing. For gene burden association tests, rare (MAF ≤ 0.1% in gnomAD) pLOF 

variants were aggregated per gene with or without rare missense variants with REVEL score ≥ 

0.5.  

 

5.3.6. Exome-wide association studies for hepatic fat 

This study focused on a subset of 10,283 unrelated individuals in PMBB with both exome 

sequences and quantitated hepatic fat available. For exome-wide association studies with hepatic 

fat, individuals with ICD9/10 diagnosis codes indicating chronic hepatitis B or C (B18.0-B18.2, 

070.32, 070.21, 070.22, 070.23, 070.31, 070.33, 070.54) or alcohol-related conditions or 

dependence, such as alcoholic liver disease (571.0, K70.0), alcoholic hepatitis (571.1, K70.1), 

alcoholic fibrosis and sclerosis of the liver (571.2, K70.3), alcoholic cirrhosis of liver and/or ascites 

(571.2, K70.2), alcoholic hepatic failure, coma, and unspecified alcoholic liver disease (571.3, 

K70.4, K70.40, K70.41, K70.9), and alcohol dependence (303.0, 303.9, F10.229, F10.20), were 

excluded (N=689), leading to total sample size of 9,594 for analyses.  

Exome-wide association studies for hepatic fat were conducted in two stages, namely 

single variant discovery and gene burden discovery. For the discovery analyses, single variants 

and gene burdens with at least 10 total carriers with hepatic fat quantifications available were 

associated with hepatic fat using a linear regression model adjusted for age, sex, and principal 

components (PC) of ancestry (PC1-5 in Africans, PC1-10 in Europeans). For targeted gene 

burden analyses of genes nominated by the single variant discovery, gene burdens with at least 5 

total carriers with hepatic fat quantifications available were associated with hepatic fat. For all 

gene burdens, we used an additive genetic model to aggregate variants as previously 

described.22 These analyses were performed separately by African and European genetic 
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ancestry and combined with inverse variance weighted meta-analysis. Additionally, trans-

ancestral cosmopolitan analyses were also performed, adjusted for age, sex, and cosmopolitan 

PC1-10.  

We conducted a PheWAS for the gene burden of pLOF variants in LMF2, where we 

focused on a subset of 162 Phecodes in the “digestive” group, leading to a Bonferroni-corrected 

significance threshold of p=0.05/162=3.09E-04. The gene burden PheWAS analysis was 

performed separately by African and European genetic ancestry and combined with inverse 

variance weighted meta-analysis. 

 

5.3.7. Replication analyses in the UK Biobank (UKB) 

Replication analyses were conducted in the UK Biobank (UKB). For replication studies in 

the UKB, we focused on 9,071 individuals with both exome sequences (after removing samples 

with evidence of 1st and 2nd-degree relatedness, high missingness, and dissimilar reported and 

genetically determined sex) and quantitated hepatic fat available based on liver proton density fat 

fraction (PDFF) derived from MRI. Individuals with ICD10 diagnosis codes indicating chronic 

hepatitis B or C or alcohol-related conditions or dependence were excluded (N=22), leading to a 

total sample size of 9,049 for analyses. Single variants and gene burdens with at least 5 total 

carriers with hepatic fat quantifications available selected based on discovery in PMBB were 

associated with hepatic fat using a linear regression model adjusted for age, sex, and PC1-10 of 

ancestry. Similarly, for targeted gene burden analyses of genes nominated by the single variant 

discovery in PMBB, gene burdens with at least 5 total carriers with hepatic fat quantifications 

available were associated with hepatic fat in UKB. These analyses were performed in individuals 

of European ancestry, accompanied by trans-ancestral cosmopolitan analyses. Liver PDFF 

values from UKB were log-transformed to normalize their distribution for regression analyses. For 

replication studies in the UKB, International Classification of Diseases Tenth Revision (ICD-10) 



88 

 

diagnosis codes and liver PDFF values derived from abdominal MRI scans were downloaded. 

Access to the UKB data for this project was from application 32133.  

 

5.3.8. Statistical analyses 

To associate hepatic fat phenotypes or genotypes with serum laboratory measurements 

in PMBB, we used a linear regression model adjusted for age, sex, and PCs of genetic ancestry 

(PC1-5 in Africans, PC1-10 in Europeans). These analyses were performed across all ancestries 

(cosmopolitan, PC1-10) and/or separately by African and European genetic ancestry and 

combined with inverse variance weighted meta-analysis. All statistical analyses, including 

PheWAS and hepatic fat associations, were completed using R version 3.5 (Vienna, Austria). 

Minimum, median, and maximum values for hemoglobin A1C, alkaline phosphatase, ALT, AST, 

and triglycerides were log-normalized for regression analyses. 

 

5.3.9. Analysis of publicly available expression datasets 

We interrogated microarray and RNA-seq data publicly available on the NCBI GEO 

platform (https://www.ncbi.nlm.nih.gov/geo/).71 We compared Lmf2 expression in liver endothelial 

cells from cirrhotic livers of rats versus control (GSE1843).127 We also compared Lmf2 expression 

in a hepatic steatosis mouse model due to hepatocyte-specific Sirt1 deficiency versus control 

(GSE14921).128 Differential expression for each dataset was interrogated using the GEO2R 

software using a moderated t statistic after log transformation was applied to the data. 
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5.4. Results 

5.4.1. Hepatic fat extracted from clinical CT scans is highly significantly associated with a range 

of cardiometabolic diseases and traits 

 Among exome-sequenced individuals in PMBB (Table 5.1), we conducted a phenome-

wide association study (PheWAS) of the quantitative trait of median hepatic fat to interrogate the 

clinical diagnosis phenotypes associated with hepatic fat (Appendix D, Figure S1). Hepatic fat 

quantity was associated with increased risk for “Chronic liver disease and cirrhosis” (p=1.70E-45) 

and “Other chronic nonalcoholic liver disease” (Phecode representing NAFLD; p=8.89E-42) at 

phenome-wide significance. Hepatic fat also showed phenome-wide significant associations with 

increased risk for cardiometabolic comorbidities such as “Type 2 diabetes” (p=9.42E-30), 

“Obesity” (p=3.31E-18), and “Hypertension” (p=1.64E-13). Additionally, “Viral hepatitis” (p=1.17E-

05) and “Alcoholic liver damage” (p=3.50E-15) were associated with increased hepatic fat at 

phenome-wide significance. Hepatic fat was also highly significantly associated with the 

quantitative trait of BMI (p=1.94E-42; Appendix D, Table S1), consistent with the known 

relationship between obesity and hepatic steatosis.  

We also analyzed the association of hepatic fat with several clinical laboratory 

quantitative traits (Appendix D, Table S1). We found that hepatic fat values were significantly 

positively associated with serum ALT, AST, alkaline phosphatase, hemoglobin A1C, random 

glucose, and random triglycerides, and significantly inversely associated with HDL cholesterol, 

LDL cholesterol, and total cholesterol. 
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Basic demographics  
Total population, N 10283 

Female, N (%) 4551 (44.3) 

Median age, years 69 

  

Genetically informed ancestry  

AFR, N (%) 2814 (27.4) 

AMR, N (%) 110 (1.1) 

EAS, N (%) 103 (1.0) 

EUR, N (%) 7096 (69.0) 

SAS, N (%) 84 (0.8) 

  

Phecodes  
Chronic liver disease and cirrhosis, N (%) 1000 (9.7) 

Other chronic nonalcoholic liver disease, N (%) 872 (8.5) 

Type 2 Diabetes, N (%) 3018 (29.3) 

Obesity, N (%) 2998 (29.2) 

Essential hypertension, N (%) 6089 (59.2) 

Alcoholic liver damage, N (%) 129 (1.3) 

Viral hepatitis, N (%) 611 (5.9) 

Portal hypertension, N (%) 135 (1.3) 

Liver replaced by transplant, N (%) 260 (2.5) 
 

Table 5.1. PMBB discovery cohort characteristics. Basic demographic characteristics and representative 

Phecodes identified by PheWAS of median hepatic fat in PMBB. Each characteristic is labeled with count 

data and percent prevalence where appropriate. Individuals were determined to be a case for a Phecode if 

they had the corresponding ICD diagnosis on two or more dates, while controls consisted of individuals who 

never had the ICD code. Individuals with an ICD diagnosis on only one date as well as those under control 

exclusion criteria based on Phecode mapping protocols were not considered. AFR-African, AMR-Mixed 

American, EAS-East Asian, EUR-European, SAS-South Asian 
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5.4.2. Exome-wide analyses of single coding variants identify novel variants associated with 

hepatic fat 

 We conducted a univariate exome-wide analysis of hepatic fat for all nonsynonymous 

coding variants of sufficient frequency (MAF>0.1% in gnomAD) (Figure 5.1; Appendix D, Figure 

S2). Among 120,315 total variants with at least 10 carriers, we identified 91 variants in 86 genes 

with exome-wide significant (P<4.2E-07) or suggestive (P<9.9E-05) associations with hepatic fat 

(Appendix D, Table S2). Among these included variants previously reported to be associated with 

hepatic fat: PNPLA3 variants I148M, K434E, and S453I; TM6SF2 E167K; SAMM50 D110G; 

NCAN P92S; PARVB W37R; and APOE4 (C130R). Additional positive control associations were 

found below the significance threshold (Appendix D, Table S3), including GCKR L446P, MTARC1 

T165A, and TM6SF2 L156P. 27 of the 91 single variants were African ancestry-specific variants 

(African/European MAF ratio > 10 in gnomAD; Appendix D, Table S2). 

 

Figure 5.1. Manhattan plot of single variant discovery in PMBB. Manhattan plot showing the results of 

the exome-wide single variant discovery analysis in PMBB for coding variants of sufficient frequency 

(MAF>0.1%, N≥10). The x axis represents the exome and is organized by chromosomal location. The 
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location of each single variant along the x axis corresponds to the genomic location for each variant 

according to Genome Reference Consortium Human build 38 (GRCh38). The association of each single 

variant with hepatic fat is plotted vertically above each variant. Each point is color-coded according to the 

key for the type of analysis conducted, and the height of each point represents the –log10(p value) of the 

association. Each variant is annotated with its corresponding gene name. The red line represents the 

suggestive significance threshold at p=9.9E-05 to account for multiple hypothesis testing.  

 

For replication, we tested the association of these 91 variants with liver proton density fat 

fraction (PDFF) measurements derived from abdominal MRI scans in the UKB (Appendix D, 

Table S4).  Not only were the methods of hepatic fat quantitation different, but there were notable 

differences in the distribution of hepatic fat between PMBB and UKB (Appendix D, Figure S3). 

Furthermore, there was insufficient power in UKB for replication of the 27 African ancestry-

specific variants, as 20 of 27 variants had N<5 in the cosmopolitan analyses. Despite this, in 

addition to replicating a number of the previously known associations, we also replicated novel 

associations of H600Y in FGD5 and a 6-bp deletion (S198_G199del) in CITED2 with hepatic fat.    

 To test whether rare predicted deleterious coding variants in the 86 unique genes 

containing the 91 single variants were also associated with differences in hepatic fat, we 

aggregated rare (MAF≤0.1% in gnomAD) pLOF variants into gene burdens for targeted 

associations with hepatic fat in PMBB (Appendix D, Table S5). A burden of rare pLOF variants in 

8 genes was significantly associated with hepatic fat, including genes with previously described 

common variation associated in differences in hepatic fat such as PNPLA3 and PARVB, as well 

as new findings like PTGR1. We also aggregated the combination of rare pLOF and rare 

predicted deleterious missense (pDM) variants (REVEL≥0.5) per gene for targeted gene burden 

association with hepatic fat in PMBB (Appendix D, Table S5). We found 11 additional genes 

associated with differences in hepatic fat in PMBB by adding rare pDM variants to pLOFs. 

Additionally, the associations for DISP2, PARVB, PTGR1, and QRFPR were strengthened or 

remained significant with the addition of carriers for rare pDM variants. Of note, the combined 
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CITED2 gene burden was nominally associated with increased median hepatic fat although 

underpowered (N=3, beta=9.723, p=0.0276).  

We also tested the burden of rare pLOFs in the 86 genes for association with hepatic fat 

in UKB (Appendix D, Table S6) and found 3 concordant gene burdens, namely ADAM19, EXO5, 

and SEMA3D. Additionally, the combined burden of rare pLOFs and rare pDM variants (Appendix 

D, Table S6) revealed 3 additional significant genes, namely ADGRG5, GPS1, and NOX5. The 

associations for EXO5 and SEMA3D were strengthened or remained nominally significant with 

the addition of carriers for rare pDM variants. 

 

5.4.3. A gene burden of rare pLOFs in LMF2 is associated with increased hepatic fat in PMBB 

and UKB 

We also performed an exome-wide rare pLOF gene burden analysis for association with 

hepatic fat in PMBB.  We aggregated rare (MAF≤0.1% in gnomAD) pLOFs per gene: among 

4187 genes with at least 10 carriers for rare pLOFs who have hepatic fat quantifications available 

(Appendix D, Figure S4), there were 26 genes that had exome-wide significant (P<1.2E-05) or 

suggestive (P<9.9E-04) associations with hepatic fat (Figure 5.2; Appendix D, Table S7). For 

these 26 genes, we attempted replication in UKB using a similar rare pLOF gene burden 

approach. We found that the LMF2 pLOF gene burden had a significant association with hepatic 

fat (beta=0.429, p=5.79E-03, N=5) and importantly in the same direction (increased) as we 

observed in PMBB.  
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Figure 5.2. Manhattan plot of rare pLOF gene burden discovery in PMBB. Manhattan plot showing the 

results of the exome-wide gene burden discovery analysis in PMBB aggregating rare (MAF≤0.1%) predicted 

loss-of-function (pLOF) variants per gene (N≥10). The x axis represents the exome and is organized by 

chromosomal location. The location of each gene along the x axis corresponds to the genomic location for 

each variant according to Genome Reference Consortium Human build 38 (GRCh38). The association of 

each gene burden with hepatic fat is plotted vertically above each gene. Each point is color-coded according 

to the key for the type of analysis conducted, and the height of each point represents the –log10(p value) of 

the association. Each gene is annotated with its gene name. The red line represents the suggestive 

significance threshold at p=9.9E-04 to account for multiple hypothesis testing. 

 

We conducted an analysis of the association of the gene burden of rare pLOFs in LMF2 

in PMBB (N=105 het carriers) with Phecodes in the “digestive” group (520 to 579.8). In addition to 

a significant association with the NAFLD Phecode, the burden of pLOF variants in LMF2 had 

significant associations with an array of biliary-related Phecodes such as “Cholangitis”, “Calculus 

of bile duct”, “Cholelithiasis with acute cholecystitis”, and “Primary biliary cirrhosis” (Appendix D, 

Table S8). Furthermore, the LMF2 pLOF gene burden was associated with increased serum 

alkaline phosphatase, total cholesterol levels, and BMI (Appendix D, Table S9), as well as a trend 

to an increase in triglycerides (beta=0.0474, p=0.0957). There were no significant associations 

with HDL, LDL, ALT, or AST levels.  

In a primary analysis of publicly available data, we found that Lmf2 expression was 

significantly decreased in liver endothelial cells from cirrhotic livers of rats versus control 
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(Appendix D, Figure S5), where cirrhosis was induced via inhalation of CCl4. Similarly, in a 

hepatic steatosis mouse model due to hepatocyte-specific Sirt1 deficiency leading to impaired 

PPARα signaling and decreased fatty acid beta-oxidation, Lmf2 liver expression was also 

significantly decreased versus control (Appendix D, Figure S6). 

 

5.5. Discussion 

We present an exome-wide analysis of coding variants for association with hepatic fat 

quantitated from abdominal CT scans via machine learning in a medical biobank. Our single 

variant discovery analyses confirmed many previously described single variants associated with 

hepatic fat or NAFLD risk which support the validity of our data and analysis pipeline, including 

I148M, K434E, and S453I in PNPLA3,122,129 E167K and L156P in TM6SF2,124,130 D110G in 

SAMM50,131 P92S in NCAN,132 W37R in PARVB,133 C130R in APOE,134 L446P in GCKR,135 and 

T165A in MTARC1.136 We also conducted replication studies in UKB looking for consistent 

directions of effect by linking exomes to hepatic fat based on liver PDFF extracted from 

abdominal MRI scans, given the strong linear correlation between hepatic fat extracted from non-

contrast CT and PDFF quantifications derived from MRI.137,138  

Among our new significant single variants not previously associated with hepatic 

steatosis in humans, we found that H600Y in FGD5 was associated with increased hepatic fat in 

PMBB, which replicated in UKB. FGD5 encodes a protein which activates CDC42139 and is also 

expressed in the liver.140 CDC42 is a member of the Rho GTPase family and plays important 

roles in the regulation of the cytoskeleton as well as cell proliferation, polarity, and transport. 

Importantly, liver-specific knockout of Cdc42 in mice has been shown to lead to excessive hepatic 

accumulation of lipids during liver regeneration after partial hepatectomy, likely due to impaired 

cytoskeletal organization and intracellular trafficking in hepatocytes.141 Additionally, we found that 

a 6-bp deletion in CITED2, a coactivator of HNF4α, was also associated with increased hepatic 
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fat in PMBB, which also replicated in UKB. A burden of rare predicted deleterious coding variants 

in CITED2 was also associated with increased hepatic fat although underpowered. Cited2 has 

been shown to be essential for mouse fetal liver development, and knockout of Cited2 in fetal 

liver leads to disrupted sinusoidal architecture and accumulation of lipid droplets in the sinusoidal 

space.142 

There is a substantial gap of knowledge regarding the clinical implications of genetic 

variants overrepresented among Africans due to the lack of ancestral diversity in populations 

previously studied, especially regarding AFR-predominant genetic variants that modulate hepatic 

fat.116 In the PMBB discovery cohort, 27.4% of individuals with WES linked to hepatic fat 

quantifications were of African ancestry, and interestingly we identified 27 single variants 

enriched among individuals of African ancestry which were significant in the PMBB discovery. 

These variants represented a challenge for replication in UKB given that there are only 70 

individuals who identified as having African, Caribbean or any other Black ethnic background in 

the subset of individuals with MRI-derived hepatic fat linked to WES data in UKB. The previously 

described AFR-predominant S453I variant in PNPLA3 and the new S198_G199del variant in 

CITED2, among the more common of the 27 AFR-predominant variants, were able to be 

replicated via cosmopolitan analyses in UKB. However, the rest of the AFR-predominant single 

variants were in very low numbers in UKB and failed to replicate, likely due to lack of power, with 

20 of 27 variants having N<5 and thus not even being included in replication studies. Our findings 

suggest that larger experiments of this type in ethnically diverse cohorts are essential for 

improving our understanding of the contribution of ancestry-specific genetic variation to the 

regulation of intrahepatic fat.  

For significant single variants, we also tested whether a gene burden of rare predicted 

deleterious coding variants might also be associated with differences in intrahepatic fat. While 

phenotype-first approaches to identifying pLOF carriers in genes nominated by GWAS loci for 

hepatic fat among NAFLD cases have been difficult,129 our study used a genome-first approach to 
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identify pLOF carriers in PNPLA3, PARVB, and SAMM50 for associations with hepatic fat. We 

report for the first time the associations of pLOFs in PNPLA3 and PARVB as well as pLOFs and 

pDM variants in PARVB and SAMM50 with decreased hepatic fat in PMBB. The PNPLA3 pLOF 

gene burden’s protective association is consistent with previous studies suggesting that 

accumulation of PNPLA3 protein on lipid droplets causes hepatic steatosis, and that depletion of 

the protein may be a potential strategy for therapeutic intervention.143 While additional functional 

work would be needed to validate the associations for the PARVB and SAMM50 gene burdens, 

our study suggests a protective role for haploinsufficiency in genes that were identified via 

common variant associations with incompletely described functionalities with respect to gene 

products.  

The targeted gene burden associations for genes nominated by the single variant 

discovery also shed light to genes with previously undescribed relationships to hepatic fat. Both 

pLOFs and pDM variants in PTGR1 were associated with increased hepatic fat in PMBB. PTGR1 

encodes an enzyme involved in the inactivation of the chemotactic factor leukotriene B4 and also 

has its highest expression in the liver.144 Notably, leukotriene B4 has been shown to promote 

insulin resistance in mouse hepatocytes,145 suggesting that haploinsufficiency of PTGR1 could 

lead to unsuppressed activation of leukotriene B4 and thus development of insulin resistance in 

the liver. Additionally, we found that pLOF variants in ADAM19 were associated with decreased 

hepatic fat in UKB, consistent with the direction of effect of its respective single variant from 

discovery (G660D), a pDM variant in ADAM19 (REVEL=0.683). Importantly, ADAM19 has been 

suggested to be pro-obesogenic and enhance insulin resistance, and neutralization may be a 

potential therapeutic approach to treating obesity and T2D.146 We also identified gene burdens of 

pLOFs as well as pLOFs combined with pDM variants in QRFPR (GPR103), the receptor for 

neuropeptide 26RFa (encoded by QRFP), as being associated with increased hepatic fat. 26RFa 

and QRFPR work both in the hypothalamic nuclei to control feeding behavior as well as in the gut 

and pancreatic islets.147 Specifically, 26RFa increases insulin sensitivity and prevents pancreatic 
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beta cell death and apoptosis, and disruption leads to dysregulation of glucose homeostasis and 

a deficit in insulin production by pancreatic islets.148-150 Taken together, our results suggest that 

haploinsufficiency of QRFPR increases risk for hepatic steatosis through a mechanism of insulin 

resistance.  

We also report the first rare variant gene burden discovery analysis for exome-wide 

gene-based associations with hepatic fat in a medical biobank. We identified a burden of rare 

pLOF variants in LMF2 as being associated with increased hepatic fat in PMBB, which replicated 

in UKB. Importantly, this association would have been missed in previous studies focusing on 

common variants, and common variants in LMF2 were also not exome-wide significant in our 

single variant discovery. LMF2 is a paralog of LMF1 and is the ancestral gene, and Lmf1 

emerged in echinoderms after losing an internal segment of the DUF1222 domain and gaining a 

new C-terminal tail with lipase maturation activity. While LMF2 does not have this C-terminus, it 

may share a common ancestral cellular function with LMF1, possibly the maintenance of 

endoplasmic reticulum homeostasis. While LMF2 lacks description in the literature, a study of 

adolescents undergoing bariatric surgery with a high prevalence of NAFLD showed that LMF2 

was one of the top down-regulated genes in the livers of those with non-alcoholic steatohepatitis 

(NASH) versus not NAFLD control subjects.151 Similarly, hepatic Lmf2 expression was decreased 

in cirrhotic rat livers and steatotic mouse livers versus controls.127,128 While additional description 

of the function of LMF2 is needed, our study suggests that LMF2 haploinsufficiency may 

contribute to an increase in hepatic fat. 

While many single variants successfully replicated in UKB following discovery analyses in 

PMBB, we noticed a relative lack of significant findings when interrogating rare variant gene 

burdens in UKB regarding replication of significant genes from the gene burden discovery as well 

as targeted analyses of genes nominated by the single variant discovery. While the number of 

samples with exome sequences linked to hepatic fat in UKB was comparable to PMBB, the 

distribution of hepatic fat was substantially skewed toward lower values in UKB compared to the 
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normal distribution in PMBB. This might be expected, given the UKB is a population-based 

biobank that is widely recognized to have a “healthy volunteer selection bias”,117 and we have 

previously described the relative lack of replication for rare variant gene burdens in UKB 

compared to medical biobanks.22 Thus, our study suggests that additional experiments of this 

type linking exome sequencing to imaging-derived hepatic fat quantifications in medical biobanks 

are warranted to interrogate the impact of rare variation on differences in hepatic fat. 

We recognize that while CT imaging provides the opportunity to quantify hepatic fat 

through rapid and scalable imaging, there are some limitations. In particular, the presence of iron, 

copper, glycogen, fibrosis, or edema may confound attenuation values and lead to errors in 

hepatic fat quantification.152 However, by conducting replication studies in UKB by interrogating 

PDFF derived from MRI, we suggest that replicated signals are less likely to be confounded by 

these factors, given that PDFF is a more accurate measure with less confounding variables.153 

Thus, while the magnitude of effect size for genetic associations may differ between CT-derived 

and MRI-derived hepatic fat quantifications, we suggest that there is value in interrogating 

multiple imaging modalities for increased specificity.  

In conclusion, by linking exome sequences to hepatic fat quantifications in a medical 

biobank, our study not only adds to the breadth of knowledge regarding single coding variants 

and their associations with hepatic fat and NAFLD risk through our exome-wide single variant 

discovery analyses, but also provides gene-based associations which support the genes 

nominated by single variants and suggests mechanisms of haploinsufficiency by which these 

genes may affect the regulation of intrahepatic fat. Furthermore, our study demonstrates the 

feasibility and value of aggregating rare predicted deleterious coding variants into gene burdens 

on an exome-wide scale for association with hepatic fat quantifications for the discovery of new 

genes which may regulate intrahepatic fat and confer risk for or protect from NAFLD. We suggest 

that much larger experiments of this type which link genetic sequencing to quantitated hepatic fat 
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will lead to many new insights into genes which regulate hepatic fat and modulate risk for NAFLD 

and other metabolic comorbidities.   
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CHAPTER 6. Conclusions and future directions 

 

 The analyses of this dissertation clearly demonstrate the value of using a genome-first 

approach to interrogating rare coding variation to describe how loss of gene function may impact 

human disease. By linking whole-exome sequences to electronic health records (EHR) in the 

Penn Medicine BioBank (PMBB), this dissertation first determined key methodologies for a 

genome-first approach to selecting rare variants for gene burden association tests to establish a 

platform by which the upcoming analyses could apply these approaches to provide new insights 

into the role of many genes in human biology and phenotypes. Importantly, the significance of 

assessing both predicted loss-of-function (pLOF) and predicted deleterious missense (pDM) 

variants for gene burden testing was emphasized through the explorations of variant selection 

methods. Then, by applying these approaches, the analyses of this dissertation demonstrated the 

utility of a genome-first approach to conducting gene burden association tests to describe 

expected and unsuspected clinical implications of loss-of-function in both well-described and 

novel genes. More specifically, Chapters 2 and 3 took advantage of known ‘positive control’ gene-

phenotype associations to assess the performance of rare variant selection methods for gene 

burden association testing, and in doing so also revealed novel pleiotropic relationships for LMNA 

as well as major gene-specific differences in ideal gene burdening approaches for two genes both 

intimately tied to the pathogenesis of the same disease, namely MYBPC3 and MYH7. Then, 

Chapters 4 and 5 demonstrated how application of a genome-first approach to rare variant gene 

burden testing on an exome-wide scale allowed for identification of several novel gene-phenotype 

relationships. 

 While PMBB is a healthcare-based population with enrichment for rare diseases which 

allowed for the potential to substantially gain new insights into the biology of human phenotypes 

and diseases in this dissertation, a major takeaway and suggestion from these analyses is that 
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application of this genome-first approach to even larger numbers of individuals are likely to be 

highly informative, providing the statistical power required to uncover unexplored relationships 

between rare genetic variation and human disease phenotypes. Already there are efforts 

underway to conduct rare variant-based exome-by-phenome-wide association studies in larger 

populations, as shown by studies in the first 45K+ individuals with exome sequencing linked to 

disease phenotypes in the UK Biobank (UKB)21,118 as well as updated analyses in the larger, 

more recent ~200K individuals with exome sequencing in UKB.154 However, given that the UKB is 

widely recognized to have a ‘healthy volunteer selection bias’117 as we also demonstrated through 

comparisons of disease prevalence between multiple medical biobanks versus UKB in Chapter 4, 

there are clearly many more opportunities ahead within the realm of investigating the clinical 

implications of rare coding variation in sicker populations such as healthcare-based medical 

biobanks to uncover additional insights into novel gene biology and function, as we still do not 

know how loss-of-function in most human genes impact disease. 

In addition to being enriched for disease, PMBB has the advantage of being ancestrally 

diverse. The analyses of this dissertation were empowered to conduct genetic association studies 

in both African and European ancestry due to the relatively high prevalence of individuals of 

African ancestry in PMBB (19.9% to 27.4% across Chapters 2-5). There has been a significant 

gap of knowledge regarding the clinical implications of genetic variants overrepresented among 

individuals of Africans ancestry due to previous genetic association studies lacking ancestral 

diversity in the populations that have been analyzed, usually being limited to individuals of 

European ancestry.116 Importantly, this dissertation addressed this gap of knowledge by not only 

including individuals of African ancestry for all analyses performed but also identifying several 

African ancestry-specific single variants which are robustly associated with diseases and traits. 

For example, Chapter 4 identified 16 rare predicted deleterious single variants which are African 

ancestry-specific and that replicated associations with the same disease in which a pLOF gene 

burden was associated in the exome-by-phenome-wide discovery. Additionally, Chapter 5 
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identified 27 single variants enriched among individuals of African ancestry which were 

significantly associated with differences in intrahepatic fat in the PMBB discovery analyses. As 

might be expected, most of these African-specific variants neither exist in the GWAS catalog nor 

have been previously mentioned in the published literature. These analyses suggest that it is 

imperative for future studies in this field to address the need for more diversity in genomic 

experiments of this type by analyzing ethnically diverse cohorts to improve our understanding of 

the contribution of previously missed ancestry-specific variation to human disease. 

In the 2020 National Human Genome Research Institute’s (NHGRI) Strategic Vision, the 

NHGRI made ten bold predictions for human genomics that might come true by 2030,155 many of 

which are relevant to future directions for these types of studies. Prediction #2 states that “the 

biological function(s) of every human gene will be known,” which is a major goal and impetus for 

conducting larger studies of this type in diverse, sick populations. One obvious place to start is for 

all Mendelian genes with known phenotype associations but remaining enigmatic gene biology 

and clinical implications. Application of a genome-first approach to rare variants like the analyses 

performed in Chapters 2-4 for all such Mendelian genes could cover significant distance toward 

reaching that goal. For example, Chapter 4 confirmed that a gene burden of rare pLOFs in CFTR 

was significantly associated with cystic fibrosis (CF), a recessive Mendelian condition caused by 

biallelic variants in CFTR. But in addition, we found that the CFTR pLOF gene burden was also 

significantly associated with bronchiectasis independent of a CF diagnosis and occurred in 

individuals without a second CFTR variant, strengthening previous suggestions of predisposition 

to bronchiectasis due to haploinsufficiency of CFTR.89 These kinds of analyses of Mendelian and 

clinically actionable genes could also help clarify the interpretation and relevance of genomic 

variants encountered in the clinical setting, essentially heading toward achieving prediction #7 of 

“rendering the diagnostic designation ‘variant of uncertain significance (VUS’ obsolete.” 

Furthermore, such studies could aid in the translation of important findings from genomic 
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research into the clinic such that the regular use of genomic information will become mainstream 

in all clinical settings. 

The analyses of this dissertation demonstrated how a genome-first approach to 

interrogating rare loss-of-function variants can link haploinsufficiency in a gene to conferment of 

risk for or protection from disease. However, the relative scarcity of homozygotes or compound 

heterozygotes for rare loss-of-function variants in these analyses represents a major limitation of 

the genome-first approach in outbred populations like PMBB. This relative scarcity essentially 

mandated the rare variant analyses of this dissertation to explore gene-phenotype associations 

based on haploinsufficiency. However, other studies focusing on consanguineous, founder, or 

bottleneck populations such as the Pakistan Risk of Myocardial Infarction Study (PROMIS)156 and 

FinnGen157 are likely to be more successful in identifying homozygotes for ascertaining 

phenotypes that are ‘recessive’ as are many linked to Mendelian genes, though statistical power 

for interrogation of rare disease phenotypes will continue to be a challenge.  

This dissertation also demonstrated how quantitative imaging-derived phenotypes (IDP) 

that are correlated with disease risk can provide information beyond that captured in binary EHR 

diagnoses. For example, Chapters 2 and 3 used echocardiographic data to show that carriers of 

predicted deleterious variants in LMNA, MYBPC3, and MYH7 have abnormal cardiac 

morphologies which may not necessarily pass the threshold for clinical diagnosis of disease but 

certainly warrant clinical follow-up for preventive actions. As another example, Chapter 5 

demonstrated how exome-wide analyses of hepatic fat quantifications, which are correlated with 

risk for non-alcoholic fatty liver disease (NAFLD) as well as various other comorbidities such as 

type 2 diabetes and cardiovascular disease, shed light to new genetic variants which are 

associated with differences in hepatic fat but may not be captured when analyzing binary NAFLD 

diagnosis rates. Another advantage of analyzing the genetic architecture of quantitative IDPs, 

which was not specifically assessed in this dissertation, is the potential to interrogate directions of 

effect. Future studies which prove that loss-of-function variants in a certain gene lead to one 
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direction of effect for a given IDP and subsequently discover another variant in the same gene 

that is robustly associated with the opposite direction of effect for the same IDP could identify 

novel gain-of-function variants. 

Importantly, this concept could extend to genomic analyses of any clinical quantitative 

phenotype, which leads to another major future direction for analyzing rare variation. If one could 

identify that loss-of-function in a gene leads to protection from disease, this could be directly 

translated to curative therapies. For example, gain-of-function variants in PCSK9 were discovered 

to be associated with very high circulating LDL cholesterol levels, which led to the subsequent 

finding through targeted sequencing of individuals with very low circulating LDL levels that loss-

of-function variants in PCSK9 lower LDL.158 This finding ultimately led to the development of 

PCSK9 inhibitors, which are monoclonal antibodies that antagonize PCSK9 protein and lead to 

increased LDL receptors and thus therapeutically decreased circulating LDL cholesterol levels.159 

Additionally, identification of protective gain-of-function variation could also lead to development 

of curative therapies, although identification of such variants as well as therapeutic translation 

through genomic modifications may be more difficult. Analyzing quantitative traits such as IDPs 

may allow such discovery of protective gain-of-function variants to be more feasible due to the 

ability to compare directions of effect for the associations of different coding variants in the same 

gene with a single quantitative phenotype. For example, knowing that loss-of-function variants in 

APOA5 lead to hypertriglyceridemia,160 one could systematically search for single coding variants 

in APOA5 that are associated with decreased serum triglyceride levels to uncover potentially 

novel gain-of-function variants which are protective for cardiovascular disease. Thus, systematic 

analyses of quantitative traits in large biobanks could help in identifying novel gain-of-function 

variants throughout the human genome. Furthermore, recent advances in in silico predictions of 

three-dimensional protein folding may accelerate the identification of gain-of-function variants,161 

which could one day allow for genome-first approaches to exome-wide analyses of the clinical 

implications of human gain-of-function variants. This may make NHGRI’s bold prediction #10 for 
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2030 feasible—that “breakthrough discoveries will lead to curative therapies involving genomic 

modifications for dozens of genetic diseases.” 

The success in identifying compelling findings based on the limited number of individuals 

included in the analyses of this dissertation (~11K to ~44K in PMBB) is promising, in that there is 

hope that the rate of new discovery for gene-phenotype relationships will accelerate over the next 

decade as the approaches detailed in this dissertation are applied to much larger populations and 

thus potentiate many new insights into gene biology and function through increased statistical 

power. As our understanding of the biological and clinical relevance of rare variation becomes 

more complete, genomic testing becomes more routine in the clinical setting, and a better 

understanding of the genomic architecture of human disease becomes translated to curative and 

even preventive therapeutics, human health disparities and outcomes are likely to improve with 

the hope that these future services are equitably offered, as it should be a human right to 

appropriately act upon the genome one is innately inherited with for the benefit of one’s health. 
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