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ABSTRACT

BALANCING FIT AND COMPLEXITY IN LEARNED REPRESENTATIONS

Maria Peifer

Alejandro Ribeiro

This dissertation is about learning representations of functions while restricting complexity.

In machine learning, maximizing the fit and minimizing the complexity are two conflicting

objectives. Common approaches to this problem involve solving a regularized empirical min-

imization problem, with a complexity measure regularizer and a regularizing parameter that

controls the trade-off between the two objectives. The regularizing parameter has to be tuned

by repeatedly solving the problem and does not have a straightforward interpretation. This

work formulates the problem as a minimization of the complexity measure subject to the fit

constraints. The issue of complexity is tackled in reproducing kernel Hilbert spaces (RKHSs)

by introducing a novel integral representation of a family of RKHSs that allows arbitrarily

placed kernels of different widths. The functional estimation problem is then written as a

sparse functional problem, which despite being non-convex and infinite-dimensional can be

solved in the dual domain. This problem achieves representations of lower complexity than

traditional methods because it searches over a family of RKHS rather than a subspace of

a single RKHS. The integral representation is used in a federated classification setting, in

which a global model is trained from a federation of agents. This is possible because the dual

optimal variables give information about the samples that are fundamental to the classifica-

tion. Each agent, therefore, learns a local model and sends only the fundamental samples

over the network. This creates a federated learning method that requires only one network

communication. Its solution is proven to asymptotically converges to that of traditional clas-

sification. Next, a theory for constraint specification is established. An optimization problem

with a constraint for each sample point can easily become infeasible if the constraints are

too tight. In contrast, relaxing all constraints can cause the solution to not fit the data
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well. The constrained specification method relaxes the constraints until the marginal cost of

changing a constraint is equal to the marginal complexity measure. This problem is proven

to be feasible and solvable, and shown empirically to be resilient to outliers and corrupted

training data.
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CHAPTER 1

Introduction

1.1 Motivation

Machine learning has been an integral part of modern day life. Advances in image recogni-

tion He et al. (2016), speech processing Benesty et al. (2008), language translation Hermann

and Blunsom (2013); Bahdanau et al. (2014), and language interpretation have led to the

automation of job advertisement Poch et al. (2014), candidates selection Erel et al. (2018),

medical data analysis Erickson et al. (2017), and “smart” appliances. These methods find

a representation with the best fit over a distribution by solving an empirical risk minimiza-

tion problem to approximate the statistical risk minimization problem, when the underlying

distribution is unknown Vapnik (2013); Shalev-Shwartz and Ben-David (2014). The empir-

ical risk is a good approximation when large amounts of data are available, and can find a

representation which fits the data well.

Oftentimes, in addition to finding representations that fit the data well, we are interested

in our representations having a particular property. Limiting the complexity of the repre-

sentation ensures that the solution is unique Boyd and Vandenberghe (2004); Schölkopf and

Smola (2001). The property promoted can be smoothness in order to improve generalization

and avoid overfitting Schölkopf et al. (2001); Boyd and Vandenberghe (2004). Improving

the sparsity of a representation can reduce computational complexity Zhang et al. (2015);

Tibshirani (1996); Bickel et al. (2009) or make it easier to be shared. For example, in the

case of federated learning, system limitations restrict the amount of information to be sent

over the network Konečnỳ et al. (2016b); Smith et al. (2017); Bonawitz et al. (2019).

Optimizing the fit and the complexity of the representation, leads to two competing objectives

that need to be accomplished. A popular solution is to include the measure of fit and the
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measure of complexity in the objective of the problem and use regularization to control

the importance of each measure Zhang et al. (2015); Tibshirani (1996); Bickel et al. (2009);

Goodfellow et al. (2014); Berk et al. (2017); Xu et al. (2018). The choice of the regularization

parameter is not straightforward, since the two objectives often times have a different scale.

Furthermore, the regularization parameter does not have a clear interpretation, therefore, it

cannot be learned and is tuned by repeatedly training the model with different values for the

parameter and selecting the value that performs best on a separate evaluation data set Hsu

et al. (2003). Tuning parameters can be costly, especially with algorithms that require a lot

of resources for training.

Minimizing the empirical risk assigns the same importance to each collected sample. This

assumes that the distribution of the training data set is the same as the distribution of

the predictive data, however, the sampling of the data may not reflect the true distribution

Vapnik (2013). There can be biases (ex. gender bias, racial bias) in the training data Kodiyan

(2019); Datta et al. (2015); Kay et al. (2015) or adversarial examples Lowd and Meek (2005);

Gu et al. (2019); Shen and Sanghavi (2019), which can affect the model. Therefore, there is

a need for a method of optimizing the fit which takes into account imbalances in the data.As

the sample size grows, it becomes impractical to find the best weighting for the sample losses

via grid search. This work proposes to learn the best representation by encoding the losses

in constraints. The constraints not only have a straightforward interpretation, but also allow

the model to fit some samples better than others. This is particularly advantageous when

there are corrupted samples or outliers in the training set.

1.2 Statistical Learning

Statistical learning theory provides a framework for learning predictive models based on

data Hastie et al. (2009). Let x ∈ Rp and y ∈ R be random variables with a joint probability

distribution, D, and let φ : Rp → R be a function from a functional space F . The random

variable x can be thought of as an independent variable, while y can be thought of as the

target variable. Given a loss function ` : R → R, which measures the fit of the function

2



φ, the statistical risk of the function is measured by the expected loss over the distribution

D Vapnik (2013):

R(φ) = E(x,y)∼D

[
`(φ(x), y)

]
. (1.1)

The function φ that is best at predicting y from the independent variable x is the function

with the lowest risk Vapnik (2013). From this observation, the statistical risk minimization

problem is formulated

φ∗ = argmin
φ∈F

E(x,y)∼D

[
`(φ(x), y)

]
. (P-SRM)

The statistical risk minimization is problem finds the function φ that can best generalize

to samples x taken from distribution D. However, it has some major drawbacks. The

distribution D is generally not known Vapnik (1992). Instead, a set of N sample pairs

(xn, yn) is available, that is assumed to be taken at random from the distribution D. Then

the statistical risk is replaced with the empirical risk,

Remp(φ) =
1

N

N∑
i=1

`(φ(xn), yn). (1.2)

The empirical risk approximates the statistical risk by averaging over the training samples.

From the law of large numbers, it is known that the empirical risk converges asymptotically

converges to the statistical risk as the number of samples grows with O(
√

(N)) Hsu and

Robbins (1947); Koltchinskii et al. (2002). More than that, even stricter bounds have been

established for the solution of the empirical risk minimization problem Koltchinskii et al.

(2002); Lugosi et al. (2004)

φ∗emp = argmin
φ∈F

1

N

N∑
i=1

`(φ(xn), yn) (P-ERM)

The problem (P-ERM) works well in practice when two assumptions hold (Vapnik, 2013,

Chapter 2): the sample pairs (x, yn) are derived from the distribution D and the sample size

is sufficiently large in order for the empirical risk to be a good approximation of the statistical

risk. In order to evaluate the representation, φ∗emp a separate set S = {(x1, y1), . . . (xT , yT )}

3



of samples is needed, for which the samples are taken from the distribution D. This is called

an evaluation set. The empirical risk is calculated on the evaluation set. If it is observed

that the evaluation empirical risk is close to the training empirical risk, then the function

φ∗emp is considered to generalize well to unseen samples Vapnik (2013).

Although, these conditions stated above are sufficient for the problem to generalize well,

finding its solution is not straightforward. In fact, searching over very rich functional spaces

involves solving infinite dimensional problems and is therefore intractable, e.g. (φ ∈ L2).

To remediate this, the functional spaces are typically restricted to spaces that can be char-

acterized by a parameter such as the linear space, space spanned by a group of kernels,

etc. (Schwartz, 1969, Chapter 1) (Engl et al., 1996, Chapter 9). Although, parametrized

functional spaces make the problem easier to optimize, there are examples of functional risk

minimization problems for which a solution can be found Chamon et al. (2018); Peifer et al.

(2020)

Although the empirical risk minimization problem can be solved, the solution is often not

unique. In fact, there are in general an infinite number of functions that can interpolate

a finite number of points. Of course, depending on the richness of the functional space F

chosen, none of these interpolations could be included in F . Nonetheless, in many cases,

the solution is not unique. In order to pick a solution, a regularizer is added to problem

(P-ERM). Specifically, given the set of observation-target pairs (xn, yn), with xn ∈ Rp and

yn ∈ R, the regularized empirical risk minimization problem is typically formulated

φ∗remp = argmin
φ∈F

1

N

N∑
n=1

`(φ(xn), yn) + γρ(φ), (P-rERM)

for which ` represents the loss function, that measures the fit, and ρ is a function that

measures the complexity of the representation; γ is called the regularizing parameter and

is used to control the trade-off between optimizing the fit and reducing complexity of the

representation. The measure of complexity, ρ, can be a measure of smoothness, e.g. `2-

norm, which can be used to enhance robustness to noise, and can improve the numerical

4



properties of the optimization problem Peifer et al. (2020). It can also be used to control the

computational complexity of the optimal representation, e.g. `0-norm, `1-norm Zhang et al.

(2015); Tibshirani (1996); Bickel et al. (2009).

Problem (P-rERM) attempts to optimize two conflicting objectives by minimizing a weighted

sum of the two. However, the two objectives are differently scaled and require a careful choice

of γ. The regularizing parameter is typically tuned vie grid search, which involves repeatedly

optimizing the problem using different values of γ, using a separate evaluation set to test

the performance of the resulting representation and only then selecting the best value for γ

based on the performance on the evaluation set Hsu et al. (2003). This method can become

costly, especially when optimizing a single instance of problem (P-rERM) is computationally

expensive.

The problem presented in (P-rERM) minimizes the average loss under the assumption that

the training samples reflect the distribution D. This might not always be the case and the

data could be corrupted by outliers or miss-classified observations or wrong measurements

which can skew the model. Therefore, a formulation which poses the (P-rERM) as a feasibility

problem which optimizes the complexity measure ρ is proposed

φ = minimize
φ∈F

ρ(φ)

subject to `(φ(xn), yn) ≤ εn, n = 1, . . . , N.

(P-f)

In this formulation εn represents the slack variable, i.e. the amount of training error allowed.

The separate slack variables for each sample allows for the algorithm to set individual speci-

fications for each sample and potentially ignore outliers and wrong measurements. The issue

with this formulation is that although we have the ability to set individual specifications,

setting the constraints is not a straightforward task. As the number of samples grows, it

becomes increasingly more difficult to set the constraints, such that the problem is feasible.

Furthermore, when the problem is infeasible it is unclear which constraints should be relaxed,

since constraints interact with each other.
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1.2.1 Learning Parsimonious Representations in Reproducing Kernel

Hilbert Spaces

Reproducing kernel Hilbert Spaces (RKHSs) are complete, linear functional spaces that are

endowed with a unique kernel and a unique inner product. These are rich functional spaces

that have a parametrized representation. Indeed, functions in RKHSs can be represented

as a possibly infinite weighted sum of the kernels. Moreover, kernels are often defined by

a parameter that dictates the smoothness of the function. Examples include the scale or

variance of Gaussian kernels or the bandwidth of sinc functions. Formally, given an RKHS

H, a function φ ∈ H0 can be represented as

φ(x) = lim
n→∞

n∑
j=1

ajk(x, zj ; w0), (1.3)

where w0 is the kernel parameter, k(·, ·;w0) is the kernel and aj is the weight. The variable

zj is called the kernel center. Although, the definition of φ spans the entire functional

space, it is defined by the parameter vector a = [a1, a2, . . . ]. Moreover, for complexity

measures ρ(gm(‖φ‖H0)), where ‖ · ‖H0 is the functional norm, and gm(·) is a monotonically

non-decreasing function, the solution (P-rERM) and implicitly to (P-f) for appropriately

chosen εn has a finite representation of the form

φ?(·) =
N∑
n=1

a?nk(·,xn ; w0). (1.4)

The solution is not only finite, but it also admits kernels centered at the sample points

xn. Unfortunately, This important result, called the representer theorem, does not hold for

complexity measures which promote sparsity (see Remark 1). Furthermore, for functions

with varying degrees of smoothness, i.e. functions that vary fast in certain parts of the

domain but are smooth in others it is a well known result that these problems require many

samples Donoho and Johnstone (1998).
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1.2.2 Federated Classification using Sparse Representations

Federated learning involves learning a global model from data collected by a federation of

agents Konečnỳ et al. (2016a,b); Li et al. (2020); McMahan et al. (2016). These types of

problems naturally arise from large amounts of data being collected over distributed networks

of devices such as mobile phones, wearable devices, or autonomous vehicles Smith et al.

(2017); Anguita et al. (2013). Unlike traditional learning, in which data is collected and

pooled together for a model to be learned by a central server, in federated learning, each

agent is associated with a user and therefore, the user privacy needs to be taken into account

before sharing data Konečnỳ et al. (2015, 2016b); Smith et al. (2017); Zhao et al. (2018);

Bonawitz et al. (2019). Moreover, even if privacy is of no concern, there are system limitations

which need to be taken into account. As the number of agent grows, it becomes increasingly

more difficult to share the data over the network Konečnỳ et al. (2015, 2016b); Smith et al.

(2017); Zhao et al. (2018); Bonawitz et al. (2019).

The system challenges, make the centralized learner an impractical solution to federated

learning, and requires agents to perform some computations and transmit only data that is

necessary for forming a global model to the central server. The communication limitations

of the system lead to additional statistical challenges Konečnỳ et al. (2015, 2016b); Smith

et al. (2017); Zhao et al. (2018). Because the central server no longer has access to the entire

dataset, forming a global model based on the global distribution is no longer a straightforward

task.

Federated learning has been approached in a distributed fashion, by sharing the gradient over

the network rather than training data McMahan and Ramage (2017); Hard et al. (2018);

McMahan et al. (2016). While these methods preserve privacy, they are communication

intensive and require all agents to send data over the network at each iteration. More than

that, these methods do not guarantee that their solution to generalize well over the global

distribution. In fact, as federated learning methods get more communication efficient Wang

et al. (2019); Yu et al. (2019); Shokri and Shmatikov (2015), the global method is less
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guaranteed to tackle the statistical challenge.

1.2.3 Resilient Learning for Balancing Fit and Complexity

In the previous sections, a problem of the form (P-f) was presented as the solution under the

assumption that εn was chosen such that there exists at least a φ such that the constraints

are met. When this is the case, the problem is solved in the dual domain. Solving the

dual problem is akin to solving a regularized problem for which the dual optimizers are the

regularizing parameters. Since the optimal dual maximizers are a measure of the difficulty of

fitting a constraint Chamon et al. (2020), problem (P-f) solves a regularized problem for which

the regularizing parameters are proportional to the difficulty of meeting each constraint.

This is advantageous for fitting unusual samples that can be overlooked by the empirical

formulation, therefore, (P-f) can be considered a robust formulation.

The drawback to the robust formulation is that it is susceptible to overfit to outliers and cor-

rupted data. Moreover, different from the constraint learning problem (P-rERM) for which

a solution always exists, this might not be the case for the constrained learning problem. In

order to ensure the fit of the solution εn needs to have a small value. Otherwise, the problem

will pick the function with the lowest complexity. When εn is small, however, feasibility is no

longer guaranteed. In practice, it is likely that some constraints need to be relaxed in order

for the problem to become feasible

φRES = argmin
φ

ρ(φ),

s.t. `(φ(xn), yn)− εn ≤ w(xn), n = 1 . . . N,

(P-RES)

where the function w(xn) represents the relaxation function. When w(xn) = 0 the original

problem (P-f) is recovered. In order to balance the fit and the complexity of the repre-

sentation, the function w is chosen for each xn such that the marginal cost of relaxing the

constraint is equal to the marginal change in the complexity measure.
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1.3 Objectives and Contributions

The goal of this work is to provide a framework for balancing the fit and complexity objectives

when learning representations. The framework will formulate the problem as a constrained

learning problem which minimizes the complexity objective subject to a set of fit constraints.

Using constraints to find a representation with a good fit has two major advantages: the dual

gives provides information on how difficult it is to fit the representation to each sample, it

allows for constraints to be relaxed for each sample individually.

The first part of the dissertation focuses on finding representations of low complexity in

reproducing kernel Hilbert spaces (RKHS). RKHSs are non-parametric techniques popular

in machine learning, signal processing, and statistics Schölkopf and Smola (2001); Bishop

(2006); Hofmann et al. (2008); Yuan et al. (2010); Berlinet and Thomas-Agnan (2011);

Arenas-Garcia et al. (2013); Koppel et al. (January 2019). They are of interest because

of their capabilities to fit many functions while also admitting a straightforward representa-

tion. Indeed, functions in RKHS can be represented as a possibly infinite linear combination

of basis functions Berlinet and Thomas-Agnan (2011); Bishop (2006). For problems that

optimize for the most smooth solution, i.e. the solution that minimizes the functional norm

of the representation, it has been shown that the optimal function has a finite representation

Kimeldorf and Wahba (1971); Schölkopf et al. (2001). However, no equivalent theorem has

been proposed for problems that use different measures of complexity Peifer et al. (2020).

The objective of this work is to find a representation of functions in RKHS, which can be

used for any complexity measure, particularly that of sparsity. Furthermore, the potential

applications that arise from obtaining such a sparse representation are of interest as well.

The second part of this work is concerned with the existence of the solution. Particularly,

when encoding the fit requirements into the constraints, it is possible to formulate a problem

that is either infeasible or admits representations that do not fit the data well. This is

particularly of concern, as the training set grows, since the number of constraints grows as

well. Therefore, it is imperative to have a good method of setting the constraint specifications.
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This part of the work aims to provide a method for setting constraints by relaxing the ones

that have the least marginal impact on the complexity measure.

The main contributions of this work are summarized here and are discussed in greater detail

next:

1. Learning sparse models in reproducing kernel Hilbert spaces.

(a) A continuous representation of functions in RKHS which is shown to be able to

represent any function in that RKHS as well as functions of families of RKHS

(b) A problem based on sparse functional problems (SFP) Chamon et al. (2018) which

finds both the optimal reproducing kernel Hilbert space and the optimal kernel

centers

(c) A new integral representer theorem which holds for sparsity promoting complexity

objectives

(d) A method that has been shown empirically to produce representations of lower

complexity while maintaining the same fit.

2. Federated Classification using Sparse Representations

(a) A federated learning method which requires only one share across the network

(b) Theoretical guarantees that the federated framework asymptotically achieves the

same performance as a centralized framework

(c) A method for federated learning which is both communication efficient and results

in a low complexity representation

3. Resilient Learning for fit and complexity trade-off

(a) A framework for individually constrained losses for learning in the presence of

corrupted data
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(b) A theory for constraint specification based on difficulty of meeting each constraint

(c) Resilient learning bounds for parametrization and empirical formulation of func-

tional problem.

1.3.1 Learning Parsimonious Representations in Reproducing Kernel

Hilbert Spaces

Reproducing kernel Hilbert spaces (RKHSs) are rich functional spaces, popular for their

versatility and their parametric representations. Indeed, despite their ability to fit various

patterns, functions in RKHSs can be represented by a possibly infinite linear combination of

kernel functions Berlinet and Thomas-Agnan (2011); Bishop (2006). Moreover, a variational

result, called the representer theorem, states that the optimal solution to the problem of

minimizing the empirical loss using a class of smooth regularizers admits a finite representa-

tion Kimeldorf and Wahba (1971); Schölkopf et al. (2001). Furthermore, the representation

requires only kernels centered at the sample points. Therefore, the representer theorem

transforms an infinite functional problem into a parametrized finite problem. These meth-

ods however have some major drawbacks. Firstly, the RKHS has to be fixed beforehand and

there is no straightforward way to pick the best functional space. While it is possible to search

for the best space by trying different spaces, this can be computationally prohibitive as it re-

quires the optimization problem to be solved repeatedly. Secondly, RKHSs have been shown

to not be sample efficient for functions with heterogeneous degrees of smoothness Donoho

and Johnstone (1998) and lastly, the complexity of the representation is directly linked to the

sample size, which makes the evaluation of the learned functions computationally expensive

as the sample size grows.

To address the challenges of traditional RKHS methods, an integral representation of a family

of RKHS functions was introduced. This was done by leveraging the observation that some

RKHS families have a kernel parameter that determines the smoothness of the function, e.g.

bandwidth of sinc kernels, scale of Gaussian kernels. The integral representation replaces
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the weight parameter from the linear combination of kernels by a function α over the space

of kernel centers and kernel parameters, that define the family of functions. This is a more

general representation which does not rely on the representer theorem to determine the

kernel centers, and therefore can be used with any regularizer. Additionally, it can represent

functions with varying degrees of smoothness efficiently, since it can use kernels from a family

of RKHSs.

The integral representation was used to formulate a sparse functional problem, that finds

parsimonious representations. This was done by adapting the discrete measure of sparsity

to functions as the measure of support of the function. The optimization problem was then

formulated using an elastic net type of objective function subject to the fit constraints. The

optimal α becomes a superposition of bump functions. The integral representation can then

be approximated by a discrete representation with only few kernels with kernel centers and

parameters at the center of the bumps. In this manner, the optimization problem can be

used to find the RKHS and kernel centers needed for a parsimonious representation.

A novel integral representer theorem arises from the solution of the optimization problem.

Different from the traditional representer theorem, this theorem holds for the sparsity pro-

moting regularizer and provides a method for selecting kernel centers and kernel parameters

for a sparse representation.

Traditional methods for obtaining sparse representation use greedy heuristics Smola and

Schölkopf (2000); Vincent and Bengio (2002) and `1-norm relaxations of sparsity metrics

Tibshirani (1996); Fung et al. (2002); Jud et al. (2016); Gao et al. (2013); Wright et al.

(2008). These methods, however, rely on the representer theorem, although it no longer

holds for sparsity promoting regularizers. Therefore, these methods no longer search for

functions over the complete RKHS, but rather a smaller functional space which is spanned

by the kernels centered at the sample points. The functional optimization problem searches

over the entire RKHS and therefore can find more efficient representations than traditional

methods if these exist. This is shown empirically in Section 3.5.
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1.3.2 Federated Classification using Sparse Representations

Federated learning is a setting in which a central unit forms a global model from a federation

of agents Konečnỳ et al. (2016a,b); Li et al. (2020); McMahan et al. (2016). This type of

learning naturally arises in distributed networks of devices that each collect vast amounts of

data, such as mobile phones, wearable devices, or autonomous vehicles Smith et al. (2017);

Anguita et al. (2013). These systems often have limited communication capabilities Konečnỳ

et al. (2015, 2016b); Smith et al. (2017); Zhao et al. (2018); Bonawitz et al. (2019). To account

for these challenges and to preserve privacy, traditional federated learning methods take a

distributed approach and share only the gradient over the network McMahan and Ramage

(2017); Hard et al. (2018); McMahan et al. (2016). Although, these methods require less

communication than traditional learning, they still require data to be transmitted at every

iteration. Furthermore, as the communication load is reduced Wang et al. (2019); Yu et al.

(2019); Shokri and Shmatikov (2015), there are no statistical guarantees of convergence.

In this work introduces a method for federated learning that requires a single data share over

the network. This is done by only sharing a subset of the training data, that is fundamental

to the classification problem. In order to find the fundamental samples, the agents solve

the optimization problem of finding parsimonious representations in RKHS, each on their

respective training set. The fundamental samples are then determined by the optimal dual

maximizers. Optimal dual maximizers are known to be a measure of the difficulty of meeting

a constraint, which makes them a great measure for determining the fundamental samples.

Once the fundamental samples are sent, the central server can form the global model and

send it back to the agents. Hence, a method for federated learning is established which

requires a single share over the network.

The method for federated learning, presented in this work, is communication efficient. More-

over, the global model was proven to asymptotically converge to the traditionally trained

model. Intuitively, as the sample size grows, the agents are more likely to agree on the fun-

damental samples, both within agents and with a traditional centralized unit that has access
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to the entire data. Therefore, the representation of the federated solution asymptotically

admits the same kernels as that of the centralized solution.

Each agent trains a local model in order to find the fundamental samples. By controlling

the sparsity of the model, the agent can control the number of fundamental samples. More

parsimonious representations require more detailed functions, α which leads to more funda-

mental samples. This motivates the agents to trade some level of sparsity for communication

efficiency. The central unit, however, does not have the same limitations, it can optimize

for sparsity regardless of the number of fundamental samples it finds. Therefore, the fed-

erated classification method is communication efficient and has global solution with a low

complexity representation.

1.3.3 Resilient Learning for Balancing Fit and Complexity

The constrained optimization problem separates the complexity objective and the fit objec-

tive, which are differently scaled and has specifications that are interpretable. Indeed, the

constraint specifications define the acceptable training loss for each sample. However, setting

the specifications for problem (P-f) is not a straightforward task. If the values for εn are too

large, then the optimal representation will not fit the data well. This motivates the choice

of a small εn, however, as the constraints are tightened the problem could become infeasible.

In the case that the problem is feasible, it is solved in the dual domain, and is equivalent

to the minimization of a regularized problem, for which the optimal dual variables are the

regularizing parameters. Because the dual optimal values are a measure of the difficulty of

meeting a constraint, the samples which are more difficult to fit are given more influence

over the solution. This can lead to the model overfitting to outliers or corrupted samples.

In this work, a theory for constraint specification was established based on the difficulty of

meeting a constraint. There is an inherent trad-off between the complexity of the represen-

tation and its ability to fit the data well. Solutions that have a lesser complexity are thought

to generalize better, because they capture the underlying signal, but don’t overfit to the

training data. As the complexity of the representation decreases even further, however, the
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signal representation is lost. The equilibrium is achieved when the marginal cost of relaxing

a constraint is equal to the change in the measure of complexity. Moreover, although the

change in the measure of complexity with respect to the relaxation would require the opti-

mization problem to be solved multiple twice, the dual optimal variable provides a Fréchet

subdifferentiable of the complexity measure.

The theory of constraint specification was established for the statistical learning problem.

However, the statistical learning problem is often infinite dimensional and the true distribu-

tion is unknown. Section 4.3 establish a parametrized resilient learning problem and shows

that the solution of the two problems are closed. In Section and 4.4 the issue of the unknown

distribution is addressed by replacing the statistical loss with the empirical loss. The solution

to the resilient empirical loss minimization exists and is close to that of the statistical loss

under mild assumptions.

Relaxing constraints that are difficult to meet allows the model to ignore outliers and cor-

rupted data points. At the same time, the model still is able to fit to most samples. Therefore,

the model is resilient to corrupted data. This is illustrated in Section 4.6 through examples

of label switching and image blurring.
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CHAPTER 2

Learning Sparse Representations in Repropducing Kernel

Hilbert Spaces

This chapter presents the work published in Peifer et al. (2020) which tackles the topic of

finding sparse representations in reproducing kernel Hilbert spaces (RKHS). RKHS are non-

parametric techniques used in signal processing, statistics and machine learning Schölkopf

and Smola (2001); Bishop (2006); Hofmann et al. (2008); Yuan et al. (2010); Berlinet and

Thomas-Agnan (2011); Arenas-Garcia et al. (2013); Koppel et al. (January 2019). For reg-

ularized empirical risk minimization problems, using a Tikhonov regularizer, there exists a

variational result called the representer theorem which states that the optimal solution ad-

mits a finite kernel representation Kimeldorf and Wahba (1971); Schölkopf et al. (2001).

Indeed, the optimal function can be expressed as a linear combination of kernel functions

centered at the training sample points. Therefore, solving a regularized functional problem

with a Tikhonov regularizer can be replaced by solving a parametrized finite problem.

As the sample size grows, however, so does the representation, which can make evaluating the

function computationally prohibitive. Therefore, there is a need to find a lower complexity

representation. A popular solution is imposing a sparsity penalty on the coefficients to

reduce the number of kernel evaluations. Greedy heuristics Smola and Schölkopf (2000);

Vincent and Bengio (2002) and `1-norm relaxations Tibshirani (1996); Fung et al. (2002);

Jud et al. (2016); Gao et al. (2013); Wright et al. (2008) are then used as a substitute to the

combinatorial problem, which is known to be NP-hard in general Natarajan (1995); Amaldi

and Kann (1998). These methods, however, often implicitly rely on the classical representer

theorem Kimeldorf and Wahba (1971); Schölkopf et al. (2001), despite the fact that they no

longer hold in the presence of sparsity penalties (see Remark 1). In this chapter, a method

of obtaining a sparse representation by adapting kernels locally and allows kernels to be
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centered arbitrarily, instead of restricting them to the sample points.

2.1 Learning in RKHS

In order to define a reproducing kernel Hilbert space, it is important to first define a kernel

and an inner product.

Definition 1. Given a functional space F , an inner product is defined as any function

〈·, ·〉 : F ×F → R, which for any two functions φ, ψ ∈ F and scalars a1, a2 ∈ R the following

properties hold:

1. Symmetry: 〈φ, ψ〉 = 〈ψ, φ〉

2. Linearity: 〈a1φ1 + a2φ2, g〉 = a1〈φ1, ψ〉+ a2〈φ2, ψ〉

3. Positive-definite: 〈φ, φ〉 ≥ 0 for all φ ∈ F and 〈φ, φ〉 = 0 if and only if φ = 0.

Definition 2. Let X be a nonempty set. The function k : X × X → R is called a kernel if

for for all x1,x2 ∈ X there exists a map φ : X → H0 and an R-Hilbert space H0 such that,

k(x1,x2) = 〈φ(x1), φ(x2)〉H0 (2.1)

Definition 3. A Reproducing Kernel Hilbert Space is a complete, linear function space that

is endowed with a unique kernel and an inner product.

RKHS in addition to being defined by a unique kernel also have the reproducing property

〈φ(·), k(·,x)〉H0 = f(x) (2.2)

for any function φ ∈ H0 and point x ∈ Rp, where 〈·, ·〉H0 denotes the inner product of

the Hilbert space H0 Berlinet and Thomas-Agnan (2011). From the reproducing property,

it follows that functions in RKHS can be represented as the pointwise limit of a linear
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combination of kernels, i.e.,

φ(x) = lim
n→∞

n∑
j=1

ajk(x, zj ; w0), (2.3)

where w0 denotes the kernel parameter and the zj ∈ X are called the kernel centers. The ker-

nel parameter w0 characterizes the smoothness/richness of the RKHS, for example bandwidth

of sincs, the order of polynomial kernels, or the scale/variance of Gaussian kernels (radial

basis functions, RBF) Schölkopf and Smola (2001); Bishop (2006).

Given a training set of data pairs (xn, yn), n = 1, . . . , N , where xn ∈ X are the observations

or independent variables, with X ⊂ Rp compact, and yn ∈ R is the label or dependent

variable, the goal is to find a function φ : X → R in the RKHS H0 that fits these data, i.e.,

such that c(φ(xn), yn) is small for some convex figure of merit c, e.g., quadratic loss, hinge

loss, or logistic log-likelihood. Since there are infinitely many representations of the form

(2.3) that can interpolate a finite set of points, a complexity reducing measure is added to

the problem. A popular option which is also known to avoid overfitting is the RKHS norm

of the solution Schölkopf and Smola (2001); Bishop (2006) as in

minimize
φ∈H0

‖φ‖H0

subject to c(φ(xn), yn) ≤ 0, n = 1, . . . , N .

(PI)

Although the optimization problem above is infinite dimensional, its solution can be repre-

sented as a finite linear combination of kernels centered at the sample points, i.e., there exists

a solution φ? of (PI) of the form Schölkopf et al. (2001); Kimeldorf and Wahba (1971)

φ?(·) =
N∑
n=1

a?nk(·,xn ; w0). (2.4)

This result is called the representer theorem, which holds for any monotonically increasing

real-valued function of the functional norm. The representer theorem reduces the functional
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problem (PI) to the finite dimensional parametric problem

minimize
{an}∈R

N∑
n=1

N∑
m=1

anamk(xn,xm ; w0)

subject to c(ŷn, yn) ≤ 0, n = 1, . . . , N ,

ŷn = φ(xn) =
N∑
m=1

amk(xn,xm ; w0).

(PI′)

Although finding a representation in an RKHS can be reduced to a finite parametric problem,

there are still challenges that need to be addressed. The type of kernel and its parameter w0

must be chosen a priori. The choice affects the types of functions that the model can repre-

sent. More than that, when trying to fit functions with heterogeneous degrees of smoothness,

i.e. functions that are changing rapidly in some parts of the domain, and are smooth in others,

these functions require a large sample size and have limited capabilities Donoho and John-

stone (1998). In this case, although the representer theorem guarantees a finite dimensional

solution, the computational complexity of this solution will be very large such that the eval-

uation of the representation at a single point requires many kernel evaluations. To address

this issue, methods that fit a combination of kernels from a predefined set Lanckriet et al.

(2004); Micchelli and Pontil (2005); Gönen and Alpaydın (2011) or use spectral representa-

tions of positive-definite functions Ong et al. (2005); Wilson and Adams (2013); Yang et al.

(2015) have been proposed. The choice of kernel parameter is then selected using grid search

with cross-validation Bergstra and Bengio (2012); Kuhn and Johnson (2016) or application-

specific heuristic such as maximizing the margin of the support vector machine (SVM) Li

et al. (2012); Kuo et al. (2014). In order to better model functions with heterogeneous de-

grees of smoothness, methods have been developed that choose different RKHSs for different

regions of the domain by means of plug-in rules Brockmann et al. (1993), binary optimiza-

tion Liu et al. (1993), hypothesis testing Ghosh (2008), or gradient descent and alternating

minimization Yuan et al. (2009); Chen et al. (2016), these solutions have no optimality guar-

antees due to the non-convexity of these locally adapted smoothness formulations. Due to the
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Figure 1: Illustration of Remark 1 on the importance of kernel centers for model complexity.

complexity of the solution when fitting functions with heterogeneous degrees of smoothness

reducing the representation to a sparse set of coefficients aj in (PI′) is not tractable Natara-

jan (1995); Amaldi and Kann (1998). Moreover, the representer theorem no longer holds

in the presence of a sparsity regularization. In fact, among the solutions which fit the data

well, the most parsimonious solution does not always admit kernels centered at the sample

points (see Remark 1).

The next section presents an integral representation of functions in RKHS that can be used

to find parsimonious functions which locally adapt the kernel centers and kernel parameter to

best fit the function. Moreover, it allows for regularization beyond smoothness, most notably

sparsity.

Remark 1. Among the representations in RKHS that fit the data the most parsimonious

solution is not of the form (2.4), therefore, classical represnter theorems do not apply. To

see this is the case, consider the example illustrated in Figure 1. Let the sample points be

taken from an underlying function composed of a single Gaussian kernel, namely

yn = exp

[
−(xi − 2.5)2

2

]
, i = 1, . . . , N , (2.5)
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where xi 6= 2.5 for all i. What is more, assume that the correct RKHS H0 is known, i.e., that

the kernel function in (2.3) and (2.4) is k(x, z) = exp
[
−(x− z)2/2

]
. Then, it is clear that

the most parsimonious function in H0 that fits the data is φ′(·) = exp
[
− (·−2.5)2

2

]
. However,

φ′ is not in the feasible set of (PI′). Hence, though it can find functions with the same

approximation error, they will not be the simplest representation, as illustrated in Figure 1.

Peifer et al. (2020)

2.2 RKHS: an Integral Representation

This section describes an integral representation and the optimization problem for learn-

ing that representation which addresses the three main challenges of classical RKHS-based

methods: (i) the RKHS must be chosen a priori, (ii) they require a lot of training data for

functions with heterogeneous degrees of smoothness, and (iii) the computational complexity

of evaluating solutions grows with the sample size. In order to address the first two issues, the

representation needs to admit kernels from multiple RKHSs; and in order to have a sparsity

promoting regularizer, the representation needs to admit kernels at different centers. Let

{Hi | k(·, ·;wi) ∈ Hi} be a family of RKHSs, for which wi is the kernel parameter which can

adapt the smoothness of the kernel. The representation of the function then becomes

φ(x) = lim
m→∞

m∑
j=1

ajk(x, zj ; wj). (2.6)

Although there have been similar formulations proposed to address the challenges of classical

RKHS-based methods, optimally selecting wj and zj remains an open problem Smola and

Schölkopf (2000); Vincent and Bengio (2002); Tibshirani (1996); Fung et al. (2002); Jud et al.

(2016); Gao et al. (2013). In order to optimally select the kernel parameters and centers an

integral counterpart to (2.6) is introduced

f(·) =

∫
X×W

α(z, w)k(·, z ; w)dzdw, (2.7)

whereW is a compact subset of R and α : X ×W → R is in L2(X ×W). Different from (2.6),
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the representation in (2.7) does not explicitly require a set of kernel centers and parameters

to be predetermined. Instead, it defines a continuous function over all possible centers and

parameters. The representations in (2.6) and (2.7) both can represent all functions in Has

it is outlined in the following proposition

Proposition 1. Let k be a continuous reproducing kernel, i.e., k(·, z; ·) is continuous over

the compact set X ×W for each z ∈ X . Then, for each φ ∈ H there exists a sequence {fm}

of functions as in (2.7) such that fm → φ pointwise.

Proof. Consider the approximation of the identity rm(x) = m I [|x| < 1/m] and note that

rm(x) → δ(x) weakly in the vague topology, i.e.,
∫
D rm(x)ϕ(x) → ϕ(0) for all ϕ continuous

and D compact Rudin (1991). Now let φ ∈ H be written as φ(·) =
∑n

j=1 ajk(·, zj ; wj) and

take fm(·) =
∫
X×W αm(z, w)k(·, z ; w)dzdw with

αm(z, w) =
n∑
j=1

ajrm(w − wj)
p∏

k=1

rm([z]k − [zj ]k), (2.8)

where [z]k indicates the k-th element of the vector z. Note that αm ∈ L2, so that fm

is indeed of the form (2.7). Since the reproducing kernel is continuous, it readily holds

from (2.8) that fm → φ pointwise for all x ∈ X . �

Proposition 1 shows that any function that admits a representation of the form (2.6) can be

represented by a function of the form (2.7). This result is straightforward when the inner

product of H is defined by (2.7). This is only the case if the kernel family is that of sinc

functions.The result is also straightforward if α were a sum of Dirac delta functions, however,

α is restricted to the space of L2 functions.

2.2.1 A Sparse Functional Formulation

The integral representation (2.7) replaced a set of discrete coefficients with a function over

the possible kernel centers and parameters. While α is continuous, by introducing a sparsity

measure it can be reduced to a superposition of bump functions, i.e. a function that vanishes
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Figure 2: Sample α with bump centers.

over most of the domain except for a finite set of intervals. The integral representation can

then be approximated by a discrete representation using only kernels centers and parameters

at the peaks of the bump functions (Figure 2). The discrete approximation becomes closer

to the integral representation as the sparsity is increased and the intervals over which the

bump functions are defined get smaller. In the finite and countably infinite case, sparsity is

defined as the number of non-zero coefficients Zhang et al. (2015); Tropp (2006); Rudelson

and Vershynin (2008). In the continuous case, sparsity was defined as the Lebesgue measure

of the support of the function. A counterpart to the discrete “`0-norm” is established as the

“L0-norm”

‖α‖L0 =

∫
X×W

I [α(z, w) 6= 0] dzdw, (2.9)

where I[x 6= 0] = 1 if x 6= 0 and zero otherwise. Using this measure, sparse functions are

considered to be functions of limited support as constructed by the proof of Proposition 1

and illustrated in Figure 2. This observation motivates estimating f , equivalently α, using
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the following SFP:

minimize
α∈L2(X×W)

1

2
‖α‖2L2

+ γ‖α‖L0

subject to c(ŷn, yn) ≤ 0, n = 1, . . . , N ,

ŷn = f(xn) =

∫
X×W

α(z, w)k(xn, z ; w)dzdw,

(PII)

where γ ≥ 0 is a regularization factor that trades-off smoothness and sparsity; ‖ ·‖L2 denotes

the L2-norm, which induces smoothness, enhances robustness to noise, and improves the

numerical properties of the optimization problem. It is worth noting that the solution which

minimizes the unconstrained objective function is α = 0 or any α ∈ L2 with support on any

countable set. This trivial solution, while optimizing the complexity, does not meet the fit

constraints and is not a feasible solution to the problem.

The problem presented in (PII) locally adapts the kernel parameter based in order to fit func-

tions of varying degrees of smoothness. Additionally, because it allows for multiple RKHSs,

it does not need to preselect the kernel. Moreover, it adapts the kernel centers, in order

to obtain parsimonious representations that still fit the data well. Discrete representations

can be approximated from the sparse continuous representations by using the bumps in the

solution α to determine pairs (zj , wj).

Although the remainder of this chapter studies the general problem (PII), there are two

special cases of the problem that are of interest. In the first case, the functional space is

application specific and is known from expert knowledge. In this case, the problem only

searches over kernel centers while keeping the reproducing kernel k and its parameter w0

fixed. The problem (PII) reduces to

minimize
α∈L2(X )

1

2
‖α‖2L2

+ γ‖α‖L0

subject to c(ŷn, yn) ≤ 0, n = 1, . . . , N ,

ŷn = f(xn) =

∫
X
α(z)k(xn, z ; w0)dz.

(PII′)
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Problem (PII′) optimizes for sparsity for a fixed RKHS. This type of problem has been at-

tempted using greedy methods such as KOMP Vincent and Bengio (2002). These methods

rely on the representer theorem theorem Koppel et al. (January 2019) to get a dense solution

before reducing the number of kernels in the representation. However, this sparse represen-

tation is not guaranteed to be optimal (See Remark 1). In contrast, the solution of (PII′) is

guaranteed to provide the sparsest integral representation because it searches over all possi-

ble representations and not just the subset of representations which have kernels centered at

the sample points. A discrete solution can then be approximated by a peak finding method.

Problem (PII′) can therefore obtain solutions with similar performance to greedy methods

but lower complexity, as illustrated in Section 2.4.

The second special case of interest occurs when a set of candidate kernels is available, either

obtained from domain experts or unsupervised techniques such as clustering. The prob-

lem (PII) can be reduced to only search over the kernel parameters and choose a subset of

kernel centers

minimize
αj∈L2(W)

M∑
j=1

[
1

2
‖αj‖2L2

+ γ‖αj‖L0

]
subject to c(ŷn, yn) ≤ 0, n = 1, . . . , N ,

ŷn = f(xn) =

M∑
j=1

∫
W
αj(w)k(xn, zj ; w)dw,

(PII′′)

where zj , for j = 1, . . . ,M , are the predefined candidate centers. Problem (PII′′) optimizes

the sparsity of each αj , such that the kernel centers that do not have an effect on the fit of

the representation will vanish. Hence, the solution of (PII′′) effectively selects the smallest

subset of candidate centers. Moreover, by locally adapting the kernel parameter, the number

of candidate kernels can be further reduced by placing kernels that more naturally fit the

data. The problem (PII′′) is advantageous for high dimensional problems for which the

computation of the integral might become intractable.

Problem (PII) balances the fit and complexity objectives by optimizing over the sparsest

integral representation that fits the data. While the problem is nonconvex and infinite
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dimensional, it will be shown in the next section that a solution can be found exactly and

efficiently

2.3 Learning in the Dual Domain

Problem (PII) [or (PII′)–(PII′′)] is a non-convex, infinite dimensional optimization program.

However, it can be efficiently solved by using duality, which is an established approach to solve

semi-infinite convex programs Shapiro (2006); Tang et al. (2013); Candès and Fernandez-

Granda (2014). Dual problems are concave even when the primal function is not convex and

are finite dimensional. Indeed, the dimension of the dual problem is equal to the number of

constraints. In addition to being solvable, the solution to the primal problem can be obtained

from that of the dual problem when the primal is convex and mild conditions hold Boyd

and Vandenberghe (2004). Although, (PII) is nonconvex its solution can be obtained from

solving the dual problem.

2.3.1 The Dual Problem of (PII)

In order to derive the dual problem of (PII), the Lagrange multipliers λ ∈ RN , associated

with its equality constraints and µ ∈ RN+ , associated with its inequality constraints, are

introduced. The Lagrangian is then defined as

L(α, ŷ,λ,µ) =
1

2
‖α‖2L2

+ γ‖α‖L0 −
N∑
n=1

λn

∫
α(z, w)k(xn, z ; w)dzdw

+
N∑
n=1

λnŷn +
N∑
n=1

µnc(ŷn, yn).

(2.10)

The set X ×W over which the integrals are computed was omitted for a clearer notation.

The dual function is obtained by minimizing the Lagrangian over the primal variables

g(λ,µ) = min
α∈L2
ŷn∈R

L(α, ŷ,λ,µ). (2.11)
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The dual problem maximizes the dual function over the feasible dual variables

maximize
λ∈RN ,µ∈RN+

g(λ,µ). (DII)

The dual function is defined as the minimum over a set of affine functions in (λ,µ) and is

therefore always concave Boyd and Vandenberghe (2004), regardless of the convexity of the

primal function. Furthermore, the dimensionality of the dual problem is always equal to the

number of constraints. Therefore, the dual problem is a concave finite dimensional problem

which can be solved efficiently if it can be computed. However, computing the dual function g

requires solving a functional, non-convex problem. Nonetheless, (2.11) can be separated as

g(λ,µ) = min
ŷn∈R

Lŷ(ŷ,λ,µ) + min
α∈L2

Lα(α,λ), (2.12)

where

Lŷ(ŷ,λ,µ) =

N∑
n=1

µnc(ŷn, yn) +

N∑
n=1

λnŷn (2.13)

is a convex function, since c is convex and µn ≥ 0, and

Lα(α,λ) =

∫ [
1

2
α2(z, w) + γ I [α(z, w) 6= 0] −

N∑
n=1

λnα(z, w)k(xn, z ; w)

]
dzdw. (2.14)

From (2.14) it follows that computing g requires solving a non-convex functional optimiza-

tion problem similar to the original (PII). Different from (PII), this is an unconstrained

minimization problem, and it can be solved by exploiting separability to obtain a closed

form thresholding solution.

Proposition 2. A minimizer αd of (2.14) is given by

αd(z, w;λ) =


ᾱd(z, w;λ), |ᾱd(z, w;λ)| >

√
2γ

0, otherwise

(2.15)

where ᾱd(z, w;λ) =
∑N

n=1 λnk(xn, z;w).
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Proof. To obtain (2.15), the objective of (2.14) is separated across z and w, by leveraging

the following lemma:

Lemma 1. Let F (α, x) be a normal integrand as defined in (Rockafellar and Wets, 2009,

Def. 14.27). Then,

inf
α∈L2

∫
F (α(x), x)dx =

∫
inf
ᾱ∈R

F (ᾱ, x)dx. (2.16)

Proof. See (Rockafellar and Wets, 2009, Thm. 14.60) or (Shapiro et al., 2014, Thm. 7.92).

Note that since (X × W) is Borel and F is lower semicontinous in α (its only point of

discontinuity is α = 0) , F is normal (Rockafellar and Wets, 2009, Ex 14.31). �

Defining the normal integrand as

F (ᾱ, z, w) =
ᾱ2

2
+ γ I [ᾱ 6= 0]−

N∑
n=1

λnk(xn, z ; w)ᾱ, (2.17)

in Lemma 1, yields that minimizing (2.14) is equivalent to minimizing F individually for

each (z, w). The indicator function in (2.17) can only take two values depending on ᾱ,

therefore, its optimal value is the minimum of two cases: (i) if ᾱ = 0, then F (0, z, w) = 0 for

all (z, w); alternatively, (ii) if ᾱ 6= 0, then (2.17) becomes

F ′(ᾱ, z, w) =
ᾱ2

2
−

N∑
n=1

λnk(xn, z ; w)ᾱ+ γ, (2.18)

whose minimization is a quadratic problem with closed-form solution

ᾱ?(z, w) = argmin
ᾱ∈R

F ′(ᾱ, z, w) =
N∑
n=1

λnk(xn, z ; w), (2.19)

so that minᾱ 6=0 F (ᾱ?, z, w) = γ − ᾱ?(z, w)2/2. Immediately, αd(z, w) = ᾱ?(z, w) if γ −

ᾱd(z, w)2/2 < 0 or α(z, w) vanishes, which yields (2.15). �

Proposition 2 shows that the solution to the non-convex infinite dimensional problem (2.14) is
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simply the solution of a quadratic problem that is thresholded by the regularizing parameter

γ. This leads to a closed form solution for (DII). As a result, classical convex optimization

methods can be used to solve the dual problem. In Section 2.3.3 (stochastic) (super)gradient

ascent is used to find the optimal solution. The optimal dual is known to be a lower bound

to the primal problem Boyd and Vandenberghe (2004). In the next section, it is shown that

solving the dual leads to the solution of the primal problem because of strong duality.

2.3.2 Strong Duality and the Integral Representer Theorem

In general, for non-convex problems, the optimal value of the dual problem provides a lower

bound for the primal optimal value, however, in some cases strong duality holds for non-

convex problems and the optimal dual value and optimal primal value are equal Chamon

et al. (2018). The central technical result in this section shows that (PII) has null duality

gap (Theorem 1). This result implies that the solution of (PII) is readily obtained from the

solution of the dual problem (DII) (Corollary 1). Moreover, it leads to a new representer

theorem, which holds for the sparsity promoting regularizer.This integral representer theorem

shows that the optimal primal value has a finite dimensional representation. The following

theorem describes the conditions for which strong duality holds:

Theorem 1. Strong duality holds for (PII) if the kernel k(·, z ; ω) has no point masses and

Slater’s condition is met. In other words, if P ∗ is the optimal solution of (PII) and D∗ is

the optimal solution of (DII), then P −D.

Proof. The proof is provided in Appendix A.1 and is analogous to the result presented in

Chamon et al. (2018). �

Theorem 1 states that the optimal value of the dual problem (4.9) is equal to that of the

primal problem (PII). The way to obtain the optimal primal variables is described in the

following corollary:

Corollary 1. Let (λ?,µ?) be a solution of (DII) and assume k ∈ L2 and analytic. Then,

α?d(·, ·) = αd(·, ·;λ?) is a solution of (PII) for αd as in (2.15).
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Proof. See Appendix A.2. �

Theorem 1 and corollary 1 provide a path for solving problem (PII) despite it being non-

convex and infinite dimensional by leveraging duality. The hypothesis made for Corollary 1

are mild and hold for most reproducing kernels including Gaussian and sinc kernels. More im-

portantly, the solution does not rely on formulating a discrete representation of the function,

since discrete problems are often NP-hard, large dimensional, and potentially ill-conditioned

problems. Furthermore, it offers a solution to the problem of finding sparse representations

without relying on convex relaxations of sparsity promoting regularizers or representations

that are sub-optimal.

Another fundamental implication of Theorem 1 is the following integral representer theorem.

Corollary 2 (Integral Representer Theorem). A solution α? of (PII) can be obtained by

thresholding a parametrized family of functions ᾱ?w ∈ Hw, where Hw is the RKHS induced by

the kernel k(·, ·;w). In fact, ᾱ?w lives in a finite dimensional subspace of Hw spanned by the

kernels evaluated at the data points. Explicitly, there exist an ∈ R such that

ᾱ?w(·) =
N∑
n=1

ank(xn, ·;w). (2.20)

Proof. From Corollary 1, α? = α?d almost everywhere with α?d(z, w) = αd(z, w;λ?n). Thus, the

corollary stems from (2.15) for αw(·) =
∑N

n=1 λ
?
nk(xn, ·;w), so that αw ∈ Hw by definition

and α?(z, w) = αw(z) I(|αw(z)| >
√

2γ). �

The classical representer theorem Kimeldorf and Wahba (1971); Schölkopf et al. (2001) shows

that the optimal representation admits only kernels centered at the sample points and there-

fore reduces the functional optimization problem (PI) to the finite dimensional problem (PI′).

Similarly, The integral representer theorems offers a finite closed form solution for the optimal

variable α (2.20). Although classical representer theorem only provides a finite representa-

tion for regularizers that are monotonically non-decreasing functions of the functional norm
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which does not include any sparsity promoting functions, Corollary 2 holds in the presence

of the “L0-norm” regularizer.

From Corollary 2 it would appear that the computational complexity has not been reduced

since the evaluation of a single the function α at a single point (z, w) requires a kernel

function to be computed for each training point. Indeed, the complexity of evaluating α is

O(N). However, α can be approximated by a discrete vector of length K, by only allowing

one kernel per bump. Due to the limited support of α, the number of kernels K � N and is

determined by the underlying signal and can be controlled by the choice of γ. The discrete

approximation provides a solution of computational complexity O(K)� O(N).

An important consequence of Corollary 2 is that although problem (PII) allows for any

function α ∈ L2, the solution is itself a function that belongs to the family of kernels to

which f is restricted over limited support. Explicitly, the solution α?(·, w) of (PII) is a

thresholded version of a function in the RKHS Hw. In the spacial case of γ = 0, i.e. no

sparsity, we have that α?(·, w) ∈ Hw. Moreover, for the problem (PII′), this further simplifies

to α? ∈ H0.

Equation (2.7) can therefore be interpreted as building the function f? point-by-point by

integrating the value of partial L2-inner products between the reproducing kernel of Hw and

a function ᾱw ∈ Hw. Explicitly, (2.7) can be written as

f?(·) =

∫
W

[∫
X
ᾱw(z)k(·, z;w)dz

]
dw, (2.21)

where X ⊆ X , W ⊆ W, and X ×W is the set induced by the support of α?, i.e., {(z, w) ∈

X ×W | |α(z, w)| >
√

2γ}. The innermost integral in (2.21) can be interpreted as an inner

product in L2 between ᾱw and k(·, z;w) computed only where the magnitude of ᾱw is large

enough, defined by the regularization parameter γ. This sort of trimmed inner product is

linked to robust projections found in different statistical methods Chen et al. (2013); Feng

et al. (2014). The outer integral then accumulates the projections of ᾱw over the relevant
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Algorithm 1 Stochastic optimization Peifer et al. (2020) for (PII)

1: Initialize λn(0) and µn(0) > 0
2: for t = 0, 1, . . . , T
3: Evaluate the supergradient dµn(t) = c (ŷd,i(t), yn) for

ŷd,n(t) = argmin
ŷn

N∑
i=1

µn(t)c(ŷn, yn)−
N∑
n=1

λn(t)ŷn

4: Draw {(zk, wk)}, k = 1, . . . , B, uniformly at random and compute the stochastic su-
pergradient

d̂λn(t) = ŷd,i(t)−
1

B

B∑
k=1

αd(zk, wk;λn(t))k(xn, zk;wk)

5: Update the dual variables:

λn(t+ 1) = λn(t) + ηλd̂λn(t)

µn(t+ 1) =
[
µn(t) + ηµdµn(t)

]
+

6: end
7: Evaluate the primal solution as

α?(z, w) =

{
ᾱ?(z, w), |ᾱ?(z, w)| >

√
2γ

0, otherwise

for ᾱ?(z, w) =
∑N

i=1 λn(T )k(xn, z;w)

subset W of RKHSs considered to form the functional solution.

Theorem 1 holds under very mild conditions as it only requires the kernels to not have

point masses. This is the case for most reproducing kernels used in applications, such as

polynomial or Gaussian kernels. In fact, by restricting α to L2, functions with point masses

are automatically not considered since these are not square integrable. Moreover, due to

the infinite dimensionality of α it is always possible to find a representation that fits the

data. Therefore, finding a strictly feasible solution which meets Slater’s condition Boyd and

Vandenberghe (2004) is possible for most cost functions c.

2.3.3 Dual Gradient Ascent

Corollary 1 shows that the optimal primal variables of (PII) are precisely the dual minimizer

from Proposition 2. These have a closed form solution (2.15) that depends on the optimal dual
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variables (λ?,µ?). In order to find the optimal dual variable a projected supergradient ascent

method is proposed (Algorithm 1). This method was used to obtain the results presented in

Section 2.4, however, any convex optimization algorithms can be used, for example exploiting

structure in the problem to solve large-scale instances Bertsekas (2015).

The supergradient of a function f : D → R at x ∈ D ⊆ Rn is any vector d such that f(y) ≤

f(x) + dT (y − x) for all y ∈ D. Although supergradients are not guaranteed to be the

steepest ascent direction at x, taking small steps in their direction decreases the distance to

any maximizer of a convex function f Boyd and Vandenberghe (2004). Moreover, when the

function is differentiable at x, the supergradient is unique and represents the gradient. Thus,

supergradients can be used to optimize concave functions, which are not guaranteed to be

differentiable everywhere. The dual problem (DII) is solved by repeating, for t = 0, 1, . . . ,

λn(t+ 1) = λn(t) + ηλdλn(λ(t),µ(t)), (2.22a)

µn(t+ 1) =
[
µn(t) + ηµdµn(λ(t),µ(t))

]
+

, (2.22b)

where dλ,dµ are the supergradients of λ and µ, respectively, ηλ, ηµ > 0 are step sizes,

and [x]+ = max(0, x). The dual variables µn are projected onto the non-negative numbers

in order to guarantee that the optimal µn is feasible. The supergradient in (2.22) are readily

obtained from the constraint violation of the dual minimizers Boyd and Vandenberghe (2004).

Given ŷd,n(λ,µ) and αd(z, w;λ), the minimizers of (2.13) and (2.14) respectively, the nth

element of the supergradient vectors is expressed as

dλn(λ,µ) = ŷd,n(λ,µ)−
∫
αd(z, w;λ)k(xn, z;w)dzdw, (2.23a)

dµn(λ,µ) = c (ŷd,n(λ,µ), yn) . (2.23b)

Since ŷd,n is the solution of the convex optimization problem (2.13), the update for the dual
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variables µn in (2.22b) can be efficiently evaluated using (2.23b). The update expression

for λn in (2.22a), however, requires that the integral in (2.23a) be evaluated.This can be

done by either using numerical integration methods, since αd has a closed-form representation

from (2.15), or using Monte Carlo methods to approximate the integral. The latter approach

was integrated with the optimization iterations in (2.22) to obtain a stochastic supergradient

ascent algorithm summarized in Algorithm 1. The Monte Carlo approach gives an unbiased

estimate of dλn , and has been shown convergence in Ruszczyński and Syski (1986); Ribeiro

(2010); Bottou et al. (2016).

2.4 Applications

The following results have been presented in Peifer et al. (2020) c©[2020]IEEE. In the previous

sections we have claimed that our algorithm can estimate (i) kernel widths (PII′′), (ii) kernel

centers (PII′), and (iii) kernels of varying centers and widths (PII). In this section we show,

through a sample signal, how we can achieve claim (i). Then we show how moving from (i)

to (iii) reduces complexity. In our discussion about the complexity of the representation in

section 2.4.1, we show how we can achieve (ii) on random signals of fixed width. In section

2.4.2, we solve (PII) for a signal of varying degrees of smoothness and show how we can

reduce complexity regardless of sample size. Lastly, in sections 2.4.3 and 2.4.4 we apply our

algorithm to solve (PII) and (PII′′) on two examples of real applications: a user localization

problem and a digit classification problem.

For the estimation, we search over functions in the family of RKHSs, which have Gaussian

functions as kernels

k(x,x′) = exp

{
−‖x− x′‖2

2w2

}
, (2.24)

where the width of the kernel is directly proportional to the hyper-parameter w. We select

a quadratic cost function

c(zi,yi) = (yi − zi)
2 − ε, (2.25)
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where ε represents the maximum squared error of the solution on the training data. Notice

that using a quadratic cost function leads to the following solution for ŷd,i

ŷd,i = yi −
λi
2µi

(2.26)

To start, the effect of the choice of RKHS on the performance of a learning algorithm is

examined. To this end, a signal, which lies in the RKHS with a Gaussian kernel of width

w0 = 0.453 is constructed. The classical problem in (PI′) is compared to the problem

presented in (PII′′). A grid search is used to examine the performance of (PI′) for different

values of w. Recall that (PI′) is the finite dimensional problem equivalent to (PI) obtained

by leveraging the representer theorem. Therefore, the representation of the solution admits

kernels centered at the sample points.

The value of w0 was chosen such that it would not be directly on the grid, since in practice it

is unlikely to include the value of the width of the originating signal. We generate S signals

of the form

fj(x) =

m∑
i=1

ai × exp

[
−‖x− x̃i‖2

2 ∗ w2
0

]
+ ξj (2.27)

with j = 1 . . . S. For each fj a training set of N = 50 samples was generated with m = 10.

The amplitude ai of each function is selected at random from a uniform distribution U(1, 2).

The x̃i are i.i.d random variables drawn from the uniform distribution U(1, 2) and the ξj are

i.i.d. random variables drawn from N (0, 10−3), which represent the noise.

It should be noted that, given sufficient iterations, well chosen step sizes, and a large γ,

our method can approximate point masses. However, smoother approximations of the point

masses can be obtained by using only few iterations. Additionally, these smooth approxi-

mations are more robust to the choice of the tuning parameters. Kernel centers and widths

can subsequently be obtained by selecting the extreme points of the function α(z, w), since

the optimal α(z, w) is a function of w, the kernel width, and z the kernel centers. Kernels
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using the widths and centers approximated from the extreme points of the α(z, w) are used

to train a least squared estimator.

A grid search is performed for problem (PI′) by uniformly sampling w over the interval [0,1]

at 0.1 increments. The problem (PII′′) is solved using γ = 4000, ηλ = 0.001, ηµ = 0.1 and

T = 5000. The performance of the two algorithms is compared over 1000 realizations of the

sampled signal, each with a training set of size N = 100 and a test set of size Ntest = 1000.

The MSE of (PI′) decreases as the value of w increases—see Figure 3. Due to the non-uniform

sampling of the signal, smoother kernels on average have a better performance. In areas, in

which the sampling is sparse, the thinner kernels cannot represent the signal between the

samples. Additionally, the thinner kernels are more likely to overfit to the noise than the

smoother kernels. However, the smoother kernels cannot model the faster variation in the

signal well. In contrast, (PII′′) finds a sparse solution, which uses 14 kernels on average, of

varying smoothness, with an average MSE of 0.0457, which can both take advantage of the

ability of smoother kernels to avoid overfitting and thinner kernels to model fast variation.

Indeed, we observe in Figure 4 that our algorithm chooses a mixture of kernels of width

around 0.453 and kernels of width 1.

Smoother kernels perform better because of the random sampling combined with the restric-

tion of only using kernels centered at the sample points. Therefore, we investigate the effect

of solving problem (PII) which finds both kernel centers and kernel widths. Problem (PII)

is solved using γ = 1000, ηλ = 0.01, ηµ = 1 and T = 1000 over 1000 randomly sampled

training sets, and results in an MSE of 0.0588. Although the MSE of (PII) is similar to that

of (PII′′), it is important to note that by placing kernels arbitrarily we are able to better

estimate the width of the kernel: by comparing Figure 5 to Figure 4 it can be seen that

(PII) uses only 1 to 2 kernels per representation of width 1 whereas (PII′′) uses on average

6 kernels of width 1. Moreover, we consistently obtain representations of lower complexity

when solving (PII)—see Figure 6.
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Figure 3: MSE obtained by (PII′′) and (PI′) over 1000 realizations of random sampling of the
signal in (2.27). (PI′) is solved over different values of w over a grid on the interval [0.1, 1].
(PII′′) finds the width as part of the algorithm and is presented for comparison with (PI′).
The standard deviation around each mean is plotted in gray for both (PII′′) and (PI′). The
figure shows that the selection of the width within the algorithm gives the advantage of a
lower mean generalization error.

Figure 4: Histogram of the widths found using (PII′′) over 1000 realizations of random
sampling of the signal in (2.27). On average, 14 kernels were selected for the representation
of the function out of which an average of 6 kernels have a width of 1.

2.4.1 Examining the Complexity of the Solution

So far we have shown that the complexity of the formulation can be reduced by moving

centers in addition to moving the width. To further explore the effect of kernel centers on the

complexity of the solution, we compare the performance of (PII′) to that of kernel orthogonal

matching pursuit (KOMP) with pre-fitting (see Vincent and Bengio (2002); Koppel et al.
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Figure 5: Histogram of the widths found using (PII) over 1000 realizations of random sam-
pling of the signal in (2.27). On average, a representation had 6 kernels out of which between
1 and 2 kernels had a width of w = 1 and 4 kernels had a width in the interval [0.384, 0.648].
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Figure 6: Histogram of the number of kernels in the representation of the estimated functions
by solving problems (PII′′) and (PII). (PII) achieves a lower complexity representation by
moving the centers in addition to the widths.

(January 2019)), for a simulated signal as in (2.27). KOMP takes an initial function and a

set of sample points and tries to estimate it by a parsimonious function of a lower complexity.

As a backwards feature selection method, the algorithm starts by including all samples and

then reduces the complexity of the function by reducing one feature at a time. The KOMP

algorithm in Vincent and Bengio (2002); Koppel et al. (January 2019) was modified by

changing the stopping criteria to be the estimation error, rather than the distance to the

original function. This stopping criteria allows us to compare the sparsity needed to obtain
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(a) (b)

Figure 7: Comparison of the complexity of the representation of (PII′) and KOMP for a
similar MSE over 1000 realizations. In Figure (a) 5 Gaussian functions were used to simulate
the signal. In Figure (b) 10 Gaussian functions were used to simulate the signal. In both
cases, (PII′) achieves a lower complexity for 99% of the realizations.

similar estimation error.

The signal was sampled from the function in (2.27) using w0 = 0.5 and m = [5, 10, 20] by

generating N = [2m, 4m, 6m] samples for each function, thus creating 9 different sample

size and signal pairs. The problem in (PII′) was solved using γ = 30, ηλ = 0.05, ηµ = 0.1

and T = 1000. Subsequently, a least squares algorithm was trained using kernels at the

location found by our algorithm. Both our method and KOMP used w = 0.5 as the kernel

hyper-parameter.

The number of kernels needed to obtain the same MSE is compared over 1000 realizations

of each signal between (PII′) and KOMP. When the number of samples is at least 30, our

method is able to find a sparser representation 100% of the times. In the cases with fewer

samples, the problem is likely undersampled, such that the estimation of the function is more

difficult. Figure 7 shows two cases in which 20 samples are simulated, where m = 5 and

m = 10. In both cases, our method finds sparser representations in 99% of the realizations.

When 10 kernels and 5 kernels are superimposed, our method finds a representation which

is less sparse in only 0.4% and 0.3% of realization respectively. Lastly, when the signal is a

weighted sum of 5 functions and only 10 samples are generated, our method cannot find a

sparser solution for 3.7% of the realizations. The generalization MSE was compared between
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Figure 8: Generalization MSE as a function of number of kernels for KOMP and (PII′) over
1000 realizations of the signal in (2.27).

the two methods for different levels of sparsity. Figure 8 shows the changes in generalization

MSE as the number of kernels used in the representation increases. 1000 realizations of a

signal with m = 10 and a training set of size N = 100 were used. The ability of our method to

place kernels at any location, beyond the training set, allows it to achieve significantly lower

errors compared to KOMP at any sparsity level. As the number of kernels used increases, the

difference in performance between the two methods decreases. At approximately 25 kernels,

the performance of our method plateaus. Comparatively, KOMP achieves a plateau when

the representation holds 50 kernels.

2.4.2 Varying Degrees of Smoothness

In the previous sections, we have only considered signals from functions belonging to one

RKHS in the family of RKHSs with Gaussian kernels. In this section, we explore the effect

of sample size on the complexity of the representation and the MSE on a signal of varying

degrees of smoothness. To this end, a signal of varying smoothness is simulated using the

following equation:

yi = sin(0.5πx2
i ) + ξi (2.28)

where ξi ∈ N (0, 10−3) represents the noise.
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Figure 9: MSE for varying sample sizes using (PII) and KOMP with 26 kernels over 100
realizations of the signal in (2.28).

The solution of problem (PII) was compared to destructive KOMP, with the stopping criteria

set to be the desired number of kernels rather than the distance from the original function.

This stopping criteria allows us to have a fair comparison between our method and KOMP

by using equally sparse functions. The problem in (PII) was solved using γ = 2, ηλ = 0.001,

ηµ = 30 and T = 1000. Sample sizes of 51, 101, 201, 301, 401, and 501 were created by

uniformly sampling in the interval [−5, 5]. Test sets of 1000 samples randomly selected on

the interval [−5, 5] were created. Using the method of selecting kernel centers and widths by

selecting the peaks of the function α(z, w), our method finds a representation with 26 kernels

regardless of the sample size. It can be seen in Figure 9 that in addition to the number of

kernels being consistent across all sample sizes, the MSE is also consistent for our method.

The MSE of the estimation using KOMP, however, increases as the sample size grows.

The problem of reducing features is a combinatorial problem which grows exponentially with

the sample size. The backwards approach used by KOMP is a greedy approach which removes

only one kernel at a time. As the sample size increases, there are more misleading paths of

removal it can take. Additionally, it is only using kernels placed at the sample points, which

means it will need more kernels when the true kernel is centered between two sample points.

Figure (10) examines the complexity of the solution as measured by the number of kernels

evaluations, required by (PII), KOMP, and (PI). Note that the complexity of the solution
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Figure 10: The complexity of the resulting RKHSs function as measured by the number of
kernel evaluations needed.

of (PI) grows linearly with the sample size. In contrast, KOMP achieves a lower complexity

representation, while maintaining the same MSE as (PII). However, since it uses a greedy

heuristic and does not allow kernels to be placed at any other points than the sample points,

it requires more kernels in its representation than the solution of (PII). In fact, the integral

representation, by allowing both kernels of varying width and centers, is able to represent

the signal using the same complexity regardless of the sample size.

2.4.3 User Localization Problem

In the remainder of this section, we will apply our method to real world application for

which the class of functions the signal belongs to is unknown. We consider the problem of

using RF signals to identify the location of a receiver. Specifically, given the Wi-Fi signal

strength from seven routers, we wish to identify the room in which our receiver is located

Narayanan et al. (2016). The signal strength varies depending on the location of the router.

The signal was received from 7 routers spread throughout an office building. The data was

collected using an Android device. At each location, the signal strength from each router

was observed at 1s intervals. The data was then categorized into 4 groups, each representing

the room in which the signal strength was observed. All the rooms are on the same floor,

with the rooms representing the conference room, the kitchen, the indoor sports room, and

work areas Narayanan et al. (2016). The goal is to be able to accurately detect the location
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of the android device given the measured signal strength.

We use 10-fold cross-validation in order to estimate the generalization error of our algorithm

as was used in Narayanan et al. (2016). The dataset was split into 10 sets of equal size

with equal distribution of each label. At each turn one of the sets was used for testing while

the others were concatenated and used to train the algorithm. This multiclass classification

problem was solved using the one-vs-one strategy, which required 6 comparisons. The final

class assignment is made through voting. Each comparison makes a prediction on the class

of a sample, and thus casts a vote for a particular class. The class with the majority of votes

is assigned to the sample. The cost function for this classification problem is

c(z,y) =
∑
i

max{0, 1− yizi} − ε, (2.29)

where ε controls the number of misclassifications allowed in the problem. In this test, ε

was assigned a value of 2. Solving problem (PII) we obtain an average accuracy of 98%,

similar to the performance observed in Narayanan et al. (2016), in which a fuzzy decision

tree algorithm with 50 rules was used to obtain an accuracy of 96.65%. This result has been

observed to be consistent over increasing values of the sparsity parameter γ.

2.4.4 MNIST Digits Classification

We use data of handwritten digits from the MNIST data set LeCun (1998), which consists

of a training set of 60, 000 sample-label pairs and a testing set of 10, 000 images and labels.

Each sample is a 28-pixel by 28-pixel grayscale image, which was vectorized to form 784

dimensional features. The labels are between 0 and 9 and correspond to the digit written.

There are a total of 10 classes.

The number of features is too large to estimate the value of α(z, w) at every z ∈ R784. In order

to find a set X over which α(z, w) is defined, we use k-means with 400 clusters for each digit.

Then X ′ in (PII′′) is defined as the set of all cluster centers and the cost function in (2.29)

is used. We then run our algorithm using a one-to-one strategy for multi-class classification
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and achieve an accuracy of 98.12% for an average of 788 features per classification, which

is comparable to the accuracy found using (PI′) using the training set as kernel centers and

(PI′) using the centers found through k-means. The complexity of the representation can be

further be reduced, however it comes at the cost of the classification accuracy.

Table 1: Classification results for (PI′) using the training samples as kernel centers and using
centers selected from k-means and (PII′′) using the centers selected from k-means

Method Number of Kernels per Classifier Accuracy

(PI′) 12000 98.83 %
(PI′) with k-means 800 98.16 %
(PII′′) 788 98.12 %
(PII′′) 731 96.71 %
(PII′′) 53 85.66 %

Although the dimensionality of the features in the original data makes the use of (PII)

impractical, we can solve that problem, by projecting the data into a lower dimensional space

by using principal component analysis (PCA). The formulation in (PII) has the advantage

that the found kernel centers can give some intuition about the distribution of the signal.

Particularly, in the case of digits, they can describe digits which are representative of written

digits. To illustrate that we have performed the classification of the digits ’0’ and ’1’ using

the first 3 principal components. The low dimensional feature set allows us to find the x

which result in the highest value for α(w,x). From these points we can reconstruct the

corresponding digits. Figure 11 shows the resulting images, which are not part of the initial

written digit data set but rather represent an image that is closest to all written digit. The

accuracy of the classification is 99.62%.
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Figure 11: Kernel centers obtained by solving (PII) with the highest value for α(z, w) for
each digit. These centers are representative of the digits, however, are distinct from any of
the samples in the training set.

45



CHAPTER 3

Federated Classification using Parsimonious Representations of

RKHS

The previous chapter presented a method for obtaining parsimonious representations in re-

producing kernel Hilbert spaces. These have applications in federated learning by providing

representations that are both communication efficient and computationally efficient.

In federated learning, a global model is trained by a central server using data gathered by

a federation of agents Konečnỳ et al. (2016a,b); Li et al. (2020); McMahan et al. (2016).

The problem is motivated by distributed networks generating vast amounts of data, such

as those that arise when data is pooled together from mobile phones, wearable devices, or

autonomous vehicles Smith et al. (2017); Anguita et al. (2013). There are several unique

challenges to federated learning, such as respecting privacy of data, accounting for heteroge-

neous computational capabilities, or dealing with limited communication resources Konečnỳ

et al. (2015, 2016b); Smith et al. (2017); Zhao et al. (2018); Bonawitz et al. (2019).

When dealing with limited communication resources, the systems Bonawitz et al. (2019);

Konečnỳ et al. (2016b); Smith et al. (2017) challenges lead to additional statistical Konečnỳ

et al. (2015, 2016b); Smith et al. (2017); Zhao et al. (2018) challenges. Because of the

system challenges, it is impractical to transmit large data over the network. Consequently, a

traditional learning approach with a central unit learning the global model is often impossible,

and it is imperative for agents to transmit information about the problem without sending

their entire data. Therefore, forming a global modal based on the global distribution is not

a straightforward task, since each agent collects data over its own distribution.

Existing work on federated learning takes a distributed optimization approach. These at-

tempt to form a global modal by sharing the gradient McMahan and Ramage (2017); Hard
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et al. (2018); McMahan et al. (2016). These methods have the advantage that they preserve

privacy by not sharing any collected data. However, they do not tackle the statistical chal-

lenge and require extensive communication due to sharing data over the network at each

iteration. There have been efforts to tackle the statistical challenge as well, however these

problems do end up sharing a small subset of data Zhao et al. (2018) or only work under

strict conditions Li et al. (2019). In an effort to reduce communication load, methods have

been developed which only share the gradient every few iterations Wang et al. (2019); Yu

et al. (2019) or only share a subset of the gradient Shokri and Shmatikov (2015). Although

these methods require less communication than traditional distributed methods, they are

still iterative and have a communication load proportional to the number of iterations. The

method, presented in this work, is fundamentally different from distributed learning. Al-

though it does not guarantee privacy because it shares a subset of the data collected, it

requires only a one time communication over the network from the agents.

The mechanism, presented in this work, reduces data sharing to a minimum while still allows

the central server to learn a classifier that would be as good as the one that it would learn if

all agents shared all of their data. This is achieved by sharing only a subset of the collected

data, which is critical to the classification problem. The central unit having access to the

critical samples is comparable to having access to all samples, because the samples which

are not critical do not contribute to the global model. This is achieved by having each agent

learn a local mode which detects the critical samples. The central unit receives the critical

samples from each agent and trains a global model.

3.1 The centralized Learner

This section reviews the method in the previous chapter and presents the centralized learner

problem. The classification problem is considered, when a training set is available, made up

of N feature-class pairs of the form (xn, yn) ∈ T . Features xn ∈ X ⊂ Rp are real valued

p-dimensional vectors and classes yn ∈ {−1,+1} are binary. To this end, we seek a method

for finding a function approximation f(x) such that f(xn) coincides with yn to the extent
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possible. This is formally stated by introducing the loss function `(f(x), y) = 1−ε−yf(x), a

class function C and a function complexity measure ρ(f) to define the optimization problem

P = min
f∈C

ρ(f)

s.t.
1

N
`
(
f(xn), yn

)
≤ 0, (xn, yn) ∈ T .

(PIII)

The constraints in (PIII) force the function f to satisfy f(xn) ≥ 1 − ε when yn = +1 and

f(xn) ≤ −(1 − ε) when yn = −1. The class function C and the complexity measure ρ(f)

constrain the variability of f and dictate how it generalizes to unobserved samples x. The

problem (PII) presented in the previous chapter is well suited for these requirements.

To recall the low complexity RKHS representations, let k(x, s;w) be a family of kernel

functions in which x ∈ Rp is a variable, s ∈ Rp is a kernel center and w ∈ R is a kernel

parameter. Further, consider a compact set of possible kernel parameters W ⊂ R, and a

compact set of possible kernel centers S ⊆ Rp. The function class C is defined as

C =

{
f : f(x) =

∫
S×W

α(s, w)k(x, s ; w) dsdw

}
, (3.1)

Then, recall the elastic net measure of complexity from Section 2.2, which supports both

smoothness and sparsity,

ρ(f) =
1

2
‖α‖L2 + γ‖α‖L0 (3.2)

=

∫
S×W

1

2
α2(s, w) + γ I [α(s, w) 6= 0] dsdw,

The low complexity RKHS classification problem is defined as (PIII) with the class function

C given by (3.1) and the function complexity measure given by (3.2). This is a problem that
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can be rewritten as an optimization over the coefficient function,

P = min
α

∫
S×W

1

2
α2(s, w) + γ I [α(s, w) 6= 0] dsdw

s.t.
1

N
`
(
f(xn), yn

)
≤ 0, (xn, yn) ∈ T

f(x) =

∫
S×W

α(s, w)k(x, s ; w) dsdw,

(PC)

The problem (PC) differs from (PIII) in that it replaces the search for the function f by a

search for the function α. The problems are otherwise equivalent – with function class C as

per (3.1) and complexity measure ρ as per (3.2) – in the sense that both attain the same

optimal objective P and we can recover the optimal function f∗ from the optimal coefficient

α∗ by evaluating f(x) according to (3.1).

The constraints in (PC) specify the form of the function f in terms of the coefficient function

α and force the constraints `(f(xn), yn) ≤ 0 to be satisfied for all entries of the training

set. Out of all the coefficient functions that satisfy these constraints, we search for the α∗

with the lowest elastic net cost. This is expected to be a sparse coefficient function. We

are therefore searching for a function f that can be specified by as few kernels as possible

while still passing within ε of all the elements of the training set. When we search for kernels

to add to the representation, the search is over kernel centers s ∈ S and kernel parameters

w ∈ W. The latter allows, e.g., a search over kernel widths – see Peifer et al. (2020) for

details.

Remark 2. Problem (PC) fits the classification function by using constraints, as opposed to

a regularized minimization problem. The advantage of using a constraint problem is two-fold:

it allows for the problem to be solved in the dual domain, and the solution of the dual gives

us information about the critical samples to our learning problem. This concept is explained

in more detail in sections 3.4 and 3.3.

Remark 3. The function class C is not an RKHS but is closely related. For a fixed kernel

parameter w in (3.1) the expression f(x) =
∫
S α(s, w)k(x, s;w)ds is an integral representa-
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tion of the RKHS generated by the kernel k(x, s;w) Peifer et al. (2018, 2019, 2020). The

use of this integral representation as opposed to the more traditional series representation

f(x) =
∑J

j=1 ajk(x, sj ;w) may seem an unnecessary complication, but it is actually a crucial

simplification. The search for a sparse set of kernels is intractable with a series representa-

tion. But the problem in (PC) is tractable in the dual domain. As a byproduct of this more

tractable formulation, we can also incorporate the kernel parameter w to the search space

and still guarantee tractability. This results in a problem that not only optimizes kernel

placement but also kernel width and can even accommodate representations in unions of

RKHS, i.e., representations having a mix of kernels of different widths Peifer et al. (2020).

3.2 Federated Learning

In the previous section, the centralized learning setting was reviewed. In this section, learn-

ing in a federated setting is considered, in which a centralized method for obtaining low

complexity reproducing kernel Hilbert space data is collected by a group of agents over the

space X . The federation of agents must work together to find a global model over X . To

this end, the federation adopts the strategy of each agent learning a local model using the

data it collects. From that model, the agent detects the critical samples to the classification

problem. The agent sends only the critical samples to the central server, which learns the

global model. Particularly, given a set of Ni feature-class pairs of the form (xn, yn) ∈ Ti,

agent Ai solves the following problem

Pi = min
α∈L2

∫
S×W

1

2
α2(s, w) + γ I [α(s, w) 6= 0] dsdw

s.t.
1

Ni
`(f(xn), yn) ≤ 0, (xn, yn) ∈ Ti

f(x) =

∫
S×W

α(s, w)k(x, s ; w) dsdw.

(Pi)

In order to find the set of critical feature-class pairs T̃i ⊂ Ti and a model parameter to

send to the central server. The central unit learns the problem using T̃ = ∪iT̃i such that

|T | � |T̃ |, where T = ∪iTi. Typically, each agent Ai is not able to sample X entirely, but

rather observes a subspace Xi, however, the subspaces, observed by the agents, cover the
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space X , such that ∪iXi = X .

Notice, problems (PC) and (Pi) are minimizing the same objective function, however, (PC)

has additional constraints due to a larger sample set. Problem (Pi) is limited to only samples

from a specific subspace. Although this might seem like an initial disadvantage, solving a

smaller problem can improve computational speed, whereas, solving (PC) requires a lot of

information sharing from each agent which can become impractical. Moreover, by solving the

dual problem of (Pi), we can obtain the critical samples of the classification problem. The

central server uses the critical samples from the agents to find the global model. Formally,

the central server solves the problem

PF = min
α

∫
S×W

1

2
α2(s, w) + γ I [α(s, w) 6= 0] dsdw

s.t.
1

NF
`(f(xn), yn) ≤ 0, (xn, yn) ∈ T̃

f(x) =

∫
S×W

α(s, w)k(x, s ; w) dsdw,

(PF)

where NF is the number of critical samples in T̃ . Notice, problems (PC) and (PF) solve the

same problem, however (PF) solves it for a restricted data set. The goal is to find a subset

X̃ such that the solution of (PF) is close to that of (PC). The simplest solution is to make

T̃ = T , by pooling the data collected from all the agents and have the central server compute

the global model. However, this solution involves a large amount of data to be sent, which

could surpass the capabilities of the network.

3.3 Convergence of federated problem

In the previous section, we have presented a federated learning problem and proposed a

method for each agent to solve a local problem and transmit a set of critical samples to a

central server, which in turn produces a global model. In this section, we argue that solving

(PF) becomes equivalent to solving (PC) as the training sample size grows. First, let’s

examine the solution to the centralized problem (PC).
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3.3.1 Learning the Centralized Problem

Similarly to the agent problem (Pi) and the server problem (PF), the centralized problem

(PC) is solved in the dual domain. In order to derive the dual problem, we first start by

introducing the Lagrange multiplier λ ∈ RN+ , associated with the inequality constraints.

Formally, we introduce the Lagrangian

L(α,λ) =
1

2
‖α‖2L2

+ γ‖α‖L0

+
1

N

N∑
n=1

λn`(f(xn), yn).

(3.3)

Similarly to the federated problem, the central learner obtains the dual function and the

dual problem. The dual function is concave, and therefore the dual problem is solved using

gradient descent. The gradients are computed by evaluating the constraints at the variable

αd, which minimizes the Lagrangian αd(s, w) = argmin
α∈L2

L(α,λ). The variable αd which

minimizes the Lagrangian (3.3) has the following expression

αd(s, w;λ) =


ᾱd(s, w;λ) (ᾱd(s, w;λ))2 > 2γ

0 otherwise,

(3.4)

for which,

ᾱd(s, w;λ) =
1

N

∑
n

λi,nynk(s,xn, w). (3.5)

Using (3.4), we can form a closed form expression for the dual function as the quadratic

function, given the measure m(X ,W) =
∫
I[αl(s, w) 6= 0]ds dw

g(λ) =− 0.5λ>Qλ+
1

N
λ>(1− ε) +m(X ,W), (3.6)

with Q being a positive definite matrix for which

Qnm =

∫
C

1

N2
ynymk(xn, s;w)k(xm, s;w)dsdw, (3.7)
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where C = {(s, w) | αd(s, w) 6= 0}.

3.3.2 Critical Samples

In section 3.4, we have claimed that the critical samples are determined by the values of

the optimal dual variable. Particularly, given a set of samples, only the sample points which

contribute to the classification model are considered critical. The following proposition shows

that these critical points are not just particular to this training set, but to the classification

problem in general.

Proposition 3. Let α∗ be the optimal variable of (PC) trained on data set X, α′∗ be the opti-

mal variable of (PC) trained on data set X′ = X\{xn} and ŷn =
∫
α′∗(s, w)k(xn, s, w)dsdw.

The dual optimal variable associated with the nth sample, λ∗n = 0 if and only if 1−ε−ynŷn < 0

and the solutions to the data X and the data X′ are equal.

Proof. See Appendix A.3 �

This proposition implies that if the federated learner (PF) and the centralized learner (PC)

agree on the critical samples, then solving the two problems is equivalent. Furthermore,

it is sufficient for the agent learner (Pi) to agree with the centralized learner despite only

sampling from a subspace of X . Next we will argue that this is in fact the case as the sample

size grows.

We consider the case in which the subspaces sampled by the agents are not distinct, i.e., there

exists at least one pair i, j such that Xi ∩ Xj 6= ∅. If all subspaces are disjoint, the problem

becomes trivial. In this case, there is no need to form a global model because the agents do

not gain useful information from other agents. Given a new sample, its classification can be

done by simply finding the space to which it belongs and using the model of the respective

agent. It should be noted that the problem of identifying the subspace is not trivial, yet in

a federated learning setting, a new sample generally, belongs to the subspace of the agent

that has collected it. Similarly, in the case in which agents sample over the same space, i.e.,

Xi = Xj , for all i, j the need for sharing data across agents disappears. As the agents collect
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more data their models will converge. We are, therefore, interested in the case for which

there exist at least one pair of agents Ai, Aj such that Xi ∩ Xj 6= ∅ and Xi 6= Xj . We make

the following hypothesis about the kernels centered at points belonging exclusively to one

subspace

Hypothesis 1. The overlap between any two partitions is large enough such that there exists

a small ξ > 0 such that for all xi ∈ {Xi \ Xj} and s ∈ {Xj \ Xi} and w ∈ W

k(xi, s;w) ≤ ξ. (3.8)

This hypothesis implies that samples which uniquely belong to a subspace do not affect the

models of other subspaces in the non-overlapping regions. Indeed, recall that the function

α(s, w) is a weighted sum of the kernels centered at the sample points, therefore a point

located in a non overlapping part of a subspace the weighted sum of the kernels outside that

partition will be small and not contribute significantly to the value of α. Additionally, we

make the following assumption about the choice of γ

Hypothesis 2. Let C = {(s, w) | α∗(s, w) 6= 0} be the support of the optimal value α∗(s, w)

of (Pi). We choose the variable γ that leads to C being rich enough such that there exists a

µ > 0 for which

Q =

∫
C

q(s, w)q>(s, w)ds dw � µI (3.9)

where the variable µ represents the smallest eigenvalue of the matrix Q, and qn(s, w) =

(1/N)ynk(xn, s;w).

Notice that this hypothesis relies on the choice of γ. In theory, the choice of γ does not cause

the measure of C to go to zero. In practice, however, the choice of γ becomes more important

(see Remark 4). Furthermore, the hypothesis suggests that the matrix Q is positive definite.

As a consequence, the dual function is strongly concave near the optimal λ∗ and we can

formulate the following lemma.
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Lemma 2. The dual function g(λ) for the problem in (Pi) is strongly concave near the

optimal value, λ∗. The strong concavity parameter µ as defined in Hypothesis 2 such that

−g(λ) ≥ −g(λ∗)−∇g(λ∗)T (λ− λ∗) +
µ

2
‖λ− λ∗‖2 (3.10)

and µ corresponds to the smallest eigenvalue of Q.

Proof. First recall the definition of the dual function:

g(λ) = −1

2
λ>Qλ+ λ>(1− ε) +m(X ,W) (3.11)

There must exist a variable δ > 0 such that

gi(λ
∗ + δ) < gi(λ

∗) (3.12)

with δ close to zero. We will show that there exists a µ > 0 such that

g(λ∗)− g(λ∗ + δ) +∇g(λ∗)>(δ) ≥ µ

2
‖δ‖2 (3.13)

We can calculate the value on the right side of the inequality, we assume that the support of

the matrix Q is approximately equal for λ∗ and λ∗ + δ.

g(λ∗)− g(λ∗ + δ) + g(λ∗)>(δ) =

− 1

2

∑
i

∑
j

λ∗iλ
∗
jQij +

∑
i

λ∗i (1− εi) +m(S,W)

+
1

2

∑
i

∑
j

λ∗iλ
∗
jQij +

∑
i

∑
j

λ∗i δjQij +
1

2

∑
i

∑
j

δiδjQij

−
∑
i

λ∗i (1− εi)−
∑
i

δi(1− εi)−m(S,W)

−
∑
i

∑
j

λ∗i δjQij +
∑
i

δi(1− εi) =

1

2
δ>
∫
C

q(s, w)q>(s, w)dsdw δ ≥ µ

2
‖δ‖2

(3.14)

55



This proves that the dual function is strongly concave near the optimal value. �

Notice that as Hypothesis 2 and Lemma 2 apply not only to problem (Pi), they also apply

to problems (PC) and (PF). Given two hypotheses, we can state that the solutions of (PF)

and (PC) converge to each other.

Theorem 2. Let α∗C and α∗F be the solution to the problem (PC) and (PF) respectively.

Given that hypotheses 1 and 2 hold, the two solutions converge, as the sample size grows

lim
N→∞

|α∗F (s, w)− α∗C(s, w)| → 0. (3.15)

Proof. See Appendix A.4. �

In order to understand the proof of this theorem, it is necessary to examine the two cases:

the case of agents sampling the same space and the case of agents sampling disjoint spaces.

Consider the case in which the two agents are observing completely separate spaces. We

assume the two spaces are far apart such that the kernel value for two points in the separate

spaces takes on a small value.

Hypothesis 3. Let Xi and Xj be two subspaces of X which do not overlap (Xi ∩ Xj = ∅)

and w ∈ W. Then for ξ from Hypothesis 1 the following holds

k(xi,xj ;w) < ξ, for allw ∈ W,xi ∈ Xi,xj ∈ Xj . (3.16)

Notice that this hypothesis is similar to Hypothesis 1 and implies that samples from one

subspace do not affect the solution of another subspace. From this assumption, we can

formulate the following lemma about the global dual function with respect to the local dual

functions.

Lemma 3. Given a group of agents which sample separate spaces as dictated by hypothesis
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3, let g be the global dual function and gi be the agent dual function for agent i. Then

|g(λ)−
∑
i

gi(λi)| ≤
2ξmL

N2
, (3.17)

for any λ = N [λ>1 /N1, . . . ,λ
>
K/NK ]>, where L = N2

N1,N2

∑
i

∑
j 6=i λ

T
i Jλj and m is the mea-

sure of the support of the function αd. J is an all-ones matrix.

Proof. See Appendix A.5 �

Notice that the values of the dual variables are weighted by the number of samples which

means λ/N = [λ>1 /N1, . . . ,λ
>
K/NK ]>. This causes the primal variables to be at the same

scale despite being a sum of kernels weighted by the number of samples. Therefore, we can

establish the following theorem

Theorem 3. Let α∗C and α∗i be the solution to the problem (PC) and (Pi) respectively. Given

that hypotheses 3 and 2 hold, the two solutions converge, as the sample size grows

|α∗C(s, w)−
∑
i

α∗i (s, w)| ≤ 2
√

2ξmL

N
√
µN

. (3.18)

Proof. See Appendix A.6 �

This theorem establishes the relationship between the primal variables of (Pi) and (PC) over

non-overlapping areas. In the case in which agents observe the same space, we formulate the

following theorem.

Theorem 4. Let α∗i and α∗j be the optimal variables to problem (Pi) solved by agent i and j

respectively. The agents observe samples independently over the same distribution. Further,

let M ≥ ‖f‖2, c be the Berry-Essen theorem constant, ρ = Ex

[
|λ(x)yxk(x, s;w)|3

]
and

σ2 = Ex

[
|λ(x)yxk(x, s;w)|2

]
. Let µ = min(µi, µj) for which µi and µj are the minimum

eigenvalue of Qi and Qj respectively. Then the difference between the solutions computed by
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the two agents has the following bound

|αi(s, w)− αj(s, w)| ≤ 2

(
2

√
M

µN1.5
+

cρ

σ3
√
N

)
, (3.19)

where N = min(Ni, Nj) is the minimum of the two samples sizes.

Proof. See Appendix A.7 �

Because agents sample the same space, as the sample size grows the solutions from two agents

converge. In fact, if the solutions of two agents are reciprocally feasible, then they are equal

(Lemma 4). The centralized learner can be viewed in this case as an agent which collects

more samples, therefore the solution of an agent converges to that of the centralized learner

as well.

Lemma 4. Given two problems as in (Pi) with different sample sets, let P1 and P2 be the

solutions to these problems If the two solutions P1 and P2 are reciprocally feasible, that is if

the optimal variable α∗1 is feasible to the second problem and vice versa then the two solutions

are equal:

P1 = P2. (3.20)

Proof. Let us first notice that the objective function is independent of sample size and is

therefore equal for both problems let us denote it as

f0(α) =

∫
1

2
α2(s, w) + γI (α(s, w) 6= 0) ds dw. (3.21)

Suppose now that P2 > P1 this implies that there exists an α1 which is feasible in the second

problem such that f0(α1) = P1 < P2, however, since P2 = min
α
f0(α) by definition, it follows

that P2 ≤ P1. This implies that there exists an α2 which is feasible in the first problem, such

that f0(α2) = P2 < P1. However, P1 is by definition optimal, and therefore it must be that
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Algorithm 2 Federated classification algorithm

for i
agent i samples the subspace Xi
agent i solves (Pi) and calculate optimal λ∗i
agent i sends critical samples for which λ∗i,n > 0

end
central unit solves (PF)

P1 = P2.

�

Remark 4. In Hypothesis 2 we make an assumption about the parameter γ being chosen

such that the space C is rich enough to assure strong concavity of the dual problem in Lemma

4. The strong concavity is guaranteed by the optimal α∗ having a non-zero support measure.

In theory, as long as the zero function, f(x) = 0 is not feasible because of the constraints,

alpha is guaranteed to have non-zero support. Increasing parameter γ shrinks the support of

α and consequently reduces the value of the strong concavity parameter µ. Although, the dual

problem still has strong concavity, the lower value of µ makes it more difficult to solve and

therefore the dual problem algorithm requires more iterations to converge.

3.4 Learning the Federated Classification Problem

The federated classification problem requires the agents to solve their local problem (Pi)

in order to find a local model and detect the critical samples. The critical samples to the

classification problem are sent to the server. The server then forms the global model by

solving (PF). The federated classification algorithm is summarized in Algorithm 2. The

next section describes the algorithm for solving the agent problem.

3.4.1 The Agent Problem

The agent solves problem (Pi) in the dual domain. In order to derive the dual problem,

agent i defines the Lagrange multiplier λi ∈ RNi+ , associated with the inequality constraints.
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Formally, the Lagrangian is characterized as

Li(α,λi) =

∫
S×W

1

2
α2(s, w) + γ I [α(s, w) 6= 0] dsdw

+
1

Ni

Ni∑
n

λi,n`(f(xi,n), yi,n).

(3.22)

Each element of the Lagrangian multiplier is associated with the loss over a single sample

point. The Lagrangian is less than or equal to the primal function for any feasible α. There-

fore, by minimizing the Lagrangian over α each agent obtains a lower bound for the primal

problem. This is called the dual function

gi(λi) = min
α∈L2

Li(α,λi). (3.23)

The dual function is the minimum over a set of affine functions of λ and is therefore concave

Boyd and Vandenberghe (2004). Additionally, it is a lower bound to the primal problem for

any feasible function α which meets the constraints. Indeed, the dual function is the sum

of the primal function and the constraints weighted by the Lagrangian multiplier. In order

for a function α to be feasible, the constraints must be non-positive and therefore the dual

function can be at most equal to the primal function. Maximizing the dual function results

in the best lower bound. Moreover, when strong duality holds, the maximum value of the

dual function is equal to the solution of the primal problem. This leads to the formulation

of the dual problem

maximize
λi≥0

gi(λi). (Di)

Solving the dual problem provides a solution for the primal problem Peifer et al. (2020).

Because the dual function is concave, the dual problem can be solved using gradient descent

Boyd and Vandenberghe (2004). The gradients can be obtained by evaluating the constraints

at αd, which minimizes the Lagrangian

α?i (s, w,λi) = argmin
α∈L2

Li(α,λi). (3.24)
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In order to find α?i we must minimize the function Lα, the term of the Lagrangian which

depends on α

Lα(α,λi) =

∫ [
1

2
α2(s, w) + γ I[α(s, w) 6= 0]

− 1

Ni

Ni∑
n

λi,nynα(s, w)k(xn, s;w)

]
dsdw.

(3.25)

The function in (3.25) can be minimized with respect to α for each variable s and w separately

Peifer et al. (2020). Therefore, the minimization of Lα reduces to the minimization of

a quadratic function with a discontinuity at α = 0 and hence, we obtain a closed-form

thresholding solution of αd(s, w)

α?i (s, w;λ) =


ᾱi(s, w;λ) (ᾱi(s, w;λ))2 > 2γ

0 otherwise,

(3.26)

for which

ᾱi(s, w;λ) =
1

Ni

∑
n

λi,nynk(s,xn, w). (3.27)

The gradient has the following expression

dλi,n = ∇λi,ngi(λi) =
1

Ni
`(fd(xn), yn), (3.28)

where f?i is given by:

f?i =

∫
X×W

α?i (s, w)k(x, s;w) dsdw. (3.29)

Each agent starts by initializing the dual variable λi ∈ RNi+ to a positive random value. The

gradient of the dual function provides the direction of descent, however, it does not provide

any information on how close we are to the maximum, nor does it provide any information

about how long to move along that direction. Therefore, a small step size η to move along

the gradient such that the direction of descent is evaluated often. The variable is updated in
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the direction of the gradient as follows

λi(t+ 1) = [λi(t) + η d(λi)]+ , (3.30)

where [m]+ = max(0,m). The dual problem is constrained to only have non-negative values

for λi and therefore the updates are restricted.

Once the gradient descent algorithm has converged, the critical samples are identified by

examining the optimal dual variable λ∗i . Notice that the Lagrangian is the primal function

to which the constraints are added weighted by the Lagrange multiplier λi. For feasible α, the

constraints are always non-positive. Moreover, at the optimal dual variable, the constraints

multiplied by the optimal dual variable have to be zero for strong duality to hold, which

means that either the constraints or the dual variable are equal to zero. This is known as

complementary slackness Boyd and Vandenberghe (2004). Hence, the dual variable is an

indicator that certain constraints are difficult to satisfy:


1− ε− ynŷn = 0, λ > 0

1− ε− ynŷn < 0, λ = 0.

(3.31)

The solution to the primal problem (Pi), α∗i (s, w), can be found according to the following

proposition

Proposition 4. Let λ∗i be the solution of (Di), then the solution to problem (Pi) is given

by α?i (·, ·,λ
∗
i ) from (3.26).

A formal proof can be found in Peifer et al. (2020). Proposition 4 suggests that the solution

to problem (Pi), α∗i (s, w) is a weighted sum of kernels centered at the sample points. Samples,

for which the dual variable λ∗i,n = 0, do not contribute to the function α∗i and therefore are

not considered critical to the problem.
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Algorithm 3 Agent algorithm

Collects data over subspace Xi
Initialize λi(0) > 0 randomly
for t = 0, . . . , T

Compute αi(s, w,λi)

α?i (s, w,λi) =

{
ᾱi(s, w,λi), |ᾱi(s, w,λi)| >

√
2γ

0, otherwise

for ᾱi(s, w;λi) = 1
Ni

∑
n λi,nynk(s,xn, w)

evaluate the gradient

dλn(t) =
1

Ni
`(fd(xn), yn)

for which

fd(xn) =

∫
X×W

αd(s, w)k(xn, s;w)dsdw

Update local parameter

λi,n(t+ 1) = [λi,n(t) + η dλn(t)]+

end
Let the local optimal dual variable be λ?i = λi(t+ 1)
Determine critical sample pairs: T̃i = {(xn, yn) | λ∗n > 0}
Send T̃i and λ̃

∗
i = {λ∗n | λ∗n > 0} to the server

3.4.2 The Server Problem

The server receives the critical sample pairs T̃i from each agent along with the optimal dual

variables λ̃
∗
i and forms the training its set T̃ = ∪iT̃i which is used to solve problem (PF) in

the dual domain. The Lagrange multiplier λF ∈ RNF+ is defined in order to formulate the

Lagrangian of (PF)

LF (α,λF ) =

∫
S×W

1

2
α2(s, w) + I [α(s, w) 6= 0] dsdw

+
1

NF

NF∑
n

λF,n`(f(xn), yn).

(3.32)

Similarly to (3.23) and (Di) the dual function gF (λF ) and the corresponding dual problem

are established. The server solves its dual problem using gradient descent. The gradients are
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Algorithm 4 Server algorithm

Receive T̃i from all agents i = 1, . . . ,K
Initialize λF (0) = [λ̃1, . . . , λ̃K ]
for t = 0, . . . , TF

Compute α?F (s, w)

α?F (s, w,λF ) =

{
ᾱF (s, w,λF ), |ᾱF (s, w,λF )| >

√
2γ

0, otherwise

for ᾱF (s, w;λF ) = 1
NF

∑
n λF,nynk(s,xn, w)

evaluate the gradient

dλF,n(t) =
1

NF
`(f?(xn), yn)

for which

f?(xn) =

∫
X×W

α?F (s, w)k(xn, s;w)dsdw

Update local parameter

λF,n(t+ 1) = [λF,n(t) + η dλF ,n(t)]+

end
Compute global α∗(s, w) = α?(s, w,λF (TF + 1))
Send global model to the agents

computed by evaluating the constraints of (PF) at α?F = argminα LF (α,λF )

dλF ,n = ∇λngF (λF ) =
1

NF
`(f?(xn), yn), (3.33)

where f? is given by:

f? =

∫
X×W

α?F (s, w)k(x, s;w) dsdw. (3.34)

The server initializes the dual variable λF (0) =
[
λ̃
∗
1, . . . λ̃K

]
. Then for each iteration t,

α?F (s, w,λF (t)) is computed and used to find the gradient according to (3.33). A small step

size ηF is chosen to move along the gradient and update the variables

λF (t+ 1) = [λF (t) + ηF dλF (t)]+ , (3.35)

where [m]+ = max(0,m).
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3.5 Applications

In the previous section, we have proposed a federated learning model which (i) reduces the

necessary communication complexity and (ii) converges to the omniscient unit solution as

the sample size grows. In this section, we first show through a simulated signal that the

solution of our (PF) converges to that of (PC) with as the sample size grows. Then, using

an activity identification task, we demonstrate that our algorithm can significantly reduce

the communication cost to the central unit without compromising the performance of the

classification. For the classification task, we use the family of RKHSs with Gaussian kernels

k(x,x′) = exp

{
−‖x− x′‖2

2w2

}
. (3.36)

The width of the kernel is directly proportional to the hyper-parameter w.

To start, the effect of sample size on the generalization accuracy is examined on a simu-

lated data set. To this end, we simulate a uniformly distributed signal and define the class

membership for each sample as

y =


1, (x′ − ci)

>A(x′ − ci) ≤ ri for any i

−1 otherwise,

(3.37)

for which r1 = 9, r2 = 30, c1 = [3, 0]>, c2 = [−10, 6]> and A = [1, 0; 0, 0.25]. The space X is

divided into 9 overlapping subspaces. Each agent collects data from only one subspace and

forms its local model. There were 9 subspaces from which the agents collect the data. The

setup of subspaces and class labels can be seen in Figure 12. After samples are assigned to

a class, Gaussian noise is added to the samples x = x′ + ξ, where ξ ∈ N (0, 0.2) in order to

create noisy samples. A separate testing set of 1000 samples is created for the evaluation of

the learner.

The performance of the federated learner (PF) is compared to that of the centralized learner

(PC). Both methods used γ = 25, ε = 10−2 and a learning rate of η = 0.1. Figure 13 com-
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Figure 12: The simulated space X . The subspaces sampled by each agent are colored either
purple or green with the gray spaces being sampled by multiple agents. The class membership
is determined by the brightness: the bright areas belong to class +1, and the darker areas
belong to class -1.

pares the generalization accuracy of the two learners over training sample sizes ranging from

90 to 900. The average generalization accuracy was calculated over 100 repetitions. When

the sample size is below 400, the federated classification learner has a better generalization

accuracy. This is most likely due to the agents being able to learn a simpler problem despite

having a small training set. As the sample size grows, the two solutions converge, which is

reflected by the generalization accuracy converging.

3.5.1 Task Classification

We further evaluate our methods using biometric data Weiss et al. (2019) containing mea-

surements from the accelerometer sensor from a smartphone. The study contained measure-

ments from participants while performing various tasks, such as jogging, walking, writing,

and typing.

The smartphone of each participant is considered an agent collecting data over its distri-

bution. The agents collect data over different spaces since people don’t perform the same

activity the same way, e.g., some people walk faster, some people type slower, some write

cursive, etc. Similarly, since all participants perform the same task, the spaces from which
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Figure 13: The average accuracy taken over 100 repetitions of randomized sampling of the
federated learner (PF) and that of the centralized learner (PC) as a function of sample size.

the agents are collecting the data should not be distinct.

We examine the effect of the number of agents on the performance of our federated learner

for the classification of running versus jogging. Agents are selected randomly from our

training set and the data from each agent is randomly split into a training and a testing set.

The time series from the phone’s accelerometer is divided into 5 second intervals, with each

interval considered a sample. The average value is taken such that each sample contains

three features. Then we train our federated learner and the centralized learner and compare

the accuracy on the test set. Both learners use the following parameters: γ = 100, η = 0.1,

T = 1000 and ε = 0.5. This procedure was repeated 100 times in order to obtain average

performance. The federated learner (PF) and the centralized learner (PC) have comparable

average accuracy. When the number of agents is increased to 51 agents the average accuracy

of the federated learner is 77.35% and the average accuracy of the centralized learner is

75.29%.

The effect of the number of agents is evaluated on a second task: typing and writing. The

learners use the following parameters : γ = 150, η = 0.1, T = 500 and ε = 0.5. In this

case, the average accuracy decreases as the number of agents increases for both the federated

learner and the centralized learner. The performance of the learners could potentially be
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Figure 14: The performance of the federated learner and the centralized learner as a function
of the number of agents. The two tasks were running and walking

improved by increasing the parameter ε for a larger number of agents.

Next, we examine the effect of the sparsity parameter γ on the performance of the learners.

Data from 10 participants is used to distinguish between the activities of walking and jogging.

The regularizing parameter γ which controls the complexity of the representation was varied

to observe the effects on three metrics: accuracy of classification, the cost of communication,

and the cost of the representation. The accuracy is measured as the percentage of correctly

classified tasks. The communication cost is measured as the average number of samples

that need to be transmitted over the channel. The representation cost is determined by the

number of kernels used in the resulting global model.

The features are extracted from averaging over 5 second intervals. The data is randomly

split to create a training set and a test set. The accuracy is evaluated on the test set. The

parameters used by both agents are: η = 0.1, T = 500 and ε = 0.5. The federated learner

and the centralized learner are trained over 100 random splits and the resulting accuracy,

representation cost, and communication cost is averaged over those repetitions. The average

accuracy does not change for either learner with respect to the sparsity parameter, and

both learners have similar performance, Figure 16 (a). This is expected since the algorithm

can produce representations of varying complexity without sacrificing performance. The
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Figure 15: The performance of the federated learner and the centralized learner as a function
of the number of agents.

average representation cost of the global model is inversely proportional to the sparsity

parameter. Both learners achieve similar representation costs as can be seen in Figure 16

(b). The communication cost of the federated learner is directly proportional to the sparsity

parameter. This is expected since low complexity representations for α(s, w) require more

intricate kernel functions and therefore more samples. Therefore, there exists a trade-off

between the complexity of the representation of the global model and the communication

cost of sending data over the network. If sparsity of the global model is not a concern, the

federated learner can achieve a communication cost that is 40% of the communication cost

of the centralized learner (Figure 16 (c)).

We further validated our method by examining the problem of classification of writing and

typing with data acquired from the phone accelerometer Weiss et al. (2019). The features

are obtained by averaging over a 5 second time window. The performance of our federated

learner was compared to that of the centralized learner on the three metrics: accuracy,

communication cost, and representation cost. The data from the agents was split randomly

using 100 repetitions. The parameters used by both agents are: η = 0.1, T = 500 and

ε = 0.5. The sparsity parameter γ was varied between 0 and 240.

The federated learner (PF) and the centralized learner (PC) have similar accuracy, and their
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Figure 16: Classification of walking versus running using the federated learner and the cen-
tralized learner. (a) The accuracy of the federated classification learner and the centralized
learner as a function of the sparsity parameter. (b) The representation cost of both learners
as a function of the sparsity parameter. (c) The communication cost of transmitting data
to the central unit for the federated learner and the centralized learner as a function of the
sparsity parameter.

performance is not affected by the sparsity parameter. This implies that the functions needed

to represent the class difference are sufficiently sparse. The sparsity parameter controls the

complexity of the representation which can be seen in the representation cost (Figure 17,
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Figure 17: Classification of writing versus typing using the federated learner and the cen-
tralized learner. (a) The accuracy of the federated classification learner and the centralized
learner as a function of the sparsity parameter. (b) The representation cost of both learners
as a function of the sparsity parameter. (c) The communication cost of transmitting data
to the central unit for the federated learner and the centralized learner as a function of the
sparsity parameter.

(b)). Both learners achieve similar representation costs. The advantage of the federated

learner comes from reducing the communication cost Figure 17 (c). When sparsity is not

required, the federated learner achieves a reduction of 64% in communication cost.
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CHAPTER 4

Resilient Learning for Balancing Fit and Complexity

In the previous chapters, the focus has been on changing the representation in order to min-

imize complexity without affecting the fit. This chapter explores the problem of improving

the fit in a resilient manner. Although there are advantages to encoding the fit objective in

the constraints as shown in the previous chapters, this can lead to new challenges. As the

number of constraints increases, it becomes increasingly more difficult to find specifications

without causing the problem to become infeasible. Because there is interaction between

constraints, it is difficult to select which particular constraint to relax.

A simple solution is to consider the empirical risk as a single constraint, however, the em-

pirical risk problem works under the assumption that the samples available for training are

taken from the same distribution as the data used for prediction. However, the sampling of

the data may not reflect the true distribution, but be affected by biases (ex. gender bias,

racial bias) in the training data Kodiyan (2019); Datta et al. (2015); Kay et al. (2015) or

adversarial examples Lowd and Meek (2005); Gu et al. (2019); Shen and Sanghavi (2019).

For example, a hiring tool only has access to the current employees, but is used to evaluate

potential candidates. In a profession with a history of having a higher percentage of employ-

ees from a particular group, a hiring tool is likely to favor that particular group, despite the

candidate pool being more diverse Datta et al. (2015).

In this work, the issue of constraint setting is addressed through resilient learning. We

provide properties of the resilient learning formulation and propose to relax each constraint

until the marginal cost of increasing the constraint becomes equal to the marginal complexity

measure.
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4.1 Resilient Statistical Learning

Consider data pairs (x, y) where x ∈ X ⊂ Rd is an input feature and y ∈ Y ⊂ R is

the corresponding output. Pairs (x, y) can be sampled according to a set of m + q + 1

distributions Di. Our goal is to learn a function φ : X → Z ∈ R that can be used to produce

estimates φ(x) of outputs y. Different from classical (unconstrained) learning, we have a

set of m + q + 1 convex performance functions `0 : Z × Y → R that evaluate the fitness of

estimates produced by φ(x) relative to outputs y. We then define the constrained statistical

learning (CSL) problem as the program

P = min
φ

E(x,y)∼D0

[
`0(φ(x), y)

]
,

s.t. E(x,y)∼Di

[
`i(φ(x), y)

]
≤ 0, i = 1, . . . ,m,

`i(φ(x), y) ≤ 0, Di − a.e., i = m+ 1, . . . ,m+ q.

(P-CSL)

Setting aside the constraints in (P-CSL); namely, if we make m = q = 0, we recover

the classical unconstrained statistical learning problem in which we seek the function φ

that best fits the outputs y as dictated by the loss function `0. The first m constraints

E(x,y)∼Di [`i(φ(x), y)] ≤ 0, with i = 1, . . . ,m, represent a set of statistical losses that con-

strain the function φ. The remaining q constraints, with i = m+ 1, . . . ,m+ q, are pointwise

as we require `i(φ(x), y) ≤ 0 for almost all pairs (x, y) drawn according to the probability

distribution Di. We remark that the probability distributions Di can be dense, implying

that the number of constraints in (P-CSL) can be infinite. Problem (P-RLX) is introduced

in Chamon and Ribeiro (2020) and arises in fair Benesty et al. (2008); Agarwal et al. (2018);

Donini et al. (2018); Kearns et al. (2018); Zafar et al. (2019); Cotter et al. (2019) robust

Madry et al. (2017); Sinha et al. (2017); Zhang et al. (2019) and safe Garcıa and Fernández

(2015); Achiam et al. (2017); Paternain et al. (2019) learning among many other examples.

An important challenge in formulating meaningful (P-CSL) problems is the specification of

constraints that make the problem feasible. This is an important distinction with respect

to unconstrained learning. The optimal function φ in the latter case always exists. In
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(P-CSL) it may be that no function φ satisfies the given requirements. In practice, landing

on satisfiable requirements may necessitate the relaxation of some constraints relative to

their initial specification. Then, in lieu of (P-CSL) we settle for the relaxed optimization

problem

P(u) = min
φ

E(x,y)∼D0

[
`0(φ(x), y)

]
,

s.t. E(x,y)∼Di

[
`i(φ(x), y)

]
≤ ui, i = 1, . . . ,m,

`i(φ(x), y) ≤ ui(x), Di − a.e., i = m+ 1, . . . ,m+ q.

(P-RLX)

In (P-RLX) the statistical loss constraints are relaxed to E(x,y)∼Di [`i(φ(x), y)] ≤ ui for some

nonnegative ui ≥ 0 and the pointwise constraints are relaxed to `i(φ(x), y) ≤ ui(x) for some

Di-square-measurable function taking nonnegative values ui(x) ≥ 0. When we do this, the

optimal cost P changes to P(u), where the variable u signifies all of the individual constraint

relaxations ui and ui(x). For future reference, we denote as φ∗(x; u) the function that solves

(P-RLX).

The function P(u) is known as the perturbation function of (P-CSL) as it describes the effect

on the optimal primal value of perturbing the constraints. It is ready to verify that P(u)

is a decreasing function of its argument, in the sense that for componentwise comparable

arguments u1 � u2 we have P(u1) ≥ P(u2). It is also ready to verify that P(u) is a convex

function of its argument. This latter fact permits definition of a global Fréchet subdifferential

as we formulate next.

Definition 4. Given the convex perturbation function P(u), we say that DP(u) is a Fréchet

subdifferential of P(u) if for all v it holds

P(v) ≥ P(u) +
〈
DP(u),v − u

〉
, (4.1)

where 〈DP(u),v−u〉 =
∑m

i=1 λi(vi−ui)+
∑m+q

i=m+1 EDi [λi(x)(vi(x)−ui(x)] denotes the inner

product of DP(u) and v − u.
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If the perturbation function is Fréchet differentiable at u, then, the Fréchet derivative is

a Fréchet subdifferential. In this case, the subdifferential is unique save for a set of zero

measure. In general, there may be points u at which the perturbation function is not Fréchet

differentiable. At these points, the Fréchet subdifferential is not unique.

For sufficiently large relaxations u, Problem (P-RLX) is feasible under mild conditions. The

larger the relaxation, however, the less impact the constraints have on the optimal function

φ∗(x; u). Thus, the point at issue is coming up with reasonable definitions of relaxations

that are sufficiently large but not too large. The insight we adopt in this work is to equate

the marginal cost of the relaxation with the marginal cost of its effect on the optimal cost,

as we formally define next.

Definition 5. Let h(u) be a Fréchet differentiable convex nondecreasing function. The

resilient learning problem is the relaxed problem (P-RLX) in which the constraint relaxation

u = w satisfies

Dh(w) = −DP(w) (P-RSL)

where Dh(w) is the Fréchet derivative of h(w). We say that w is a resilient relaxation and

that φ∗(x; u) is a corresponding resilient statistical minimizer.

In Definition 5, the function h(u) measures the cost of relaxation u. The equilibrium defined

by (P-RSL) states that we seek a relaxation for which the marginal price of modifying the

constraint equates to its marginal benefit as measured by the change it implies in the optimal

loss.

For a better understanding, consider the case of a problem with a single statistical constraint

and no pointwise constraints – i.e., we make m = 1 and q = 0 in (P-RLX). Further, assume

that we make h(u1) = h(u) = u2/2. We then have that the resilient relaxation u = w is the

one for which

w = −∂P(u)

∂u

∣∣∣∣
u=w

. (4.2)
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Figure 18: Resilient Equilibrium. We relax constraints to points where the marginal cost
of the relaxation equals the marginal cost of its effect on the optimal cost (Definition 5).
Constraints that are infeasible are relaxed to make them feasible (a) and constraints that are
difficult to satisfy (b) are relaxed more than constraints that are easy to satisfy (c).

Figure 18 considers some prototypical situations that depict the intersection between the

marginal cost of relaxation u and the marginal benefit of relaxation −∂P(u)/∂u. In all cases,

the negative derivative diverges at the constraint value u that makes the problem infeasible

and decreases towards ∂P(u)/∂u = 0 as the constraint is relaxed. Case (a) represents a

problem for which the original formulation (P-CSL) is infeasible. The resilient equilibrium

(P-RSL) produces a version of (P-RLX) with a large relaxation. Case (b) illustrates a

problem where (P-CSL) is feasible but close to infeasible. The resilient equilibrium (P-RSL)

produces a version of (P-RLX) with a small relaxation. In case (c) (P-CSL) is feasible,

and the constraint is barely active. The resilient equilibrium (P-RSL) produces a version of

(P-RLX) that is barely different from the original (P-CSL).

In general, we can think of constraints associated with larger partial derivatives ∂P(u)/∂ui

as more difficult to satisfy because their relaxation results in a larger marginal decrease

in the optimal value P(u). The resilient equilibrium in (P-RSL) allows for a larger relax-

ation of these constraints. Conversely, constraints associated with smaller partial derivatives

∂P(u)/∂ui are more difficult to satisfy because their relaxation results in a larger marginal

decrease in the optimal value P(u). The resilient equilibrium in (P-RSL) allows for a larger

relaxation of these constraints.

In Section 4.2 we show that the equilibrium in (P-RSL) exists and introduce equivalent for-

mulations that are important for algorithmic developments. Before that, we present examples

to clarify ideas.
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4.1.1 Resilient Classification

Consider a classification problem where we are given inputs x with associated categories y =

c ∈ C. We want to train a classifier φ(x) that outputs a vector with #(C) probabilities φc(x)

associated to each class c ∈ C. If pairs (x, y) have distribution D the standard formulation

of this problem calls for minimizing a statistical risk to produce the classifier,

φSRM = argmin
φ

ED
[
`0(φ(x), y)

]
. (C-SRM)

The specific choice of loss is not central to the forthcoming discussion but to fix ideas think

of the cross-entropy loss `0(φ(x), y) = −
∑

c∈C I(y = c) log(φc(x)).

A possible constrained formulation of the classification problem in (C-SRM) is to incorporate

pointwise loss constraints as well. For instance, we set a threshold ∆ and require that the

losses of all pairs (x, y) satisfy `0(φ(x), y) ≤ ∆. This leads to the following instantiation of

(P-CSL),

φCSL = argmin
φ

ED
[
`0(φ(x), y)

]
,

s.t. `0(φ(x), y)−∆ ≤ 0, D − a.e.

(C-CSL)

The merit of (C-CSL) is that the loss is required to be small for almost all pairs (x, y).

The constrained formulation gives more weight to unusual observations, as it requires the

classifier to make a correct classification. This is fundamentally different from (C-SRM) in

which all observations are weighted equally. Unusual observations can get washed out in the

average loss. We may say that (C-CSL) is a robust formulation.

The weakness associated with giving more weight to unusual observations is that (C-CSL)

can give too much weight to unusual observations. This is a drawback because some unusual

observations may be outliers that are better off discarded. Another weakness of (C-CSL) is

that feasibility is not guaranteed. For the constraints to have an effect in the classifier ∆ has

to be small. But as we tighten ∆ it is possible – indeed, likely – that there is no classifier φ

that can satisfy the requirement `0(φ(x), y) ≤ ∆ almost everywhere.
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To mitigate these effects we introduce a resilient formulation with h(u) = ED[u2(x)/2]. Since

the Fréchet derivative of this relaxation cost function is Dh(u) = u we obtain the following

instantiation of the resilient learning problem of Definition 5,

φRES = argmin
φ

ED
[
`0(φ(x), y)

]
,

s.t. `0(φ(x), y)−∆ ≤ w(x), D − a.e.,

w = −DP(w).

(C-RES)

In (C-RES), the pointwise constraints in the loss function are relaxed in proportion to their

effect on the optimal cost. The larger the change in the optimal cost P(w) that is effected by

the relaxation of a constraint, the larger the constraint is relaxed. Different from (C-CSL),

the resilient problem in (C-RES) is always feasible. We can always find a classifier (C-RES)

for some relaxation level. We also expect the resilient formulation in (C-RES) to bend the

classifier to adapt to unusual entries but not so much as to (inaccurately) adapt to outliers.

The numerical experiments in Section 4.6 corroborate this intuition.

We say that (C-RES) is a resilient formulation because it adapts to the data distribution.

The unconstrained formulation in (C-SRM) is brittle. It doesn’t respond well to unusual

entries in the distribution. It’s a tree with branches that break easily in a heavy storm.

The constrained formulation in (C-CSL) is robust. It responds well to unusual entries but

it does so at the cost of reducing performance. It’s a tree with stiff branches that resist a

heavy storm. The resilient formulation in (C-CSL) responds adaptively to the constraint

difficulty. The tolerance ∆ is not a hard constraint but a reference. If changing ∆ yields a

large performance payoff, the requirement is relaxed. It’s a tree with pliable branches that

bend with storms.

4.1.2 Assumptions

In forthcoming derivations, we variously make use of the following assumptions.

A.1 (Strongly Convex Objective) There exists a µ > 0 such that for any φ, φ
′ ∈ F , all x ∈ X ,

78



y ∈ R and an α ∈ [0, 1]

`0(αφ(x)+(1−α)φ′, y) ≤ α`0(φ(x), y)+(1−α)`0(φ′(x), y)− α(1− α)µ

2
(φ(x)−φ′(x))2 (4.3)

A.2 (Constraint qualification) There exist a finite relaxation u � ∞ and a function φ for

which all constraints are met with some strictly positive margin c > 0,

EDi
[
`i(φ(x), y)

]
≤ ui − c, i = 1, . . . ,m, (4.4)

`i(φ(x), y) ≤ ui(x) + c, Di − a.e., i = m+ 1, . . . ,m+ q. (4.5)

A.3 (Losses Properties) The losses `i for i = 1 . . . q +m associated with the constraints are

convex, B-bounded and L-Lipschitz.

A.4 (Square Integrable Primal Function) The functional space F is such that any φ ∈ F

∫
X
|φ(x)|2 <∞ (4.6)

A.5 (Square Integrable Perturbation Function) The functional space U is such that any

perturbation function ui ∈ U ∫
Xi
|ui(x)|2 <∞ (4.7)

where Xi = {x | x ∼ Di}.

Assumption 1 restricts objective losses to be strongly convex. This is needed to guarantee

that optimal functions φ∗(u; u) are recoverable from Lagrangian maximizers.

Assumption 2 is a constraint qualification requirement that is needed to guarantee strong

duality. It is satisfied if there exist a function φ that attains finite losses in expectation for

1 ≤ i ≤ m and for almost all x for m+ 1 ≤ i ≤ m+ q.
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4.2 Equivalent Formulations of Resilient Statistical Learning

In regular convex optimization problems optimal Lagrange multipliers are subgradients of

the perturbation function. We will see that this is true of (P-RLX) despite the presence of

a dense set of constraints. To state this formally let λ represent m Lagrange multipliers λi

for 1 ≤ i ≤ m and q Lagrange multiplier functions λi(x) for m + 1 ≤ i ≤ m + q. We define

the Lagrangian associated with (P-RLX) as

L(φ,λ; u) = ED0

[
`0(φ(x), y)

]
(4.8)

+
m∑
i=1

λi

[
EDi

[
`i(φ(x), y)

]
− ui

]
+

m+q∑
i=m+1

EDi

[
λi(x)

[
`(φ(x), y)− ui(x)

]]

Observe that in the first m constraints the perturbations ui and the Lagrange multipliers

λi are outside of the expectation operator. This is because the constraints are on average

statistical losses. In the remaining q constraints the perturbations ui(x) and the Lagrange

multipliers λi(x) are inside the expectation operator. This is because the constraints are

pointwise. They are required to hold for almost all x with respect to the distribution Di.

From the Lagrangian in (4.8) we construct the dual function by minimizing over the primal

variable φ,

g(λ; u) = min
φ
L(φ,λ; u). (4.9)

And we further define the dual optimum by minimizing the dual function over nonnegative

multipliers,

D(u) = max
λ�0

g(λ; u) = g(λ∗(u); u), (D-RLX)

where in the second equality we defined λ∗(u) as a dual variable that maximizes the dual

function for given perturbation u. We remark that λ∗(u) is not necessarily unique. We prove

next that optimal multipliers λ∗(u) are Fréchet subdifferentials of P(u).

Proposition 5. Let λ∗(u) be a dual variable that attains the dual maximum in (D-RLX)

for given u. If assumptions 2,3 and 5 hold, this multiplier is a Fréchet subdifferential of the
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perturbation function of (P-RLX),

λ∗(u) = −DP(u). (4.10)

Proof. The proof follows the same steps used to prove that optimal Lagrange multipliers

are subgradients of the dual function in problems with a finite number of constraints; see,

e.g., (Boyd and Vandenberghe, 2004, Section 5.6.2). We just need to verify that the proof

holds when we consider dense sets of pointwise constraints as in (P-RLX). Consider then

relaxation u. Since the losses are convex and constraint qualifications are met by hypothesis

we have no duality gap. Then, P(u) = D(u) and as per the definition of the dual function in

(4.9) we can write

P(u) = D(u) = g(λ∗; u) = min
φ
L
(
φ,λ∗(u); u

)
≤ L

(
φ,λ∗(u); u

)
(4.11)

where the inequality is true for any function φ. We particularize this inequality to a function

φ∗(·; v) that attains the minimum of (P-RLX) for relaxation v. We can therefore write

P(u) ≤ L
(
φ∗(·; v),λ∗(u); u

)
, (4.12)

We now substitute the definition of the Lagrangian in (4.8) for the right hand side of (4.12)

to write

P(u) ≤ ED0

[
`0(φ∗(x; v), y)

]
(4.13)

+

m∑
i=1

λ∗i (u)

[
EDi

[
`i(φ

∗(x; v), y)
]
− ui

]
+

m+q∑
i=m+1

EDi

[
λ∗i (x; u)

[
`(φ∗(x; v), y)− ui(x)

]]
.

The important property to observe in (4.13) is that we consider perturbation u and corre-

sponding dual variable λ∗(u) while evaluating the Lagrangian at the function φ∗(x; v) that

is primal optimal for perturbation v. This latter fact implies that the following equality and
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inequalities are true

ED0

[
`0(φ∗(x; v), y)

]
= P(v), EDi

[
`i(φ

∗(x; v), y)
]
≤ −vi, `(φ∗(x; v), y) ≤ vi(x). (4.14)

Using the relationships in (4.14) in (4.13) we conclude that

P(u) ≤ P(v) +

m∑
i=1

λ∗i (u)
[
vi − ui

]
+

m+q∑
i=m+1

EDi

[
λ∗i (x; u)

[
vi(x)− ui(x)

]]
. (4.15)

The two sums in the right hand side of (4.15) equal the inner product of multiplier λ∗(u)

with v − u. Implementing this substitution in (4.15) and reordering terms yields

P(v) ≥ P(u)−
〈
λ∗(u),v − u

〉
. (4.16)

Comparing (4.16) with (4.1) we see that λ∗(u) satisfies Definition 4. �

Using proposition (5) we can propose an alternative formulation of (P-RSL). Instead of

equating the Fréchet derivative of h(u) to the negative of the Fréchet subdifferential of the

perturbation function, we equate the Fréchet derivative of h(u) to the optimal Lagrange

multiplier λ∗(u),

Dh(w) = λ∗(w). (P’-RSL)

The advantage of the resilient equilibrium in (P’-RSL) is that Lagrangian multipliers are

accessible in primal-dual optimization algorithms; see Section 4.5. Conceptually, the relative

difficulty of different constraints is given by their marginal effect in the primal objective.

The relaxation of more challenging constraints has more of an effect on the optimal yield.

Proposition 5 states that the different entries of the optimal Lagrange multiplier λ∗(u) are

these relative measures of the difficulty of satisfying different constraints. The resilient

equilibrium in (P’-RSL) relaxes constraints in proportion to the value of the multiplier.

Thus, as is the case of (P-RSL), constraints are relaxed in proportion to their effect on the

optimal yield.
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Two other interesting properties of the resilient equilibrium are obtained by observing that

a relaxation that achieves the resilient equilibrium satisfies

w = argmin
u

P(u) + h(u). (4.17)

This has to be true because the relaxation cost function h(u) and the perturbation function

P(u) are both convex. Thus, a necessary and sufficient condition for w to be a minimizer of

their sum is that there exists a subdifferential with DP(w) + Dh(w) = 0. Thus, any w that

solves (4.17) is such that (P-RSL) holds for some subdifferential DP(w) of the perturbation

function. This property of the resilient equilibrium yields a very simple characterization that

we summarize in the following proposition.

Proposition 6. A perturbation w and a corresponding minimizer φ∗(x; w) of the relaxed

problem (P-RLX) satisfy the resilient equilibrium condition in Definition 5 if and only if

w, φ∗(x; w) = argmin
φ,u

ED0

[
`0(φ(x), y)

]
+ h(u),

s.t. EDi
[
`i(φ(x), y)

]
≤ ui, i = 1, . . . ,m,

`i(φ(x), y) ≤ ui(x), Di − a.e., i = m+ 1, . . . ,m+ q.

(P”-RES)

Proof. In (4.17) the function P(u) is defined as the solution of (P-RLX). The proposition is

true because a nested minimization over variables φ and u is equivalent to a joint minimiza-

tion over φ and u. To confirm that this holds here recall the definition of w as the resilient

relaxation and of φ∗(x; u) as the minimizer of the relaxed problem (P-RLX) – which holds

for all u and w in particular. As we have already shown, w is the solution of (4.17). We

therefore have that for all perturbations u

E(x,y)∼D0

[
`0(φ∗(x; w), y)

]
+ h(w) ≤ E(x,y)∼D0

[
`0(φ∗(x; u), y)

]
+ h(u). (4.18)

Further observe that φ∗(x; u) is the minimizer of the relaxed problem (P-RLX) associated
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with perturbation u. We then have that for any feasible function φ we must have

E(x,y)∼D0

[
`0(φ∗(x; u), y)

]
+ h(u) ≤ E(x,y)∼D0

[
`0(φ(x), y)

]
+ h(u). (4.19)

The bound in (4.19) is true for all φ and u. In particular, it is true for the solution φ∗,u∗

of (P”-RES). Particularizing (4.19) to this pair and combining the resulting inequality with

the bound in (4.18) we conclude that

E(x,y)∼D0

[
`0(φ∗(x; w), y)

]
+ h(w) ≤ E(x,y)∼D0

[
`0(φ∗(x), y)

]
+ h(u∗). (4.20)

On the other hand, given that φ∗,u∗ solve (P”-RES) we have that for all feasible u and φ

E(x,y)∼D0

[
`0(φ∗(x), y)

]
+ h(u∗) ≤ E(x,y)∼D0

[
`0(φ(x), y)

]
+ h(u). (4.21)

In particular, this is true if we make u = w and φ = φ∗(x; w). We can then write,

E(x,y)∼D0

[
`0(φ∗(x), y)

]
+ h(u∗) ≤ E(x,y)∼D0

[
`0(φ∗(x; w), y)

]
+ h(w) (4.22)

For (4.20) and (4.22) to hold we must have that φ∗,u∗ is a solution of (P”-RES) if and only if

w and φ = φ∗(x; w) are a resilient perturbation and a corresponding resilient minimizer �

Proposition 6 states that resilient learning is equivalent to adding a relaxation regularization

to the objective. This is important for the derivation of algorithms (Section 4.5) and for

the analysis of empirical versions of the statistical resilient learning problem (Section 4.3).

Of the three equivalent definitions of resilient learning, (P”-RES) is the simplest. It shows

that resilient relaxations can be found by solving an optimization problem whose complex-

ity is comparable to the complexity of the original constrained statistical learning problem

(P-CSL).
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4.3 Parameterized Resilient Statistical Risk Minimization

In the previous, previous section we introduced the functional statistical risk minimization

problem which is convex, has zero duality and has a clear solution. However, problem

(P-RLX) is infinite dimensional and therefore, cannot be solved efficiently. However, we

can formulate a finite dimensional problem by using parametrization. Let fθ be a function

characterized by the finite parameter θ, such that for any function φ ∈ F there exists a

parameter θ ∈ Θ and a corresponding function fθ which is ε-close.

|φ(x)− fθ(x)| ≤ ε, x ∈ X . (4.23)

Given the approximation, we can solve the finite dimensional problem (PIε),

P ∗ε = min
θ∈Θ

Ex,y∼D0

[
`0(fθ(x), y)

]
+ h(u)

s.t. E(x,y)∼Di

[
`i(fθ(x), y)

]
≤ ui, i = 1, . . . ,m,

`i(fθ(x), y) ≤ ui,Di − a.e., j = m+ 1, . . . , q.

(PIε)

Notice, that (P-RLX) and (PIε) solve the same problem, however (PIε) solves it over a

smaller set of possible parameters θ. Moreover, while the original problem is convex, due to

the parametrization (PIε) is no longer guaranteed to be convex and therefore strong duality

is also no longer a guarantee. Nonetheless, we propose to solve the dual problem

Dε = max
λ≥0

min
u∈U ,θ∈Θ

Lε(θ,λ; u), (DIε)

for which Lε(θ,λ; u) represents the Lagrangian of problem (PIε)

Lε(θ,λ; u) = Ex,y∼D0 [`0(fθ(x), y)] + h(u)

+

m∑
i=1

λi{Ex,y∼Di [`i(fθ(x), y)]− ui}

+

q∑
i=m+1

∫
x∈X

λi(x){`i(fθ(x), y)− ui(x)dx}.

(4.24)
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Equation (DIε) is a parameterized version of the dual of (P”-RES) and . Before we present

the main result of this section, we want to make the following assumption about the optimal

u∗

A.6 Let u∗ be the optimal perturbation variable of problem (P”-RES), then h(u∗+Lε) <∞

also.

Thew assumption states that our optimal variable u∗ is not at least Lε away from the upper

limit of U . Generally, it is always possible to extend U to infinity and use a rapidly increasing

cost function when u is large. We prove next that the optimal dual value is close to

Proposition 7. Let θ be an ε parametrization of φ ∈ F , P ∗res be the optimal value of

(P”-RES) and Dε be the optimal value of (DIε), then given assumptions 3 and 6 hold

P ∗res ≤ Dε ≤ P ∗res − h(u∗) + h(u∗ + Lε) + Lε, (4.25)

where λ∗ is the optimal dual variable of (P”-RES), L is the Lipschitz constant.

Proof. The left inequality stems from the fact that the space of parameterized functions is

included in the functional space H = {fθ | θ ∈ Θ} ⊂ F . First notice that

Dε ≥ min
θ∈Θ,u∈U

L(θ,λ; u), for all λ ∈ Rm+q
+ . (4.26)

Then it follows, that

Dε ≥ min
θ∈Θ,u∈U

L(θ,λ∗; u) ≥ min
φ∈F ,u∈U

L(φ,λ∗; u) = Pres, (4.27)

For the upper bound of Dε, we will first show that the difference between the solution of

(P”-RES) and (DIε) is equal to the difference of the non-resilient problems with constant
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u = 0.

Dε = max
λ≥0
{ min
φ∈F ,u∈U

L(φ,λ; u) + min
θ∈Θ,u∈U

L(θ,λ; u)− min
φ∈F ,u∈U

L(φ,λ; u)}

= max
λ≥0
{ min
φ∈F ,u∈U

L(φ,λ; u) + min
θ∈Θ
L(φ,λ; 0)

+ min
u∈U
Lu(λ,u)−min

φ∈F
L(φ,λ; 0)−min

u∈U
Lu(λ,u)}

= max
λ≥0
{ min
φ∈F ,u∈U

L(φ,λ; u) + min
θ∈Θ
L(φ,λ; 0)−min

φ∈F
L(φ,λ; 0)}

(4.28)

Let φ
′

= argminφ∈F L(φ,λ; 0) and θ
′

= argminθ∈Θ L(φ,λ; 0), then, using Hölder inequality

we can conclude

Dε = max
λ≥0
{ min
φ∈F ,u∈U

L(φ,λ; u) + Ex,y∼D0

[
`0(fθ′ (x), y)− `0(φ

′
(x), y)

]
+

m∑
i=1

λi{Ex,y∼Di

[
`i(fθ′ (x), y)− `i(φ

′
(x), y)

]
+

q+m∑
i=m+1

∫
λi{`i(fθ′ (x), y)− `i(φ

′
(x), y)}dx

≤ max
λ≥0
{ min
φ∈F ,u∈U

L(φ,λ; u) +

(
1 +

m∑
i=1

λi +

q+m∑
i=m+1

∫
λi(x)dx

)
max
i=0...q

ci(φ
′
, θ
′
,x, y)},

(4.29)

where ci(φ, θ,x, y) represents the difference between the ith constraint of the functional prob-

lem and the parameterized problem

ci(φ, θ,x, y) =


Ex,y∼Di [`i(fθ(x), y)− `i(φ(x), y)] , for i = 0 . . .m

`i(fθ(x), y)− `i(φ(x), y), for i = m+ 1 . . .m+ q.

(4.30)

The functions ci can because the losses are Lipschitz continuous and the parametrization is

ε close.

ci(φ
′
, θ
′
,x, y) ≤ Lmin

θ∈Θ
| `i(fθ(x), y)− `i(φ

′
(x), y) |≤ Lε. (4.31)

The second inequality comes from the fact that there exists a θ such that | `i(fθ(x), y) −

`i(φ
′
(x), y) |≤ ε therefore the minimum also satisfies the inequality. Notice that for i ≤ m
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it is sufficient for the parametrization to be close in expectation for the inequality to hold,

however, when point-wise inequality constraints are present the requirement is stricter. By

combining (4.29) and (4.31) we obtain

Dε ≤ max
λ≥0
{ min
φ∈F ,u∈U

L(φ,λ; u) + (1 + ‖λ‖1)Lε} (4.32)

The right side of the inequality is the solution of the dual problem of (P”-RES) perturbed

by −Lε
PLε = min

φ∈F ,u∈U
Ex,y∼D0 [`0(φ(x), y)] + h(u) + Lε

s.t. Ex,y∼Di [`i(φ(x), y)] ≤ ui − Lε, i = 1, . . . ,m,

`i(φ(x), y) ≤ ui − Lε, j = m+ 1, . . . ,m+ q,

(P-Lε)

Let u∗ and φ∗ be the optimal variables of (P”-RES), then u
′

= u∗ + Lε and φ∗ are feasible

variables for problem (P-Lε) such that

PLε ≤ Ex,y∼D0 [`0(φ∗(x), y)] + h(u∗ + Lε) + Lε = Pres − h(u∗) + h(u∗ + Lε) + Lε (4.33)

This concludes the proof. �

Proposition 7 shows that, the solution of the parameterized dual problem (DIε) is close to

that of the functional resilient problem (P”-RES), when the parametrization is ε-close. The

parametrization gap between the two solutions depends on how fast the loss functions `i and

the change in the cost function h(u) change at the optimal φ∗ and, u∗ respectively. From

proposition 7 we can infer the following corollary.

Corollary 3. The optimal parameters θ∗ and u∗ obtained from solving problem (DIε), lead

to a feasible function fθ∗ and u∗ for problem (PIε).

Proof. Corollary 3 can be proven by contradiction. Assume θ∗ and u∗ are infeasible, there-
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fore, there exists at least one constraint ci(θ,x, y)− ui > 0, where

ci(θ,x, y) =


Ex,y∼Di [`i(fθ(x), y)] , for i = 0 . . .m

`i(fθ(x), y), for i = m+ 1 . . .m+ q.

(4.34)

then

Dε ≥ max
λ>0
Lε(θ,λ; u) =∞ (4.35)

where λ∗i =∞. At the same time, we know from proposition 7 that

Dε ≤ Pres + h(u∗ + Lε)− h(u∗) + Lε

= Ex,y∼D0 [`0(φ(x), y)] + h(u∗ + Lε) + Lε <∞
(4.36)

Each element of the sum has a finite value and therefore the sum is also finite: h(u∗ + Lε)

is finite because u + Lε ∈ U (see assumption 6) and E [`0(φ(x), y)] < B. Therefore, the

assumption that θ∗ and u∗ are infeasible is contradicted. �

We have presented a parametrized version of the original resilient problem (P”-RES) which

find a feasible set of parameters θ∗ and u∗. More than that, the optimal value of the

parametrized problem is close to that of the resilient problem. However, the parameterized

problem requires the computation of expectations over distributions Di. These distributions

are often unknown and difficult to estimate. In the next section, we propose a problem that

uses empirical data to estimate the expectations.

4.4 Resilient Empirical Risk Minimization

In the previous section, we introduced a parameterized problem (4.23) which approximates

the resilient problem (P”-RES). Solving problem (4.23) requires computing expectations

over distributions D, however, these distributions are not known. Instead, we have a set of

sample pairs (x, y) randomly selected from the distribution D. Therefor, we can formulate
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the parameterized empirical loss resilient minimization problem

P ∗N = min
θ∈Θ,u∈U

1

N

N∑
n=1

`0(fθ(xn), yn) + h(u)

s.t.
1

N

N∑
n=1

`i(fθ(xn), yn) ≤ ui, i = 1, . . . ,m,

`i(fθ(xn), yn) ≤ uin, i = m+ 1, . . . , q, n = 1 . . . N .

(P-ERM)

This problem is not guaranteed to be convex because of the parametrization, however, we

will solve its dual problem and show that it is close to the primal resilient problem (P”-RES).

To this end we formulate the empirical Lagrangian

LN (θ,λ; u) = h(u) +
N∑
n=1

[
1

N
`0(fθ(xn), yn)

+

m∑
i=0

λi

(
1

N
`i(fθ(xn), yn)− ui

)

+

q∑
i=m+1

λin(`i(fθ(xn), yn)− uin)

]
.

(4.37)

From the Lagrangian we can formulate the dual

Dε,N = max
λ≥0

min
θ∈Θ,uinU

LN (θ,λ; u). (Dε,N )

Solving problem (Dε,N ) gives us a solution that is close to the solution of the parameterized

problem.

Proposition 8. Let Dε be the solution of the dual parametrized problem (DIε), Dε,N be the

solution of the dual parametrized empirical problem (Dε,N ) and dV C the VC dimension of

the hypothesis class P, then with probability 1− γ it holds that

|Dε −Dε,N | ≤ ξ(N), (4.38)

where ξ(N) is as in (Chamon and Ribeiro, 2020, Thm. 1).
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Proof. Let θ∗, λ∗, and u∗ be the optimal variables to the parametrized dual problem (DIε)

and θ̂∗, λ̂
∗
, and û∗ be the optimal variables for the empirical dual problem (Dε,N ), then from

Chamon and Ribeiro (2020) it holds that

∣∣∣∣Dε − D̂ε,N

∣∣∣∣ =

∣∣∣∣Lε(θ∗,λ∗; u∗)− Lε,N (θ̂∗, λ̂
∗
; û∗)

∣∣∣∣
=

∣∣∣∣E [`0(fθ∗(x), y)] + h(u∗)− 1

N

N∑
n=1

`0(fθ̂∗(xn), yn)− h(û∗)

∣∣∣∣ (4.39)

Since θ∗, u∗ , θ̂∗, and û∗ minimize their respective Lagrangian, it must be that

∣∣∣∣Lε(θ∗,λ∗; u∗)− Lε,N (θ̂∗, λ̂
∗
; û∗)

∣∣∣∣
≤ max{|Lε(θ∗, λ̂

∗
; u∗)− Lε,N (θ∗,λ∗; u∗)|, |Lε(θ̂∗,λ∗; û∗)− Lε,N (θ̂∗, λ̂

∗
; û∗)|}

= max{|E [`0(fθ∗(x), y)]− 1

N

N∑
n=1

`0(fθ∗(xn), yn)|,

|E
[
`0(fθ̂∗(x), y)

]
− 1

N

N∑
n=1

`0(fθ̂∗(xn), yn)|}.

(4.40)

By applying the VC generalization bound from (Vapnik, 2013, Sec. 3.4) we obtain

∣∣∣∣Dε − D̂ε,N

∣∣∣∣ ≤ ξ(N), (4.41)

with probability 1− γ, for ξ(N) as in (Chamon and Ribeiro, 2020, Thm. 1). This concludes

the proof. �

Finally, by combining proposition 7 and proposition 8, we can relate the dual of the empirical

problem (Dε,N ) to the statistical problem (P”-RES).

Theorem 5. Let P be the solution to problem (P”-RES) and Dε,N be the solution to problem

(Dε,N ). Then given assumption 6, it holds with probability of 1− γ that

|P −Dε,N | ≤ h(u∗ + Lε)− h(u∗) + Lε+ ξ(N) (4.42)
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Proof. The proof is obtained by applying the triangle inequality to the results obtained in

proposition (7) and (8). �

We have shown that the optimal values of (Dε,N ) and (P”-RES) are close, next we will prove

that the corresponding primal variables are close.

Theorem 6 (Primal bound). Let φ∗ be the optimal primal variable of problem (P-RSL) and

θ∗ optimal primal variable of (Dε,N ), then for any x ∈ X under assumptions 1, 3, 6 it holds

with probability of 1− γ that

|φ′(x)− θ∗(x)| ≤ 2

µ

[
h(u∗ + Lε)− h(u∗) + Lε+ ξ(N)

]
, (4.43)

where u∗ is the optimal perturbation, µ is the strong convexity parameter of `0 and ξ(N) as

in (Chamon and Ribeiro, 2020, Thm. 1).

Proof. Given that θ is an ε approximation of φ it stands to reason that any fθ ∈ F , then

given that `0 is strongly convex we have the following inequality

|fθ∗(x)− φ∗(x)| ≤ 2

µ
(Dε,N − P ∗) ≤

2

µ

[
h(u∗ + Lε)− h(u∗) + Lε+ ξ(N)

]
(4.44)

this concludes the proof. �

4.5 Learning the Resilient Formulation

In the previous sections, we have argued that we should solve problem (Dε,N ) because

it is an unconstrained problem which approximates our original problem (P”-RES). Al-

though, solving (Dε,N ) is not trivial, a solution can be obtained by finding the saddle

point (θ∗,λ∗,u∗) = maxλ minθ,u L(θ,λ; u), using the Arrow-Hurwicz algorithm Arrow et al.

(1958). The saddle point is obtained by alternating the minimization and the maximization

of the Lagrangian with respect to the primal variables and dual variables respectively. The
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optimization is done via gradient descent for the primal variables θ and u

θ(t+ 1) = θ(t)− ηθdθ(t)

u(t+ 1) = u(t)− ηudu(t),

(4.45)

and gradient ascent for the dual variables

λ(t+ 1) = λ(t) + ηλdλ(t). (4.46)

In order to obtain the gradients of the Lagrangian with respect to the primal problem, recall

that the minimization of the Lagrangian can be separated into two parts that each depend

on only one primal variable.

L(θ,λ,u) = Lθ(θ,λ) + Lu(λ,u) (4.47)

where Lφ(φ,λ) = L(φ,λ; 0) and Lu(λ,u) is

Lu(λ,u) = h(u)− λ>u. (4.48)

The gradient with respect to u is obtained from (4.48)

du =
∂L(λ,u)

∂u
= ∇h(u)− λ. (4.49)

Solving for the optimal θ is similar to solving a regularized empirical risk minimization

problem. The gradient with respect to θ is obtained from L(θ,λ; 0)

dθ =
1

N

N∑
n=1

(
∇θ`0(fθ(xn), yn) +

m∑
i=1

∇θ`i(fθ(xn), yn)

+N

q∑
j=m+1

λjn∇θ`j(fθ(xn), yn)

)
.

(4.50)
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Algorithm 5 Algorithm

Initialize θ(0), λ(0), u(0), and 0 < η � 1.
for t = 1 . . . T

Compute the gradient dθ as in (4.50)
Compute the gradient du

du = h(u)− λ dv = h(v)− µ (4.52)

Update primal variables θ and u:
θ(t) = θ(t− 1)− ηdθ(t− 1)
u(t) = u(t− 1)− ηudu(t− 1)

Update dual variable:
λ(t) = λ(t− 1) + ηλ [`(fθ(x), y)− u(t− 1)]
end

Gradient ascent is done by updating the dual variable λ with the super-gradient. The

constraints evaluated at the optimal Lagrangian minimizers are supergradients of the corre-

sponding Lagrange multipliers Boyd and Vandenberghe (2004).

dλ =


dλi = 1

N

∑N
n=1 `i(fθ(xn), yn)− ui i = 1 . . .m

dλi,n = `i,n(fθ(xn), yn)− ui,n i = m+ 1 . . .m+ q.

(4.51)

In this work, we use the Arrow-Hurwicz algorithm, however, it can be replaced with any

primal dual algorithms Zhu and Chan (2008); Korpelevich (1976), which have been shown

to work well in practice.

4.6 Applications

In the previous sections, we have presented a method which is resilient to outliers and cor-

rupted data. In this section, we will exemplify through numerical experiment on the CIFAR-

10 dataset Krizhevsky et al. (2009). First, we will compare the performance of a ResNet18

trained traditionally with that of a resilient network. The traditional network solves the

problem.

p∗ = min
θ
γρ(θ) +

1

N

N∑
n=1

`(fθ(xn), yn), (PIV)
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where ρ(θ) is a function of the weights of the network only

ρ(θ) =
∑
θi∈W

‖θ‖22, (4.53)

`(fθ(xn), yn) is the cross-entropy loss:

`(fθ(xn), yn) = −yn log(fθ(xn)), (4.54)

and γ is the regularizing parameter, that mitigates the trade-off between minimizing the loss

and avoiding overfitting. The resilient network solved the following problem:

p∗r = minimize
θ,u

γρ(θ) + h(u)

subj. to `(fθ(xn), yn) ≤ un, n = 1 . . . N ,

(PV)

where h(u) is the cost function. Two different cost functions were considered the quadratic

cost function, h(u) = ‖u‖22 and the Huber loss h(u, δ) =
∑N

n=0 h(un, δ)

h(u, δ) =


1
2u

2 |u| ≤ δ

δ(|u| − 1
2δ) |u| > δ.

(4.55)

The quadratic cost function penalizes losses as they increase, however, makes an increased

effort to fit the function to those samples. By using the quadratic loss, we can identify the

samples which are most difficult to learn from the optimal dual parameter λ. The Huber loss

allows for the loss of the samples that are more difficult to fit, to grow with linear penalty.

This means that the function will fit well to the samples which are easier to fit and ignore

outliers. The networks were each trained for 100 epochs with a learning rate ηθ = 0.01. The

resilient network used learning rates of ηu = 1 and ηλ = 0.01. We obtain a classification

accuracy of 88.01% for the traditionally trained network, 90.76% for the resilient network

with a quadratic cost function, and 89.93% for the resilient network with Huber loss cost

function. Additionally, the resilient formulation gives us a score of how difficult a particular
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(a) Quadratic cost function. (b) Huber loss cost function.

Figure 19: The images in the training set which are hardest to classify and their corresponding
λ∗n.

constraint is to satisfy. Figure 19a shows the twenty images that were most difficult to classify

using a quadratic cost and figure 19b shows the most difficult images to classify when using

the Huber loss as a cost function. Given that these are color images it is not always obvious

which aspect made these images more difficult, however, it is still possible to pick out some

similarities between classes that lead to some of these pictures being missclassified. Wrong

labels, multiple objects in one picture and ambiguities all make these images harder to

classify.

4.6.1 Training in the Presence of Corrupted Data - Label flipping

In this section we create artificial outliers by randomly flipping the labels of a subset of our

training sample. The performance of the resilient network was compared with a traditionally

trained network, an oracle network and an iterative trimmed loss minimization (ITLM)

Shen and Sanghavi (2019) on a clean dataset. The traditionally trained network trains

a regularized resnet18 with weight decay 0.0005. The oracle networks trains only on the

samples which have not been corrupted. ITML is a method for learning model parameters

when a fraction of the training samples are corrupted. In order to learn the model parameters
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the training set is trimmed by removing the samples which have the highest training losses.

The resilient network uses the Huber loss cost function with δ = 0.2 and is trained over 120

epochs. The learning rates for the resilient network were set to ηθ = 0.001, ηλ = 0.01, and

ην = 1. The traditional and the oracle networks are trained for 80 epochs with a learning

rate η = 0.01. For ITML, a proportion of 5% + α is trimmed, where α is the percent of

corrupted training samples. The extra 5% is added because in practice the exact proportion

of corrupted samples is unknown. ITLM is trained for 80 epochs with a learning rate of 0.01.

All networks were trained uing a batch size of 256. Figure 20 shows a boxplot comparing the

performance, over 8 repetitions, of each network as the percent of corrupted samples in the

training set increases. The oracle network has a little drop in accuracy as the percentage of

corrupted samples grows, due to the smaller training set. The traditionally trained network

is affected by the corrupted samples and has a significant decrease in performance. The

ITML network and the resilient networks have a similar performance. The ITML network

suffers only a little drop in accuracy as the percentage of corrupted samples increases under

the assumption that it trains on mostly clean samples. The resilient network adapts the slack

of each constraint as it learns and can allow higher losses for corrupted samples. Therefore,

it can maintain a better generalization and has a smaller drop inaccuracy.

Next, we create artificial outliers by flipping the labels of a subset of the training data in a

systematic way. A derangement of the labels is used to reassign the classes of a percentage

of the training set samples, such that an artificial outlier from class A always get mislabeled

to class B. This systematic approach is different from the random label flipping in that each

class only has one other possible label.

The oracle network and the traditional network are trained as in the case of the random label

flipping for 80 epochs with a learning rate of 0.01. The ITML network is trained with a trim

interval of 10, a trim amount of 5+α, and a learning rate of 0.01 for 80 epochs. The resilient

network is trained for 120 epochs with learning rates ηλ = 0.01, ηnu = 1, and ηθ = 0.001.

Figure 21 shows the performance of the traditionally trained, oracle, ITML, and resilient

97



Figure 20: Performance of resilient network, traditional network, ITML, and oracle network
are compared as a function of the number of labels flipped.

network as the percentage of systematically flipped labels increases. The oracle networks

performs similarly as in the case of random flipped labels since it only trains on the clean

labels. The traditional network and the ITML networks both have a significant drop in ac-

curacy, with an average accuracy drop of 8.62% and 10.16% respectively as the percentage

of corrupted samples increases from 10% to 40%. However, the performance of the tradition-

ally trained network is architecture dependent. For example in Shen and Sanghavi (2019)

the traditionally trained network drops to 62.03% while a resnet18 network dropped to an

accuracy of 77.53%. The resilient network achieves a drop of only 3.24% when the percent

of corrupted data points increases form 10% to 40%.

4.6.2 Training in the Presence of Outliers - Gaussian Blurring

In this section, samples are directly corrupted but are still assigned the same label. A

Gaussian filter is used to blur a percentage of the training images. Two levels of blurring are

used in order to observe the effect of the Gaussian blur radius as well as the percentage of

blurry images. An example of the resulting images can be seen in figure 22.

The performances of an oracle network a traditionally trained network, the ITML network
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Figure 21: Performance of resilient network, traditional network, ITML, and oracle network
are compared as a function of the number of labels flipped.

Figure 22: Examples of images with no blurring and Gaussian blurring with radius 0.7 and
1.5.
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and the resilient network are compared as the number of blurry images grows. The networks

are trained over 50 epochs with a batch size of 128. The learning rate is 0.01 for the oracle,

traditional and ITML networks and 0.001 for the resilient network. Additionally, ITML uses

a trim interval of 10 epochs and trims 5% + α, where α is the true percentage of blurred

images. The resilient network uses a Huber loss cost function with δ = 0.5 and learning rates

ηλ = 0.1

In the problem of training with corrupted data, there is a trad-off between the sample

size and the quality of the samples. Training on a larger sample size often improves the

performance Perez and Wang (2017); Shorten and Khoshgoftaar (2019), however, if the

samples are corrupted the resulting machine learning method might not generalize well. The

four networks compared each have a different approach to this problem. The oracle network

maximizes the quality of the samples and the traditionally trained network maximizes the

sample size. The resilient network finds a compromise by only allowing certain losses to grow,

while training on all samples. The trim loss achieves a compromise by recurrently changing

the training samples based on the training losses.

Figure 23 shows the change in performance when a Gaussian blur with radius 0.7% is used.

The oracle network has a higher accuracy than the other networks when only 10% of images

are blurred, however, as the percentage of corrupted images increases the traditional and

the resilient networks have a higher testing accuracy. The corrupted images still contain a

good amount of information which the oracle network misses. The trim network has a lower

accuracy because it trains on a smaller sample set that is not guaranteed to only have clean

samples.

Figure 24 shows the change in performance when a Gaussian blur with radius 1.5 was applied

to a fraction of the training images. The information in each blurred image is less useful than

in the previous example and therefore we can see that the oracle network performs better

than the traditional network. The resilient network is able to find a compromise between

sample size and clean samples and has a better performance than the traditional method.
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Figure 23: Performance of resilient network, traditional network, ITML, and oracle network
on datasets with blurred images with a Gaussian blur with radius 0.7.

Figure 24: Performance of resilient network, traditional network, ITML, and oracle network
on datasets with blurred images with a Gaussian blur with radius 1.5.

Similarly to the previous example, the trim network has a poor generalization accuracy.

The resilient networks generalizes better than the traditional network and is able to find the

best compromise for the trade-off between sample size and clean data. Unlike the ITML

network, it does not require the number of corrupted samples to be known, instead it allows
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samples to have a higher loss based on the difficulty of fitting that sample.
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CHAPTER 5

Conclusions

The focus of this dissertation was to develop the theory for balancing the fit and the com-

plexity of learned representations. To achieve this goal, the problem is formulated as the

minimization of the complexity measure subject to constraints that measure the fit. The con-

strained problem was shown to be solvable in the dual domain. Moreover, the dual optimal

variables provide a measure of the difficulty of each constraint specification. This observation

was applied to federated learning by sharing only a subset of samples that contribute to the

solution. What’s more, it is a useful tool for constraint specification.

The first part presented a method for finding parsimonious representations in RKHSs with-

out compromising the fit by locally adapts the kernel centers and the kernel parameter. This

was achieved by introducing a new integral representation of functions in RKHSs. The opti-

mization problem uses a sparsity objective function to select both kernel centers and kernel

parameters. The optimization problem is formulated as an SFP, which despite being infinite

dimensional and non-convex can be solved via the dual problem. Moreover, from the dual, a

novel representer theorem is established which holds for regularizers that promote sparsity.

This technique of finding sparse representations has been used for federated classification.

This was achieved by first introducing a method for traditional learning, which obtains both

a sparse representation and identifies the critical samples for the classification problem. By

leveraging the ability to detect the critical samples to the classification problem our feder-

ated learner can reduce traffic over the network and send less information. The federated

classification method was shown to converge to a traditional learning method in which the

learner has access to the entire data set as the sample size grows.

The second part tackled the challenges that arise from learning fit from individual constraints.

It provides a framework for relaxing constraints based on resilient learning. We argued that
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each constraint should be relaxed until the marginal effect on the primal objective is equal

to the marginal cost of relaxing that constraint. Furthermore, we showed that the marginal

effect was given by the optimal dual variable of the perturbed problem. Having shown that

a solution exists for the statistical problem, we moved to a parametrized empirical problem

that can be readily solved and bounded the difference between the solution of the resilient

statistical problem and the resilient empirical problem.
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APPENDIX

A.1 Proof of Theorem 1

Proof. In order to show strong duality, it is sufficient to show that the perturbed function

P (ξ) in (A.1) is convex Rockafellar (2015); Shapiro and Scheinberg (2000). Consider the

perturbed version of the optimization function

P (ξ) = min
α,θ

f0(α)

s.t. c(zi, yi) ≤ ξi

zi =

∫
α(z, w) · k(xi, z;w) dw dz.

(A.1)

In equation (A.1) f0(α) represents the objective function of our original problem: f0(α) =

γ
∫
I(α(z, w) 6= 0) + 0.5α2(w,x) dw dz. The optimal solution for P (0) is the solution to the

primal problem.

Convexity of the perturbed problem can be shown, by proving that given an arbitrary pair of

perturbations ξ1 and ξ2 and the corresponding optimal values P (ξ1) and P (ξ2), for any β ∈

[0, 1] the solution P (ξβ) has the following property, where ξβ is defined by ξβ = βξ1+(1−β)ξ2:

P (ξβ) ≤ βP (ξ1) + (1− β)P (ξ2). (A.2)

In order to prove the convexity of the perturbed problem we need to introduce the following

lemma.

Lemma 5. The set of constraints given by

B = {b, b = f0(α), c(zi, yi) < ξi,

zi =

∫
α(z, w) · k(xi, z;w) dw dz, i = 1 · · ·N.}

(A.3)
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is convex.

Proof. Given an arbitrary pair b1, b2 ∈ B, there exists a corresponding α1, α2 ∈ L2 such that

b1 = f0(α1) and b2 = f0(α2). In order to prove the convexity of the set, we will show that

there exists a feasible αβ ∈ L2 such that for any β ∈ [0, 1]

f0(αβ) = β b1 + (1− β)b2 (A.4)

Let B be the Borel field of all possible subsets of U , where U = {X × W} is the set of all

possible kernel centers and kernel widths and. Let us construct a measure over B, where

V ⊂ B.

m(V) =



∫
V α1(v)k(v) dv∫
V α2(v)k(v) dv∫

V γI(α1(v) 6= 0) + α2
1(v) dv∫

V γI(α2(v) 6= 0) + α2
2(v) dv


(A.5)

The first 2N elements of the measure represent the estimated function of the signal y using

α1 and α2 and a subset of the kernels, where k(v)i = k(X, zv;wv) and v = [zTv , wv]
T . The last

two elements of m(V) measure the sparsity of functions α1 and α2 over the set V respectively.

Two sets are of interest, the empty set and U . The measure of the former is m(∅) = 0 and

the measure for U can be inferred from our optimization problem.

m(U) =



∫
U α1(v)k(v) dv∫
U α2(v)k(v) dv∫

U γI(α1(v) 6= 0) + 1
2α

2
1(v) dv∫

U γI(α2(v) 6= 0) + 1
2α

2
2(v) dv


=



ŷ1

ŷ2

b1

b2


(A.6)
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Lyapunov’s convexity theorem Liapounoff (1940) states that a non-atomic measure vector

on a Borel field is convex. Note that the representation in (2.7) allows us to construct the

measure with non-atomic masses and is essential to the proof of strong duality. Since α does

not contain any point masses and we can choose the kernel k(·, z, w) to not have any point

masses, our measure m is convex . Therefore, for any β ∈ [0, 1], there exists a set Vβ ⊂ B

such that:

m(Vβ) = βm(U) + (1− β)m(∅) = βm(U) (A.7)

The measure of the complement of the set Vβ, as defined by Vcβ ∪ Vβ = U and Vcβ ∩ Vβ = ∅,

can be computed, due to the additivity property of measures:

m(Vcβ) = m(U)−m(Vβ) = (1− β)m(U) = m(V(1−β)). (A.8)

We can define the function αβ from (A.7) and (A.8):

αβ(v) =


α1(v) v ∈ Vβ

α2(v) v ∈ Vcβ

(A.9)

From this construction of αβ(v) it can be easily seen that f0(αβ) = βf0(α1) + (1− β)f0(α2).

Next we will show that αβ is feasible. Define ŷβ as:

ŷβ =

∫
U
αβ(v)k(v) dv =

=

∫
Vβ
α1(v)k(v) dv +

∫
Vcβ
α2(v)k(v) dv =

= βŷ1 + (1− β)ŷ2

(A.10)
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Since c(zi, yi) is convex it follows that for any i ∈ [1, N ], c(βzi,1+(1−β)zi,2, yi) ≤ βc(zi,1, yi)+

(1− β)c(zi,2, yi). We can use this property to show that c(zi,β, yi) ≤ ξβ.

c(zi,β, yi) ≤ βc(zi,1, yi) + (1− β)c(zi,2, yi) ≤

≤ βξ1 + (1− β)ξ2 = ξβ

(A.11)

Thus it was proven that αβ is also feasible and therefore the set of constraints is convex. �

Let (α1, z1, ξ1) and (α2, z2, ξ2) be the pair of optimal solutions to the two perturbed problems

P (ξ1) and P (ξ2). We have shown that there exists a feasible point αβ for the problem

perturbed by ξβ = βξ+ (1− β)ξ′, which satisfies f0(αβ) = P (ξ1) + (1− β)P (ξ2). Given that

it is a feasible point the objective function is greater or equal to the solution of the problem

βP (ξ1) + (1− β)P (ξ2) = f0(αβ) ≥ P (βξ1 + (1− β)ξ2). (A.12)

Since the perturbed problem is convex, the original problem has zero duality gap.

�

A.2 Proof of Corollary 1

Proof. Theorem 1 implies that any solution (α?, ŷ?) of (PII) is such that Boyd and Vanden-

berghe (2004)

(α?, ŷ?) ∈ argmin
α, ŷi

L(α, ŷ,λ?,µ?). (A.13)

Since L in (2.10) separates across α and ŷ, we can consider the minimizations individually

to obtain

α? ∈ argmin
α∈L2

Lα(α,λ?), (A.14)

for Lα from (2.14). We also know from Proposition 2 that α?d is in the argmin set of (A.14).

In the sequel, we show that it is (essentially) its only element.
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To do so, we construct α? piece by piece by partitioning the integral in Lα into three disjoint

sets depending on the value of α?d. On A> = {(z, w) ∈ X × W | |α?d(z, w)| >
√

2γ}, we

know that α?d takes values from (2.19), the unique minimizer of Lα since it stems from

the minimization of the strongly convex function (2.18). Moreover, our assumptions on the

reproducing kernel together with (2.19) imply that α?d ∈ L2 when restricted to A>. Hence,

α?(z, w) = α?d(z, w), for (z, w) ∈ A>. (A.15)

Over the setA< = {(z, w) ∈ X×W | |α?d(z, w)| <
√

2γ}, notice from (2.14) that the integrand

of Lα is always non-negative. What is more, it is always strictly positive unless α ≡ 0. This

is ready by applying Lemma (1) and the fact that the minimum of (2.18) is positive. Thus,

from the monotonicity of the integral operator, α? is again unique and equal to zero on A<.

From (2.15), so is α?d and we obtain

α?(z, w) = α?d(z, w) = 0, for (z, w) ∈ A<. (A.16)

Immediately, we have that α? ∈ L2 over A> ∪ A<.

To conclude the proof, observe that m [A> ∪ A<] = m [X ×W], where m denotes the Lebesgue

measure. Indeed, the complement of A>∪A< is the set A= = {(z, w) ∈ X ×W | |α?d(z, w)| =
√

2γ}. From our assumption on the reproducing kernel, A= is the set of zeros of a real

analytic function, which are isolated and therefore countable Krantz and Parks (2002). In

other words, α? and α?d are in the same equivalence class in L2 since they are equal except

perhaps on a set of measure zero. �

A.3 Proof of Lemma 3

Proof. For this proof we will establish the following notation in order to make the proof

easier to read:

kn = k(xn, s;w); (A.17)
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The first term of dual function can be rewritten as:

λ>Qλ =
1

N2

∫ ∑
n

∑
m

λnλmknkmynymds dw

=
1

N2

∫ λnynkn +
∑
m 6=n

λmymkm

2

ds dw

= λ′>Q′λ′ +
1

N2

2λnynkn
∑
m 6=n

λmymkm + λ2
nk

2
n


(A.18)

where λ′ and Q′ are the variables λ without the nth element and Q without the nth row and

column respectively. Using (A.18) we can rewrite the dual function:

g(λ) = −0.5λ′>Q′λ′ +
1

N
λ′>(1− ε) + γm(X ,W)

+
1

N
λn

1− ε− yn
1

N

∫ ∑
m 6=n

λmymkmknds dw


−0.5

N2

∫
λ2
nk

2
nds dw

(A.19)

Notice that (1/N)
∫ ∑

i 6=n λikikndsdw evaluated at the optimal λ′ is precisely ŷn considering

λ′m = λm(N − 1)/N) for all m and g(λ|λn = 0) = g((N/(N − 1)λ′). Since, λn = 0 it follows

from complementary slackness that 1− ε− ynŷn < 0. Therefore, it follows that the optimal

values for the two dual functions are equal if λ∗n = 0. Moreover, the optimal primal variables

are equal, i.e., α∗(s, w) = α′∗(s, w). This concludes the first part of the proof.

Next, we will show that if a model that is optimal for X ′ and that has the property 1− ε−

ynŷn < 0 for a new sample xn, the optimal dual variable corresponding to that point for the

model trained on the set X = X ′ ∪ {xn} has value λ∗n = 0. Equation (A.19) implies that

optimizing for the variable λn, given the solution to the model using X ′ results in λn = 0.

This value maximizes the dual function g(λ). It is necessary to prove that there is not a

value for λ different from λ′∗ for which g(λ′∗) < g(λ∗). Since 1− ε− ynŷn < 0, the optimal

α′∗ is feasible for the model which uses xn as a sample as well and it has not been proven yet
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to be optimal for the full set we can say P ′∗ ≥ P ∗. However, since we have strong duality it

is also true that

g(λ′∗) = P ′∗ ≥ P ∗ = g(λ∗) (A.20)

Since g(λ∗) is the maximum over λ it follows that g(λ′∗) = g(λ∗), which implies that λn = 0.

This concludes the proof.

�

A.4 Proof of Theorem 2

Proof. Given two data sets Xi and Xj drawn over partitions of the space X = Xi ∪ Xj , let

α∗(s, w) be the solution to the problem (PC) given [Xi,Xj ] as a training set and, α∗(i)(s, w)

and α∗(j)(s, w) be the solution to the problem (Pi) trained on Xi and Xj respectively. Ad-

ditionally, let the overlap be large enough that Hypothesis 3 holds for the non-overlapping

spaces. Let Xo = Xi ∩ Xj be the overlapping space and X ′i = Xi \ Xo, X ′j = Xj \ Xo. Then

we can write the α(s, w) as a sum of functions which are nonzero only over one space where

αi(s, w) = 0 for all s /∈ X ′i , αj(s, w) = 0 for all s /∈ X ′j and αo(s, w) = 0 for all s /∈ Xo

α(s, w) = αi(s, w) + αj(s, w) + αo(s, w) (A.21)

it follows from Theorem 4 that the each α(j),o(s, w) and α(i)o converge to each other as the

number of samples grows

|α∗(j)o − α
∗
(i)o| ≤ 2

(
2

√
M

µN1.5
+

cρ

σ3
√
N

)
(A.22)

As the sample size grows the functions fi and fj over the overlapping space Xo converge

and therefore if for a point x ∈ Xo, if 1 − εx − yfi(x) < 0 then it must also hold that

1− εx− yfj(x) < 0. Because the agents sample over the overlapping area, as the sample size

grows and the agents agree on the critical samples, they will also agree with the centralized
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learner on the critical samples. Then according to Lemma 3 the solution of (PF) and (PC)

will converge over Xo. Although this was illustrated for two agents, the proof holds for any

number of agents.

Over the spaces which do not overlap, consider (Pi) trained on Xi and (PC) trained on X

and let α∗i and α∗(i)i be their respective optimal values. Then for s ∈ X ′i we can establish the

following

|αi(s, w)∗ − α∗(i)i(s, w)| ≤∣∣∣∣∣α∗(s, w)−
∑
i

α∗(i)(s, w)

∣∣∣∣∣+ |
∑
j 6=i

α(j)(s, w)|

≤ 2
√

2ξmL

N
√
µN

+
∑
j 6=i
|α(j)(s, w)|

≤ 2
√

2ξmL

N
√
µN

+ ξ
∑
j 6=i

‖λj‖1
Nj

.

(A.23)

Notice that αj(s, w) has little effect on the value of f(x) for x ∈ Xi. As the sample size

grows, if 1 − εxyfi(x) < 0 then it must also hold that 1 − εxyf(x) < 0, where fi and f are

the solutions found by agent i and the centralized learner respectively. Then according to

Lemma 3 as the sample size grows the agents and the centralized learner agree on the critical

samples and the federated learner (PF) and the centralized learner (PC) solve more similar

problems. �

A.5 Proof of Lemma 3

Proof. We first show that it is true for two agents and then expand it for multiple agents.

Let λ1 be the dual Recall the dual function (3.6) is a quadratic function

g(λ) = −0.5λ>Qλ+
1

N
λ>(1− ε) +m(X ,W), (A.24)

with

Qnm =
ynym
N2

∫
X×W

k(xn, s;w)k(xm, s;w)ds dw (A.25)
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The matrix Q can be divided into sub-matrices based on the agents, to which the kernels

centers belong:

Q =

Q11 Q12

Q21 Q22

 , (A.26)

for which

Qij(nm) =
1

N2

∫
X×W

k(x(i)
n , s;w)k(x(j)

m , s;w)ds dw,

x(i)
n ∈ Xi.

(A.27)

Then notice that

λ>Qλ =

(
N

N1
λ>1

)
Q11

(
N

N1
λ1

)
+

(
N

N2
λ>2

)
Q22

(
N

N2
λ2

)
+ 2

(
N

N1
λ>1

)
Q12

(
N

N2
λ2

)
= λ>1 Q1λ1 + λ>2 Q2λ2 + 2

(
N

N1
λ>1

)
Q12

(
N

N2
λ2

) (A.28)

Additionally, the measure of the support of the dual function is equal to the sum of the

measures of the individual agents

m(X ,W) = m(X1,W) +m(X2,W). (A.29)

Then we can conclude the following

|g(λ)− (g1(λ1) + g2(λ2))|

=

∣∣∣∣2( NN1
λ>1

)
Q12

(
N

N2
λ2

)∣∣∣∣
=

2

N1N2
λ>1

∫
k(X1, s;w)k(X2, s;w)dsdwλ2

≤ 2ξm(X ,W)

N1N2
λ>1 Jλ2

(A.30)

The last inequality stems from (3.16) and the fact that a value of a kernel is at most 1. This

result can be extended to multiple agents by considering all pairs of Qij in the difference
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between the global dual function and the local dual functions. Therefore we obtain:

∣∣∣∣∣g(λ)−
∑
i

gi(λi)

∣∣∣∣∣ ≤ 2ξmL

N2
(A.31)

for L = (N2/(NiNj))λ
>
i Jλj . �

A.6 Proof of Theorem 3

Proof. Recall the relationship between the dual functions of the two problems (3.17). The

relationship between the dual functions optimal values can be obtained through triangle

inequality

|g(λ∗)−
∑
i

gi(λ
∗
i )| ≤

4ξmL

N2
, (A.32)

The dual function is strongly concave near the optimal value such that we can establish the

relationship between the dual optimal variables

‖λ∗ − λa‖2 ≤
2

µ
|g(λ∗)− g(λ∗a)| −

2

µ
∇g(λ∗)(λ∗ − λ∗a), (A.33)

where λ∗a = [(N1/N)λ>1 , . . . , (NK/N)λ∗K ]. The gradient at the optimal value ∇g(λ∗) = 0 or

λ∗ = 0. Therefore, the equation can be reduced to

‖λ∗ − λa‖2 ≤
2

µ
|g(λ∗)− g(λ∗a)| ≤

8ξmL

µN2
, (A.34)
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The optimal primal value can be obtained from the dual value and therefore we can establish

the following inequality

∣∣∣∣∣α∗(s, w)−
∑
i

α∗i (s, w)

∣∣∣∣∣ =∣∣∣∣∣∣ 1

N

N∑
n=1

λ∗nynk(xn, s;w)−
∑
i

1

Ni

∑
xn∈Xi

λ∗a,nynk(x, s;w)

∣∣∣∣∣∣
≤

N∑
n=1

∣∣∣∣ynk(x, s;w)

(
1

N
λ∗n −

1

Ni
λ∗a,n

)∣∣∣∣
≤

N∑
n=1

∣∣∣∣ 1

N
λ∗n −

1

Ni
λ∗a,n

∣∣∣∣ ≤ 1√
N
‖λ∗ − λ∗a‖

≤ 2
√

2ξmL

N
√
µN

(A.35)

where α∗(s, w) represents the optimal variable learned by the centralized learner (PC) and

α∗i (s, w) represents the optimal variable learned by the agent (Pi). �

A.7 proof of theorem 4

Proof. In order to prove the theorem we first formulate the Lagrangian.

Li(α,λ) = ρ(α) +
1

Ni

∑
x∈Xi

λ(x) [`(f(x), y)− ε(x)] (A.36)

Similarly, we can construct a function L(f, λ) which is not associated with any primal function

L(α,λ) = ρ(α) +

∫
x∈X

λ(x) [`(f(x), y)− ε(x)] p(x)dx (A.37)

Notice that the integral is precisely the expected value:

Ex (λ(x) [`(f(x), y)− ε(x)])

Therefore the minimization of (A.36) can be viewed as an empirical risk minimization prob-

lem which approximates the statistical loss minimization problem in (A.37). From Lugosi
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et al. (2004) and Cortes et al. (2009) it follows that:

|L(α, λ)− Li(α,λ)| ≤ M√
Ni

(A.38)

where M is a constant, such that ‖f‖2 ≤ M and Ni is the sample size. We can construct

the dual function and a function based on L(α, λ)

gi(λ) = min
α
L(α,λ) (A.39)

g(λ) = min
α
L(α, λ) (A.40)

For which we can compute the optimal λ

λ∗i = argmax
λ≥0

gi(λ) (A.41)

λ∗ = argmax
λ≥0

g(λ). (A.42)

Since the difference between Li(α,λ) and L(α, λ) is bounded, so is there minimums,

|g(λ)− gi(λ)| ≤ M√
Ni

(A.43)

Because the inequality holds for any λ, it must hold for the optimal values. Let λ∗s be the

optimal function λ(x) evaluated at the sample points and λ∗i be the optimal dual variable of

(Pi), then by the triangle inequality it follows that:

|g(λ∗s)− gi(λ∗i )| ≤
2M√
Ni

(A.44)

Furthermore, the dual function is strongly convex near the optimal value:

gi(λ
∗
i )− gi(λ∗s) ≥

µ

2
‖λ∗i − λ∗s‖2 +∇gi(λ∗i )(λ∗i − λ∗s), (A.45)
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where λ∗s is a vector for which λ∗s,n = λ∗s(xn). Notice that the term ∇gi(λ∗i )(λ∗i − λ∗s) ≥ 0.

Most of the terms of the gradient are zero since λi maximizes the dual function. For the

other terms, ∇g(λ∗i )n < 0 only if λ∗i,n = 0. In the latter case (λ∗i,n − λ∗s,n) ≤ 0. Then we can

conclude

‖λ∗i − λ∗s‖2 ≤
4M

µ
√
Ni
. (A.46)

Next a bound on the functions α can be established which are defined as

α∗i (s, w) =


1
Ni

∑
j λ
∗
jyjk(xj , s;w), |αi(s, w)| >

√
2γ

0 otherwise.

(A.47)

Similarly, a function α(s, w) = argmin
α∈L2

L(α, λ∗) can be be computes as:

α(s, w) =


∫
λ(x)y(x)k(x, s;w)p(x) dx, α2(s, w) > 2γ

0 otherwise.

(A.48)

The difference between α and αi is bounded as follows

|α(s, w)− αi(s, w)| =∣∣∣∣∣∣
∫
λ(x)yxk(x, s;w)p(x) dx− 1

Ni

∑
j

λ∗jyjk(xj , s;w)

∣∣∣∣∣∣ ≤
1

Ni

∣∣∣∣∣∣
∑
j

(λ∗i,j − λs,j)yjk(xj , s;w)

∣∣∣∣∣∣+∣∣∣∣∣∣
∫
λ(x)yxk(x, s;w)p(x) dx− 1

Ni

∑
j

λ∗s,jyjk(xj , s;w)

∣∣∣∣∣∣ ≤
1

Ni

∑
j

|λ∗i,j − λs,j |+
cρ

σ3
√
Ni

≤ 1√
Ni
‖λ∗i − λ∗s‖2 +

cρ

σ3
√
Ni
≤ 2

√
M√

N1.5
i µ

+
cρ

σ3
√
Ni
,

(A.49)
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for which c > 0 is a constant, ρ = Ex

[
|λ(x)yxk(x, s;w)|3

]
and σ2 = Ex

[
|λ(x)yxk(x, s;w)|2

]
Given two models trained on independently drawn data sets, with optimal variables α1 and

α2 respectively, then the absolute difference between the two variables is

|α1(s, w)− α2(s, w)|

≤ 2
√
M√

N1.5
1 µ1

+
cρ

σ3
√
N1

+
2
√
M√

N1.5
2 µ2

+
cρ

σ3
√
N2

≤ 2

(
2

√
M

µN1.5
+

cρ

σ3
√
N

)
,

(A.50)

where N = min(Ni, Nj). �
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J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik. Federated optimization: Dis-
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