
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Publicly Accessible Penn Dissertations 

2021 

Towards The Efficient Use Of Fine-Grained Provenance In Towards The Efficient Use Of Fine-Grained Provenance In 

Datascience Applications Datascience Applications 

Yinjun Wu 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/edissertations 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Wu, Yinjun, "Towards The Efficient Use Of Fine-Grained Provenance In Datascience Applications" (2021). 
Publicly Accessible Penn Dissertations. 4355. 
https://repository.upenn.edu/edissertations/4355 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/4355 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F4355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F4355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4355?utm_source=repository.upenn.edu%2Fedissertations%2F4355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/4355
mailto:repository@pobox.upenn.edu


Towards The Efficient Use Of Fine-Grained Provenance In Datascience Towards The Efficient Use Of Fine-Grained Provenance In Datascience 
Applications Applications 

Abstract Abstract 
Recent years have witnessed increased demand for users to be able to interpret the results of data 
science pipelines, locate erroneous data items in the input, evaluate the importance of individual input 
data items, and acknowledge the contributions of data curators. Such applications often involve the use 
of the provenance at a fine-grained level, and require very fast response time. To address this issue, my 
goal is to expedite the use of fine-grained provenance in applications within both the database and 
machine learning domains, which are ubiquitous in contemporary data science pipelines. In applications 
from the database domain, I focus on the problem of data citation and provide two different types of 
solutions, Rewriting-based solutions and Provenance-based solutions, to generate fine-grained citations 
to database query results by implicitly or explicitly leveraging provenance information. In applications 
from the ML domain, the first considers the problem of incrementally updating ML models after the 
deletions of a small subset of training samples. This is critical for understanding the importance of 
individual training samples to ML models, especially in online pipelines. For this problem, I provide two 
solutions, PrIU and DeltaGrad, to incrementally update ML models constructed by SGD/GD methods, 
which utilize provenance information collected during the training phase on the full dataset before the 
deletion requests. The second application from the ML domain that I focus on is to explore how to clean 
label uncertainties located in the ML training dataset in a more efficient and cheaper manner. To address 
this problem, I proposed a solution, CHEF, to reduce the cost and the overhead at each phase of the label 
cleaning pipeline and maintain the overall model performance simultaneously. I also propose initial ideas 
for how to remove some assumptions used in these solutions to extend them to more general scenarios. 

Degree Type Degree Type 
Dissertation 

Degree Name Degree Name 
Doctor of Philosophy (PhD) 

Graduate Group Graduate Group 
Computer and Information Science 

First Advisor First Advisor 
Susan B. Davidson 

Keywords Keywords 
Data science, Provenance 

Subject Categories Subject Categories 
Computer Sciences 

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/4355 

https://repository.upenn.edu/edissertations/4355


TOWARDS THE EFFICIENT USE OF FINE-GRAINED PROVENANCE IN DATA
SCIENCE APPLICATIONS

Yinjun Wu

a dissertation
in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2021

Supervisor of Dissertation

Susan B. Davidson, Weiss Professor of Computer and Information Science, University of
Pennsylvania

Graduate Group Chairperson

Mayur Naik, Professor and Graduate Chair of Computer and Information Science,
University of Pennsylvania

Dissertation Committee

Zachary Ives, Adani President’s Distinguished Professor and Department Chair of Computer and

Information Science, University of Pennsylvania

Val Tannen, Professor of Computer and Information Science, University of Pennsylvania

James Weimer, Research Assistant Professor of Computer and Information Science, University of

Pennsylvania

Todd J. Green, Principal Engineer, Amazon Web Service (AWS)



TOWARDS THE EFFICIENT USE OF FINE-GRAINED PROVENANCE IN DATA
SCIENCE APPLICATIONS

©COPYRIGHT
2021

Yinjun Wu



Acknowledgements

First of all, I want to thank my PhD advisor, Dr. Susan B. Davidson who treated me

like her own son. During my PhD studies, she was very supportive and deeply involved in

all phases of my projects, from initial discussions of potential ideas to the final stages of

paper writing and conference presentation. No matter how busy she was, she was always

available to meet with me and provide feedback. Without her consistently patient

instruction, I would not have been able to complete this work and gain essential skills on

how to conduct research projects, how to write a research manuscript and how to present

in front of an audience. It was an absolutely unforgettable experience to work with her and

learn from her.

In addition, I want to thank my thesis committee members, Dr. Zachary Ives, Dr. Val

Tannen, Dr. James Weimer and Dr. Todd J. Green, for their valuable time and efforts in

reviewing my thesis. They provided excellent suggestions on how to improve my thesis and

how to present complicated research ideas in a more intuitive and clear way.

I am also grateful to Dr. Boon Thau Loo, who gave me an opportunity to interview

when I was applying to graduate school in the U.S., and provided funding support towards

the end of my PhD studies. Without his help, I would not have been able to work in the

Penn database research group.

I also received help from many collaborators. In particular, I want to thank Drs.

Abdussalam Alawini, Peter Buneman, Daniel Deutch, Edgar Dobriban, Tova Milo,

Gianmaria Silvello, Val Tannen and James Weimer (their names appear alphabetically) for

their valuable support in different stages of my PhD studies.

Last but not least, I want to thank my parents, Yuxiang Wu and Huaping Luo for

their support and love during my PhD studies, especially during the horrible pandemic. I

also want to thank my girlfriend, Chenying Zhao for staying with me and supporting me

during this special period.

iii



Abstract

TOWARDS THE EFFICIENT USE OF FINE-GRAINED PROVENANCE IN DATA

SCIENCE APPLICATIONS

Yinjun Wu

Susan B. Davidson

Recent years have witnessed increased demand for users to be able to interpret the

results of data science pipelines, locate erroneous data items in the input, evaluate the

importance of individual input data items, and acknowledge the contributions of data

curators. Such applications often involve the use of the provenance at a fine-grained level,

and require very fast response time. To address this issue, my goal is to expedite the use of

fine-grained provenance in applications within both the database and machine learning

domains, which are ubiquitous in contemporary data science pipelines. In applications

from the database domain, I focus on the problem of data citation and provide two

different types of solutions, Rewriting-based solutions and Provenance-based solutions, to

generate fine-grained citations to database query results by implicitly or explicitly

leveraging provenance information. In applications from the ML domain, the first

considers the problem of incrementally updating ML models after the deletions of a small

subset of training samples. This is critical for understanding the importance of individual

training samples to ML models, especially in online pipelines. For this problem, I provide

two solutions, PrIU and DeltaGrad, to incrementally update ML models constructed by

SGD/GD methods, which utilize provenance information collected during the training

phase on the full dataset before the deletion requests. The second application from the ML

domain that I focus on is to explore how to clean label uncertainties located in the ML

training dataset in a more efficient and cheaper manner. To address this problem, I

proposed a solution, CHEF, to reduce the cost and the overhead at each phase of the label

cleaning pipeline and maintain the overall model performance simultaneously. I also

iv



propose initial ideas for how to remove some assumptions used in these solutions to extend

them to more general scenarios.

v



Table of Contents

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Review of data provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Using data provenance in data citation . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Using data provenance for incrementally updating machine learning models . 4

1.4 Using data provenance to reduce the cost of cleaning label uncertainties . . . 8

1.5 Future extensions for DeltaGrad and CHEF . . . . . . . . . . . . . . . . . . . 10

1.6 Summary and Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2: Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Data provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Generating fine-grained data citations with fine-grained provenance . . . . . . 15

2.3 Incrementally update machine learning models with provenance . . . . . . . . 16

2.4 Related work on cleaning label uncertainties for machine learning models . . . 22

vi



Chapter 3: Reasoning about fine-grained data citations with provenance . . . . . . . 26

3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Citation view models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 View mappings and Query extensions . . . . . . . . . . . . . . . . . . 30

3.2 Reasoning about validity of view mappings . . . . . . . . . . . . . . . . . . . 33

3.2.1 Rewriting-Based Approach (RBA) . . . . . . . . . . . . . . . . . . . . 34

3.2.1.1 Tuple-level approach (TLA) . . . . . . . . . . . . . . . . . . 36

3.2.1.2 Semi-Schema-level approach (SSLA) . . . . . . . . . . . . . . 41

3.2.1.3 Optimization in the implementations . . . . . . . . . . . . . 43

3.2.2 Provenance-Based Approach (PBA) . . . . . . . . . . . . . . . . . . . 44

3.2.2.1 The need for provenance . . . . . . . . . . . . . . . . . . . . 44

3.2.2.2 Preliminary of PBA . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2.3 PBA for conjunctive queries . . . . . . . . . . . . . . . . . . 49

3.2.2.4 PBA for aggregate queries . . . . . . . . . . . . . . . . . . . 50

3.2.2.5 Valid view mappings for aggregate queries . . . . . . . . . . . 52

3.2.2.6 Algorithmic details of ProvCite . . . . . . . . . . . . . . . . . 54

3.2.2.7 Optimizations in the implementations . . . . . . . . . . . . . 57

3.3 Citation generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Covering sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Optimizations to computing covering sets . . . . . . . . . . . . . . . . 61

3.3.3 Policy to generate citations . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Experimental evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.1 Experiment setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



3.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2.1 Synthetic experimental results on conjunctive queries . . . . 68

3.4.2.2 Realistic experimental results on conjunctive queries . . . . . 71

3.4.2.3 Synthetic experimental results on aggregate queries . . . . . 72

3.4.2.4 Realistic experimental results on aggregate queries . . . . . . 74

3.5 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 4: Incrementally updating machine learning models using provenance . . . . 76

4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Provenance-based ML model updates . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Provenance semiring model for linear algebra operators [25] . . . . . . 79

4.2.2 Constructing tensor products for SGD/GD update rules . . . . . . . . 82

4.2.2.1 Constructing tensor products for SGD/GD update rules of
liner regression model . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2.2 Constructing tensor products for SGD/GD update rules of
logistic regression model . . . . . . . . . . . . . . . . . . . . . 83

4.2.3 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.4 PrIU for linear regression . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.5 PrIU for logistic regression . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.6 Empirical evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.6.2 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 L-BFGS based ML model updates . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.1 DeltaGrad for GD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

viii



4.3.1.1 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . 108

4.3.1.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.2 DeltaGrad for SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.2.1 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.2.2 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3.3 Extension to online deletions/additions . . . . . . . . . . . . . . . . . 117

4.3.4 Extension to DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.5 Empirical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3.6.1 Batch addition/deletion. . . . . . . . . . . . . . . . . . . . . 123

4.3.6.2 Online addition/deletion. . . . . . . . . . . . . . . . . . . . . 125

4.3.6.3 Influence of hyper-parameters on performance . . . . . . . . 126

4.3.6.4 Comparison against the state-of-the-art work . . . . . . . . . 128

4.4 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chapter 5: Cleaning probabilistic labels with CHEF . . . . . . . . . . . . . . . . . . 132

5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1.3 Influence function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.1 The sample selector phase . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.1.1 Infl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

ix



5.2.1.2 Derivation of Equation (5.4) . . . . . . . . . . . . . . . . . . 139

5.2.1.3 Increm-INFL . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2.2 The model constructor phase (DeltaGrad-L) . . . . . . . . . . . . . . . 155

5.2.3 The human annotation phase . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3.1.2 Partition training-validation-test sets . . . . . . . . . . . . . 160

5.3.1.3 Producing probabilistic labels . . . . . . . . . . . . . . . . . . 161

5.3.1.4 Human annotator setup . . . . . . . . . . . . . . . . . . . . . 161

5.3.1.5 Model constructor setup . . . . . . . . . . . . . . . . . . . . . 162

5.3.1.6 Sample selector setup . . . . . . . . . . . . . . . . . . . . . . 163

5.3.1.7 Baseline methods . . . . . . . . . . . . . . . . . . . . . . . . 163

5.3.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3.2.1 Experiments for evaluating Infl . . . . . . . . . . . . . . . . . 169

5.3.2.2 Experiments for evaluating Increm-INFL . . . . . . . . . . . 171

5.3.2.3 Experiments for evaluating DeltaGrad-L . . . . . . . . . . . . 171

5.3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3.3.1 Experiments for evaluating Infl . . . . . . . . . . . . . . . . . 171

5.4 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Chapter 6: Extending DeltaGrad and CHEF . . . . . . . . . . . . . . . . . . . . . . 177

6.1 Extending DeltaGrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.1.1 Brief introduction to over-parameterized neural network models . . . . 179

x



6.1.2 Details of the online method . . . . . . . . . . . . . . . . . . . . . . . 180

6.1.2.1 Efficiency of the online method . . . . . . . . . . . . . . . . . 181

6.1.2.2 Online method and the model inversion attack . . . . . . . . 182

6.1.2.3 Failure of the online method for incrementally updating
over-parameterized models . . . . . . . . . . . . . . . . . . . 183

6.1.3 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.2 Extending CHEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.2.1 Extending CHEF for general machine learning models . . . . . . . . . 185

6.2.2 A tight integration between CHEF and weakly supervised learning . . 186

6.2.3 Integrating CHEF with semi-supervised learning . . . . . . . . . . . . 187

Chapter 7: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xi



List of Tables

TABLE 3.1 Instance of relation Exon . . . . . . . . . . . . . . . . . . . . . . . . 27

TABLE 3.2 Instance of relation Exon2Contributor . . . . . . . . . . . . . . . . . 27

TABLE 3.3 Instance of relation Gene . . . . . . . . . . . . . . . . . . . . . . . . . 27

TABLE 3.4 Instance of relation Gene2Contributor . . . . . . . . . . . . . . . . . 27

TABLE 3.5 Instance of relation Transcript . . . . . . . . . . . . . . . . . . . . . 27

TABLE 3.6 Instance of relation Transcript2Contributor . . . . . . . . . . . . . . 27

TABLE 3.7 Instance of view V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

TABLE 3.8 Instance of view V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

TABLE 3.9 Extended instance of view V1 . . . . . . . . . . . . . . . . . . . . . . 30

TABLE 3.10 Extended Instance of view V2 . . . . . . . . . . . . . . . . . . . . . . 30

TABLE 3.11 Instance of Q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

TABLE 3.12 Extended instance of Q1 . . . . . . . . . . . . . . . . . . . . . . . . . 32

TABLE 3.13 All possible view mappings for Q1 . . . . . . . . . . . . . . . . . . . . 33

TABLE 3.14 Instance of relation Exon with annotated candidate views . . . . . . 37

TABLE 3.15 Instance of relation Gene with annotated views . . . . . . . . . . . . 37

TABLE 3.16 Instance of relation Transcript with annotated views . . . . . . . . . 37

TABLE 3.17 Instance of Qr1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

TABLE 3.18 Instance of Qr1 with valid view mappings . . . . . . . . . . . . . . . . 40

xii



TABLE 3.19 Instance of Q′r1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

TABLE 3.20 Instance of relation Exon with provenance . . . . . . . . . . . . . . . 45

TABLE 3.21 Instance of relation Gene with provenance . . . . . . . . . . . . . . . 45

TABLE 3.22 Instance of relation Transcript with provenance . . . . . . . . . . . . 45

TABLE 3.23 Instance of Q3 with how-provenance . . . . . . . . . . . . . . . . . . . 46

TABLE 3.24 Instance of Q4 with how-provenance . . . . . . . . . . . . . . . . . . . 46

TABLE 3.25 Q5(D) with how-provenance . . . . . . . . . . . . . . . . . . . . . . . 47

TABLE 3.26 V2(D) with how-provenance . . . . . . . . . . . . . . . . . . . . . . . 54

TABLE 3.27 Q6(D) with how-provenance polynomials . . . . . . . . . . . . . . . . 55

TABLE 3.28 Candidate view mappings for Q6 . . . . . . . . . . . . . . . . . . . . 55

TABLE 3.29 V3(D) with how-provenance polynomials . . . . . . . . . . . . . . . . 57

TABLE 3.30 V7(D) with how-provenance polynomials . . . . . . . . . . . . . . . . 57

TABLE 3.31 V8(D) with how-provenance polynomials . . . . . . . . . . . . . . . . 57

TABLE 3.32 Q6(D) with valid view mappings . . . . . . . . . . . . . . . . . . . . 57

TABLE 3.33 Instance of Q6 with covering sets . . . . . . . . . . . . . . . . . . . . 60

TABLE 3.34 Binary encoding for the view mappings of Q6 . . . . . . . . . . . . . 62

TABLE 3.35 Experimental results on real workloads (full case) . . . . . . . . . . . 70

TABLE 3.36 Summary of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

TABLE 3.37 Experimental results on realistic datasets . . . . . . . . . . . . . . . . 74

TABLE 4.1 Summary of the time complexity of BaseL, PrIU and PrIU-opt . . . . 87

TABLE 4.2 Summary of the space complexity of PrIU and PrIU-opt for caching
provenance information . . . . . . . . . . . . . . . . . . . . . . . . . . 87

TABLE 4.3 Summary of datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xiii



TABLE 4.4 Summary of hyperparameters used in the experiments . . . . . . . . 103

TABLE 4.5 Memory consumption summary (GB) . . . . . . . . . . . . . . . . . . 104

TABLE 4.6 Accuracy and similarity comparison between PrIU-opt and INFL
with deletion rate 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

TABLE 4.7 Complexity comparison between PrIU, PrIU-opt and DeltaGrad for
binary logistic regression. The complexity expressions of PrIU and
PrIU-opt are copied from Table 4.1-4.2 . . . . . . . . . . . . . . . . . 116

TABLE 4.8 Prediction accuracy of BaseL and DeltaGrad with batch addition/deletion.
MNISTn refers to MNIST with a neural net. . . . . . . . . . . . . . . 131

TABLE 4.9 Distance and prediction performance of BaseL and DeltaGrad in on-
line deletion/addition . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

TABLE 4.10 Memory usage of DeltaGrad and PrIU(GB) . . . . . . . . . . . . . . 131

TABLE 5.1 Sizes of Fully clean datasets and Crowdsourced datasets . . . . . . . . 160

TABLE 5.2 The hyper-parameters for each dataset . . . . . . . . . . . . . . . . . 162

TABLE 5.3 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Fully clean datasets (b = 100, γ = 0.8)165

TABLE 5.4 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Crowdsourced datasets (b = 100, γ =
0.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

TABLE 5.5 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Fully clean datasets (b = 10, γ = 0.8) 165

TABLE 5.6 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Crowdsourced datasets (b = 10, γ = 0.8)166

TABLE 5.7 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Fully clean datasets (b = 100, γ = 1) 166

TABLE 5.8 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Crowdsourced datasets (b = 100, γ = 1)166

TABLE 5.9 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Fully clean datasets (b = 10, γ = 1) . 167

xiv



TABLE 5.10 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Crowdsourced datasets (b = 10, γ = 1)167

TABLE 5.11 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Fully clean datasets (b = 100, γ = 0) 167

TABLE 5.12 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Crowdsourced datasets (b = 100, γ = 0)167

TABLE 5.13 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Fully clean datasets (b = 10, γ = 0) . 168

TABLE 5.14 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned on Crowdsourced datasets (b = 10, γ = 0)168

TABLE 5.15 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned (against TARS, b=100) . . . . . . . . . 168

TABLE 5.16 Comparison of the model prediction performance (F1 score) after 100
training samples are cleaned (against TARS, b=10) . . . . . . . . . . 168

TABLE 5.17 Comparison of the model prediction performance (average F1 score)
after 100 training samples are cleaned (CNN, b = 100) . . . . . . . . 169

TABLE 5.18 Comparison of the model prediction performance (average F1 score)
after 100 training samples are cleaned (CNN, b = 10) . . . . . . . . . 169

TABLE 5.19 Running time of Increm-INFL and Full . . . . . . . . . . . . . . . . . 170

TABLE 5.20 Comparison of the model prediction performance (F1 score) with
varied b on Twitter dataset (INFL (two)) . . . . . . . . . . . . . . . . 175

xv



List of Figures

FIGURE 1.1 The iterative pipeline of cleaning uncertainties from the labels of
training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

FIGURE 2.1 Comparison between PrIU, DeltaGrad and the state-of-the-art works.
The x-axis represents the complexity of ML model classes that each
incremental update method can handle, which is determined by the
ML model representation (e.g. quantified by the model paramet-
ers) and the way to obtain the model parameters (e.g. closed-form
solutions VS iterative methods). The y-axis represents the simil-
arity between the resulting updated models by each incremental
update method and the one obtained by retraining from scratch. . 19

FIGURE 3.1 Query provenance index for Q6 and how to compute coordinate
for e3 ∗ r2 from V4(D) . . . . . . . . . . . . . . . . . . . . . . . . . 56

FIGURE 3.2 time performance VS number of view mappings . . . . . . . . . . . 69

FIGURE 3.3 ttotal and tq VS Np in min case . . . . . . . . . . . . . . . . . . . . 69

FIGURE 3.4 ttotal, tq and tcs VS Np in full case . . . . . . . . . . . . . . . . . . 69

FIGURE 3.5 ttotal VS Nl in full case . . . . . . . . . . . . . . . . . . . . . . . . . 70

FIGURE 3.6 ttotal VS Nt in full case (log scale in X-axis) . . . . . . . . . . . . . 70

FIGURE 3.7 Experimental results for synthetic workloads . . . . . . . . . . . . . 73

FIGURE 4.1 Update time using linear regression . . . . . . . . . . . . . . . . . . 102

FIGURE 4.2 Update time using logistic regression over Cov and the hyperpara-
meters from Table 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . 102

FIGURE 4.3 Update time using logistic regression . . . . . . . . . . . . . . . . . 102

xvi



FIGURE 4.4 The execution time of repetitively removing 10 different subsets . . 105

FIGURE 4.5 Running time and distance with varied add rate . . . . . . . . . . . 123

FIGURE 4.6 Running time and distance with varied delete rate . . . . . . . . . 123

FIGURE 4.7 Running time and distance with varied delete rate/add rate for
MNISTn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

FIGURE 4.8 Running time comparison of BaseL and DeltaGrad with 100 con-
tinuous deletions/addition . . . . . . . . . . . . . . . . . . . . . . . 126

FIGURE 4.9 Running time and distance comparison with varying mini-batch
size under fixed j0 = 10 and varying T0 (T0 = 20 VS T0 = 10 VS
T0 = 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

FIGURE 4.10 Running time and distance comparison with varying mini-batch
size under fixed T0 = 5 and varying j0 (j0 = 5 VS j0 = 10 VS
j0 = 50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

FIGURE 4.11 Comparison of DeltaGrad and PrIU . . . . . . . . . . . . . . . . . 127

FIGURE 5.1 Intuitive illustration of Increm-INFL . . . . . . . . . . . . . . . . . 142

FIGURE 5.2 Comparison of accumulated running time between DeltaGrad-L
and Retrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

FIGURE 5.3 Visualization of the validation samples, test samples and the most
influential training sample S (‘+’, ‘-’ and ‘X’ denote the posit-
ive ground-truth samples, negative ground-truth samples and the
sample S respectively) . . . . . . . . . . . . . . . . . . . . . . . . . 172

FIGURE 6.1 Visual interpretation of the implicit bias when an unregularized
logistic regression model is trained on a linearly separable dataset.
In this dataset, I use a green ‘+’ and purple dot to denote the pos-
itively and negatively labeled training samples, respectively. Note
that there can be an infinite number of linear classifiers exactly fit-
ting this dataset, such as the blue solid line and the blue dot line.
However, training a logistic regression model via gradient descent
method always leads to the blue solid line as the final solution,
which is the max-margin solution . . . . . . . . . . . . . . . . . . . 180

xvii



CHAPTER 1: Introduction

Data science applications have emerged in the past few years for which fine-grained data

analysis is essential. These applications include interpreting results [1], debugging suspicious

items in the input [2, 3, 4], gauging the importance of data items (samples) in the data science

application [5] and acknowledging the contributions of data curators and contributors [6]

through data citation. To obtain results in these applications, it is essential to efficiently

leverage fine-grained provenance. In the rest of this chapter, I start by briefly reviewing

the history of fine-grained data provenance, and then introduce my work on automatically

producing fine-grained data citations, incrementally updating machine learning models, and

reducing the cost and overhead in the pipeline of cleaning label uncertainties. All of these

problems involve the use of fine-grained provenance.

1.1 Review of data provenance

The question of how to capture, store and retrieve the provenance of database queries has

been well studied by the database community over the last few decades. For example,

[7] introduced a theoretic framework, called how-provenance for SPJ queries (selection-

projection-join queries), extended by the follow-up work [8] for aggregate queries. Under

this framework, each base relation is extended by one column, which is filled with unique

identifiers (called provenance tokens) for each individual tuple. The provenance tokens are

then propagated through database queries to the query results such that each query tuple

carries a provenance expression, which is a polynomial of the provenance tokens. Other

approaches to representing the provenance include where-provenance and why-provenance

[9]. All of these classical provenance representations facilitate fine-grained reasoning over

the provenance, and have motivated a great deal of follow-up work for maintaining and

1



utilizing provenance in time-critical database applications. For example, [10] uses proven-

ance to effectively compute updated query results triggered by minor updates to the input

instances using graphical representations of provenance. However, for emerging data science

applications, how to efficiently employ fine-grained provenance still remains a challenge.

1.2 Using data provenance in data citation

One application of fine-grained provenance in the database domain is the problem of data

citation. In this problem, the goal is to distribute credit to the contributors of data in the

database by constructing citations for the query results, in which the names of contributors

are included. The construction of the citation to query results relies on two factors: 1) the

existing data in the database which is associated with pre-defined citation information about

contributors with views of the database; and 2) how the query result can be “rewritten”

using the data associated with pre-defined citation information. The first is formalized

as the citation view model [11] while the second is the intuition behind my solutions to

automatically produce data citations [12, 13], which are illustrated below.

Citation view model In the citation view model [11], each citation view consists of

a database view and a citation query, which represent the data with pre-defined citation

information and the pre-defined citation information itself respectively. To justify the use

of this citation view model for dealing with the data citation problem, I utilize a realistic

scientific database, GtoPdb [14], as an example. GtoPdb is a searchable database with

information on drug targets and the prescription medicines or experimental drugs that act

on them. Specifically, the following simplified schema of this database is considered (keys

are underlined):

Family(FID, FName, Type)

FamilyIntro(FID, Text)

Person(PID, PName, Affiliation)

FC(FID, PID), FID references Family, PID references Person

2



FIC (FID, PID), FID references FamilyIntro, PID references Person

MetaData(Type, Value)

Each tuple in the “Family” relation represents a family of drug targets and each tuple in

the “FamilyIntro” relation includes possible text as the introduction for each “Family” tuple.

The other relations play a role in constructing the citation information for each “Family”

tuple or each “FamilyIntro” tuple. For instance, the contributors of each family tuple could

be obtained by joining the “Person” relation and the “FC” relation.

There are two reasons for the use of this citation view model. The first one is from the

users’ perspective: According to [15], the users of GtoPdb are typically domain experts who

are very familiar with certain parts of the database, such as the “Family” relation and the

“FamilyIntro” relation. Therefore, their search within this database typically starts with

querying some terminology mentioned in either the “Family” relation or the “FamilyIntro”

relation, followed by manual selections of appropriate records from the query result (Similar

procedure also occurs in [16, 17]). Afterwards, if the users expect to give credits to the

contributors of the selected data, they could click on a button provided by the DBAs to

automatically obtain the citations for those data rather than query those citations from

the database by themselves1. This would reduce the burden for those users since they may

not have expertise in the entire database. The other reason for utilizing the citation view

model is from the perspective of DBAs: For a large user query, such as one requesting the

entire “Family” relation, DBAs may not be willing to produce very large citations which

may include thousands of contributors. Instead, they would provide an abstract citation

for such query, which might specify the owners of this database as the contributors for this

large query result. Therefore, to facilitate such granularity control, it would be reasonable

for DBAs to define two different citation views to reflect two different granularity levels.

One of the citation views could target finer-grained citations, consisting of a view query

which returns small amount of family tuples and a citation query retrieving the contributors

of those families. In contrast, the other citation view would be designed for coarse-grained
1see e.g. https://www.eagle-i.net/

3

https://www.eagle-i.net/


citations, comprised of a view query requesting all family tuples and a citation query to

bring back the owners of the database as contributors.

My solutions I consider two different approaches to produce appropriate data cita-

tions for user query results: the Rewriting-Based Approach [12] and the Provenance-Based

Approach [13]. The former uses provenance implicitly by adjusting traditional query rewrit-

ing using views techniques to analyze which view tuples from the pre-defined conjunctive

views are eligible to provide citations to the query tuples in the conjunctive query res-

ult. This, however, fails to provide reasonable results in the case of aggregate queries and

aggregate views [13], thus motivating us to come up with the second approach, i.e., the

Provenance-Based Approach, which formalizes the data citation problem with the explicit

use of how-provenance. Both approaches effectively determine which view tuples provide

authorship information for each query tuple and construct formatted citations. For the

Provenance-Based Approach, I also design a series of optimization strategies to minimize

the overhead of querying provenance and generating citations, which achieve up to one order

of magnitude speed-up relative to naive implementations. It is also worth noting that some

of the techniques that I developed could also be utilized to deal with other problems, such as

fine-grained access control where users are only allowed to access some pre-specified tuples

[18], and the linked brushing problem in data visualization [19].

1.3 Using data provenance for incrementally updating ma-

chine learning models

The second problem which I address using fine-grained provenance is to incrementally update

machine learning (ML) models after a small number of training samples are deleted, which

is critical to efficiently evaluate the importance of one or more training samples on the

(machine learning) model. Training sample importance can be quantified with many well-

defined measures, such as the Data Shapley value [5]. A key step in evaluating this type

of measure is to remove a subset of training samples and calculate the updated ML model

4



parameters. The most straightforward way to do this is to reconstruct the ML model

from scratch after the samples have been deleted. However, recalculating from scratch is

prohibitively expensive when the training data is frequently updated, and so the question

is whether the model can be updated in real time. Unfortunately, since general machine

learning models (such as neural network models) are complex, they are typically viewed as

a “black box” [20] and updating them in real time is challenging. This issue also arises in

other applications, e.g., refreshing the model parameters after sensitive training samples are

removed (the so-called GPDR issue [21]), reducing the bias in statistics (e.g. jackknife [22])

and identifying contributors who produce the most important training samples (i.e. the

ML-version data citation problem).

Therefore, the problem of incrementally updating model parameters has attracted in-

creasing attention in the past few years. An ideal solution should effectively update general

ML models and provide exact updates on the model parameters, meaning that the incre-

mentally updated model parameters are the same as the ones reconstructed from scratch.

At the same time, one would expect that such solutions would be resistant to attacks from

adversaries who target recovering the data removed from the updated models (either from

the model itself or from the incremental update algorithm that produces this model), which

is referred to as a model inversion attack [23]. Unfortunately, such solutions do not cur-

rently exist (see Section 2.3 for a more detailed discussion). As the first step towards an

ideal solution, I provide two approaches, i.e. PrIU (with its optimized version PrIU-opt) and

DeltaGrad. The first method is designed for incrementally updating linear regression and

logistic regression models, while the second method is capable of incrementally updating a

more general class of models, i.e., strongly convex models. These two approaches are briefly

described below.

PrIU and PrIU-opt For the problem of incrementally updating machine learning

models after the deletion of a subset training samples, there is a chance to leverage the

similarity between this problem and the classical materialized view maintenance problem in

databases. One well-known solution for incrementally maintaining a materialized view after

5



the removal of tuples from the underlying base relations is to use the provenance semiring

model [10, 24], which has been extended to handle linear algebra operators [25], i.e. the

basic operators for general ML training algorithms. Hence, one natural idea is to develop

solutions for propagating the deletion of training samples to ML models using provenance,

specifically, using the provenance model from [25] over the linear algebraic operators in the

update rule of the SGD/GD method.

However, there are some obstacles preventing the use of this provenance model for general

ML models. First, this provenance model only handles linear algebra operators, ignoring the

ubiquitous non-linear operators in ML training algorithms. Second, note that ML models

are typically calculated iteratively with the SGD/GD method, which indicates that captur-

ing provenance information along with such iterative computation path naively can incur

non-negligible overhead, especially in large-scale applications. To deal with the first issue, I

provide one solution, PrIU, for incrementally updating linear regression and logistic regres-

sion model, in which the non-linear operators appearing in the update rule of SGD/GD are

linearized through piece-wise linear interpolation [26] so that the provenance model from [25]

can be applied. The small approximation error brought by the linearization step is verified

both theoretically and experimentally. To alleviate the second issue, i.e. the overhead of

maintaining provenance, I provide an improved version of PrIU called PrIU-opt [27], using a

series of optimization strategies. The effect of the optimization strategies is also empirically

demonstrated.

DeltaGrad Since the solutions in [27] are specifically designed for ML models with

simple SGD update rules, i.e. linear regression, logistic regression and possibly other gen-

erative additive models [28], they are hard to generalize to more complicated models, e.g.

deep neural networks, which are typically trained with the gradient descent (GD) or the

stochastic gradient descent (SGD) method. At each GD or SGD iteration, the major com-

putational overhead comes from calculating the gradients on the full training samples or a

mini-batch of them. Therefore, to effectively update the model parameters after the deletion

of a small subset of training samples, one possible way is to reduce the overhead of evaluat-

6



ing the gradients at each GD or SGD iteration evaluated on the remaining training samples.

I observed that such gradients could be effectively estimated with a classical optimization

technique, the L-BFGS algorithm [29, 30, 31, 32]. This is significantly more efficient than

computing the gradients from scratch on the remaining training samples. This idea can

be applied to general ML models satisfying strong convexity, and I call this solution Del-

taGrad. In this set of work, rigorous proofs are provided to show that the approximation

rate achieved using the L-BFGS algorithm is close to one. Both the approximation rate and

the efficiency of DeltaGrad are verified through extensive experiments over standard ML

benchmark datasets, which also exhibit performance advantages over PrIU and PrIU-opt

for datasets with large feature spaces.

Discussion Note that to incrementally update a strongly convex model after a deletion,

an alternative way would be to start from the model constructed on the full training set

and continue running GD or SGD on the remaining training samples for t iterations (t is a

small number) until convergence, which is considered in [33] and is referred to as the online

method hereafter. The resulting model incrementally updated in this manner is guaranteed

to be exactly the same as the one retrained from scratch on the remaining training samples.

This is because the local minimum (also the global minimum) is unique for strongly convex

models, and the model differences are not significant before and after the deletions of a small

number of training samples.

However, the online method has two limitations. First, the online method may suffer

from a model inversion attack [23], in which the adversary attempts to extract the deleted

training samples from the updated models. This can occur especially when the adversary

has white-box access to the models, meaning that the adversary has full knowledge of the

models, such as the model parameters, model type, learning algorithms, hyper-parameters

and even the remaining training samples (see Section 2.3 for more details). Specifically,

if only one training sample is removed, then under the white-box model inversion attack,

the adversary is able to reconstruct the removed training sample by utilizing the gradients

evaluated on this sample, which can be recovered through reversing the online method (see

7



Section 6.1.2.2 for more details). In contrast, both PrIU and DeltaGrad are resistant to

the white-box model inversion attack. Intuitively speaking, these two approaches mimic how

the machine learning models are retrained from scratch on the remaining training samples,

but accomplish it in an efficient way. This can thus “erase” the footprint of the deleted

training sample from all GD or SGD iterations so that the adversary is unable to retrieve

any information about the deleted training sample from those GD or SGD iterations, thus

safeguarding the removed training sample.

The second limitation of the online method is its failure to accurately update more

complicated models. In other words, those complicated models incrementally updated by

the online method will be significantly different from the ones retrained from scratch on

the remaining training samples. Detailed discussions about this limitation are provided in

Section 6.1.2.3.

1.4 Using data provenance to reduce the cost of cleaning label

uncertainties

The third part of my thesis work focuses on reducing the time overhead and the cost in the

pipeline of cleaning uncertain labels for improving ML model quality, which relies on the

my solution for incrementally updating ML models, e.g. DeltaGrad. This application arises

due to the need for high-quality labels, which is critical to produce high-performance ML

models. However, collecting such labels for all training samples is very time consuming and

expensive. This is because in some domains, such as medical imaging, automatic labeling

tools are error-prone [34] and only human annotators with domain knowledge (e.g. doctors

or physicians) can provide reliable labels. To deal with this label scarcity problem, one

can leverage the labeling functions in Snorkel [35] to automatically derive probabilistic labels

(or weak labels) for large amount of training samples. However, those probabilistic labels

may not be perfect and even inaccurate [36, 37, 38], thus hurting the model quality [39].

Therefore, it is essential to perform additional cleaning operations on those labels.

8



The label cleaning pipeline is typically iterative [40, 2], and requires multiple rounds

(see Figure 1.1, loop labeled 1 ). First, given a cleaning budget B, the top-B influential

training samples with probabilistic labels are selected (the sample selector phase). Second,

for those selected samples, cleaned labels are provided by human annotators (the annotation

phase). Third, the updated ML model is calculated using the updated training set (themodel

constructor phase), and returned to the user. If the resulting model performance is not good

enough, the process is repeated with an additional budget B′. Otherwise, it is deployed.

Note that since each of these phases may be performed repeatedly, it is important that

they be as efficient as possible. It is also noteworthy that for some applications—such as

the medical image classification task—it is essential to have multiple human annotators for

label cleaning to alleviate their labeling errors [41] in the annotation phase, thus incurring

substantial time overhead and financial cost. Therefore, I propose a solution called CHEF

(CHEap and Fast label cleaning) [42] (the extended technical report could be found in [43]),

to reduce the time overhead and cost of the label cleaning pipeline and simultaneously

enhance the overall model performance.

Specifically, in the sample selector phase, given a fixed cleaning budget B, I propose a

method, Infl, a variant of influence function [44], to prioritize the most influential training

samples for cleaning. In comparison to the classical methods for selecting unlabeled training

samples for labeling, such as the active learning methods [45], and the ones for cleaning noisy

labels, such as O2U [46], Infl can not only suggest which training samples to be cleaned, but

also automatically derive the potentially clean labels, which are close to or even better than

the human annotated labels. Therefore, utilizing those labels as one alternative labeler in

the annotation phase can significantly reduce the human annotation efforts.

In addition, I notice that employing Infl comes at a price due to its overhead in evaluating

the gradients for each individual training sample. Therefore, by assuming strong convexity

on the model type, I develop Increm-INFL in the sample selector phase to filter out most

of the uninfluential training samples early by estimating the perturbation bound on their

influence but without explicitly evaluating their influence. Furthermore, to accelerate the

9



Figure 1.1 – The iterative pipeline of cleaning uncertainties from the labels of training set.

model constructor phase, DeltaGrad is adapted (referred to as DeltaGrad-L) to incrementally

update models after the probabilistic labels of the most influential training samples are

cleaned, which requires that the updated models are strongly convex. Last but not least, due

to the reduced running time in the sample selector phase and the model constructor phase,

I can allow the human annotators to interact with the entire system for multiple times and

every time they can choose to clean the labels of Top-b influential training samples, in which

b could be smaller than cleaning budget. This can possibly lead to better overall model

performance and early termination once the users’ expected model performance is reached

before the cleaning budget is exhausted.

1.5 Future extensions for DeltaGrad and CHEF

The aforementioned solutions, DeltaGrad and CHEF, can be extended in various ways, which

is left as future work. First, as introduced in Sections 1.3 and 1.4, DeltaGrad and CHEF

rely on an assumption about the model class, which may not hold in practice. Therefore, an

immediate extension to those two solutions is to generalize them to handle more complicated

machine learning models, such as neural network models. Specifically, for DeltaGrad, I

10



have initial ideas for simultaneously generalizing it to neural network models and guarding

against model inversion attacks to some degree by leveraging the online method and using

some additional properties of over-parameterized neural network models (see Section 6.1 for

details).

To extend CHEF to deal with general neural network models, it is necessary to extend

Increm-INFL. Recall that Increm-INFL is capable of estimating the perturbation bound on

all the training sample influence such that uninfluential training samples are removed early

during the process of determining the most influential training samples. To facilitate the

estimation of the above perturbation bound when general machine learning models are used,

I observe that this perturbation bound depends on a Hessian-vector product, which could

be evaluated with an extended L-BFGS algorithm [47] for general machine learning models.

(see Section 6.2.1).

In addition to the above, CHEF can be extended in two more ways. First, since the

probabilistic labels on the uncleaned training samples may depend on the existing labeled

training samples according to some existing weak-supervised learning solutions (see e.g.,

[48]), then as the labels of more and more training samples are cleaned, it would be reasonable

to update the probabilistic labels for the remaining training samples accordingly to eliminate

possible labeling bias caused by the labeled training samples at the initial stage [49]. I

therefore propose to integrate CHEF with weakly supervised learning in a tighter way, in

which the probabilistic labels are also dynamically updated to reflect the increasing number

of cleaned training samples for better overall model performance. To accomplish this, it

may be necessary to develop efficient solutions to estimate the magnitude of the updates on

the probabilistic labels (see Section 6.2.2).

Furthermore, to minimize the manual labeling cost for certain learning tasks, one could

also turn to semi-supervised learning, which uses both labeled and unlabeled training samples

in the model training process [50, 51]. To achieve better overall model performance, there

are some recent efforts in combining active learning and semi-supervised learning such that

the labeled training samples used for semi-supervised learning are appropriately selected,

11



rather than randomly selected [52, 53, 54, 55]. As I will illustrate in Chapter 5, Infl in

CHEF can be regarded as an alternative to active learning methods for identifying which

training samples to be cleaned even when the uncleaned training samples are all unlabeled

(even without probabilistic labels). Therefore, by following the framework in [56], I also

propose to combine CHEF with semi-supervised learning with slight modifications on Infl

(see Section 6.2.3).

1.6 Summary and Roadmap

In summary, my dissertation addresses the problem of efficiently using fine-grained proven-

ance in data science applications. It consists of four interrelated parts:

1. My work on data citation, which effectively generates fine-grained citations to indi-

vidual output query tuples by implicitly or explicitly using data provenance.

2. My work on efficiently updating ML models constructed by GD/SGD methods after

the deletion of a small subset of training samples, PrIU and DeltaGrad, which leverages

provenance information collected during the training phase prior the deletion of any

training samples. The technique is also useful for efficiently evaluating the importance

of subsets of training samples at a fine-grained level.

3. My solution to reduce the time overhead and cost of cleaning label uncertainties, which

includes 1) prioritizing the most influential training samples for cleaning and suggesting

potentially clean labels with Infl, 2) filtering out uninfluential training samples early

with DeltaGrad-L, 3) incrementally updating the models with Increm-INFL after the

most influential training samples are cleaned, 4) and redesigning the entire pipeline to

facilitate better overall model quality and early termination.

4. A discussion of possible future extensions for DeltaGrad and CHEF. One immediate

extension is to generalize these two solutions to handle more general machine learning

models. Another is to integrate CHEF with weakly- and semi-supervised learning.

12



The rest of the dissertation is organized as follows. In Chapter 2, I summarize related

work, which is followed by a discussion of my solutions for the problem of data citation

in Chapter 3. I then discuss how to incrementally update machine learning models with

PrIU and DeltaGrad in Chapter 4, and how to reduce the time overhead and cost in the

pipeline of cleaning label uncertainties with CHEF in Chapter 5. Possible future extensions

for DeltaGrad and CHEF are presented in Chapter 6. Finally, I conclude and discuss future

work in Chapter 7.

13



CHAPTER 2: Related work

In this chapter, I summarize related work in several different areas, starting with classical

data provenance frameworks, followed by a discussion of related work in each of the other

provenance-related problems that I have worked on: Reasoning about fine-grained data

citations, and evaluating the importance of training samples to ML models using provenance.

I close by discussing prior work related to the proposed work.

2.1 Data provenance

In the database domain, there are several classical theoretical frameworks [7, 9, 8] that

can facilitate fine-grained provenance analysis. For example, [7] introduced a framework

called how-provenance for select-project-join (SPJ) queries, which was extended in follow-up

work [8] to aggregate queries. Under this framework, each base relation is extended by one

column, filled with unique identifiers (called provenance tokens) for each individual tuple.

The provenance tokens are then propagated through the database queries to query results

such that each query tuple carries a provenance expression, composed of a polynomial of

the provenance tokens, in which each monomial (i.e. the provenance token sub-expression

concatenated by “*”) represents the joint tuples after the join operations and “+” concaten-

ates those monomials from the duplicated joint tuples after the projection operation. Then

whether a certain base relation tuple ts contributes to the construction of a certain query

tuple tq can be determined by whether or not the unique provenance token of ts appears

in the provenance expression of tq. A recent paper [25] also extends the provenance semir-

ing model to handle linear algebra operators, which are the basic operators for general ML

algorithms.

14



2.2 Generating fine-grained data citations with fine-grained

provenance

I now discuss work related to reasoning about fine-grained data citations. First, I provide

a high-level overview of the data citation problem. Then I discuss classical query-rewriting-

using-views methods, which can be used to model the data citation problem.

Data citation. Principles for data citation have been proposed within the digital lib-

rary community by CODATA [57] and FORCE 11 [58], which include: 1) identification

and access to the cited data; 2) persistence of the cited data; and 3) completeness of the

reference [59, 60, 61, 62]. The community also recognized the importance of citations to

aggregate data [57], as have various scientific communities [63, 64, 65]. Early solutions to

data citation were proposed by digital libraries experts, which, however, failed to handle

the versioning problem of data citations and could not automatically generate citations for

arbitrary snippets of information, which are useful for human understanding, thus violating

persistence and completeness. The data citation problem has recently captured the atten-

tion of database researchers, who formulated this problem as a computational challenge

[66, 67] and defined a model of citation views in [11]. In additions to my solutions to auto-

matically produce fine-grained data citations, i.e. the Rewriting-Based Approach [12] and

the Provenance-Based Approach [13], the automatically generated data citations could be

provided to users via a user interface [68] and the connections between data citations and

data provenance are also discussed in [69]. To facilitate the practical use of the Rewriting-

Based Approach and Provenance-Based Approach, [70] discusses how to adjust the scientific

databases with data citation support such that the citations to the query result against

those databases can be detected by Google Scholar.

Query rewriting using views. Query rewriting using views has been applied to many

data management problems, in particular query optimization and data integration [71].

Query rewriting using views is centered around the notion of containment and equivalence

of queries [71]. Specifically, a query Q1 is contained in a query Q2, denoted Q1 v Q2, iff for

15



any database instance D, Q1(D) ⊆ Q2(D). Q1 is equivalent to Q2, denoted Q1 ≡ Q2, iff

Q1 v Q2 and Q2 v Q1. The problem of Query rewriting using views has been extensively

studied in the context of conjunctive queries [72, 73, 74, 75] as well as aggregate queries [76,

77]. Various algorithms have been designed to rewrite aggregate queries. For example, [78,

79] provide algorithms for determining whether a materialized view is usable for answering an

aggregate query by considering both conjunctive and aggregate views. In [80], an algorithm

is given to handle nested subqueries and multidimensional aggregations in queries and views.

However, only standard aggregate functions (e.g. SUM, COUNT) are considered in [80,

78, 79]; general aggregate functions (such as user defined aggregate functions) cannot be

used. The problem of general aggregate functions is considered in [81], and [82] bridges

the gap between theory and practice by providing implementation suggestions. Classical

query rewriting using views methods involve coarse-grained reasoning on the query schema

and view schema. In contrast, in the data citation problem, it is indispensable to analyze

the dependency between database views and queries at the tuple-level, given a database

instance, thus necessitating fine-grained analysis.

2.3 Incrementally update machine learning models with proven-

ance

The problem of incrementally updating machine learning models has attracted a lot of

attention in both the machine learning and the database communities. I review this work,

and then familiarize readers with the classical BFGS algorithm and its variants that our

solution, DeltaGrad heavily relies on. Afterwards, I also briefly introduce the concept of the

model inversion attack that the solutions to incrementally update models need to address.

This is then followed by some recent work on in-database learning, an application where

incremental updates on ML models may also occur. This section then ends with related

work on online learning, which is also relevant to the problem of incrementally updating

machine learning models.

16



Incrementally updating machine models. To deal with the incremental update

problem for machine models, there is prior work on estimating the updated model paramet-

ers without retraining from scratch. It is worth noting that different solutions may impose

different requirements on the incrementally models, in particular, their difference with re-

spect to the models retrained from scratch. To our knowledge, there exist two different

such requirements in literature. The first one is that with some probabilistic guarantees,

the incrementally updated models cannot be distinguished from the models retrained from

scratch, which is relevant to the notion of differential privacy [83]. Typical solutions depend-

ing on this requirement include Descent-to-delete [33], which, incrementally updates models

by utilizing the online method (to be introduced later in Chapter 6.1.2) first and then adds

noise afterwards. In contrast, the second requirement does not involve any probabilistic

claims, which, instead, requires that the incrementally updated models are deterministic-

ally as similar to the retrained models as possible. In my dissertation, I primarily focus on

developing solutions (to be described later) satisfying the second requirement. In what fol-

lows, for the state-of-the-art solutions within the ML community that also fulfill the second

requirement, they are visually compared against my solutions in Figure 2.1 along two axes:

The complexity of the models to be dealt with (the x-axis); and the similarity between the

incrementally updated models and the expected models, i.e. the models reconstructed from

scratch (the y-axis). The ideal solution for incrementally updating models is located at

the top right corner in the figure, which should effectively update general ML models and

provide exact updates on the model parameters, meaning that the incrementally updated

model parameters are the same as the ones reconstructed from scratch.

Unfortunately, there remain obvious gaps between the state-of-the-art and the ideal

solution. For example, [44] proposes an influence function for general ML models. However,

it has several disadvantages, including the expense of computing the Hessian matrix of

the objective function, poor robustness [84], and poor accuracy of estimating the updated

model parameters after deleting multiple samples [27]. Therefore, this method is placed in

the middle at the right hand side of the figure. In contrast, other state-of-the-art works

17



focus on incrementally updating some specific, fairly simple, ML models, and therefore lack

complexity. For example, [85, 86, 87, 88, 89, 90, 91, 92] resolve the issue of incrementally

updating simple linear ML models, including linear regression, naive Bayes, nearest neighbor

and support vector machine models, and are therefore located near the top left corner in the

figure. In [93], a modified K-means clustering algorithm using a quantization-based solution

provides theoretical guarantees on the stability of the model parameters (i.e. the centroids

as the result of the K-means clustering algorithm) when deletions of samples occur, therefore

avoiding retraining. Since the K-means model is more advanced than a linear model, and

[93] exactly updates the model parameters, this solution is located near the top middle of the

figure. However, current state-of-the-art works either fail to robustly and accurately update

the model (e.g. [44]), target only simple models, or require changes to the training algorithms

(e.g. [93]), and are therefore not appropriate for ML models constructed by some of the most

widely used methods: gradient descent (GD) and its variants, i.e. stochastic gradient descent

method (SGD) and mini-batch gradient descent method (mb-SGD for short).

It is also worth noting that other than my solutions, PrIU and DeltaGrad, we can also

consider using online method for incrementally updating machine learning models that are

constructed by GD or SGD method. Intuitively speaking, after the deletions of certain

training samples, online method continuously runs GD or SGD iterations by utilizing the

remaining training samples and the iterations start from the models that are constructed

on the full training dataset. As I will introduce in Section 6.1.2, arbitrary convex models

can be incrementally updated by online method and the resulting models are the same as

the ones reconstructed from scratch. Therefore, in Figure 2.1, online method locates on the

top boundary and slightly to the right of DeltaGrad. However, as I will introduce in Section

6.1.2.2, one disadvantage of online method prevents its use in some scenarios, i.e., its failure

to defend against certain type of model inversion attack [94].

The BFGS algorithm and its variant, the L-BFGS algorithm. There have been

many studies in the past few decades on utilizing Quasi-Newton methods for large-scale

optimization problems, which leverage the second order information of the objective func-

18



Similarity

complex

1.0

Model class complexity
Simple

MauveDB, Linview, “Amnesia”, etc.
[85, 87, 88, 89, 90, 91, 92]

PrIU[27]

Quantized k-means,
DC-k-means [93]

DeltaGrad [95]

online method

Influence function [44]

The ideal solution

Figure 2.1 – Comparison between PrIU, DeltaGrad and the state-of-the-art works. The
x-axis represents the complexity of ML model classes that each incremental update method
can handle, which is determined by the ML model representation (e.g. quantified by the
model parameters) and the way to obtain the model parameters (e.g. closed-form solutions
VS iterative methods). The y-axis represents the similarity between the resulting updated
models by each incremental update method and the one obtained by retraining from scratch.

tions. One such representative is the BroydenâĂŞFletcherâĂŞGoldfarbâĂŞShanno (BFGS)

algorithm and its variant, the Limited-memory-BFGS (L-BFGS) algorithm, which effect-

ively update the model parameters and simultaneously reduce the overhead of maintaining

and computing the hessian matrix. The earliest version of the BFGS algorithm dates back

to the 1970s [96, 97] which updates the model parameters with the following update rule:

wt+1 = wt − αtB−1
t ∇F (wt),

19



in which αt is the step size at the tth iteration, wt is the model parameter to be derived

by minimizing the objective function F (wt) and Bt is the approximated hessian matrix of

the objective function F (wt). Bt is also updated at each iteration and it is usually assumed

that the changes of Bt at each iteration are low-rank, e.g. rank-one or rank-two updates,

i.e.:

Bt+1 = Bt +
ytyTt
yTt st

− HtstsTt Ht

sTt Htst

where st = wt+1 −wt and yt = ∇F (wt+1)−∇F (wt).

To reduce the overhead in limited memory scenarios, [29] proposed the limited-memory-

BFGS algorithm, which avoids maintaining the approximated hessian and estimating the

matrix-vector productB−1
t ∇F (wt) directly. Details of the L-BFGS algorithm will be presen-

ted in Algorithm 8 in Section 4.3.1. There have been a series of studies on exploring the

approximation rate and convergence rate of the BFGS and L-BFGS algorithms [98, 29, 32,

99, 31, 100, 30], ideas from which are also used in our theoretical analysis.

Model inversion attack The model inversion attack in general refers to an attack from

an adversary who has no access to certain training samples but attempts to reconstruct

those samples from the machine learning model [23]. This attack, however, has a slightly

different meaning in the context of updating models triggered by the removal of sensitive

training samples, in which the adversary targets extracting the deleted training samples from

the updated models [94]. Depending on how much information the adversary obtains, the

model inversion attack could be either black-box or white-box [101]. For a black-box attack,

the adversary can only obtain the model output given an input training sample without

knowing any more information about the models. In contrast, for a white-box attack the

adversary has full knowledge of the model, such as the model parameters, the model types,

the remaining training samples after the deletion requests, the learning algorithm (including

the hyper-parameters) and even the algorithm for updating the models. Therefore, the

white-box set-up is easier for the adversary to launch the attack with respect to the black-

box set-up. However, the black-box assumption is more reasonable in practice, since state-

of-the-art online model APIs regard the deployed models as black boxes to which users can

20



only have oracle access1.

In-database learning According to a recent survey released by Kaggle2, the majority

of the practical data science tasks involve relational data. The mainstream approaches to

conducting machine learning tasks over such type of data is to export those data from the

relational databases first, followed by importing them into the modern machine learning

libraries, such as Pytorch [102] and Tensorflow [103]. However, this can lead to severe per-

formance issues since it is essential to query the training data from the relational database,

which may require to join multiple relational tables, leading to huge materialized query

results. One possible way is structure agnostic, in which the DBMSs and machine learn-

ing libraries are loosely integrated by representing the functions in those libraries as the

user-defined aggregate functions in DBMSs (e.g., see MADlib [104] and the state-of-the-art

machine learning engine in Teradata SQL [105] and Microsoft SQL server3). The other

possible way is to leverage the relational structures in DBMSs and this type of methods

is referred to as structure-aware methods. For example, some linear algebraic computa-

tions conducted by the machine learning libraries could be transformed to SQL aggregate

queries, which could be pushed past the join operations to avoid materializing large query

results representing the training data [106, 107, 108]. This could significantly accelerate

the training process of some simple machine learning models inside DBMSs, such as the

linear regression model. For this type of structure-aware methods, the above aggregate

query results representing linear algebraic computations could be cached for incrementally

maintaining the models. However, recall that only the simple models are handled by the

structure-aware methods. Therefore, the above techniques for incrementally maintaining

models within DBMSs may not be suitable for general models, especially when the structure

agnostic methods are used [109]. We would expect that this problem could be fixed when the

approaches to incrementally updating machine learning models, such as DeltaGrad, become
1see e.g., Google prediction API:

https://cloud.google.com/ai-platform/prediction/docs/reference/rest/v1/projects/predict
2https://www.kaggle.com/surveys/2017
3https://docs.microsoft.com/en-us/sql/machine-learning/

sql-server-machine-learning-services?view=sql-server-ver15

21

https://cloud.google.com/ai-platform/prediction/docs/reference/rest/v1/projects/predict
https://www.kaggle.com/surveys/2017
https://docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services?view=sql-server-ver15


more mature in the future.

On-line learning On-line learning concerns a learning task where the training data

arrive in a sequential order. Different from the traditional off-line (or batch) machine learning

methods where the full training set is available during the whole training process, on-line

learning aims at constructing a model to maximize the prediction accuracy given the current

observation and the previous predictions on the prior observations [110], which requires

to continuously update models given more and more newly added training samples. This

indicates that the on-line learning methods do not take into account the deletions of training

samples. However, as revealed in [33], the spirit of on-line learning, i.e., learning over a

sequence of training samples, could also be applied for incrementally updating strongly

convex models after the deletions of small amount of training samples. Specifically, this

can be accomplished by starting from the model constructed on the full training set and

continuing running SGD for a few epochs on the remaining training samples after the deletion

requests, finally resulting in an exactly updated model, which utilizes the uniqueness of the

local minimums of the strongly convex models. However, as discussed in Section 1.3, this

method 1) may suffer from the white-box model inversion attack [23] when the adversary

knows everything about the models; 2) cannot be generalized to more complicated models,

such as over-parameterized models, which fully memorize all training samples, including

samples with random labels.

2.4 Related work on cleaning label uncertainties for machine

learning models

Finally, I review the literature on cleaning label uncertainties for machine learning models,

which is comprised of the related work on some general data cleaning problems in the

machine learning pipeline, followed by some extra related work on how to prioritize the

most influential training samples for cleaning their labels. I then conclude this section with

the literature review on semi-supervised learning and weakly supervised learning, which

22



paves the way to the future work on integrating CHEF with those two learning frameworks.

Data cleaning for ML models Diagnosing and cleaning errors or noises in training

samples has attracted considerable attention [46, 111], and is typically addressed iteratively

[40, 112, 2]. For example, the authors of [46] observed that the noisily labeled samples were

memorized by the model in the overfitting phase, which can be detected through transferring

the model status back to the underfitting phase. [111] identifies and fixes the noisy labels

through jointly analyzing how probable one noisy label is flipped by the human annotators

and how this label update influences the model performance. However, it explicitly assumes

that the noisy labels are either 1 or 0, thus not applicable in the presence of probabilistic

labels. The approach in [2] detects errors in both feature values and labels; But it explicitly

assumes that the uncleaned samples are harmful and thus excluded in the training process,

we follow the principle of [35] by “including” the training samples with uncertain labels in

the training phase.

Detecting the most influential training samples with uncertainties As discussed

in [112], it is important to prioritize the most influential training samples for cleaning. This

can depend on various influence measures, e.g., the uncertainty-based measures in active

learning methods [45], the influence function [44], the data shapley value [113], the loss

produced by neural network models [46, 114], etc. However, to our knowledge, none of these

techniques can be used to automatically suggest possibly cleaned labels, apart from [115].

Furthermore, the applicability of [115] is limited due to its poor scalability and some of the

above methods (including [115]) are not applicable in the presence of probabilistic labels

and the regularization on them.

Semi-supervised learning Similar to active learning methods, semi-supervised learn-

ing is also a methodology for dealing with the label scarcity issues, which employs both the

labeled training samples and the unlabeled training samples for certain machine learning

tasks without relying on extra labels provided by human annotators [50, 51]. However,

as mentioned above, semi-supervised learning also depends on certain amount of labeled

samples. Therefore, given a training set without any labeled samples, to initialize the

23



semi-supervised learning tasks, it is crucial to determine appropriate samples rather than

randomly selected samples for labeling such that the performance of the resulting model

could be optimized [53], thus motivating a line of research on integrating semi-supervised

learning with active learning, e.g., [53, 55, 52, 54, 116, 56]. Among those studies, [56]

provides a more general framework for handling arbitrary machine learning models and

adjusts the metric in active learning for selecting the most informative unlabeled training

samples for labeling such that it could be more coherent with the objective function of the

semi-supervised learning method. Considering my proposed method, INFL, is an alternative

to the active learning method, it is thus worth integrating INFL with the semi-supervised

learning method for gaining better model quality, which is discussed in Section 6.2.

Weakly supervised learning Similar to semi-supervised learning, weakly supervised

learning also aims at dealing with the lack of enough high-quality labels in practice by

utilizing the unlabeled training samples, but from a different perspective. Specifically, weakly

supervised learning automatically generates lower-quality probabilistic labels for unlabeled

training samples by leveraging some heuristics (named as labeling functions [35]) provided

by domain experts, which are then included as part of the training set for the learning

tasks. Despite the low cost of obtaining those probabilistic labels, their quality may be

not ideal [49, 36, 37, 38] due to the imperfect labeling functions. To address this problem,

there were some recent research efforts on combining active learning and weakly supervised

learning. Intuitively speaking, the mechanism of active learning is employed to let the

human annotators refine some probabilistic labels (e.g. the most informative ones) and those

refined labels could then be leveraged to generalized to other training samples to repair their

probabilistic labels [49, 117, 118]. This process could proceed iteratively until the satisfactory

model performance is reached. Note that our method, CHEF, only loosely incorporates

weakly supervised learning since the refinement of a small amount of probabilistic labels

(identified by INFL) is not propagate to the remaining probabilistic labels. As I will discuss

in Section 6.2.2, similar to active learning, accomplishing the tight integration between

CHEF and weakly supervised learning is also possible, which is left as part of the future

24



work.

25



CHAPTER 3: Reasoning about fine-grained data citations with

provenance

In this chapter, I will introduce how I handle the data citation problem in two different

ways, i.e. Rewriting-based approaches and Provenance-based approaches, which is started

by introducing the concept of the citation view model. In the remainder of this chapter, the

following simplified GENCODE [63] database schema is used to illustrate the key concepts:

Gene(GID, Name, Type)

Gene2Contributor(GID, Person) GID references Gene

Transcript(TID, Name, Type, GID) GID references Gene

Transcript2Contributor(TID, Person) TID references Transcript

Exon(EID, Level, TID), TID references Transcript

Exon2Contributor(EID, Person), EID references Exon

This schema is composed of six relations, including the relation “Gene”, “Transcript” and

“Exon”, each of which is associated with one relation to record the corresponding contribut-

ors. Given this schema, a simplified instance of this database instance is presented in Table

3.1-3.5.

3.1 Preliminary

3.1.1 Citation view models

As the first step toward the full-fledged solutions to produce fine-grained citations for general

user queries, I defined the citation view model [11], composed of view queries and citation

queries. The definition of the citation view model is provided as below:

Definition 1. A citation view is a tuple (V,CV ) where:

26



Table 3.1 – Instance of relation Exon
EID Level TID

te1 1 1 1
te2 2 3 2
te3 3 2 2
te4 4 2 2

Table 3.2 – Instance of relation Exon2Contributor

EID Person
tec1 1 Joe
tec2 2 David
tec3 3 Mark
tec4 4 Robert

Table 3.3 – Instance of relation Gene
GID Name Type

tg1 1 TF TEC
tg2 2 FH rRNA
tg3 3 RP1 rRNA
tg4 4 IYD rRNA
tg5 5 EPN mRNA

Table 3.4 – Instance of relation Gene2Contributor
GID Person

tgc1 1 Jane
tgc2 2 David
tgc3 3 Chris
tgc4 4 Tom
tgc5 5 Joe

Table 3.5 – Instance of relation Transcript
TID Name Type GID

tt1 1 MB-203 TEC 1
tt2 2 PC-203 rRNA 2
tt3 4 HP-218 rRNA 2
tt4 5 TP-208 rRNA 3

Table 3.6 – Instance of relation Transcript2Contributor
TID Person

tt1 1 David
tt2 2 Jane
tt3 4 Mark

27



1. V is the view definition of the form λX.V(Y) : −Q;

2. CV is the citation query of form λX.CV(Y
′) : −Q′;

In this definition, V and CV are parameterized conjunctive Datalog queries possibly with

aggregations but no negations, in which Y (Y ′ resp.) is a set, including either variables from

the predicates in Q (Q′ resp.) or aggregated terms which are the terms utilizing aggregate

functions over the variables coming from the body of Q. The parameter X in the lambda

term λX is a set of variables (not aggregated variables) satisfying X ⊂ Y , which is optional

in the definition of V and CV . The role of λX is to control the granularity of the citations

annotated in the instance of V , where the view tuples with the same values in the variables

from X share the same citations. If the term λX does not exist, then all the view tuples in

the view instance share the same citations.

Given a user query Q and the corresponding query instance, the first step is to check each

individual query tuple to which view tuples are responsible for its construction, followed by

extracting snippets of the citation information associated with those responsible view tuples

by issuing the citation queries, which are then used to construct citations for the query

tuples by some predefined formats, e.g. the JSON format, in the citation function.

Example 1. I can define some citation views for the simplified GENCODE databases, in

which the view definitions are presented as below:

λG.V1(G,Ty) : −Gene(G,N, Ty), G ≤ 2

V2(Ty,COUNT (G)) : −Gene(G,N, Ty), T y = ‘rRNA’

V3(G,COUNT (T )) : −Transcript(T,N, Ty,G), T ≤ 2

V4(G,N) : −Transcript(T,N, Ty,G), T ≥ 2

λTy2.V5(G,N, Ty2) : −Gene(G,N, Ty1), T ranscript(T,N ′, T y2, G′)

, G = G′, T ≥ 4

V6(T1, E,G1, L) : −Transcript(T1, N1, T y1, G1), Exon(E,L, T2)

, T1 = T2, E ≤ 2

V7(G1, COUNT (T1)) : −Transcript(T1, N1, Ty1, G1), Exon(E,L, T2)

28



, T1 = T2, L ≤ 2

V8(G1,MAX(L), COUNT (E)) : −Transcript(T1, N1, Ty1, G1),

Exon(E,L, T2), T1 = T2

The instances of the views defined above are provided in Table 3.7-3.8 and the corres-

ponding citation queries are presented as below:

λG.CV1(G,Array_agg(P )) : −Gene(G,N, Ty), Gene2Contributor(G′, P )

, G = G′, G ≤ 2

CV2(Array_agg(P )) : −Gene(G,N, Ty), Gene2Contributor(G′, P )

, G = G′, T y = ‘rRNA

CV3(Array_agg(P )) : −Transcript(T,N, Ty,G),

T ranscript2Contributor(T ′, P ), T = T ′, T ≤ 2

CV4(Array_agg(P )) : −Transcript(T,N, Ty,G),

T ranscript2Contributor(T ′, P ), T = T ′, T ≥ 1

λTy2.CV5(Ty2, Array_agg(P )) : −Gene(G1, N1, Ty1), T ranscript(T,N, Ty2, G2),

T ranscript2Contributor(T ′, P )

, T = T ′, G1 = G2, T ≥ 4

CV6(Array_agg(P )) : −Transcript(T1, N1, T y1, G1), Exon(E,L, T2),

Exon2Contributor(E′, P ), E = E′, T1 = T2

, E ≤ 2

CV7(Array_agg(P )) : −Transcript(T1, N1, T y1, G1), Exon(E,L, T2),

T ranscript2Contributor(T3, P )

, T2 = T3, T1 = T2, L ≤ 2

CV8(Array_agg(P )) : −Transcript(T1, N1, Ty1, G1), Exon(E,L, T2),

T ranscript2Contributor(T3, P ), T2 = T3, T1 = T2

In this example, each view and the citation query pair, (Vi, Cvi) where i = 1, 2, . . . , 5

composes a citation view. Note that, V1 is parameterized by the primary key G, which

indicates that each view tuple in the instance of V1 should carry unique set of contributor

29



names. This is achieved by using the citation query CV1, which shares the same parameters

as V1 and aggregates the contributor names by the attribute G (the function Array_agg is

used to collect all contributor names as a list), which ends up with one aggregated list of

contributor names for each individual tuple in Gene.

Table 3.7 – Instance of view V1

G Ty
tv11 1 TEC
tv12 2 rRNA

Table 3.8 – Instance of view V2

Type COUNT(G)
tv21 rRNA 3

Table 3.9 – Extended instance of view V1

G N Ty
tve11 1 TF TEC
tve12 2 FH rRNA

Table 3.10 – Extended Instance of view V2

GID Name Type
tve21 2 FH rRNA
tve22 3 RP1 rRNA
tve23 4 IYD rRNA

3.1.2 View mappings and Query extensions

Based on the above citation view model, I found that the data citation problem is closely

related to the classical query rewriting using views problem. However, unlike the query

rewriting problem where only the schema analysis between view schema and query schema

is required, it is also essential to reason about the finer-grained dependency between each

individual input view tuples and each individual query tuples, which means that a qualified

view may not necessarily rewrite the user query at the schema level, but may still include

tuples which can contribute to some query tuple with some specific database instance. Same

as the query rewriting using views problem, I reason about the qualified view tuples for each

individual query tuple under the view mappings, which map the variables and atoms used

30



in the view schema to the query schema. The definition of view mappings is provided as

below, which is borrowed from the classical query rewriting using views problem:

Definition 2. View Mapping Given a view definition V and query Q

V(Ȳ) : −A1(Ȳ1), A2(Ȳ2), . . . , Ak(Ȳk), condition(V)

Q(X̄) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q)

a view mapping M from V to Q is a tuple (h, φ) in which:

• h is a partial one-to-one function which 1) maps a relational subgoal Ai in V to a

relational subgoal Bj in Q with the same relation name; and 2) cannot be extended to

include more subgoals of Q.

• φ are the variable mappings from Ȳ ′ = ∪ki=1Ȳi to X̄
′ = ∪mi=1X̄i induced by h

A relational subgoal Bj of Q is covered iff h(Ai) = Bj for some i. A variable x of Q is

covered iff φ(y) = x for some y.

As described above, view mappings construct mappings of all variables between query

body and view body, which thus motivates us to introduce the extended version of query

schema by including all variables in the query body in the query head. i.e.:

Definition 3. Query Extension Given a query

Q(X̄) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q)

where condition(Q) are the non-relational subgoals, the extension of Q, Qext, is

Qext(X̄
′) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q)

where X̄ ′ = ∪mi=1X̄i. Note that X̄ ⊆ X̄ ′.

Example 2. Consider the following query which finds the pairs of gene IDs and transcript

name from all joint tuples between all ‘rRNA’ genes and transcripts:

31



Q1(GID1, Name2) : −Gene(GID1, Name1, Type1)

, T ranscript(TID,Name2, T ype2, GID2)

, T ype2 =‘rRNA’, GID1 = GID2

The query instance of Q1 is provided in Table 3.11. According to Definition 3, the extension

of Q1 is:

Qext1(GID1, Name1, T ype1, T ID,Name2, T ype2, GID2)

: −Gene(GID1, Name1, Type1)

, T ranscript(TID,Name2, T ype2, GID2)

, Type2 =‘rRNA’, GID1 = GID2

There are obvious view mappings from V1, V2, V7 and V8 to the body of Q. For example,

one possible mapping, M11, maps the first (and only) subgoal of V1 to the first subgoal of

Q1 and induces the mapping of variables φ(G) = GID1, φ(N) = Name1, φ(Ty) = Type1.

Another mapping, M51, maps the first and second subgoal of V5 to the first and second

subgoal of Q1 respectively and induces the mapping of variables φ(G) = GID1, φ(N) =

Name1, φ(Ty1) = Type1, φ(T ) = TID, φ(N ′) = Name2, φ(Ty2) = Type2, φ(G′) =

GID2.

By going through all the views, all the possible view mappings for Q1 can be derived,

which are presented in Table 3.13.

Table 3.11 – Instance of Q1

GID1 Name2
tq11 2 PC-203
tq12 2 HP-218
tq13 3 TP-208

Table 3.12 – Extended instance of Q1

GID1 Name1 Type1 TID Name2 Type2 GID2
tqe11 2 FH rRNA 2 PC-203 rRNA 2
tqe12 2 FH rRNA 4 HP-218 rRNA 2
tqe13 3 RP1 rRNA 5 TP-208 rRNA 3

32



Table 3.13 – All possible view mappings for Q1

View View
mapping

h: mappings on relations φ: mappings on variables Subgoals covered

V1 M11 gene→ gene
G→ GID, N→ Name1

, Ty→ Type1
gene

V4 M41 Transcript→ Transcript
T→ TID, N→ Name2

, Ty→ Type2, G→ GID2
Transcript

V5 M51
Transcript→ Transcript

, gene→ gene

G→ GID, N→ Name1

, Ty→ Type1, T→ TID

, N′ → Name2, Ty2→ Type2

, G′ → GID2

gene, Transcript

Then based on the definition of the view mappings, the positional mappings between in-

dividual attributes in view schema and individual attributes in query schema can be derived,

under which I can map a view tuple tv to the query instance and thus the existence of the

mapped view tuple in the query instance determines whether tv contributes to the construc-

tion of certain query tuples or not. For example, under the view mappingM11, the attributes

of V1, i.e., G,N, Ty are mapped to GID1, Name1 and Ty1 respectively, under which if the

view tuple tvc12=(2,‘FH’,‘rRNA’) with G = 2, N =‘FH’ and Ty =‘rRNA’ appears in the

query instance, then there should exist one query tuple with GID1 = 2,Name1 =‘FH’

and Ty1 =‘rRNA’ in the extended instance of Q1, which is true for both tqe11 and tqe12 as

shown in Table 3.12. This indicates that tvc12, i.e. tv12 after the duplicates are removed, is

responsible for the contributions of the query tuple tq11 and tq12. Therefore, the key step to

produce fine-grained citations to each query tuple is to identify whether a view tuple can be

transformed to some portion of a query tuple under certain view mapping, which is equi-

valent to determining the validity of the view mappings for a query tuple. In what follows,

I will introduce how to determine the validity of view mappings at query tuple level with

two different types of approaches, i.e. Rewriting-Based Approach and Provenance-Based

Approach.

3.2 Reasoning about validity of view mappings

I propose two types of models, Rewriting-Based Approach and Provenance-Based Approach

in [12] and [13] respectively to determine whether a view tuple can contribute to the con-

33



struction of a certain query tuple. The former approach extends query rewriting using views

to the tuple-level to analyze which combinations of view tuples could “rewrite” a certain

query tuple, which is applicable for general SPJ queries and SPJ views but fails to provide

correct results for aggregate queries and aggregate views as [13] shows. This thus motiv-

ates us to come up with the other approach, i.e. Provenance-Based Approach, which deals

with the data citation problem by explicitly employing the provenance-semiring model. The

details of the two approaches are provided in the next subsection.

Note that a view may provide more than one view mappings for a given query. For

example, given a query computing all pairs of gene IDs for the gene type ‘rRNA’, which

needs to calculate a cross-product on two copies of ‘rRNA’ ‘Gene’ tuples, i.e.:

Q2(G1, G2) : −Gene(G1, N1, T y1), Gene(G2, N2, T y2), Ty1 = ‘rRNA’, T y2 = ‘rRNA’.

This query body includes two copies of Gene relation, thus producing two view mappings

M21 and M ′21 mapping V1 to Q2 according to Definition 2, each of which maps the gene

relation in the body of V1 to one gene relation in the body of Q2. As a result, the validity

of the two view mappings for each query tuple is analyzed individually.

3.2.1 Rewriting-Based Approach (RBA)

Based on the intuition above, I illustrated how to determine the validity of view mappings for

some query tuple with Rewriting-Based Approach (RBA), in which the provenance is impli-

citly used and I only consider the view mappings that map conjunctive views to conjunctive

queries:

Definition 4. Valid View Mapping By reusing the notations from Definition 2, given a

database instance D, a view mapping M = (h, φ) of a conjunctive view V is valid for a tuple

t ∈ Qext(D) iff:

• The projection of t on the variables that are mapped in Qext under the mapping φ

is a tuple in Vext(D): Πφ(Ȳ ′)t ∈ Vext(D) (recall that in Defi‘nition 2, Ȳ ′ =
⋃k
i=1 Ȳi,

34



representing a set of all the variables from all the subgoals in the view body)

• There exists at least one variable y ∈ Ȳ such that φ(y) is a distinguished variable

(recall that Ȳ represents a set of all the head variables of the view V )

• All lambda variables in V are mapped to variables in X̄ ′.

Example 3. Let us revisit the intuitive example presented above. Recall that under the

view mapping M11 = (h11, φ11), Ȳ ′ = {G,N, Ty} and Ȳ = {G,Ty}, the former of which

is mapped to the attribute set {GID1, Name1, Type1} in the query Q1. This indicates

that φ11({G,N, Ty}) = {GID1, Name1, Type1}. In order to determine the validity of view

mapping M11 for the tuple tqe11=(2,‘FH’,‘rRNA’,2,‘PC-203’,‘rRNA’,2) from the extended

instance of Q1, I project this tuple on the attributes from Q1 involved in the mapping M11,

i.e. Πφ11(Ȳ ′)tqe11 = Πφ11(GID2,Name1,T ype1)tqe11 =(2, ‘FH’, ‘rRNA’), which is exactly tve12 in

the extended instance of V1 (see Table 3.9). Therefore, the first condition holds. Plus, the

last two conditions can be verified since the head variable G (lambda variable also) of V1 is

mapped to GID1 under M11 which is also the head variable of Q1. As a consequence, M11

is a valid view mapping for the query tuple tqe11.

As shown in Definition 4, the core idea of checking the validity of a given view mapping

for a query tuple t is to evaluate whether the portion of t projected on the attributes involved

in the view mappings, tp should appear in the extended instance of the view or not, which

is equivalent to check the satisfiability of the conditions appearing in the view body for tp.

For example, it has been demonstrated that in Example 3, the projected portion tp =(2,

‘FH’, ‘rRNA’) for the query tuple tqe11 appear in the extended instance of V1, which also

satisfies the condition G ≤ 2 in the body of view V1. In contrast, for the query tuple tqe13,

by projecting on the same set of attributes as tqe11, the resulting tuple (3, ‘RP1’, ‘rRNA’)

is missing from the extended instance of V1 due to the violation of the condition G ≤ 2.

The intuitive example above reveals the necessity of reasoning at fine-grained level,

i.e. tuple-level, which thus becomes computationally challenging especially for large query

instances. To deal with this, I proposed two different ways to effectively identify the valid

35



view mappings for each query tuple, i.e. Tuple-level approach (TLA) and semi-schema-level

approach (SSLA), which can effectively check the satisfiability of the conditions for each

query tuple under the view mappings. The main difference between the two approaches is

how to tackle the local predicates, which are the conditions in the query body or view body

only involving attributes from one base relation, e.g. G < 2 in the body of view V1. For the

conditions with attributes from different base relations, e.g. GID1 = GID2 in the body

of the query Q1, they are defined as global predicates. In what follows, TLA and SSLA are

described respectively.

3.2.1.1 Tuple-level approach (TLA)

The tuple-level approach is composed of the preprocessing step, the Query execution step

and the reasoning step, which generates valid view mappings in the end, preparing for the

follow-up citation generation phase. To begin with, to facilitate checking local predicates

in TLA, the database schema is modified: A view vector column is added to each relation

identifying all views in which a tuple potentially participates. For each view V : −BV , V

is added to the view vector of each tuple t in relation R ∈ BV whenever t satisfies the local

predicates for V . This reduces the overhead for checking the local predicates at query time,

and filters out invalid view mappings early. Any global predicates are checked at query time.

Example 4. Let us revisit Example 1 and consider annotating all conjunctive views (i.e.

V1, V4, V5, V6) to the base relations Gene, Transcript and Exon. The annotated base rela-

tions are presented in Table 3.14-3.16.

Since there is one local predicate in V1 which filters out all the gene tuples with gene

ID larger than 2, then only the first two gene tuples are annotated with view V1 as Table

3.15. Similarly, the existence of the local predicates T ≥ 2 and E ≤ 2 in the view V4 and

V6 respectively lead to the annotations of V4 and V6 to the last three Transcript tuples and

the first two exon tuples respectively as Table 3.16 and Table 3.14 show. For V5 which is a

multi-relation view, it includes a local predicate T ≥ 4 and a global predicate G = G′, the

former of which influences the annotations of V5 to the relation Transcript. Since there

36



Table 3.14 – Instance of relation Exon with annotated candidate views
EID Level TID View_vector

te1 1 1 1 V6
te2 2 3 2 V6
te3 3 2 2
te4 4 2 2

Table 3.15 – Instance of relation Gene with annotated views
GID Name Type View_vector

tg1 1 TF TEC V1, V5
tg2 2 FH rRNA V1, V5
tg3 3 RP1 rRNA V5
tg4 4 IYD rRNA V5
tg5 5 EPN mRNA V5

Table 3.16 – Instance of relation Transcript with annotated views
TID Name Type GID View_vector

tt1 1 MB-203 TEC 1 V6
tt2 2 PC-203 rRNA 2 V4, V6
tt3 4 HP-218 rRNA 2 V4, V5, V6
tt4 5 TP-208 rRNA 3 V4, V5, V6

exists no local predicates for the relation Gene which is also in the definition of V5, then all

the tuples in the relation Gene are annotated with V5 as Table 3.15 shows. The reasoning

of the satisability of the global predicate G = G′ in V5 is left for later phases.

Preprocessing step. When a query Q : −BQ is submitted, I first calculate all possible

view mappings using the view and query schemas. Some of these mappings may become

invalid for individual result tuples depending on whether global predicates for the views hold.

In order to enable global predicate checking as well as the evaluation of parameterized views,

Q is then extended to include: 1) lambda variables under all possible view mappings (which

are used to evaluate parameterized views); 2) view vectors of every base relation occurring

in BQ; and 3) columns representing the truth value of every global predicate under every

possible view mapping (which are used to filter out invalid view mappings based on global

predicates). In the three extra types of columns in the extended query schema, the latter

two are used to evaluate the validity of view mappings while the first one is for later use

of extracting citation information (recall that according to the definition of citation views,

37



i.e. Definition 1, view tuples with different values for lambda variables may have different

citations). The details of the preprocessing step are presented in Algorithm 1, which takes

as input a set of views V and a user query Q to generate the extended query Qext1 and all

possible view mappings.

Algorithm 1: Preprocessing step
Input : a set of views: V = {V1, V2, ..., Vk}, user query:

Q(X̄) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q)
Output: the set of all possible view mappingM, the extended query Qext1(X̄ ′)

1 InitializeM = {}
2 Initialize the schema of the extended query X̄ ′ = X̄
3 for each view V ∈ V do
4 Derive all possible view mappings from V to Q that follows definition 2 and the last two

conditions in definition 4 and add them toM.
5 end
6 for each view mapping M ∈M do
7 Derive lambda terms L(M) and the predicates condition(M) under M
8 Add all lambda terms in L(M) to X̄ ′

9 Add boolean expressions of all the global conditions in condition(M) to X̄ ′′

10 end
11 for each relation Bi in the body of Q do
12 Add the view vectors V ec(Bi) to X̄ ′.
13 end
14 Construct the extended query Qext1 with the following form:
15 Qext1(X̄ ′) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q)
16 returnM, Qext1(X̄ ′)

Example 5. Continuing Example 2, I know that there are three view mappings M11,M14

and M15 mapping V1, V4 and V5 to Q1 respectively as Table 3.13 indicates, in which V1 has

one lambda variable G and V5 has one global predicate G = G′ and one lambda variable

Ty2. Under the view mapping M11 and M51, the lambda variable G and the global predicate

G = G′ are transformed to GID1 and GID1 = GID2 respectively, which are included in the

extended schema of Q1 along with the view vector columns from the base relations included

in Q1, i.e.:

Qr1(GID1,Name2, GID1, T ype2, (GID1 = GID2), Gene.view_vector

, T ranscript.view_vector)

: −Gene(GID1, Name1, T ype1), T ranscript(TID,Name2, T ype2, GID2),

T ype2 =‘rRNA’, GID1 = GID2

38



In this extended query schema, I use Qr1 to denote the extended query for Q1 and the

expression (GID1 = GID2) to explicitly evaluate the predicate GID1 = GID2 in the query

instance. Note that the attribute GID1 also appears as the head variable in Q1. Therefore,

only one copy of this attribute in the extended query schema can be removed, which can be

further simplified by removing (GID1 = GID2) and thus avoiding evaluating this predicate

during the query execution phase since GID1 = GID2 is the global predicate of Q1, implying

the satisfiability of this predicate for all query tuples. In the end, the simplified extended query

definition becomes:

Qr1(GID1,Name2, T ype2, Gene.view_vector, T ranscript.view_vector)

: −Gene(GID1, Name1, T ype1), T ranscript(TID,Name2, T ype2, GID2),

T ype2 =‘rRNA’, GID1 = GID2

Query execution step. The extended query is then executed over the database instance

D, yielding an instance over which the reasoning of valid view mappings can occur in the

next step.

Example 6. Continuing Example 5, Qr1 is executed against the database instance shown

in Table 3.1-3.6, resulting in the following query instance:

Table 3.17 – Instance of Qr1

GID1 Name2 Type2 Gene.view_vector Transcript.view_vector
tqr11 2 PC-203 rRNA V1, V5 V4, V6

tqr12 2 HP-218 rRNA V1, V5 V4, V5, V6

tqr13 3 TP-208 rRNA V5 V4, V5, V6

Reasoning step. In this step, the major concern is to check the satisfiability of the global

predicates from the multi-relation views for each individual query tuple. A view mapping

M for a multi-relation view V is valid for a query tuple t iff all global predicates under

this mapping are true for t and the annotation of V appears in all the relations involving

in the mapping M . Invalid view mappings are then removed from the view vectors. The

details of this step are shown in Algorithm 2, which takes as input the database instance

39



D, the output from Algorithm 1 (i.e. a set of view mappings and the extended query Qext1)

and a query tuple t from the query instance obtained through the Query execution step to

construct valid view mappings for each query tuple t.

Example 7. Continuing Example 6, the validity of the view mappings for the single-relation

views depends on the occurrence of their annotations in the corresponding view vector columns.

For example, V1 appears in the Gene’s view vector for the first query tuples, indicating the

satisfiability of the local predicates involving Gene relation for those tuples, which has been

evaluated early when those views are annotated to the base relation tuples.

In contrast, for multi-relation views, both their view annotations and the evaluation res-

ults of global predicates in the resulting query instance are essential to determine the validity

of their view mappings V , Since there are no global predicates explicitly evaluated during the

query execution phase of Qr1, then the occurrence of the view annotations is crucial to de-

termine the validity of view mappings. For example, V5 joins Gene relation and Transcript

relation, which appears in both of the Gene’s view vector column and Transcript’s view vector

column for the last two query tuples in the instance of Qr1, implying its satisfiability of the

local predicates involving both Gene relation and Transcript relation for those query tuples.

Therefore, the corresponding view mapping of V5, i.e. M51 should be a valid view mapping

for each query tuple. In contrast, V5 does not appear in the Transcript’s view vector in the

tuple tqr11, indicating its violations of the local predicates in V5 involving the Transcript re-

lation, i.e. T ≥ 4 from V5. Furthermore, despite the existence of V6 in the Transcript’s view

vectors, it cannot provide valid view mappings for any query tuples in Table 3.17. This is

because another relation appearing in V6, i.e. Exon is missing from the body of Qr1, thus

failing to construct view mappings from V6 to Qr1. In the end, the valid view mappings for

each individual query tuple are listed in Table 3.18.

Table 3.18 – Instance of Qr1 with valid view mappings

GID1 Name2 Valid view mappings
tqr11 2 PC-203 M11,M41

tqr12 2 HP-218 M11,M41

tqr13 3 TP-208 M41,M51

40



Algorithm 2: Determine the valid view mappings in TLA
Input : Database instance D, the set of all the possible view mappingsM, the schema of the

extended query Qext1: (X̄ ′), and a tuple t ∈ Qext1(D)
Output: A set of valid view mapping setsM(t), a set of maximally covered relations MCR(t)

1 InitializeM(t) = {}
/* M(t) denotes a set of valid view mapping */

2 for each view vector V ec(Bi)(i = 1, 2, . . . ,m) do
3 for each annotated view V in V ec(Bi) do
4 for each view mapping M that the view V is involved in do
5 check whether each view mapping M satisfies:

1. the first condition in the definition 4 by
checking whether all of the boolean expressions
of the global predicates in condition(M) are true and

2. Bi is covered by the mapping M and

3. if M covers more than one relations, V should appear in
every view vector of those relations.

if M follows all the three rules above then
add M toM(t)
add all the relations in Q that M covers into MCR(t)

end
6 end
7 end
8 end
9 returnM(t) and MCR(t)

3.2.1.2 Semi-Schema-level approach (SSLA)

Unlike TLA, there is no need to annotate the base relations with views with Semi-Schema-

level approach (SSLA). Instead, both the local predicates and the global predicates are

evaluated during the executions of the extended queries. The algorithmic details are presen-

ted as below step by step.

Preprocessing step As before, when a user query Q : −BQ is submitted, all the possible

view mappings are calculated. The query is extended to include 1) lambda variables under

all the possible view mappings; and 2) columns representing the truth value of every global

and local predicate. Since base relations are not annotated, no view vectors are returned.

The extended query is then executed on the database yielding an extended query instance

used for reasoning valid view mappings.

Example 8. Similar to Example 5, I know that there are three view mappings M11,M14

41



and M15 mapping V1, V4 and V5 to Q1 respectively as Table 3.13 indicates. To construct

the extended query Q′r1, all the lambda variables (i.e. the lambda variable G from V1), local

predicates (i.e. the local predicates G ≤ 2 from V1, T ≥ 2 from V3 and T ≥ 4 from V5)

and global predicates (i.e. G = G′ from V5) of those views under the corresponding view

mappings are included in the query schema V1, i.e.:

Q′r1(GID1,Name2, T ype2, GID1, (GID1 = GID2), (G ≤ 2), (TID ≥ 2), (TID ≥ 4))

: −Gene(GID1, Name1, T ype1), T ranscript(TID,Name2, T ype2, GID2),

T ype2 =‘rRNA’, GID1 = GID2

Again, (GID1 = GID2) is removed since it exists in the query body and one copy of

GID1 are removed due to the duplicates, which results in the following simplified Q′r1:

Q′r1(GID1,Name2, T ype2, (G ≤ 2), (TID ≥ 2), (TID ≥ 4))

: −Gene(GID1, Name1, T ype1), T ranscript(TID,Name2, T ype2, GID2),

T ype2 =‘rRNA’, GID1 = GID2

After executing this extended query on the database instance shown in Table 3.1-3.6, the

query results are presented in Table 3.19:

Table 3.19 – Instance of Q′r1

GID1 Name2 Type2 (G ≤ 2) (TID ≥ 2) (TID ≥ 4)

tqr1′1 2 PC-203 rRNA True True False
tqr1′2 2 HP-218 rRNA True True True
tqr1′3 3 TP-208 rRNA False True True

Reasoning step In this step, the set of valid view mappings for each tuple t ∈ Qext2(D),

VM(t), is derived based on the truth values of the global and local predicates (all must be

true for a view mapping to be in VM(t)).

Example 9. Continuing Example 8, it is not hard to know that the local predicates (G ≤ 2),

TID ≥ 2 and TID ≥ 4 are the only local predicates in V1, V3 and V5 respectively, which

correspond to view mappings M11, M31 and M51 respectively. Therefore, the truth values

42



Algorithm 3: Determine the valid view mappings in SSLA
Input : Database instance D, The set of all the possible view mappingsM, the extended query:

Qext2(X̄ ′) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q), and a tuple t ∈ Qext2(D)
Output: A set of valid view mappingsM(t), a set of maximally covered relations MCR(t)

1 InitializeM(t) = {}
2 Initialize MCR(t) = {}
3 for each view mapping M in M do
4 check whether M satisfies the first condition in the definition 4 by checking whether all of the

boolean expressions of condition(M) are true
5 if M follows the rule above then
6 add M toM(t)
7 end
8 add all the relations in Q that M covers into MCR(t)

9 end
10 returnM(t) and MCR(t)

of those predicates in the query tuples in Table 3.19 which reflect the satisfiability of those

predicates should imply the validity of those view mappings. For example, for the first query

tuple tq′r11, the evaluation results for the predicates (G ≤ 2), TID ≥ 2 and TID ≥ 4 are

True, True and False respectively, meaning that only the former two predicates hold for this

query tuple, thus justifying the validity of the corresponding view mappings M11 and M31 for

this query tuple. In the end, it ends up with the same set of valid view mappings for each

query tuple as the one in Table 3.18.

3.2.1.3 Optimization in the implementations

Deriving valid view mappings tuple by tuple is time-consuming especially when the query

result is very large. However, it is possible to find subsets of tuples that will share the same

set of valid view mappings using the view vectors and boolean values of local and global

predicates returned in the extended query, by which deriving valid view mappings can be

done once per group and then propagated to all tuples within the group. For example, in

Table 3.18, the first two tuples form one group and the third and fourth tuples form another

group. This optimization leads to significant performance gains.

43



3.2.2 Provenance-Based Approach (PBA)

Although Rewriting-Based Approach can provide perfect solutions for the scenarios where

only conjunctive views and conjunctive views exist, it overlooked the widely use of aggregate

queries and aggregate views in scientific databases.

One such example is Hetionet, a database that “encodes” biology by integrating various

types of biological information from different publicly available resources [119, 64]. As

data is copied from these source datasets, citation information (generally in the form of

traditional publication IDs) is also copied and should be propagated to the results of queries.

The majority of queries against this database involve aggregation to retrieve statistical

information.

Another example, which requires both aggregate queries and aggregate views, is GEN-

CODE [63], an encyclopedia of genes and gene variants whose goal is to identify all functional

elements in the human genome using annotations. The gene annotation process involves a

combination of automatic annotation, manual annotation, and experimental validation. For

genes that are manually annotated, information is maintained about the responsible research

groups. Statistics are also provided for every gene – an aggregate view over the genes – which

has another type of citation giving credit to the creators of the aggregate view. Common

queries over GENCODE also involve aggregation. For instance, one query computes stat-

istics for every type of gene.

To deal with aggregate queries and aggregate views in the context of data citation ap-

plication, one natural idea is to leverage the classical query rewriting using views with

aggregation algorithms, e.g. [78, 79]. However, as revealed in the next subsection, simply

adjusting query rewriting using views with aggregation algorithms to Data citation applic-

ation is not enough, sometimes resulting in unreasonable results, thus justifying the use of

provenance.

3.2.2.1 The need for provenance

Example 10. Consider the following query:

44



Q3(T,COUNT (Gid)) : −Gene(Gid,Name, T ), Gid <= 3

and the same query without aggregation:

Q4(T,Gid) : −Gene(Gid,Name, T ), Gid <= 3

Our goal is to determine the valid view mappings for the aggregate query Q3. Note

that only V1 and V2 can provide candidate view mappings M13(= (h13, φ13)) and M23(=

(h23, φ23)) for Q3 since they include the same relational subgoals in the body. M13 and

M23 have the same form, i.e, h13(h23) = Gene(G, N, Ty) → Gene(Gid,Name, T ) and

φ13(φ23) = {G → Gid,N → Name, Ty → T}. Under the two mappings, neither V1 nor

V2 can be used to rewrite Q3 for an arbitrary database instance since V1 has one logically

stronger predicate than Q3, and there exists an instance D for V2 such that the first three

genes are not ‘rRNA’. In this case, V2 and Q3 aggregate over different set of tuples from the

Gene relation.

Table 3.20 – Instance of relation Exon with provenance
EID Level TID prov

te1 1 1 1 e1
te2 2 3 2 e2
te3 3 2 2 e3
te4 4 2 2 e4

Table 3.21 – Instance of relation Gene with provenance
GID Name Type prov

tg1 1 TF TEC g1
tg2 2 FH rRNA g2
tg3 3 RP1 rRNA g3
tg4 4 IYD rRNA g4
tg5 5 EPN mRNA g5

Table 3.22 – Instance of relation Transcript with provenance
TID Name Type GID prov

tt1 1 MB-203 TEC 1 r1
tt2 2 PC-203 rRNA 2 r2
tt3 4 HP-218 rRNA 2 r3
tt4 5 TP-208 rRNA 3 r4

Still, some query tuples may be computed using view tuples of V1 and V2 given a database

instance D, which captures the concept of fine-grained citation proposed in [12]. To illustrate,

45



I use the instance provided in Tables 3.1-3.6, which result in the instances of V1, V2 and Q3

shown in Table 3.7, Table 3.8 and Table 3.23 (ignore the last three columns for now).

Table 3.23 – Instance of Q3 with how-provenance

T COUNT(Gid) agg((G ≤ 2)) agg((Ty = ‘rRNA’)) prov
tq31 TEC 1 {T} {F} g1
tq32 rRNA 2 {T, F} {T, T} g2 + g3

Table 3.24 – Instance of Q4 with how-provenance

T Gid (G ≤ 2) (Ty = ‘rRNA’) prov
tq41 TEC 1 T F g1
tq42 rRNA 2 T T g2
tq43 rRNA 3 F T g3

To follow the idea of checking the existence of a query tuple in the view instance, a

plausible approach is to extend RBA to aggregate queries by employing a special built-in

function agg (the “array_agg” function in PostgreSQL) to collect the evaluations of the view

predicates for every query tuple before aggregation is applied. For example, Q3 could be

extended as:

Q′3(T,COUNT (Gid), agg((Gid ≤ 2)), agg((T = ‘rRNA’))) : −Gene(Gid,Name, T )

, Gid <= 3

which ends up with the instance of Q3 shown in Table 3.23 along with the evaluation results of

view predicates collected by agg (see the third and fourth columns). This can be also regarded

as aggregating the results of the following query (denoted by Q′4) by explicitly evaluating the

predicates of V1, V2 in Q4:

Q′4(T,Gid,(Gid ≤ 2), (T = ‘rRNA’)) : −Gene(Gid,Name, T ), Gid <= 3

which generates the instance shown in Table 3.24. Note that, since two tuples are generated

before the aggregate function is applied for tuple tq32 (i.e. tq42 and tq43 from Table 3.24), the

evaluation of agg((Gid ≤ 2)) will result in a set of boolean values of size 2, which, intuitively,

is derived by aggregating over tq42 and tq43 in Table 3.24. The existence of “false" indicates

that before aggregation, one query tuple (i.e. tq43) was missing from the view instance V1(D),

46



thus V1 is not valid for tq32. In contrast, for tq31 the evaluation of agg((Gid ≤ 2)) is only

“true", meaning that V1 is valid.

However, simply checking the existence of query tuples in the view instance for aggregate

views is not enough. For example, for query tuple tq32, although the evaluations of the

predicate Ty = ‘rRNA’ (from V2) does not include ”false”, indicating that all the query

tuples before aggregation exist in the view instance, the aggregate result of tq32 (i.e. 2) does

not match that of tv21 (i.e. 3). The reason is that three tuples tg2 − tg4 from relation Gene

are used to construct tv21, while tq32 is derived from only two of them (tg2− tg3). This means

that the reasoning should not only capture the existence of query tuples in the view instance

but also the exact matching of the aggregate results between query tuples and view tuples. I

therefore adopt an alternative model, called the Provenance-Based Approach (PBA), which

uses provenance and is described in the following subsection.

3.2.2.2 Preliminary of PBA

To begin with, I introduce some key concepts, ready for introducing the details of PBA.

Granularity of queries and views. An essential step in determining the validity of

a view mapping M = (h, φ) is to compare the schemas of Q and V , and detect whether

V keeps all necessary variables in its head. In particular, if the aggregate view V has

the set of grouping variables {Y1, Y2, . . . , Ym}, then {φ(Y1), φ(Y2), . . . , φ(Ym)} should be a

superset of the grouping variables of Q, {X1, X2, . . . , Xk}. If {φ(Y1), φ(Y2), . . . , φ(Ym)} =

{X1, X2, . . . , Xk}, then Q has the same granularity as V . Otherwise, if

{φ(Y1), φ(Y2), . . . , φ(Ym)} ) {X1, X2, . . . , Xk}, then V has finer granularity than Q.

Table 3.25 – Q5(D) with how-provenance
G G’ prov

tq51 2 2 r2 ∗ r2 + r2 ∗ r3 + r3 ∗ r2 + r3 ∗ r3

How-provenance normal form I use the notion of how-provenance introduced in [7].

To simplify reasoning over how-provenance polynomials, [120] defines a normal form as

follows: first, the provenance tokens in each how-provenance monomial preserves the same

47



order as the relational subgoals in the query body. Second, the exponent of every provenance

token is forced to be 1. Third, the coefficient of every monomial in a how-provenance

polynomial is forced to be 1 by breaking the monomials with coefficient greater than 1

into multiple how-provenance monomials, each corresponding to an assignment of the query

atoms to database tuples.

Example 11. Consider the following query:

Q5(G,G′) : −Transcript(T,N, Ty,G), T ranscript(T ′, N ′, Ty′, G′), T >= 2, Ty = Ty′

, T ′ >= 2

The provenance-aware query result is shown in Table 3.25 using the instance of Transcript

in Table 3.5. Note that the second and the third monomials for the tuple tq51 are equivalent

but correspond to different assignments, hence written differently (r2 ∗r3 vs r3 ∗r2). Further,

the first how-provenance monomial of tq51 is written as r2 ∗ r2 instead of the compact form

(r2
2). Furthermore, the coefficient of all the monomials in the how-provenance polynomial of

tq51 is 1 rather than grouping them together.

For a query and a result tuple, [120] defines an isomorphism between assignments and

the how-provenance monomials in a query. Borrowing these ideas, I define an isomorphism

between relational subgoals and how-provenance monomials under an assignment γ, which

relies on the normal form of how-provenance monomials mentioned previously.

Definition 5. Isomorphism between how-provenance monomials and subgoals.

Given a conjunctive or aggregate query Q with relational subgoals B1, B2, . . . , Bm, under

an assignment γ, base relation tuples tb1, tb2, . . . , tbm are assigned to relational subgoals B1,

B2, . . . , Bm respectively to generate an output tuple, which can be written as γ(Bi) = tbi(i =

1, 2, . . . ,m) [8]. If tuple tbi is associated with how-provenance token hbi, then I say that

under the assignment γ there is an isomorphism F between each relational subgoal Bi and

each provenance token hbi (call isomorphism under an assignment for short thereafter), which

can be written as: F (Bi|γ) = hbi and F−1(hbi|γ) = Bi.

48



Returning to Example 11, consider the second provenance monomial r2 ∗ r3 and corres-

ponding assignment γ in query tuple tq51 of Table 3.25. Since tt2 and tt3 are associated with

how-provenance tokens r2 and r3 respectively, there should be an isomorphism F under γ

such that F (Transcript(T,N, Ty,G)|γ) = r2 while F (Transcript(T ′, N ′, Ty′, G′)|γ) = r3.

3.2.2.3 PBA for conjunctive queries

The validity conditions of view mappings include schema-level conditions and a tuple-level

condition, which are satisfied by a view mapping M iff it is valid for a given query tuple.

The validity conditions guarantee the same result as the conditions in [12] (proof omitted).

Definition 6. Schema-level conditions. A view mapping M from a conjunctive view V

to a conjunctive query Q should satisfy the following conditions at the schema level if it is

valid for some query tuples:

1. There exists at least one head variable y ∈ Ȳ in V such that φ(y) is a head variable in

Q; and

2. All lambda variables in V are mapped to variables in the body of Q.

Now suppose that head variables Y1, Y2, . . . , Yr from V are mapped to head variables

X1, X2, . . . , Xr from Q, which implies that φ(Yi) = Xi (i = 1, 2, . . . , r). Then I say that the

head variables Xi(i = 1, 2, . . . , r) are covered under M . Plus, a relational subgoal of Q is

covered by M iff it is involved in M .

Definition 7. Tuple-level condition. Let the how-provenance polynomial of tq ∈ Q(D)

(tv ∈ V (D)) include a how-provenance monomial W (W ′) with corresponding assignment γ

(γ′) and the isomorphism F (F ′) under γ (γ′.)

Given a tuple tq and a view mapping M = (h, φ) satisfying the schema-level conditions

above, if a tuple tv can be found such that the following condition holds, then M is valid for

the how-provenance monomial W in tq: For each relational subgoal Ai in the view body that

is involved in the view mapping M and mapped to relational subgoal Bj in the query body

under M , then F (Bj |γ) = F ′(Ai|γ′).

49



Furthermore, one can claim that the how-provenance monomial W ′ of tv is mapped to

the how-provenance monomial W of tq under view mapping M .

Example 12. Recall that in Example 10, the instance of Q4 is shown in Table 3.24. It is

not hard to demonstrate that V1 can provide a valid mapping M14 for the query tuple tq41 and

tq42: The schema-level conditions are satisfied because the head variable Ty and G (which

is also the only lambda variable) in V1 are mapped to the head variable T and Gid in Q4

respectively.

The tuple-level condition also holds for the two query tuples. For example, for tq42

(and view tuple tv12), for its single monomial, the assignment and isomorphism under the

assignment are γ (γ′) and F (F ′) respectively. Since under the view mapping M14 =

(h14, φ14), h14(Gene(G,N, Ty)) = Gene(Gid,Name, T ), and F ′(Gene(G,N, Ty)|γ′) = g2

= F (Gene(Gid,Name, T )|γ), which thus means that M14 is a valid view mapping for the

how-provenance monomial g2 for query tuple tq42. One can also prove that M14 is a valid

view mapping for how-provenance monomial g1 in tuple tq41.

3.2.2.4 PBA for aggregate queries

The validity conditions for view mappings are next extended to handle aggregate queries

and views, using the following intuition: for a query tuple t, if 1) a set of view tuples can be

used to compute t by applying some aggregate function(s) and 2) the view tuples and t are

constructed by the same multiset of tuples from the base relations (captured by provenance),

then the citation information of those view tuples can be used to construct the citation of t.

I start by introducing requirements on the aggregate functions before formalizing this

intuition.

Aggregate function requirements A view mappingM , which maps an aggregate view

V to an aggregate query Q, is valid for a query tuple only if the aggregate functions of V

and Q satisfy certain requirements; in particular, [82] formalizes the notion of a well-formed

aggregate function. Loosely speaking, a well-formed aggregate function can be characterized

by some initial “mapper" function, followed by a “reduce" function, followed by a “finalize"

50



function, which I will call a terminating function. It is easy to see that some common

aggregate functions such as SUM,MIN, MAX, COUNT and AVG are well formed.

For example, the “mapper" function for AV G takes a set of values, {d1, . . . , dk}, and

maps each number di to a pair (di, 1). The result of the reduce function is still a pair whose

first element represents the sum of the di’s and second element represents the count (k). The

“finalize" function divides the first element by the second element. Similarly, SUM maps

each di to itself and takes the sum of all di’s in the reduce step; “finalize" is the identity

function.

A well-formed function is invertible iff its terminating function is invertible. For example,

SUM is invertible whereas AV G is not. Invertibility is important for determining the

validity of view mappings when the view has a finer granularity than the query, as illustrated

below.

Example 13. Consider the following query:

Q5(COUNT (G)) : −Gene(G,N, Ty), T y = ‘rRNA’

By referencing the definition of the citation views in Section 3.1.1, V2 computes a coarser-

grained aggregation result than Q5 does. Both of them share the same aggregate function

COUNT , which is invertible. This means that the sum of the aggregation results in V2 can

be utilized to attain the result of Q5 under the obvious view mapping M25, which maps the

Gene relation in V2 to the one in Q5.

However, if COUNT is replaced with AV G for both Q5 and V2, the aggregation result

in V2 will not be useful to compute the aggregation result in Q5 under M25; the intermediate

sum and count from V2 that were used in the terminating function (divide) cannot be regained

to use in the further aggregation for Q5, since divide is not invertible.

Computation rules. A view may also be usable to compute the aggregation results in

the query without sharing the same aggregate function with the query [82]. For example,

the result of an AV G function in the query can be computed by dividing the result of SUM

by the result of COUNT from the view. In [81], an aggregate function β is said to be

51



computed from a set of aggregate functions α1, α2, . . . , αn if there is a function g such that

for any multiset of values M : β(M) = g(α1(M), α2(M), . . . , αn(M)). It can be also written

as a computation rule: α1, α2, . . . , αn → β. For instance, there is a computation rule from

SUM and COUNT to AV G, i.e. SUM,COUNT → AV G.

The authors in [82] and [81] consider aggregate function requirements for potentially

valid views to rewrite a query by combining the properties mentioned above, which are

adapted below for data citation:

Definition 8. Aggregate function requirements Suppose a query Q has an aggregate

function α, which takes a set of variables X as arguments. If M is valid for some query

tuples, the aggregate functions in V should satisfy the following conditions under view map-

ping M = (h, φ):

1. V also has an aggregate function α with arguments Y , and φ(Y ) = X OR there exists

some computation rule β1, β2, . . . , βm → α and β1, β2, . . . , βm also appear in the head

of V , all of which take same set of variables Y as arguments and φ(Y ) = X.

2. If V has finer granularity than Q, then the functions α or β1, β2, . . . , βm must also be

invertible.

In this case, one can claim that the aggregate term α(X) in Q is covered under view mapping

M .

3.2.2.5 Valid view mappings for aggregate queries

The conditions for valid view mappings for aggregate queries are formally provided, which

are still composed of schema-level conditions and a tuple-level condition.

Definition 9. Schema-level conditions for aggregate queries. Given an aggregate

query Q and a view mapping M = (h, φ) from view V to Q. The schema-level conditions

are as follows:

1. For grouping variables of Q, the following must hold:

52



(a) If V is a conjunctive view, then for every grouping variable X of Q there is a

head variable Y in V such that φ(Y ) = X.

(b) If V is an aggregate view, then V must have the same or finer granularity than

Q under M .

2. There exists at least one aggregate term with aggregate function α taking a set of

variables X ′ as arguments in the head of Q such that:

(a) If V is a conjunctive view, then there is a set of head variables Y ′ in V such that

φ(Y ′) = X ′.

(b) If V is an aggregate view, then Q and V should satisfy the conditions in Definition

8.

Suppose the schema-level conditions are satisfied for a view mapping M . M is a valid

view mapping for some query tuples iff the following tuple-level condition holds:

Definition 10. Tuple-level condition for aggregate

queries. Let t ∈ Q(D) with how-provenance polynomial W . Furthermore, given a multiset

{t1, t2, . . . , tp} ∈ V (D), let ti(i = 1, 2, . . . , p) have a how-provenance polynomial W ′i =

W ′i1 + W ′i2 + · · · + W ′iq . If for {t1, t2, . . . , tp} and t, the following condition holds, then one

can claim thatM is valid for t (not for a single how-provenance monomial): Every monomial

W ′ij in
∑p

i=1W
′
i can be mapped to some monomial in W as a one-to-one function under

M .

Example 14. Continuing Example 10, recall Q3, V2, and view mapping M23 = (h23, φ23).

In terms of schema-level conditions, M23 is satisfied for all query tuples because 1) V2 has

the same granularity as Q3 under M23; and 2) the aggregate term of V2, G, can be mapped to

the aggregate variable of Q3, Gid, which also shares the same aggregate function COUNT

and thus satisfies Definition 8.

However, by looking at the provenance-annotated instance of V2 shown in Table 3.26, the

tuple-level condition does not hold for the query tuple tq32. By comparing its provenance (i.e.

53



Table 3.26 – V2(D) with how-provenance

Ty COUNT(G) prov
tv21 rRNA 3 g2 + g3 + g4

W = g2 + g3) to the provenance polynomial of the view tuple tv21 (i.e. W ′ = g2 + g3 + g4),

it is not hard to observe that the monomial mapping between W ′ and W is not a one-to-one

function since g4 is missing from the mapping. Note that if the predicate in Q3, Gid ≤ 3,

is relaxed to Gid ≤ 4 then the token g4 appears in W and the monomial mapping between

W ′ and W is one-to-one. However, if the predicate is further relaxed to Gid ≤ 5, then g5

is included in W and the tuple-level condition is again violated since g5 is not in W ′. This

reasoning is significantly more complicated than that in Example 12 since the validity of view

mappings is determined by comparing entire how-provenance polynomials between the query

tuple and view tuples instead of single how-provenance monomials.

3.2.2.6 Algorithmic details of ProvCite

Based on the validity conditions of the view mappings defined above for PBA, the algorithmic

details of ProvCite are presented in this subsection step by step with an overview provided

in Algorithm 4.

Algorithm 4: Overview of ProvCite
Input : a set of views: V = {V1, V2, ..., Vk}, user query: Q, a Database instance D
Output: Valid view mappingsM(t) for every query tuple in Q(D)

1 Preprocessing step: Return a set of all possible view mappings and the provenance of Q
2 Reasoning step: Under a view mapping M from V to Q, determine the validity of M for each

query tuple by comparing the provenance between Q and V by following the validity conditions
proposed in Section 3.2.2.3 (for conjunctive queries) or Section 3.2.2.4.

3 return all valid view mappingsM(t).

Preprocessing step. The major overhead is retrieving the query provenance, which is

determined by the underlying provenance-enabled database.

Reasoning step. Let Npv be the total number of how-provenance monomials in the view

instance and Npq be the total number of how-provenance monomials in the query instance

(this is also the number of tuples before aggregation). Then the time to check the validity of

a view mapping is O(Npq +Npv) since every how-provenance monomial in the view instance

54



is compared to some how-provenance monomial in the query instance. If there are m view

mappings, then the overall time complexity for this step is O(m∗Npq)+O(m∗Npv). Suppose

k is an upper bound on the number of relational subgoals in the query or view body, and the

largest relation in the database has n tuples. Then the time complexity becomes O(m∗nk).

Our experiments with realistic queries, however, show that in practice the performance is

still acceptable since both Npq and Npv are typically not very large (less than 1 million).

Example 15. Given the views V1−V8 defined in Example 1, suppose the query is as follows:

Q6(G,COUNT (T ),MAX(L), COUNT (E)) : −

Exon(E,L, T ′), T ranscript(T,N, Ty,G), T = T ′, E ≤ 3

In the pre-processing step, the provenance of the query is retrieved. Using the instances

of Exon, Gene and Transcript shown in Tables 3.1-3.6, the instance of Q along with the

how-provenance polynomials is shown in Table 3.27.

Table 3.27 – Q6(D) with how-provenance polynomials

G COUNT(T) MAX(L) COUNT(E) prov
tq61 1 1 1 1 e1 ∗ r1
tq62 2 2 3 2 e2 ∗ r2 + e3 ∗ r2

Table 3.28 – Candidate view mappings for Q6

view mapping aggregate terms covered relational subgoals covered
M36 COUNT(T) (100) Transcript(T, N, Ty, G) (01)
M46 COUNT(T) (100) Transcript(T, N, Ty, G) (01)

M66
COUNT(T),MAX(L)
, COUNT(E) (111)

Transcript(T, N, Ty, G)
,Exon(E, L, T’) (11)

M76 COUNT(T) (100) Transcript(T, N, Ty, G)
,Exon(E, L, T’) (11)

M86 MAX(L), COUNT(E) (011) Transcript(T, N, Ty, G)
,Exon(E, L, T’) (11)

Next, all possible view mappings are constructed. Five view mappings could be found,

i.e., M36 = (h36, φ36), M46 = (h46, φ46), M66 = (h66, φ66), M76 = (h76, φ76) and M86 =

(h86, φ86), under which V3, V4, V6, V7 and V8 are mapped to Q6 respectively. M66, M76

and M86 have the same form, where h66, h76 and h86 is {Transcript(T1, N1, Ty1, G1) →

Transcript(T,N, Ty,G), Exon(E,L, T2) → Exon(E,L, T ′)} and φ66, φ76 and φ86 are the

55



Figure 3.1 – Query provenance index for Q6 and how to compute coordinate for e3 ∗ r2 from
V4(D)

induced variable mappings. In contrast, M36 and M46 only map the subgoal

Transcript(T,N, Ty,G) from V3 and V4 to Transcript(T,N, Ty,G) from Q6 respectively.

Note that all the schema-level conditions are independent of the individual query tuples,

and can be used to remove invalid view mappings early. In this example, all the five view

mappings satisfy the schema-level conditions, since under each mapping all the grouping

variables and at least one aggregate term of Q6 are covered. Table 3.28 shows how each view

mapping covers the aggregate terms and relational subgoals of Q6 (ignore the bit arrays for

now).

In the Reasoning step, since V4 and V6 are conjunctive views, the validity ofM46 andM66

for a query tuple tq only depends on the existence of tq in V4(D) and V6(D) under mapping

M46 and M66. So one can simply retrieve the base relation tuple for each provenance token

appearing in the query to evaluate the view predicates. For example, the validity of M66

can be checked simply by examining the predicates of V6. Since the first predicate in V6,

T = T ′, is also in Q6, every tuple in the query instance must satisfy it. However, the second

predicate, E ≤ 2, can affect the existence of query tuples in V6. Table 3.20 shows that only

the tuples with how-provenance tokens e1 and e2 satisfy E ≤ 2. Thus M66 is only valid for

tq61, whose how-provenance polynomial only includes e1. Note that the implementation used

here is different from RBA since evaluating view predicates is achieved by referencing the

base relation tuples with the query provenance rather than computing extra predicates in the

query evaluation.

56



Table 3.29 – V3(D) with how-provenance polynomials

G COUNT(T) prov
tv31 1 1 r1
tv32 2 1 r2

Table 3.30 – V7(D) with how-provenance polynomials

G1 COUNT(T1) prov
tv71 1 1 e1 ∗ r1
tv72 2 1 e3 ∗ r2 + e4 ∗ r2

Table 3.31 – V8(D) with how-provenance polynomials

G1 MAX(L) COUNT(E) prov
tv81 1 1 1 e1 ∗ r1
tv82 2 3 2 e2 ∗ r2 + e3 ∗ r2 + e4 ∗ r2

Table 3.32 – Q6(D) with valid view mappings

G COUNT(T) MAX(L) COUNT(E) valid view mappings
tq61 1 1 1 1 M36,M66,M76,M86

tq62 2 2 3 2 M36

In contrast, since V3, V7 and V8 are aggregate views, it is thus essential to compare their

how-provenance expressions with the how-provenance of the query to check the tuple-level

conditions. That can be naively implemented by scanning the entire query provenance for

every view mapping to build satisfiable provenance mappings (Def. 10), which is expensive

when the query provenance and view provenance are large. To reduce this cost, the following

optimization strategies are proposed to speed up the process of producing valid view mappings.

3.2.2.7 Optimizations in the implementations

Query provenance index optimization. To build mappings between the provenance

tokens of the query tuples and the one of the view tuples, one naive solution is to go through

all query provenance monomials attached to the query instances for a provenance monomial

from the view instances to check whether the one-to-one monomial mappings defined in

Definition 10 can be constructed or not, which, however, is undeniably expensive especially

for large query and view instances. To reason about valid view mappings in an efficient

manner by using PBA such that multiple scans over query provenance can be avoided, an

57



index I could be built for each token in the query provenance to indicate which query tuples

(represented by grouping variable values) and which provenance monomials the token is in,

which is exemplified as below:

Example 16. Continuing Example 15, the provenance index for Q6 is shown in Figure 3.1.

For example, referencing Table 3.27, note that token r2 is in the 0th and 1st monomial in

the query tuple tq62, which has value 2 for the grouping variable G. So the index for r2 is

r2 : {(2) : {0, 1}}, where (2) represents the tuple id while {0, 1} is the monomial id set. For

a how-provenance monomial in the view, e.g. e3 ∗ r2 in tv72 (with grouping variable value

2), to determine whether it can be mapped to some query provenance monomial, one can

retrieve the index for e3 and r2 with grouping variable value 2 respectively, i.e. {1} and

{0, 1}, and take the intersection, i.e. {1}. This indicates that e3 and r2 coexist in the 1st

monomial of the query tuple with grouping variable value 2 (i.e. tq2). This derivation process

is highlighted in Figure 3.1.

In the end, valid view mappings for every query tuple are presented in Table 3.32. Note

that for tuple tq62, although all of its how-provenance monomials exist in the view tuple tv82,

it does not include e4 ∗ r2 which is used to construct tv82, violating the tuple-level condition.

Intuitively, since the value of the aggregate term may come from this component of the

monomial (e4 ∗ r2), tv82 should not provide citation information for tq62.

The intersection operation can be further optimized by representing the monomial ids

with bit arrays, where the ith bit is 0/1 iff a token is/isn’t in the ith monomial, and applying

bit AND operations. This strategy only requires one full scan over the query provenance

to build an index for all view mappings. Details on how to use the index to determine

whether provenance mappings from view tuples to query tuple satisfy Def. 10 are presented

in Algorithm 5.

Materialization and parallelism optimization. To further improve performance,

the provenance of the aggregate views along with the view content can be materialized before

the query arrives. The strategy with materialized view provenance is called eager, whereas

that without is called lazy. The eager and lazy strategies are compared experimentally.

58



Algorithm 5: Checking provenance mappings
Input : a view V , a query Q, a view mapping M from V to Q, query tuple tq ∈ Q(D), query

provenance index I, a set of view tuples Tv ⊆ V (D)
Output: Whether provenance mappings from Tv to tq satisfy Def. 10

1 for tv ∈ Tv do
2 Retrieve the provenance monomial set P̄ of tv Retrieve the grouping variable values (Gv) of Q

under mapping M
3 for each provenance monomial P ∈ P̄ do
4 for each provenance token p ∈ P do
5 if p is not in I OR Gv is not in the entry of I for p then
6 return false
7 end
8 end
9 Perform intersection over the index for p with grouping variable values Gv

10 if the intersection result is empty then
11 return false
12 end
13 end
14 end
15 return true

It is not hard to observe that reasoning about the validity of view mappings is highly

parallelizable since the reasoning between different view mappings is independent. However,

since fully parallel computation in a single machine can incur large memory consumption,

ProvCite only processes five view mappings at a time. Exploring how to fully develop our

system in a distributed environment is left for future work.

3.3 Citation generation

3.3.1 Covering sets

Given a set of valid view mappingsM(t) for a query tuple t derived by either RBA or PBA,

the next step is to combine those view mappings to construct covering sets, which provide

instructions on how to combine the citation information associated with the corresponding

views to construct citations. The formal definition of covering sets is presented as below.

Definition 11. Covering set Let C ⊆M(t) be a set of valid view mappings. Then C is a

covering set of view mappings for t from the instance of a query Q iff

1. if Q is a conjunctive query, then:

59



• No V ∈ M(t) \ C can be added to C to cover more subgoals of Q or variables in

X̄; and

• No V ∈ C can be removed from C and cover the same subgoals of Q and variables

in X̄.

2. if Q is an aggregate query, then:

• No V ∈ M(t) \ C can be added to C to cover more subgoals of Q or aggregate

terms in X̄; and

• No V ∈ C can be removed from C and cover the same subgoals of Q and aggregate

terms in X̄.

Note that for each tuple t there may be a set of covering sets, {C1, ..., Ck}.

Example 17. Returning to Example 16, based on the definition of covering sets provided

above and covered aggregate terms by each individual view mappings shown in Table 3.28, the

covering sets for tq61 are C1 = {M66}, C2 = {M76,M86} and C3 = {M36,M86}. Note that

other combinations of view mappings such as {M36,M76,M86} are duplicates since removing

either M36 or M76 results in the view mapping combinations collectively mapping the same

set of aggregate terms of Q6 as {M36,M76,M86}.

Table 3.33 – Instance of Q6 with covering sets

G valid view mappings covering sets
tq61 1 M36,M66,M76,M86 {{M66}, {M76,M86}, {M86,M36}}
tq62 2 M36 {{M36}}

For the resulting covering set Ci = {M1,M2, . . . ,Ml}, the citation views corresponding

to each view mapping are jointly used (denoted *) to construct a citation for t, denoted

M1 ∗M2 ∗ ... ∗Ml. The citations from each Ci are then alternately used (denoted +R) to

construct a citation for t, denoted as C1 +R · · ·+R Cp.

60



3.3.2 Optimizations to computing covering sets

Bit array optimization. The computation of covering sets involves merging valid view

mappings and removing duplicates, which can be optimized using bit operations. For ex-

ample, for Q6 in Example 15-17, the aggregate term COUNT (T ), MAX(L) and

COUNT (E) are covered by {M36,M66,M76} (denoted by S1), {M66,M86} (denoted by

S2) and {M66,M86} (denoted by S3) respectively (see Table 3.28). One can encode the

0th − 3rd view mappings M36, M66, M76 and M86 as {0, 1, 2, 3}, the 0th − 2nd aggregate

terms (COUNT (T ), MAX(L) and COUNT (E)) as {0, 1, 2}, and the 0th − 1st relational

subgoals (Exon and Transcript) as {0, 1}. In this manner, arbitrary view mapping com-

binations (and thus covering sets) can be represented using three bit arrays in which the

ith bit is 1 (0) iff the ith view mapping is included (missing), or the ith aggregated term

or relational subgoal is covered (not covered). For example, M76 is the 2nd view mapping,

represented by 0010 (the leftmost bit is the 0th bit). M76 covers the 0th aggregate term

(COUNT (T )) and the 0th and 1st relational subgoals, which are represented by bit arrays

100 and 11 respectively. The bit array representations for other view mappings are listed

in Table 3.28. To compute covering sets, the view mapping combinations from the cross

product of {S1, S2, S3} (denoted by S1 × S2 × S3) are considered, which are constructed by

applying bit OR operations over the bit arrays from those view mappings. For example, ref-

erencing Table 3.28, the covering set {M76,M86} can be constructed by unioning bit arrays

0010 and 0001, and the aggregate terms (relational subgoals resp.) jointly covered by them

are computed by unioning 100 and 011 (11 and 11 resp.). The pseudocode for computing

covering sets using bit array representations is presented in Algorithm 6.

Clustering algorithm optimization. Since cross product (×) is commutative and

associative, different orderings of operands result in the same output but may incur different

overhead. For example, with S1 × S2 × S3, if S2 × S3 is computed first, the result is

{M66,M86}, {M86,M86}, {M66,M66}, {M86,M66}. After removing obvious redundancy,

the result is {M66,M86}, {M86}, {M66}. Note that {M66,M86} is a duplicate compared to

{M66} since 1) {M66,M86} and {M66} cover the same set of aggregate terms and relational

61



Table 3.34 – Binary encoding for the view mappings of Q6

view mapping aggregate terms covered relational subgoals covered
M36 (1000) COUNT(T) (100) Transcript(T, N, Ty, G) (01)

M66 (0100) COUNT(T),MAX(L)
, COUNT(E) (111)

Transcript(T, N, Ty, G)
,Exon(E, L, T’) (11)

M76 (0010) COUNT(T) (100) Transcript(T, N, Ty, G)
,Exon(E, L, T’) (11)

M86 (0001) MAX(L), COUNT(E) (011) Transcript(T, N, Ty, G)
,Exon(E, L, T’) (11)

Algorithm 6: Compute covering sets
Input : a set of valid view mappingsM for query tuple t ∈ Q(D), query Q
Output: a set of covering sets C

1 For each aggregate term of Q, derive a set of view mappings covering it, which forms an array of
view mapping sets S.

2 Determine the order to compute the cross product of every element in S
3 Initialize C as the first view mapping set s0 from S.
4 for each set s ∈ S − {s0} do
5 Initialize cross product result C′ = {}:
6 for each view mapping set M̄ ′ ∈ C do
7 for each view mapping M ∈ s do
8 get three bit arrays of M̄ ′ (M): b1 (b′1), b2(b′2) and b3 (b′3)
9 construct new view mapping set M̄ ′′ based on the bit OR operation result

bi ∨ b′i(i = 1, 2, 3) and put it into C′

10 end
11 end
12 Remove duplicates from C′

13 C = C′

14 end

subgoals (checked by comparing the corresponding bit arrays); and 2) {M66} is a subset of

{M66,M86}. It is therefore safe to remove {M66,M86} since in the final result, any view

mapping combinations which include {M66,M86} will be a duplicate compared to one that

includes {M66} and thus won’t be a covering set. So the intermediate result of S2 × S3 is

{{M66}, {M86}}, which is smaller than the result of the other pairs. This is due to the high

similarity between S2 and S3 (actually S2 = S3). To find good orderings for computing

the cross product such that the intermediate result is minimized, clustering algorithms are

applied so that view mapping sets which are similar to each other can be clustered and

merged first (e.g. S2 and S3). In ProCite, the affinity propagation clustering algorithm

[121] is used since it does not require a pre-specified number of clusters.

62



3.3.3 Policy to generate citations

To construct citations based on the derived covering sets, it is essential to utilize the citation

information extracted from the views whose view mappings appear in those covering sets.

But prior to that, the interpretations on the operators +R and ∗ are essential, which is

crucial to organize the citation information from citation views in a reasonable manner to

meet the DBAs’ needs.

There are two possible interpretations on the ∗ operator, i.e. join and union. The

former one conducts SQL-like join operations, i.e. combining all the elements with the same

keys together from two JSON-formatted citations while the latter one simply unions two

JSON-formatted citations together.

There are two possible ways to evaluate +R, i.e., union and min. The union of covering

sets is straightforward, although it can lead to very large citations. In contrast, the goal of

min is to find the covering set with minimum cost (according to some custom cost function),

and it is evaluated as the covering sets are being constructed. It therefore has the advantage

of avoiding enumerating all covering sets, and thus reducing the overhead of this step in all

three approaches. Note that the problem of finding a min-cost covering set can be formalized

as a set cover problem, which is NP-complete. However, a greedy algorithm can be applied

to derive an O(log n)-approximate solution [122], which is presented in Algorithm 7.

Algorithm 7: Greedy algorithm using cost function
Input : A set of valid view mappingM(t), a set of maximally covered relation MCR(t).the view

set V
Output: A set of view mappings C(t)
/* create a set to contain the selected view mappings, the result of which should be

the covering set with minimal cost */
1 Initialize C(t) = {}
2 Derive a set of maximally covered distinguished variables MCH(t)
3 while MCR(t) 6= Φ and MCH(t) 6= Φ do

/* use Hv(M) and R(M) to denote the distinguished variables and relations that
view mapping M covers in the query */

4 select M fromM(t) that can minimize cost(M)
|Hv(M)

⋂
MCH(t)|+|R(M)

⋂
MCR(t)|

5 MCH(t) = MCH(t)\Hv(M), MCR(t) = MCR(t)\R(M)
6 add M to C(t)

7 end
8 return C(t)

63



Intuitively, the cost function is designed such that the covering set with the smallest

number of view mappings in the ∗-term has the lowest cost, balanced by the number of

unmatched terms, including unmatched subgoals, unmatched distinguished variables, and

unmatched lambda terms in each view. For example, for the query tuple tq61 (see Table

3.33), the covering set {M66} is only composed of one view mapping while all the other

covering sets include more than one view mappings, resulting in smaller cost of the covering

set {M66} than others. However, if one lambda term λG1 is added in V6, there is no matched

conditions such as G = 1 in the query (recall that under the view mappingM66 = (h66, φ66),

φ66(G1) = G) which can explicitly evaluate the lambda variable in V6, thus incurring more

overhead to evaluate the lambda terms in V6 and therefore adding more cost to the covering

set {M66}. In the case where +R is evaluated as union, it is named as full case. Otherwise,

it is named as min case. The trade-offs between the two different choices of interpretations

are also experimentally studied.

3.4 Experimental evaluations

3.4.1 Experiment setups

TLA, SSLA and ProvCite are implemented in Java 8 and used PostgreSQL 9.6.3 as the un-

derlying DBMS. All experiments were conducted on a linux server with an Intel(R) Xeon(R)

CPU E5-2630 v4 @ 2.20GHz and 64GB of central memory. Our code is publicly available 1

and uses pieces of code developed by the authors of [123]. Note that the query provenance

and view provenance are essential for reasoning in ProvCite. Although there are provenance

tools which support aggregate queries for relational database systems, e.g. GProM [124],

they are overly complex for our purposes, and become a bottleneck for interactive com-

putation. I therefore implemented a provenance layer from scratch, which simply collects

how-provenance [7, 8] for each query tuple.
1Our code is available at https://github.com/thuwuyinjun/Data_citation_demo.

64

https://github.com/thuwuyinjun/Data_citation_demo


Datasets Our experiments used four datasets, i.e. the GtoPdb database 2, DBLP-NSF

dataset3[125], GENCODE dataset [63] and Hetionet dataset4.

The GtoPdb database is a searchable database with information on drug targets and the

prescription medicines and experimental drugs that act on them. The database content is

organized by a hierarchy of families of drug targets. The total number of targets is 2825.

Each family of targets is curated by a (potentially different) group of experts. Information

about a family is presented to users via a web-page view of the database, associated with a

family-specific citation. The citation is generated from hard-coded SQL queries in the web-

page form that retrieve the appropriate snippets of information from the database, such as

contributors and/or curators, which are then formatted to create a citation.

DBLP-NSF is developed by us which connects computer science publications—extracted

from DBLP—to their NSF funding grants—extracted from the National Science Foundation

grant dataset. The idea was to add funding information to traditional paper citations, and

to be able to vary between citing the conference proceedings (if large number of papers from

the same conference were in the result set) and citing individual papers. DBLP-NSF consists

of 17 relations (authors, papers, grants, etc.). Author is the largest relation with about six

million tuples, and the average size across all relations is about 0.6 million tuples.

GENCODE dataset is an encyclopedia of genes and gene variants whose goal is to identify

all functional elements in the human genome using annotations. The gene annotation pro-

cess involves a combination of automatic annotation, manual annotation, and experimental

validation. For genes that are manually annotated, information is maintained about the

responsible research groups. Statistics are also provided for every gene – an aggregate view

over the genes – which has another type of citation giving credit to the creators of the ag-

gregate view. Common queries over GENCODE also involve aggregation. For instance, one

query computes statistics for every type of gene. After loading this dataset into relational

DBMS, there are 7 relations with 600K tuples in each table on average.
2GtoPdb is available at http://www.guidetopharmacology.org/download.jsp.
3https://data.mendeley.com/datasets/ycnngyv5bd
4https://neo4j.het.io/browser/

65

http://www.guidetopharmacology.org/download.jsp
https://data.mendeley.com/datasets/ycnngyv5bd
https://neo4j.het.io/browser/


Hetionet is a database that “encodes” biology by integrating various types of biological

information from different publicly available resources [119, 64]. As data is copied from these

source datasets, citation information (generally in the form of traditional publication IDs)

is also copied and should be propagated to the results of queries. The majority of queries

against this database involve aggregation to retrieve statistical information. The original

version of Heitonet is stored in Neo4j, which is converted into relational database for the

experiments, ending up with 38 relations with 38K tuples in each relation on average.

Workloads There are two types of workloads used in the experiments, i.e. synthetic

workloads and realistic workloads. For synthetic workloads, conjunctive queries were built

using a user query generator which takes as input: 1) the number of relational subgoals; 2)

the number of tuples in the extended query result (Nt). I also implemented a view generator

which takes as input: 1) the number of views (Nv); 2) the number of lambda terms in total

(Nl); and 3) the total number of predicates (Np) to generate random conjunctive views. Both

query generators and view generators are extended for aggregate queries and aggregate views

by taking into considerations the total number of how-provenance monomials in the query

instance (Npq) and in the view instance (Npv). Each generated view has a single citation

query attached to it. In the experiments, the configurations of the query generator and view

generator ensure that there is only one view mapping from each view to the query.

For the realistic workloads, I use frequent realistic queries against the four databases,

and build views to represent the portions of data in the database associated with predefined

citations, which are illustrated as below:

For GtoPdb database, I used citation views and general conjunctive queries (Q0 −Q7)

from anticipated workloads of GtoPdbḞor GtoPdb, general queries were designed by con-

sulting with the database owners, and views were designed based on its web-page views. For

each view, the corresponding citation query is the query used to generate the hard-coded

citations on the web-page.

For DBLP-NSF, six conjunctive views are created, each of which is associated with 1-

2 citation queries to correspond to citations to a single paper, single conference and single

66



grant. General conjunctive user queries (Q8−Q10) simulate cases where users are interested

in papers from certain authors, certain conferences and certain years together with the

grant information of those papers. I also add aggregate views to reflect publicly available

statistics related to this database, such as the total number of publications per faculty

member5 and the total number of grants per institution6. Some realistic aggregate queries are

designed to represent other summary information, such as the total number of publications

per institution (q1) and total amount of grants per state (q2).

To represent the summary information provided by GENCODE, I defined aggregate

views to compute the total number of transcripts per gene, and the total number of exons

per gene and per transcript. Two additional parameterized views are also defined to represent

basic information (e.g. ID, name and type) for each transcript and gene, respectively. The

realistic aggregate queries compute the total number of exons (q3) and the total number of

transcripts per type of gene (q4) respectively.

Hetionet integrates information from various resources, and includes information about

genes, biological process, drugs, etc. This information is stored in different relations in the

database. Of these, the biological process relation is associated with citation information

(i.e. related publication IDs). After consulting with the authors of Hetionet, two views

were defined. The first one is a parameterized view showing the biological processes that a

particular gene is involved in. The second counts the total number of connections between

each biological process and corresponding genes by joining several relations, such as the

biological process and gene relations. A typical aggregate query (q5) counts the total number

of connections between each biological process and a certain drug via some genes.

3.4.2 Experimental results

In the experiments, I primarily record the total execution time for constructing covering

sets, i.e. ttotal by using TLA, SSLA and ProvCite respectively, in which the major overhead

includes the time to query the instance or the provenance from the underlying database
5http://csrankings.org/
6https://dellweb.bfa.nsf.gov/awdlst2/default.asp

67

http://csrankings.org/
https://dellweb.bfa.nsf.gov/awdlst2/default.asp


instances, tq and the time to reason about covering sets, tcs. For ProvCite, I also explore the

effect of the query provenance index and materialization of the view provenance (proposed

in Section 3.2.2.7) on the time performance. The effect of the optimization strategies for

deriving covering sets (proposed in Section 3.3.2) is also studied in this subsection.

3.4.2.1 Synthetic experimental results on conjunctive queries

Exp1 The first experiment evaluates the effect of Nv on time performance and citation

size. I configured the query generator to generate queries which produce a result set of

about one million tuples (Nt = 106) using a subset of the product of four randomly selected

relations. The view generator varied the number of views and ensured valid view mappings

from each view to the query. Here, I do not consider other view features such as lambda

terms and predicates.

Results. For the full case, thousands of covering sets are generated as the number

of view mappings exceeds 30. As expected, the corresponding time to generate them (tcs)

increases exponentially. As shown in Figure 3.2a, the major overhead in ttotal is the reasoning

time tcs when Nv exceeds 25, leading to a convergence of the three approaches. However, it

is worth mentioning that according to the realistic scenarios, the number of matched view

mappings won’t exceed 20; thus, ttotal in the three approaches will be less than 30 seconds

(Figure 3.2a), which is reasonable response time.

Figure 3.2b shows the results for the min case, which has a huge speed-up compared to

the full case. Notice that even with a large Nv, ttotal is acceptable (about 25 seconds).

These results reveal the effect of Nv on the time performance. In the full case, exponen-

tially large covering sets are generated, taking up to 10 minutes as Nv becomes large. Since

each covering set represents a possible citation, this also generates thousands of citations.

On the other hand, the min case returns the “best” citation, which reduces tcs to a few

milliseconds and leads to a steady ttotal as Nv increases.

Exp2. This experiment tests how Np influences the performance and size of citations. Like

Exp1, the query generator randomly picked four relations and ensured Nt = 106. However,

68



(a) ttotal and tcs in full case (log scale in Y-
axis) (b) ttotal in min case

Figure 3.2 – time performance VS number of view mappings

Figure 3.3 – ttotal and tq VS Np in min
case

Figure 3.4 – ttotal, tq and tcs VS Np in
full case

the view generator fixed the number of views as 15 and varied the total number of local

predicates (and thus Np) from 0 to 50.

Results. The number of predicates (Np) influences the time performance of TLA and

SSLA in two ways. First, more predicates add more complexity to the extended query and

thus increases the time to execute the query (tq). Second, it can create more groups in the

extended query result, incurring more reasoning time (tcs).

Figures 3.3 and 3.4 show how ttotal and its major timing components (tq and tcs) are

influenced by Np in the min and full cases, respectively. In Figure 3.3, tq is included for

69



Figure 3.5 – ttotal VS Nl in full case Figure 3.6 – ttotal VS Nt in full case (log
scale in X-axis)

Table 3.35 – Experimental results on real workloads (full case)

Query Nt Nv Np Ncs ttotal in TLA (s) ttotal in SSLA (s)
Q0 8868 1 0 1 0.25 0.18
Q1 1366 1 0 1 0.19 0.15
Q2 2522 7 6 1 0.25 0.21
Q3 120 8 6 1 0.18 0.16
Q4 5748 7 6 7 0.26 0.22
Q5 1 8 6 1 0.16 0.14
Q6 271 7 6 1 0.17 0.16
Q7 521 1 0 1 0.16 0.14
Q8 4884 4 1 3 1.19 1.18
Q9 27 4 1 3 1.81 1.72
Q10 7 2 0 2 0.94 0.91

TLA and SSLA, and shows that in the min case, increasing Np results in slight increases

in the (extended) query execution time for SSLA; thus ttotal in SSLA is only about twice

that in TLA when Np is up to 50. The slightly worse performance of SSLA is due to the

complexity of the extended query. Recall that the boolean values of local predicates are

explicitly evaluated and then used for grouping in SSLA, which is not necessary in TLA.

The same is true for the full case (Figure 3.4).

For the full case, the reasoning time tcs becomes a major overhead as Np increases for

both TLA and SSLA. This is because more predicates can create more groups in the query

result, which incurs more tcs in total.

As a result, this can explain the effect of Np on the time performance.

70



Exp3 Theoretically, in all three approaches, when there are more lambda terms, more

attributes must be returned in the extended query in order to evaluate citations for the

parameterized views. This should increase the query execution time tq. However, Figure 3.5

shows that the number of lambda terms Nl has almost no effect on the overall performance

of the derivation process ttotal, of which tq is a component. The full case shows similar

results (ignored here). This can addresses our concern on the effect of lambda terms defined

in the citation views.

Exp4. This experiment evaluates the scalability of our approaches in terms of time per-

formance by varying Nt. The view generator randomly generates 15 views (Nv = 15) with

randomly assigned local predicates and lambda terms. The query generator randomly gener-

ates a query with four relations but varies the result size (from 102 to 107) at each iteration.

Results. Figure 3.6 shows that when there are fewer than 107 tuples in the query result,

the time to calculate covering sets (ttotal) in TLA and SSLA is less than 200 seconds, which

can thus explain the influence of Nt on the performance.

3.4.2.2 Realistic experimental results on conjunctive queries

I now report experiments performed on the realistic datasets. Table 3.35 shows all exper-

imental results for the full case. Results for the min case are only marginally better, and

are not shown.

Exp5 This experiment evaluates how well the proposed approaches handle realistic work-

loads in the GtoPdb dataset. In this experiment, 14 views were created and each view has

one associated citation query according to the web-page views. Eight user queries (Q0-Q7)

were collected from the owners of GtoPdb.

Results. The first eight rows of Table 3.35 shows the result of Exp5. The time to

generate covering sets tcs for all the queries is very small (less than 1 second). Although

there are 14 views in total, only one covering set exists for most queries and the number

of view mappings is far fewer than 14, leading to the short response time. This is the case

71



when the views partition the relations.

Exp6 This experiment is conducted by executing conjunctive queries (Q8 −Q10) on the

DBLP-NSF dataset. Q8 asks for the titles of papers in a certain conference (e.g. VLDB),

while Q9 retrieves the titles of all papers published by a given author in a given year.

These correspond to searches over the DBLP dataset where users are interested in papers of

specific authors or conferences. Q10 returns the NSF grants that support papers in a given

conference (e.g. VLDB).

Results. The last three rows of Table 3.35 show that the number of covering sets Ncs

and the time to generate them ttotal are still very small. Thus Exp5 and Exp6 provide

answers to the time performance in the realistic scenarios.

3.4.2.3 Synthetic experimental results on aggregate queries

Exp7. This experiment measures how the total execution time (ttotal) is influenced by

the total number of how-provenance monomials in the query instance (Npq) as well as in

the view instance (Npv). I randomly generate an aggregate query, and vary Npq by adding

appropriate predicates. A fixed number of aggregate views are also generated such that there

is exact one view mapping from each of them to the query and the total number of view

mappings is fixed at 20. In practice, the number of views that touch the query is usually far

smaller than the total number of views, so 20 is a pretty large number. Both Npq and Npv

are varied from 50K to 5M. The total time is measured for different (Npq, Npv) pairs under

the eager and lazy strategy with the query provenance index, and the lazy strategy without

the index.

Results. The results are shown using 3D surfaces in Figure 3.7a, with the eager strategy

with index, lazy strategy with index and pure lazy strategy shown in red, green and yellow

respectively. The query time tq is also recorded in black. It shows that the query provenance

index leads to about 1.0x-1.8x speed-ups in most cases by comparing lazy strategy with

index and pure lazy strategy, while materializing view provenance results in about 1.1x-1.5x

speed-ups by comparing eager strategy and lazy strategy with index. The combination of

72



0
6

50

6

ti
m

e
 (

s
)

4

100

N
pq

106 4

N
pv

106

150

2 2
0 0

 eager+index

 lazy+index

 lazy

 t
q

(a) ttotal with varied Npq and
Npv

10 20 30 40 50

N
v

0

100

200

300

400

500

ti
m

e
 (

s
)

0

2000

4000

6000

8000

10000

N
c
s

no optimization

bit array

bit array+clustering

N
cs

(b) ttotal with varied Nv

5 10 15 20 25 30 35 40 45

N
p

0

50

100

150

200

ti
m

e
 (

s
)

t
q
 of TLA

t
cs

 of TLA

t
q
 of SSLA

t
cs

 of SSLA

t
q
 of ProvCite

t
cs

 of ProvCite

(c) ttotal with varied Np

Figure 3.7 – Experimental results for synthetic workloads

the index and eager strategy leads to up to 2x performance gains. The result also shows the

scalability of our approach since it takes less than 2 mins to process a query instance with up

to 5 million how-provenance monomials and 20 views with up to 5 million how-provenance

monomials, which rarely happens in practice.

Exp8. The goal of this experiment is to compare the relative performance of Prov-

Cite, TLA and SSLA while varying the number of view mappings (Nv). Since TLA and

SSLA cannot handle aggregate views, only conjunctive views are used. In this case, the

provenance of views is not necessary; there is no difference between the eager and lazy

strategy and the query provenance index is not useful. However, the two optimization

strategies on covering set computation, i.e. applying bit arrays and clustering algorithms,

are useful and are measured here. The query is a fixed aggregate query with 1 million how-

provenance monomials in its instance. Nv is varied from 1 to 50 and there are no predicates

or lambda variables for each individual view.

Results. The experimental results are presented in Figure 3.7b, which shows the change

of ttotal for ProvCide and the number of covering sets (Ncs) as the number of view mappings

(Nv) increases, with and without using bit arrays and clustering algorithm. TLA and SSLA

have almost the same performance as ProvCite, and are not shown. Figure 3.7b shows that

when Nv is large, an exponential number of covering sets are generated, leading to bad

performance (see blue line). Bit array computations and the use of clustering leads to about

73



Table 3.36 – Summary of datasets

Dataset name relation # average tuple # per relation tuple # of largest relation
GENECODE 7 600k 2000k

Hetionet 38 60k 500k
DBLP-NSF 17 600k 6000k

Table 3.37 – Experimental results on realistic datasets

Query ttotal (s)
(eager + index)

ttotal (s)
(lazy + index)

ttotal (s)
(lazy) Npq Nv Np tq(s)

q1 4.95 6.62 6.44 507k 2 0 2.92
q2 5.90 6.49 6.33 416k 1 0 2.80
q3 11.05 12.93 11.89 1237k 1 0 5.09
q4 1.75 2.06 3.26 203k 2 0 0.69
q5 4.65 5.10 4.81 243k 3 0 2.32

a 5x and 2x speed-up respectively; an order of magnitude performance gain is achieved by

combining both.

Exp9. In this experiment, ProvCite is compared with TLA and SSLA while varying the

total number of predicates (Np) in views. Similar to Exp2, the query is an aggregate query

which can generate about 1 million tuples. The number of view mappings is fixed at 10 and

there are initially no predicates. In each run, one more local predicate is added. As shown

in [12], increasing Np significantly influences the query time and hence performance of TLA

and SSLA since the query is extended to evaluate the view predicates.

Results. The results are shown in Figure 3.7c. As the number of predicates increases,

ttotal = tcs + tq increases slowly for ProvCite. In contrast, TLA and SSLA are twice as

slow as ProvCite for large Np. To understand the reason for this, the query time for TLA,

SSLA and ProvCite is also presented in this figure, showing that the increasing query time

becomes the major overhead for both TLA and SSLA.

3.4.2.4 Realistic experimental results on aggregate queries

The experimental results for realistic workloads are presented in Table 3.37, which includes

the total execution time (ttotal) for three cases (lazy, lazy + index and eager + index), as

well as the metrics that can potentially affect the performance: the total number of how-

provenance monomials in the query instance (Npq), the total number of view mappings (Nv),

74



the total number of predicates in the views under all the view mappings (Np) and the time to

query the provenance along with the instance. Except for q3, ttotal is less than 10 seconds for

all queries. Although Npq is more than one million in q3, ttotal is only about 11-13 seconds

for the three strategies, which is acceptable considering the large query instance. Note that

the index does not always help since it may take significant time to build the index for query

provenance (e.g. up to 3 seconds for q3) and its performance gain is not significant in the

case of small number of view mappings.

However, as shown in Section 3.4.2.3, the index provides scalability especially in the

extreme cases. I also list the query time over the provenance-enabled database in the last

column, which indicates that the reasoning time (tcs = ttotal − tq) is almost the same as tq.

Thus, while users are browsing the query result, the system can generate covering sets for

all query tuples in the background, and instantly construct formatted citations upon tuple

selection.

3.5 Acknowledgement

For this part of the dissertation, I want to acknowledge the many collaborators who helped

from all over the world: Dr. Peter Buneman initially framed the data citation problem, and

proposed many new related ideas. Drs. Val Tannen, Daniel Deutch and Tova Milo helped

form the connection between data citation and data provenance. Dr. Abdussalam Alawini

helped architect CiteDB, the implementation of our data citation system, along with Dr.

Gianmaria Silvello, who also created connections to related work in the Digital Libraries

community.

75



CHAPTER 4: Incrementally updating machine learning models using

provenance

As mentioned in Chapter 1, incrementally updating machine learning models after deleting

the training samples of interest is a crucial step for many data science applications, e.g.,

evaluating the importance of training samples for a certain model. One straightforward

method is to always retrain the model from scratch to reflect the changes of the training set,

which, however, is computationally expensive especially when continuous deletion requests

are required in some online applications. As a consequence, it is technically challenging on

how to efficiently update the model parameters in light of the deletions of one or multiple

training samples. However, the state-of-the-art works either target simple ML models, or

require explicit changes over the existing training algorithms, thus not appropriate for ML

models constructed by the widely used gradient descent method (GD) and its variants,

i.e. stochastic gradient descent method (SGD) and mini-batch gradient descent method

(mb-SGD for short).

So in this set of my work, I target designing algorithms to update general ML models

constructed by SGD/GD method after the deletions of small subsets of the training samples.

After some initial studies, I proposed two different types of solutions, which are discussed

in this section. Before the detailed discussions, I provided notations used in the following

discussion first.

4.1 Preliminary

The training set {zi = (xi, yi)}ni=1 has n samples and each sample has m0 features, which

means that the matrix [x1,x2, . . . ,xn]T is an n×m matrix. The loss or objective function

76



for a general machine learning model is defined as:

F (w) =
1

n

n∑
i=1

F (w, zi)

where w represents a vector of the model parameters and F (w, zi) is the loss for the

i-th sample. The gradient and Hessian matrix of F (w) are

∇F (w) =
1

n

n∑
i=1

∇F (w, zi) , H (w) =
1

n

n∑
i=1

H (w, zi)

Suppose the model parameter is updated through mini-batch stochastic gradient descent

(SGD):

wt+1 ← wt −
ηt
Bt

∑
i∈Bt

∇F (wt, zi) = wt − ηt∇F (wt,Bt) (4.1)

where Bt is a randomly sampled mini-batch of size B, ηt is the learning rate at the tth

iteration and ∇F (wt,Bt) averages the gradients evaluated on all the training samples in

Bt. For GD, Bt includes all the training samples (B = n). As the special case of SGD, the

update rule of gradient descent (GD) is wt+1 ← wt − ηt/n
∑n

i=1∇F (wt, zi).

For example, the objective functions of linear regression, binary logistic regression and

multinomial logistic regression with L2−regularization are presented in Equations 4.2-4.4

respectively 1

F (w) =
1

n

n∑
i=1

(yi − xTi w)2 +
λ

2
||w||22 (4.2)

F (w) =
1

n

n∑
i=1

ln(1 + exp{−yiw>xi}) +
λ

2
||w||22 (4.3)

1Here I assume that the two possible labels in binary logistic regression are 1 and -1.

77



F (w) =
1

n

q∑
k=1

∑
yi=k

(ln(

q∑
j=1

ew
>
j xi)−wT

k xi) +
λ

2
||w||22

w = vec([w1,w2, . . . ,wq])

(4.4)

where w is the vector of model parameters and λ is the regularization rate. For simplicity, I

denote w = vec([w1,w2, . . . ,wq]) for multinomial logistic regression where q represents the

number of possible classes.

By absorbing the regularization terms into the summation terms, the objective functions

of linear regression, binary logistic regression and multinomial logistic regression over the

ith sample (i = 1, 2, . . . , n) are presented in Equations 4.5-4.7 respectively:

F (w, zi) = (yi − xTi w)2 +
λ

2
||w||22 (4.5)

F (w, zi) = ln(1 + exp{−yiw>xi}) +
λ

2
||w||22 (4.6)

F (w, zi) =

q∑
k=1

1(yi = k) · (ln(

q∑
j=1

ew
>
j xi)−wT

k xi) +
λ

2
||w||22

w = vec([w1,w2, . . . ,wq])

(4.7)

Considering the similarities between binary logistic regression and multinomial logistic

regression and the complexity of the computation related to the latter one, I will only present

the formulas related to binary logistic regression below. All the theorems that hold for binary

logistic regression can be also proven to be true for multinomial logistic regression.

Then the update rules of linear regression and binary logistic regression by using the

78



mini-batch SGD become:

wt+1 ← (1− ηtλ)wt −
2ηt
|Bt|

∑
i∈Bt

xi(xTi wt − yi) (4.8)

wt+1 ← (1− ηtλ)wt +
ηt
|Bt|

∑
i∈Bt

yixi(1−
1

1 + exp{−yiwT
t xi}

) (4.9)

4.2 Provenance-based ML model updates

Note that the incremental ML model update problem is quite similar to the classical mater-

ialized view maintenance problem in the database community where provenance semiring

model [10, 24] is applied to incrementally propagate the effect of removing base relation

tuples that some views rely on to the corresponding view instances. So one natural idea

is to develop solutions for propagating the deletions of training samples to ML models by

using the extended provenance-semiring model from [25] over the linear algebraic operators

in the update rule of the SGD/GD method. Therefore, in this section, I will introduce my

solution PrIU and its optimized version PrIU-opt to incrementally update regression models,

e.g. linear regression model, logistic regression model and possibly other generative addit-

ive models [28], which explicitly utilize the provenance-semiring model extended for linear

algebra operations. In what follows, this section starts by the detailed descriptions of this

extended provenance-semiring model mentioned above [25].

4.2.1 Provenance semiring model for linear algebra operators [25]

To provide provenance support for linear algebra operations, this extended provenance-

semiring model starts by annotating each row and each column in the input matrix with

unique provenance tokens, where the input matrix represents the input feature matrix of

the training dataset to some training algorithm. Since only the deletions of training samples

are considered in the ML model update problem, only a simpler version of this provenance

semiring model is considered, where only each row of the input matrix, i.e. each sample xi, is

annotated with a unique provenance token pi. Therefore, each provenance-annotated sample

79



becomes a tensor product, pi ∗ xi, where ∗ is used to concatenate the provenance expression

and the matrix expression. Based on this annotations, the resulting tensor product after

the matrix addition and multiplication operations between two provenance-annotated input

matrices, r1 ∗M1 and r2 ∗M2, are:

Matrix Addition : r1 ∗M1 + r2 ∗M2 (4.10)

Matrix Multiplication : (r1 ∗M1) · (r2 ∗M2) = (r1r2) ∗ (M1M2) (4.11)

in which the operator + and · defined over tensor products are associative and commut-

ative and I assume that the dimensions of M1 and M2 are compatible with each other in the

matrix addition or multiplication operations. In addition, the two operators are distributive,

i.e.:

(r1 ∗M1 + r2 ∗M2) · (r3 ∗M3 + r4 ∗M4) (4.12)

= (r1r3) ∗M1M3 + (r1r4) ∗M1M4 + (r2r3) ∗M2M3 + (r2r4) ∗M2M4 (4.13)

Then all tensor products pi ∗ xi from the input training data are propagated through

matrix additions and multiplications to the final output by using the computational rules in

Equation (4.11) - (4.12), which ends up with a tensor product, representing the provenance

expression of the output result.

Example 18. Suppose there are 4 training samples x1, x2, x3 and x4, which are annotated

by provenance token p1, p2, p3, p4 respectively, given the following linear algebra program:

w = 4xT1 x2x3 + 3xT1 x2x4 + 5xT1 x3x4 + xT2 x3x4

The resulting tensor product is:

W = (4p1p2p3) ∗ xT1 x2x3 + (3p1p2p4) ∗ xT1 x2x4 + (5p1p3p4) ∗ xT1 x3x4 + (p2p3p4) ∗ xT2 x3x4

(4.14)

80



With the tensor product expression for the resulting matrix, to delete the effect of some

training sample xi, I set the corresponding token pi as 0prov, representing the absence of the

xi, while all the other tokens are set as 1prov, representing the presence of the corresponding

samples, in which 0prov and 1prov have the following properties:

0prov ∗M = 0 (4.15)

1prov ∗M = M (4.16)

p0prov = 0prov (4.17)

p1prov = p (4.18)

in which M and p represent an arbitrary matrix and an arbitrary provenance token

respectively. Equation (4.15) (and Equation (4.16) resp.) tells us that any tensor product

0prov∗M (1prov∗M resp.) results in zero matrix (and the matrixM itself resp.). In contrast,

Equation (4.17) and Equation (4.18) are about the effect of 0prov and 1prov within every

provenance monomial, which indicate that 0prov zeros out the entire provenance monomial

while 1prov does not have any effect on other portions of the provenance monomial.

Example 19. Let us revisit Example 18. If users want to remove the sample x2 and retain

all the other samples in the final output, then p2 is set as 0prov while all the other provenance

tokens are set as 1prov. Therefore, the tensor product W in Equation (4.14) becomes:

W = (1prov0prov1prov) ∗ (4xT1 x2x3) + (1prov0prov1prov) ∗ (3xT1 x2x4)

+ (1prov1prov1prov) ∗ (5xT1 x3x4) + (0prov1prov1prov) ∗ xT2 x3x4

(4.19)

Then by using the computation rule in Equation (4.15)-(4.18), the formula above becomes:

W = 5xT1 x3x4 (4.20)

which is actually the same as the result of w after x2 is removed.

81



4.2.2 Constructing tensor products for SGD/GD update rules

In this subsection, I introduce how provenance is annotated in the update rules of linear

regression and logistic regression respectively.

4.2.2.1 Constructing tensor products for SGD/GD update rules of liner regres-

sion model

As Section 4.2.1 mentioned, each training sample xi can be annotated with a unique proven-

ance token pi such that the tensor product for the resulting model parameters can be de-

rived by applying the computation rule in Equation (4.11)-(4.18) to the matrix addition

and multiplication operators in the SGD/GD update rules and iteratively propagate the

resulting tensor product expression until model parameters convergence, which can success-

fully transform the SGD/GD update rules of linear regression, i.e. Equation (4.8), to its

provenance-annotated version, i.e.:

Wt+1 ← [(1− ηtλ)(1k ∗ I)−
2ηt
Pt

∑
i∈Bt

p2
i ∗ xixTi ]Wt +

2ηt
Pt

∑
i∈Bt

p2
i ∗ xiyi (4.21)

where Wt represents the provenance-annotated expression for the vector wt of model

parameters while Pt represents a provenance-annotated expression for the number of samples

in the min-batch Bt, for example, following the approach to aggregation in [8], Pt =∑
i∈Bt pi ∗ 1.

In the semiring framework there is no division operation so I only focus on the provenance

annotated formula,
∑

i∈Bt p
2
i ∗xixTi and attempt to leverage the provenance semiring model

described in the last subsection for incrementally updating this formula. Specifically, in this

formula, by setting the provenance tokens of all the remaining samples as 1prov and the

provenance tokens of all the removed samples as 0prov, the SGDGD update rule becomes:

wU
t+1 ← [(1− ηtλ)(I)− 2ηt

BU
t

∑
i∈Bt,i 6∈R

xixTi ]wU
t +

2ηt

BU
t

∑
i∈Bt,i 6∈R

xiyi (4.22)

82



which is thus the update rule of linear regression model parameters after the deletions

of samples from R.

However, there is still one way to work around the division operations in the provenance

annotated formula in Equation (4.21). To accomplish this, I can replace Pt with an integer

to represent the number of remaining samples at current mini-batch after the removal of

some samples, in which case, the provenance tokens for the remaining training samples and

removed training samples are set as 1prov and 0prov respectively and the number of the

updated mini-batch size is set as BU
t . By denoting the set of the removed sample as R and

applying the computation rule in Equation (4.11)-(4.18), the provenance-annotated update

rule for Wt+1 becomes:

WU
t+1 ← [(1− ηtλ)(1prov ∗ I)−

2ηt

BU
t

∑
i∈Bt
,i 6∈R

p2
i ∗ xixTi ]WU

t +
2ηt

BU
t

∑
i∈Bt
,i 6∈R

p2
i ∗ xiyi (4.23)

4.2.2.2 Constructing tensor products for SGD/GD update rules of logistic re-

gression model

Unfortunately, there exists one obvious obstacle toward annotating provenance to the GD

or SGD update rules of logistic regression model since the provenance model from [25]

only handles the linear algebra operators, ignoring the ubiquitous use of the non-linear

operations in ML training algorithms. For example, the function f(x) = 1 − 1
1+exp−x is

used in the SGD/GD update rule of logistic regression, i.e. Equation (4.9), which is a non-

linear operation, taking the product yiwT
t xi as the input argument x. Therefore, as the first

step to apply the provenance model in Equation (4.9), I determined to linearize the non-

linear operations in Equation (4.9) by utilizing piecewise linear interpolation (see [26] for 1D

piecewise linear interpolation and see [126] for multi-dimension piecewise linear interpolation,

which is useful for interpolating the update rule of multi-nomial logistic regression), which

has the following properties:

Lemma 1. Piecewise linear interpolation In Piecewise linear interpolation [26], I as-

83



sume that the function to be approximated is a continuous function f(x) where x ∈ [a, b].

Piecewise linear interpolation starts by picking up a series of breaking points, xi such that

a < x1 < x2 < · · · < xp < b and then constructs a linear interpolant s(x) over each interval

[xj−1, xj) as follows:

s(x) =
x− xj−1

xj − xj−1
f(xj) +

xj − x
xj − xj−1

f(xj−1)

= ajx+ bj , x ∈ [xj−1, xj)

(4.24)

The following property holds on how close the value of s(x) is compared to the original

function f(x):

|f(x)− s(x)| ≤ 1

8
(∆x)2 max

a≤x≤b
|f ′′(x)| = O((∆x)2)

|f ′(x)− s′(x)| ≤ 1

2
(∆x) max

a≤x≤b
|f ′′(x)| = O((∆x))

(4.25)

in which ∆x = max{xi − xi−1}ni=1.

Throughout the paper, I will consider the case in which the variable x in f(x) is defined

within an interval [−a, a] (a = 20) that is equally partitioned into 106 sub-intervals; for x

outside [−a, a], I assume that s(x) is a constant since when |x| > a, the value of f(x) is very

close to its bound (0 or 1). I will show that the length of each sub-interval influences the

approximation rate. As a consequence, after the interpolation step over Equation (4.9), the

approximated update rule becomes:

wL
t+1 ≈ [(1− ηtλ)I +

ηt
B

∑
i∈Bt

ai,txixTi ]wL
t +

ηt
B

∑
i∈Bt

bi,tyixi (4.26)

in which wL
t represents the model parameter after linearization at tth iteration and

ai,t, bi,t are the linear coefficients produced by the linearizations, which depends on which

sub-interval (defined by piecewise linear interpolation) the value of yiwT
t xi locates and thus

should be varied between different xi and different wt (see the associated subscript).

Then after the linearization step, by taking similar steps to the update rule of linear

84



regression after the deletions of training samples, R, the provenance-annotated version of

Equation (4.26) is shown as below:

WLU
t+1 ← [(1− ηtλ)(1prov ∗ I) +

ηt

BU
t

∑
i∈Bt
,i 6∈R

p2
i ∗ (ai,txixTi )]WLU

t +
ηt

BU
t

∑
i∈Bt
,i 6∈R

p2
i ∗ (bi,tyixi) (4.27)

Then by setting all the pi in Equation (4.27) as 1prov, I can get the update rule for the

updated model parameter wLU
t , i.e.:

wLU
t+1 ≈ [(1− ηtλ)I +

ηt

BU
t

∑
i∈Bt
,i 6∈R

ai,txixTi ]wLU
t +

ηt

BU
t

∑
i∈Bt
,i 6∈R

bi,tyixi (4.28)

4.2.3 Theoretical analysis

Although the update rule on the tensor products for the model parameters has been provided

in the previous subsection, there are still some theoretical questions unresolved, including

whether the tensor product expressions will be converged eventually and whether the linear-

ized update rule of logistic regression is a good approximation of the original update rule,

which will be answered in this subsection.

In terms of the first concern, i.e. the convergence concern, it is closely related to the

classical convergence problems for SGD/GD method, which have been extensively studied in

the machine learning community [127, 128, 129, 130, 131]. In [131], convergence conditions

have been provided for GD and SGD over strongly convex objective functions, which are

presented as below:

Lemma 2. Convergence conditions for general mb-SGD. [131] Given an objective

function f(w), which is L−Lipschitz continuous and λ−strongly convex once the learning

rate ηt satisfies: 1) ηt < 1
L ; 2) ηt is a constant across all the iterations (denoted by η), then

wt converges when mb-SGD is used.

Note that the convergence conditions above can exactly fit linear regression and logistic

regression with L2-regularization because their objective functions are strongly convex. Then

85



in terms of the convergence issue for the provenance expression WU
t in Equation (4.23) and

WLU
t in Equation (4.27), ideally, I expect that they can be converged when the original

model parameter wt converges. To prove or disprove this argument, a clear definition of the

convergence of the tensor products is required first, which is provided as below.

Definition 12. Convergence of provenance-annotated expressions. The expression

Wt =
∑

i pi,t ∗ ui,t converges when t→∞ iff every matrix ui,t converges when t→∞.

Unfortunately, my theoretical analysis shows that there is no convergence guarantee for

WU
t and WLU

t under the convergence conditions from Lemma 2, i.e.:

Theorem 1. WU
t in Equation (4.23) and WLU

t in Equation (4.27) need not converge under

the conditions in Lemma 2.

However, WU
t in Equation (4.23) and WLU

t in Equation (4.27) converge under the con-

ditions in Lemma 2 with one more assumption about the provenance expression, i.e.:

Theorem 2. The expectation of WU
t in Equation (4.23) and of WLU

t in Equation (4.27),

converge when t → ∞ if I also assume that provenance polynomial multiplication is idem-

potent.

Intuitively speaking, the assumption of multiplication idempotence for provenance poly-

nomials means that I do not track multiple joint uses of the same data sample, which is not

problematic for deletion propagation.

Then in terms of the concerns on the closeness between the results of the linearized

update rule (i.e. wL
t in Equation (4.26)) and the one of the original update rule of logistic

regression (i.e. wt in Equation (4.9)), I provide rigorous theoretical analysis on the distance

between wt and wL
t as below by following the approximation property of piecewise linear

interpolation shown in Lemma 1, i.e.:

Theorem 3. ||E(wt−wL
t )||2 is bounded by O((∆x)2) where ∆x is an arbitrarily small value

representing the length of the longest sub-interval used in piecewise linear interpolations.

86



Furthermore, in terms of the updated model parameters for logistic regression, it is also

essential to guarantee that the updated parameters wLU
t are close to the real updated model

parameters without linearization (denoted by wRU ), i.e.:

wRU
t+1 ← (1− ηtλ)wRU

t +
ηt

BU
t

∑
i∈Bt
,i 6∈R

yixif(yiwRU
t xi) (4.29)

Recall that f(x) = 1 − 1
1+e−x . Note that the linear coefficients ai,t and bi,t in Equation

(4.28) are actually derived in the training phase where all samples exist (rather than in the

model update phase), which implies that a larger difference between wLU
t and wRU

t should

be expected. Surprisingly, I can prove that the distance between wLU
t and wRU

t is still small

enough.

Theorem 4. ||E(wLU
t − wRU

t )||2 is bounded by O(∆n
n ∆x) + O((∆n

n )2) + O((∆x)2), where

∆n is the number of the removed samples and ∆x is defined in Theorem 3.

4.2.4 PrIU for linear regression

BaseL PrIU PrIU-opt
linear

regression
O(T (B −∆B)m) O(T (zm+ ∆Bm)) O(min{∆n,m}m2) +

O(Tm)
logistic

regression
O(T ((B −∆B)m+

Cnonm))
O(Tzm) +O(T∆Bm) O(ts(zm+ ∆Bm)) +

O(min{∆n,m}m2) +
O((T − ts)m)

Table 4.1 – Summary of the time complexity of BaseL, PrIU and PrIU-opt

This subsection will be centered around the implementation details of PrIU for linear

regression and logistic regression based on the provenance-annotated update rules for model

PrIU PrIU-opt
linear

regression
O(Tzm) O(m2)

logistic
regression

O(Tzm) +O(ndTBn e) O(m2) +O(tszm) +
O(nd tsBn e)

Table 4.2 – Summary of the space complexity of PrIU and PrIU-opt for caching provenance
information

87



parameters introduced in Section 4.2.2. As mentioned before, there is a great concern

on the non-negligible overhead of maintaining and using provenance in database domain,

which becomes more severe for provenance for ML training algorithms due to its iterative

computation.

To alleviate this issue, I utilize a series of optimization strategies from linear algebra

domain to minimize the overhead of using provenance and speed up the incremental updates

on ML models. The time complexity and space complexity of the proposed incremental

update solutions and the baseline approach, i.e. the approach to retraining from scratch,

(denoted as BaseL) are also provided for comparison. First of all, as mentioned in Section

4.2.2, by setting all the remaining provenance tokens as 1prov after minor deletions on the

training datasets, Equation (4.23) becomes Equation (4.22), which can be further rewritten

as follows:

wU
t+1 ← [(1− ηtλ)I− 2ηt

BU
t

∑
i∈Bt

xixTi +
∑
i∈Bt
,i∈R

xixTi ]wU
t +

2ηt

BU
t

(
∑
i∈Bt

xiyi −
∑

i∈Bt,i∈R
xiyi) (4.30)

which simply separates the contributions of the full minibatch from the deleted samples.

In this formula, the term
∑

i∈Bt xix
T
i and

∑
i∈Bt xiyi are not affected by the model para-

meters and used for the training process on the full training dataset, thus cached during the

training phase before the deletions occur. Then during the incremental update phase, only

the term
∑

i∈Bt,i∈R xix
T
i needs to be calculated from scratch, which will be very efficient

once the number of removed samples within a minibatch is far smaller than the minibatch

size. I can further rewrite Equation (4.30) in matrix form, i.e.:

wU
t+1 ← [(1− ηtλ)I− 2ηt

BU
t

XT
BtXBt + ∆XT

Bt∆XBt ]w
U
t +

2ηt

BU
t

(
∑
i∈Bt

xiyi −
∑

i∈Bt,i∈R
xiyi)

(4.31)

where I use XBt and ∆XBt to represent the matrix consisting of training samples within

the minibatch Bt and the removed training samples in Bt respectively. Then let us analyze

the complexity of the incremental update strategy above. By utilizing the associativity prop-

88



erty of matrix multiplication, expensive matrix-matrix multiplications in Equation (4.31)

(i.e. ∆XT
Bt∆XBt) can be avoided, which can be replaced by more efficient matrix-vector

multiplications (e.g. computing ∆XBtwU
t+1 first and then multiplying the result by ∆XT

Bt).

Then based on this idea, the time complexity to compute wU
t by using Equation (4.31) and

leveraging the cached terms XBtX
T
Bt and

∑
i∈Bt xiyi at each iteration will be O(∆Bm+m2)

if the number of removed sample is supposed to be ∆B on average across all iterations

(recall that the number of feature is m0 for each sample). In contrast, the time complexity

to compute wU
t by retraining from scratch (i.e. using Equation (4.22)) without utilizing any

cached terms will be O((B −∆B)m).

However, note that caching the term XBtX
T
Bt can incur very high overhead if the feature

number, m0, is very large. Plus, when m0 is large enough, especially larger than B, Bm

will be smaller than m2, indicating that using Equation (4.22) will incur less time overhead

than using Equation (4.31), thus leading to inefficient incremental updates. To address this

issue, one can observe that the dimension of the term XBtX
T
Bt can be reduced by using SVD,

i.e. XBtX
T
Bt = UtStVT

t , where St is a diagonal matrix whose diagonal elements represent

the singular values, while Ut and Vt are the left and right singular vectors. By retaining

only the first z largest singular values and the corresponding singular vectors, XBtX
T
Bt can

be approximated by Ut,1..zSt,1..zVT
t,1..z (Ut,1..z,Vt,1..z represents the submatrix composed of

the first z columns and St,1..z is a diagonal matrix composed of the first z eigenvalues in St).

Therefore, Equation (4.31) is further rewritten as:

wU
t+1 ← [(1− ηtλ)I− 2ηt

BU
t

(Ut,1..zSt,1..zVT
t,1..z

−∆XT
Bt∆XBt)]w

U
t +

2ηt

BU
t

(
∑
i∈Bt

xiyi −
∑
i∈Bt
,i∈R

xiyi)
(4.32)

which incurs overhead O(zm + ∆Bm) for each iteration. Since XBtX
T
Bt =

∑
i∈Bt xix

T
i ,

which sums up B outer products between rank-one vectors, thus having rank B ≤ m when

B < m. So the number of the main component r should be smaller than B. Hence using

Equation (4.32) for incremental updates is more efficient than the method to retrain from

89



scratch which has overhead O((B − ∆B)m). One requirement to use Equation (4.32) is

that the matrix Ut,1..z,St,1..z and Vt,1..z should be cached, which incurs O(zm) space for

each iteration. If there are T iterations in total, then the total time complexity and space

complexity by using Equation (4.32) are O(T (zm+ ∆Bm)) and O(Tzm) respectively while

the time complexity of retraining from scratch is O(T (B −∆B)m).

Note that since XBtX
T
Bt is approximated by its dimension-reduced version,

Ut,1..zSt,1..zVT
t,1..z, the approximation rate is also analyzed and presented as below:

Theorem 5. Approximation ratio Under the convergence conditions for w(t), ||w(t)||

should be bounded by some constant C. Suppose ||Ut,1..zSt,1..zVT
t,1..z ||2

||UtStVT
t ||2

≥ 1 − ε where ε is a

small value, then the change of model parameters caused by the approximation will be bounded

by O(ε).

This shows that with proper choice of r in the SVD approximation, the updated model

parameters computed by PrIU or PrIU-opt should be still very close to the expected result.

So in my implementations, z is chosen based on ε (say 0.01) such that the inequality in

Theorem 5 is satisfied.

Optimizations I provided an optimized version of PrIU, PrIU-opt. when the feature

number m0 is small, for which I utilize the GD-version update rules, i.e.:

wt+1 ← [(1− ηtλ)I− 2ηt
n

n∑
i=1

xixTi ]wt +
2ηt
n

n∑
i=1

xiyi (4.33)

wU
t+1 ← [(1− ηtλ)I− 2ηt

n−∆n

∑
i 6∈R

xixTi ]wU
t +

2ηt
n−∆nt

∑
i 6∈R

xiyi (4.34)

in which ∆n represents the size of the removed sample set R and recall that w and

wU represent the model parameters before and after the deletions of the training sample

set R respectively. By representing the training sample matrix [x1,x2, . . . ,xn]T as X, the

corresponding label vector [y1, y2, . . . , yn]T as Y, the matrix composed of removed training

samples as ∆X and the corresponding label vector [yi1 , yi2 , . . . , yik ]T (i1, i2, . . . , ik ∈ R), the

90



formulas above are further rewritten as:

wt+1 ← [(1− ηtλ)I− 2ηt
n
XTX]wt +

2ηt
n
XTY (4.35)

wU
t+1 ← ((1− ηtλ)I− 2ηt

n−∆n
(XTX−∆XT∆X))wU

t +
2ηt

n−∆n
(XTY−∆XT∆Y)

(4.36)

In the formula above, by further usingM andN to denoteXTX andXTY respectively, I

then conduct eigenvalue decomposition onXTX, which results inM = Q diag ({ci}ni=1) Q−1

(where ci represents the eigenvalues of M). By plugging the decomposed results into Equa-

tion (4.35), the following formula can be derived:

wt+1 = Q diag ({Πt
j=1(1− ηjλ−

2ηj
n
ci)}ni=1) Q−1w0

+ Qdiag(
t−1∑
l=1

ηl{Πt
j=l+1(1− ηjλ−

2ηj
n
ci)}ni=1) Q−1 2N

n

(4.37)

which avoids the iterative computations of the original GD/SGD update rules. But note

that explicitly doing eigenvalue decomposition is very expensive, which is thus infeasible for

efficiently computing the exact eigenvalues of M′ = XTX−∆XT∆X in incremental model

update phase. However, by leveraging some theoretical results on incrementally computing

the eigenvalues from [132] and regarding ∆XT∆X as small updates on M, I can conclude

that the eigenvectors of M′ is approximately the same as that of M and the eigenvalues of

M′ can be estimated as:

Q−1M′Q = diag({c′i}ni=1) (4.38)

where recall that Q is the matrix of the eigenvectors of M (see Equation (4.37)). This

indicates that
∑

i 6∈R xix
T
i ≈ Q diag ({c′i}ni=1) Q−1, which is then plugged into Equation

91



(4.34), i.e.:

wU
t+1 = Q diag ({Πt

j=1(1− ηjλ−
2ηj

n−∆n
c′i)}ni=1) Q−1wU

0

+ Qdiag(
t−1∑
l=1

ηl{Πt
j=l+1(1− ηjλ−

2ηj
n−∆n

c′i)}ni=1) Q−1 2N′

n−∆n

(4.39)

where N′ = XTY −∆XT∆Y, Q and Q−1 are computed offline. The time complexity

for updating the model parameters in this manner is dominated by the computation of c′i

by using Equation (4.38) and the following computations over each c′i as Equation (4.37)

does. These have time complexities O(min{∆n,m}m2) and O(Tm), respectively. So the

total time complexity is O(min{∆n,m}m2) + O(Tm) (recall that there are T iterations in

total), which is more efficient than the closed-form solution, whose computational overhead

is dominated by the matrix inverse operation, incurring overhead O(m3). This is much more

expensive than one matrix multiplication operation since matrix inverse operation involves

multiple matrix multiplication operations, thus leading to higher overhead of closed-form

solution than PrIU. In terms of the space overhead, PrIU only requires caching Q, Q−1 and

all the eigenvalues ci, which takes space O(m2). I summarize the time complexity and space

complexity of BaseL, PrIU and PrIU-opt for linear regression in Table 4.1 and Table 4.2

respectively.

Theorem 6. (Approximation ratio) The approximation of PrIU-opt over the model para-

meters is bounded by O(||∆XT∆X||)

This shows that with small number of removed samples, the approximation ratio should

be very small.

92



4.2.5 PrIU for logistic regression

As the first step to introduce solutions for logistic regression, Equation (4.28) is rewritten

as:

wLU
t+1 ← [(1− ηtλ)I +

ηt

BU
t

(Ct −∆Ct)]wLU
t +

ηt

BU
t

(Dt −∆Dt) (4.40)

where Ct,Dt,∆Ct,∆Dt are:

Ct =
∑
i∈Bt

ai,txixTi ,∆Ct =
∑

i∈R,i∈Bt

ai,txixTi ,Dt =
∑
i∈Bt

bi,tyixi,∆Dt =
∑

i∈R,i∈Bt

bi,tyixi

Similar to linear regression, the intermediate results Ct and Dt are cached and the

dimension of Ct can be reduced by using SVD before the model update phase, which can

happen offline. Suppose after SVD, Ct ≈ Ut,1..zSt,1..zVT
t,1..z, in which St,1..z represents the

diagonal matrix with the z largest eigenvalues of Ct in the diagonal entries and Ut,1..z and

Vt,1..z represent the matrix composed of the eigenvectors corresponding to the z largest

eigenvalues of Ct. By representing the product Ut,1..zSt,1..z as Pt,1..z, I can derive: Ct ≈

Pt,1..zVT
t,1..z. Note that both Pt,1..z and Vt,1..z are two matrices with dimension m × z. In

the end, Equation 4.40 is modified as below for incremental model updates:

wLU
t+1 ← [(1− ηtλ)I +

ηt

BU
t

(Pt,1..zVT
t,1..z −∆Ct)]wLU

t +
ηt

BU
t

(Dt −∆Dt) (4.41)

in which the computation of Pt,1..zVT
t,1..zwLU

t and ∆CtwLU
t become the major overhead,

incurring time complexity O(zm) and O(∆Bm) respectively for each iteration. Therefore,

the total complexity is O(Tzm)+O(T∆Bm) if there are T iterations in total. In comparison,

the time complexity of retraining from scratch is O(T ((B −∆B)m+ Cnonm)), where Cnon

represents the overhead of the non-linear operations. When z � B and ∆B � B, PrIU is

thus expected to be more efficient than retraining from scratch.

An optimized version of PrIU, PrIU-opt, is come up with in [27] with a series of optimiz-

ation strategies on minimizing the overhead brought by maintaining provenance. The effect

93



of those optimization strategies is also empirically demonstrated.

To leverage this approximation, it is essential to cache Pt,1..z andVt,1..z at each iteration,

which requires O(Trm) space in total. Plus, O(ndTBn e) extra space is necessary to cache

the linear coefficients. So the total space complexity will be O(Trm) +O(ndTBn e).

Theorem 7. (Approximation ratio) Similar to Theorem 5, the deviation caused by the

SVD approximation will be bounded by O(ε), given the ratio ||Pt,1..zV
T
t,1..z ||2

||PtVT
t ||2

≥ 1− ε. So using

Theorem 4, ||E(wLU
t −wRU

t )||2 is bounded by O(∆n
n ∆x) +O((∆n

n )2) +O((∆x)2) +O(ε).

Optimizations Similar to linear regression, I also proposed an optimized version of

PrIU, PrIU-opt for logistic regression when the feature space of the training datasets is

small, which depends on one observation that the change in the coefficients ai,t and bi,t from

one iteration to the next becomes smaller and smaller as w(t) converges, thus leading to

more and more stable Ct, Dt, ∆Ct and ∆Dt. This indicates that I can stop capturing the

linear coefficients ai,t and bi,t at certain iteration ts, earlier than the convergence. Instead I

use the summation of Ct, Dt, ∆Ct and ∆Dt during the last epoch before the iteration ts to

approximate the matrix Ct, Dt, ∆Ct and ∆Dt after the iteration ts, which will remain the

same for all iterations t ≥ ts, allowing us to avoid their recomputation (I denote the matrices

C,D,∆C and ∆D used after the iteration ts as C∗,D∗,∆C∗ and ∆D∗). Therefore, the

update rules for wLU
t after this approximation becomes:

wLU
t+1 =


((1− ηtλ)I + ηt

BUt
(Ct −∆Ct))wLU

t + ηt
BUt

(Dt −∆Dt) if t ≤ ts

((1− ηtλ)I + ηt
n−∆n(C∗ −∆C∗))wLU

t + ηt
n−∆n(D∗ −∆D∗) otherwise

(4.42)

In addition, after this approximation, I observe that the update rule after the iteration

ts has the same form as the one for linear regression, motivating us to use the same tech-

niques from PrIU-opt for linear regression, i.e. conducting eigenvalue decomposition over

C∗, followed by incrementally updating the eigenvalues given the changes ∆Ct, thus avoid-

ing recomputations after the iteration ts. Suppose after applying eigenvalue decomposition

on C∗, I have C∗ = Q diag ({ci}ni=1) Q−1, which can be followed by the estimations of the

94



eigenvalues of C∗ −∆C∗, i.e.:

Q−1(C∗ −∆C∗)Q = diag({c′i}ni=1) (4.43)

Therefore, the iterative computation after the iteration ts can be avoided, similar to the

derivation of Equation (4.39). In the end, Equation (4.42) can be rewritten as:

wLU
t+1 =


((1− ηtλ)I + ηt

BUt
(Ct −∆Ct))wLU

t + ηt
BUt

(Dt −∆Dt) if t ≤ ts

Q diag ({Πt
j=ts

(1− ηjλ− 2ηj
n−∆nc

′
i)}ni=1) Q−1wU

ts

+Qdiag(
∑t−1

l=ts
ηl{Πt

j=l+1(1− ηjλ− 2ηj
n−∆nc

′
i)}ni=1) Q−1 2N′

n−∆n otherwise

(4.44)

in which N′ = ηt
n−∆n(D∗ −∆D∗). Then as I analyzed before for the time complexity of

linear regression and PrIU for logistic regression, before and after the iteration ts, the total

time complexity is O(ts(zm+ ∆Bm)) and O(min{∆n,m}m2) +O((T − ts)m) respectively.

Thus the total time complexity is O(ts(zm+ ∆Bm)) +O(min{∆n,m}m2) +O((T − ts)m).

In terms of the space complexity, after the iteration ts, I only need to keep the eigenvectors of

Ct, which requires O(m2) space. Including the space overhead for the first ts iterations, the

total space complexity is O(m2) +O(tszm) +O(nd tsBn e). I summarize the time complexity

and space complexity of BaseL, PrIU and PrIU-opt for logistic regression in Table 4.1 and

Table 4.2 respectively. The effect of this approximation used in PrIU-opt is theoretically

analyzed as below:

Theorem 8. (Approximation ratio) Suppose that after the iteration ts the gradient of

the objective function is smaller than δ, then the approximations of PrIU-opt can lead to

deviations of the model parameters bounded by O((T − ts)δ) +O(||∆XT∆X||). By combin-

ing the analysis in Theorem 4, ||E(wLU
t − wRU

t )||2 is bounded by O(∆n
n ∆x) + O((∆n

n )2) +

O((∆x)2) +O((T − ts)δ) +O(||∆XT∆X||)

This thus indicates that wLU
t should be very close to wRU

t .

Discussions

95



1. The effect of the mini-batch size As summarized in Table 4.1, I know that given

the same values for all other variables, with larger mini-batch size B, BaseL should be

slower while the performance of PrIU and PrIU-opt is free from the mini-batch size,

which indicates more significant speed-ups brought by PrIU and PrIU-opt. This is

empirically verified in my empirical studies

2. The effect of the number of iterations T and feature space size m0 As shown

in Table 4.1, for different T and m0, the speed-ups brought by PrIU and PrIU-opt in

comparison to BaseL should be almost remain the same. However, the extra space

overhead used to cache the provenance information is proportional to T and m0 as

shown in Table 4.2, implying more memory consumption for larger T and m0, which

is also verified experimentally.

3. The effect of the approximation in PrIU and PrIU-opt In PrIU and PrIU-opt,

the model parameters are incrementally updated in a faster but approximate manner.

I provided theoretical analysis to show the closeness between the approximated results

and expected results in Theorem 5-8. I also empirically show that the approximation

rate is small even when up to 20% of samples are removed in the model update phase.

4. Limitations First of all, my current framework handles linear and logistic models

with L2 regularization. My solutions cannot handle L1 regularization since in this

case the gradient of the objective function is not continuous, thus invalidating some

of the error bound analysis above. In addition, for sparse datasets with large feature

space, I can utilize the efficient sparse matrix operations by retraining from scratch,

which, however, is not eligible for PrIU since there is no guarantee that Pt and Vt

after SVD are sparse matrices. Therefore, for sparse training datasets, I will simply

use the linearized update rule, i.e. Equation 4.28 directly, without considering the

strategies above.

96



4.2.6 Empirical evaluations

To show the performance advantage of PrIU and PrIU-opt against the approach to retraining

from scratch (denoted as BaseL) and other alternative methods, such as INFL [44] and

closed-form solutions for linear regression, I provided extensive empirical evaluations on

some standard ML benchmark datasets in this section.

4.2.6.1 Experimental setup

Platform. I conduct extensive experiments in Python 3.6 and use PyTorch 1.3.0 [102]

for the experiments for dense datasets and scipy 1.3.1 [133] for the experiments for sparse

datasets. All experiments were conducted on a Linux server with an Intel(R) Xeon(R) CPU

E5-2630 v4 @ 2.20GHz and 64GB of main memory.

Datasets. Six datasets were used in my experiments: (1) the UCI SGEMM GPU

dataset2; (2) the UCI Covtype dataset 3; (3) the UCI HIGGS dataset 4; (4) the RCV1

dataset 5 (5) the Kaggle ECG Heartbeat Categorization Dataset6; (6) the CIFAR-10 dataset

7, which are referenced as SGEMM, Cov, HIGGS, RCV1, Heartbeat and cifar10 hereafter.

SGEMM has continuous label values, therefore I use it in experiments with linear re-

gression while the rest of them have values that are appropriate for classification. Each

dataset is partitioned into training (90% of the samples) and validation (10% of the samples)

datasets, the latter used for measuring the accuracy of models trained from the former.

The characteristics of these datasets are listed in Table 4.3, which indicates that RCV1

and cifar10 have extremely large feature space (over 30k model parameters) while other

datasets have much fewer parameters (Heartbeat has around 1000 while others have less

than 500).
2https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
3https://archive.ics.uci.edu/ml/datasets/covertype
4https://archive.ics.uci.edu/ml/datasets/HIGGS
5simplified version from https://scikit-learn.org/0.18/datasets/rcv1.html
6https://www.kaggle.com/shayanfazeli/heartbeat
7https://www.cs.toronto.edu/~kriz/cifar.html

97

https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
https://archive.ics.uci.edu/ml/datasets/covertype
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://www.kaggle.com/shayanfazeli/heartbeat
https://www.cs.toronto.edu/~kriz/cifar.html


4.2.6.2 Experiment design

I conduct two sets of experiments, the first of which aims to evaluate the performance of

PrIU and PrIU-opt with respect to the deletion of one subset of the training samples. I do

this over different types of datasets (dense VS sparse, large feature space VS small) with

varied configurations (how many samples to be removed, mini-batch size, iteration numbers

etc.), and compare against retraining from scratch. The second set of experiments simulate

the scenario where users repetitively remove different subsets of training samples.

In the first set of experiments I simulate the cleaning scenario. To specify the samples to

be removed from the training datasets, I introduce dirty samples, which are a selected subset

of samples from the original dataset T that are modified to incorrect values by rescaling.

The resulting dataset is denoted T
dirty

, over which the initial model Minit is constructed.

The dirty samples are then removed in the model update phase. The goal is to compare the

robustness of PrIU, PrIU-opt and the influence function [44] method when dirty data exists.

In the experiment I vary the number of erroneous samples generated. The ratio between the

erroneous samples and the original training dataset is called the deletion rate, and I give

it values ranging from 0.0001 (i.e. 0.01%) to 0.2 (i.e. 20%).

In the second set of the experiments, I simulate the scenario in which users debug or

interpret models by removing different subsets of samples, necessitating repeated incremental

model update operations. I assume that the datasets are very large; to simulate this, I

create three synthetic datasets Tcat by concatenating 4 copies of HIGGS, 20 copies of Cov

and 130 copies of Heartbeat such that the total number of training samples is around 40

million, 11 million and 11 million, respectively, which are denoted HIGGS (extended), Cov

(extended) and Heartbeat (extended), respectively. In the experiments, ten different subsets

are removed and for each of them the deletion rate is about 0.1% of randomly picked samples

out of the full training set. The hyperparameters for this set of experiments are listed in

Table 4.4.

Baseline. For both T
dirty

and Tcat , I simulate what users (presumably unaware of errors)

would do, and train an initial modelMinit using the following standard method: Manually

98



derive the formula for the gradient of the objective function and then program explicitly

the SGD/GD iterations. The erroneous or chosen samples are then removed from T
dirty

or

Tcat . For linear regression, I also compare PrIU and PrIU-opt against close-form formula

solutions for incremental updates [91, 92, 134, 135], denoted by Closed-form.

Incrementality. To update the modelMinit , the straightforward solution is to retrain

from the scratch by using the same standard method as before but exclude the removed

samples from each mini-batch. I denote this solution by BaseL. In contrast, my approach

uses PrIU or PrIU-opt to incrementally update the model. The time taken by BaseL, PrIU

or PrIU-opt to produce the updated model is reported in the experiments as the update

time, and is compared over the two solutions: retraining with BaseL vs. incremental update

with PrIU or PrIU-opt.

Note that PrIU/ PrIU-opt uses provenance information collected from the whole training

dataset. This phase is offline for the PrIU/ PrIU-opt algorithms and is not included in their

reported running times. In practice, for the first set of experiments (cleaning of erroneous

samples) provenance collection is done during the training of Minit from T
dirty

. For the

second set of experiments (repeated deletions of subsets for debugging or interpretability)

provenance collection is done during an initial training of Minit from the entire dataset

Tcat , which only needs to be done once even if many deletions of subsets are performed

subsequently.

Since PrIU-opt is the optimized version for datasets with small feature space I only record

the update time of PrIU over RCV1 and cifar10, which have very large feature spaces.

Accuracy. I compare the quality of the updated model obtained by BaseL and

PrIU/PrIU-opt. The goal is to show that the improvement in update time is not achieved at

the expense of accuracy. For experiments with linear regression, I use the mean squared error

(MSE) over the validation datasets as a measure for accuracy. A lower MSE corresponds to

higher accuracy over the validation set. For experiments with binary or multinomial logistic

regression, I use the updated model to classify the samples in the validation datasets and

report their validation accuracy.

99



Model comparison. I also compare the updated models structurally by comparing

the vector of updated model parameters obtained via PrIU/PrIU-opt against the ones by

using BaseL. This is done in two different ways: 1) Using distance, that is, the L2-norm of

the difference between the two vectors, for both linear and logistic regression, and 2) Using

similarity, that is, the cosine of the angle between the two vectors. The latter is only done

for logistic regression since the angle is only relevant for classification techniques. For both

linear regression and logistic regression, I also record the changes of the signs and magnitude

of individual coordinate of the updated model parameters by PrIU and PrIU-opt compared

to the ones obtained by BaseL.

Comparison with influence function. As indicated in Section 2, the influence func-

tion method in [44] can be extended to handle the removal of multiple training samples by us

(details omitted). I denote the resulting method INFL and compare it against PrIU/PrIU-

opt in the experiments. I predicted and verified experimentally that this approach produces

models with poor validation accuracy since the derivation of INFL relies on the approxima-

tion of the Taylor expansion, which can be inaccurate. I also notice that the Taylor expansion

used in INFL involves the computation of the Hessian matrix, which is very expensive for

datasets with extremely large feature space. So I did not run INFL over RCV1 and cifar10

in the experiments; the comparison between PrIU/PrIU-opt and INFL over other datasets

is enough to show the benefits of my approaches.

Effect of the hyperparameters and feature space size As discussed in Section 4.2.4

and Section 4.2.5, the performance of PrIU and PrIU-opt is influenced by the mini-batch

size, the number of iterations and the size of the feature space. To explore the effect of the

first two parameters for logistic regression, three different combinations of mini-batch size

and number of iterations are used over Cov, denoted Cov (small), Cov (large 1) and Cov

(large 2) (see Table 4.4). Since the datasets used for logistic regression have different feature

space sizes, the performance difference with respect to feature space size is also compared.

Since there is only one dataset for linear regression, SGEMM, I extend this dataset by

adding 1500 random features for each sample to determine the effect of feature space size.

100



The extended version of SGEMM is denoted SGEMM (extended) (see Table 4.4). Other

hyperparameters used in the experiments are shown in Table 4.4. Note that since erroneous

samples exist in the training datasets for the first set of experiments, some values of the

learning rate need to be very small to make sure that the convergence can be reached.

In the experiments, I answer the following questions:

(Q1) Do the optimizations used in PrIU-opt compared to PrIU lead to a significant im-

provement in update time without sacrificing accuracy when the number of features

in the training set is small?

(Q2) Do PrIU and PrIU-opt afford significant gains in efficiency compared to BaseL?

(Q3) Are the efficiency gains provided by PrIU and PrIU-opt achieved without sacrificing

the accuracy of the updated model?

(Q4) Can I experimentally validate the theoretical analysis in Section 4.2.3, i.e. that the

updated model derived through the approximations in PrIU and PrIU-opt is very close

to the one obtained by BaseL?

(Q5) Does the influence function approach, INFL, provide a competitive alternative to

PrIU and PrIU-opt?

(Q6) Can I experimentally show the effect of the hyperparameters, such as mini-batch size

and iteration numbers over the performance gains of PrIU and PrIU-opt?

(Q7) Can I experimentally show the effect of the feature space size (i.e. the number of

model parameters, which equals to the feature number times the number of classes for

multi-nomial logistic regression)?

(Q8) What is the memory overhead of PrIU and PrIU-opt for caching the provenance

information?

101



(a) SGEMM (original) (b) SGEMM (extended)

Figure 4.1 – Update time using linear regression

(a) Cov (small) (b) Cov (large 1) (c) Cov (large 2)
Figure 4.2 – Update time using logistic regression over Cov and the hyperparameters from
Table 4.4

(a) Heartbeat (b) HIGGS (c) RCV1 and cifar10
Figure 4.3 – Update time using logistic regression

4.2.6.3 Experimental results

I report the results of my experiments in this subsection.

(Q1) I compare the update time of PrIU and PrIU-opt for linear regression using

SGEMM (extended) in Figure 4.1b. The results show that the update time of PrIU-opt is

significantly better than that of PrIU except when the deletion rate is approaching 20%. I

also see from Table 4.6 that PrIU-opt and BaseL yield models that have exactly the same

102



Table 4.3 – Summary of datasets

name # features # classes # samples
SGEMM 18 241,600

Cov 54 7 581,012
HIGGS 28 2 11,000,000
RCV1 47,236 2 23,149

Heartbeat 188 7 87,553
cifar10 3072 10 50,000

Table 4.4 – Summary of hyperparameters used in the experiments

name mini-batch size # of iterations other hyper-parameters
(η, λ)

SGEMM (original) 200 2000 (5× 10−3, 0.1)
SGEMM (extended) 200 2000 (5× 10−3, 0.1)

Cov (small) 200 10000 (1× 10−4, 0.001)
Cov (large 1) 10000 500 (1× 10−4, 0.001)
Cov (large 2) 10000 3000 (1× 10−4, 0.001)

HIGGS 2000 20000 (1× 10−5, 0.01)
Cov (extended) 1000 40000 (1× 10−4, 0.001)

HIGGS 2000 20000 (1× 10−5, 0.01)
HIGGS (extended) 2000 60000 (1× 10−5, 0.01)

Heartbeat 500 5000 (1× 10−5, 0.1)
Heartbeat (extended) 500 40000 (1× 10−5, 0.1)

RCV1 500 3000 (1× 10−6, 0.5)
cifar10 500 1000 (0.001, 0.1)

validation accuracy. Therefore, although PrIU-opt uses additional approximations for op-

timization, they do not hurt the predictive power of the updated models. This shows that

the optimization strategies in Sections 4.2.4 and 4.2.5 are worth the design and implement-

ation effort. Consequently, I will only compare PrIU-opt against other approaches except

for cifar10 and RCV1 which have extremely large feature spaces.

(Q2) Figures 4.1a-4.1b compare the update time in BaseL and PrIU-opt using linear

regression (ignore the INFL lines for the moment), while Figures 4.2-4.3 show the same

results for logistic regression for single model update operation. Observe that for both

linear and logistic regression, when the deletion rate is small (<0.01), PrIU-opt can achieve

significant speed-up compared to BaseL: up to two orders of magnitude for linear regression

and up to around 23x for logistic regression (for Cov (large 1) and Cov (large 2) with low

deletion rate). Even when the feature spaces are extremely large, with deletion rate 0.1%,

103



Table 4.5 – Memory consumption summary (GB)

Dataset BaseL PrIU PrIU-opt
Cov (small) 0.71 4.30 4.34
Cov (large 1) 0.87 4.02 3.49
Cov (large 2) 1.34 21.0 17.4

HIGGS 5.09 8.40 8.40
SGEMM (original) 2.43 2.45 2.48
SGEMM (extended) 4.94 6.66 5.74

Heartbeat 0.46 6.01 5.69
RCV1 0.28 0.3 -
cifar10 0.79 26.59 -

there is around a 2.6x speed-up for dense datasets (cifar10 in Figure 4.3c) and only 10%

for sparse datasets (RCV1 in Figure 4.3c), respectively (similar speed-ups were observed for

other small deletion rates). The former shows the effectiveness of the optimization strategies

in PrIU over dense datasets with a large feature space while the latter is due to the fact that

the optimization strategies for dense datasets were not applied over the sparse ones. Notice

that for linear regression, PrIU-opt is always faster than Closed-form. Figure 4.4 shows the

results of repetitive model updates; PrIU-opt achieves an order of magnitude speed-up for

HIGGS (extended).

(Q3) Table 4.6 (validation accuracy for PrIU and PrIU-opt column) compares the

quality of the models obtained by PrIU/PrIU-opt with that of the models obtained by

BaseL. For these results I chose the highest deletion rate in the experiments, i.e. 20%. For

all the experiments, the validation accuracy (MSE in the case of linear regression) of the

updated models obtained by PrIU and PrIU-opt match exactly the accuracy of the ones

obtained by BaseL. Combined with the answer to Q2, I can conclude that PrIU-opt speeds

up the model update time by up to two orders of magnitude without sacrificing any validation

accuracy.

(Q4) I investigate why PrIU-opt has the same validation accuracy as BaseL by meas-

uring the distance and similarity between the updated models computed by PrIU-opt and

BaseL. The results are presented in Table 4.6 (again, ignore the columns for INFL). The

results indicate that the updated model parameters computed by PrIU-opt are very close

to the ones obtained by BaseL since the cosine similarity is almost 1 (see the “similarity”

104



column) while the L2-dist is very small (see the “distance” column). An even finer-grained

analysis, comparing the signs and magnitude of each coordinate in the model parameters

updated by PrIU-opt and BaseL shows that there is no sign flipping and only negligible

magnitude changes for PrIU-opt compared to BaseL when the deletion rate is small. Even

with a large deletion rate of 20% in HIGGS, only 2 out of 58 coordinates flip their signs

with small magnitude change.

(Q5) The model update time of INFL is also included in Figures 4.2 and 4.3. Note

that it can be up to one order of magnitude better than PrIU-opt, which is expected since

using INFL to update the model parameters does not require an iterative computation.

However, there is a significant drop in validation accuracy of the updated model derived by

INFL compared to BaseL and PrIU-opt (see Table 4.6), which is due to the significantly

higher L2-dist (see the “distance” column) and lower cosine similarity (see the “similarity”

column) of its updated model compared to the model derived by BaseL. I conclude that

PrIU and PrIU-opt produce much better models than INFL yet can still achieve comparable

speed-ups.

(Q6) Effect of mini-batch size. The effect of mini-batch size is seen by comparing

Cov (large 1) and Cov (small). One observation is that with larger mini-batch size, the

maximal speed-up of PrIU-opt is around 23x, while with the smaller mini-batch size it is

only about 6x, see Figures 4.2a and 4.2b This confirms the analysis in Section 4.2.5. In

the second set of experiments, I used a small mini-batch size for Cov (1000) and Heartbeat

(500), resulting in only 4.62x and 3.2x speed-ups by PrIU-opt, respectively (see Figure 4.4).

Figure 4.4 – The execution time of repetitively removing 10 different subsets

Effect of number of iterations. A comparison of Cov (large 1) and Cov (large 2),

105



which have the same mini-batch size but a different number of iterations, can be found in

Figures 4.2b and 4.2c. I observe that no matter how many iterations the program runs

for, at the same deletion rate PrIU-opt achieves a similar speed-up against BaseL. For

example, I have up to around 23x speed-up for small deletion rates and smaller speed-up

for higher deletion rates (note the difference in y-axis scale between Figures 4.2b and 4.2c).

However, increasing the number of iterations increases the amount of provenance information

cached for PrIU-opt, thus requiring more memory. As Table 4.5 indicates, since there are

6x iterations for Cov (large 2) compared to Cov (large 1), roughly 6x memory is needed,

confirming the analysis in Section 4.2.5. However for Cov, with a large mini-batch size

and 500 iterations, convergence is achieved and I do not observe a difference in validation

accuracy between Cov (large 1) and Cov (large 2). Note that according to [136, 137, 138],

the theoretical optimal number of passes for logistic regression using mb-SGD (one pass

equals to the total number of iterations divided by the number of iterations used for going

through the full training set) is quite small. However, for Cov (large 2) the number of

passes over the full training set is quite large (3000/(581012/10000) ≈ 60). Such a high

memory usage should therefore not arise in practice.

(Q7) In terms of the update time for experiments over datasets with a comparable

mini-batch size but with different feature space sizes (Heartbeat VS HIGGS), I notice that

a larger number of model parameters leads to poorer performance by PrIU-opt (compare

Figures 4.3a and 4.3b). This is also validated through a second set of experiments in which

HIGGS (extended) achieves significant speed-up compared to Heartbeat (extended) (see

Figure 4.4). This confirms the analysis in Section 4.2.5, where I show how the asymptotic

execution time of PrIU and PrIU-opt depends on the number of the model parameters.

(Q8) Table 4.5 shows that in most cases, both PrIU and PrIU-opt only consume no more

than 5x memory compared to BaseL (ignore the number for Cov (large 2) since, as discussed

earlier, it is a rare case in practice). However, with a large number of model parameters

(like cifar10 and Heartbeat) there is over 10x memory consumption for PrIU and PrIU-opt.

How to decrease the memory usage for dense datasets with large feature space is left for

106



Table 4.6 – Accuracy and similarity comparison between PrIU-opt and INFL with deletion
rate 0.2

Dataset
Validation
accuracy distance similarity

BaseL =
PrIU-opt

INFL PrIU-opt INFL PrIU-opt INFL

Cov (small) 48.76% 36.93% 0.184 1.287 0.992 0.624
Cov (large 1) 48.76% 37.99% 0.0016 1.047 1.0 0.738
Cov (large 2) 48.76% 46.38% 0.0003 1.430 1.0 0.471

HIGGS 52.99% 47.99% 0.0004 0.006 0.979 -0.040
Heartbeat 82.78% 74.34% 0.0016 0.583 1.00 0.143

SGEMM (origin) 0.001 0.002 0.027 0.140 - -
SGEMM (extended) 0.001 0.002 0.029 0.141 - -

future work.

Discussion. Extensive experiments using linear regression and logistic regression over

the datasets above show the feasibility of my approach. PrIU and PrIU-opt can achieve

up to two orders of magnitude speed-up for incrementally updating model parameters com-

pared to the baseline, especially for large datasets with a small feature space. This is done

without sacrificing the correctness of the results (measured by similarity to the updated

model parameters by BaseL) and the prediction performance. The experiments also show

that the optimizations used in PrIU-opt give significant performance gains compared to

PrIU with only a small loss of accuracy. I observe that INFL is not a good solution because

of the poor quality of models produced when more than one sample is removed.

Limitations. My experiments also show the limitations of my solutions. They concern

the memory footprint when the feature space or the number of iterations is large (anticipated

by several analyses in Section 4.2.5) and the marginal speed-up for large sparse datasets (Also

see Section 4.2.5). I shall endeavor to approach these limitations in future work.

4.3 L-BFGS based ML model updates

As the prior section illustrated, PrIU and its optimized version PrIU-opt are only designed

for some specific ML models with simple update rules, e.g. linear regression and logistic

regression model, which are possibly extended to deal with other generative additive models

107



[28], but very hard to be generalized to more complicated models, e.g. deep neural networks,

due to their much more sophisticated update rules than logistic regression. To deal with

this issue, I proposed DeltaGrad which can deal with general ML models satisfying strong

convexity. In what follows, I take GD as an example to illustrate how DeltaGrad works and

discuss how it is extended to SGD later.

4.3.1 DeltaGrad for GD

This subsection begins with descriptions of DeltaGrad for GD, followed by rigorous theor-

etical analysis for this algorithm.

4.3.1.1 Proposed algorithm

The goal of Deltagrad for GD is to efficiently compute the following “leave-r-out” gradient

formula:

wU
t+1 ← wU

t −
ηt

n− r
∑
i 6∈R
∇F

(
wU
t , zi

)
(4.45)

after the model parameters wt are obtained during the training phase on the full dataset

by using the update rule shown in Equation (4.1) and a subset of training samples R are

removed (recall that it is referenced as BaseL for short). This is the baseline method that I

discussed in Section 4.2.

In order to efficiently estimate wU , Equation (4.45) is firstly rewritten as the following

form:

wI
t+1 = wI

t −
ηt

n− r

[
n∇F

(
wI
t

)
−
∑
i∈R
∇F

(
wI
t , zi

)]
. (4.46)

where wI
t represents the estimated wU and n∇F

(
wI
t

)
=
∑n

i=1∇F
(
wI
t , zi

)
. The key

idea is to estimate the difference between
∑n

i=1∇F
(
wI
t , zi

)
and

∑n
i=1∇F (wt, zi) without

explicitly computing
∑n

i=1∇F
(
wI
t , zi

)
, which is derived by using the well-known Cauchy

108



mean-value theorem:

∇F
(
wI
t

)
= ∇F (wt) + Ht ·

(
wI
t −wt

)
(4.47)

in which Ht is an integrated Hessian, Ht =
∫ 1

0 H
(
wt + x

(
wI
t −wt

))
dx.

To avoid explicitly evaluating the hessian matrix, I leverage the classical L-BFGS al-

gorithm (see e.g. [98, 29, 32, 99, 31, 100, 30] and references therein) to effectively and

accurately estimate the matrix-vector productHt·
(
wI
t −wt

)
. The estimation of this matrix-

vector product at the tth iteration utilize Algorithm 8 by leveraging a sequence of past data

∆wj1 ,∆wj2 , . . . , ∆wjr and ∆gj1 ,∆gj2 , . . . ,∆gjr evaluated at the iteration j1, j2, . . . , jr,

where ∆wj = wI
j −wj and ∆gj = ∇F (wI

j )−∇F (wj).

Algorithm 8: Overview of L-BFGS algorithm
Input : The sequence of the model parameter differences

∆W = {∆w0,∆w1, . . . ,∆wm0−1}, the sequence of the gradient differences
∆G = {∆g0,∆g1, . . . ,∆gm0−1}, a vector v, history size m0

Output: Approximate results of H(wm0)v at point wm0 , and for some v, such that
∆wi ≈ wi − wi−1 for all i

1 Compute ∆WT∆W

2 Compute ∆WT∆G, get its diagonal matrix D and its lower triangular submatrix L
3 Compute σ = ∆gTm0−1∆wm0−1/

(
∆wTm0−1∆wm0−1

)
4 Compute the Cholesky factorization for σ∆WT∆W + LDLT to get JJT

5 Compute p =

[
−D 1

2 D−
1
2LT

0 JT

]−1[
D

1
2 0

D−
1
2LT JT

]−1 [
∆GTv
σ∆WTv

]
6 return σv−

[
∆G σ∆W

]
p

As mentioned in Chapter 2, the original L-BFGS algorithm requires explicit evaluations

of the gradient formula at each step, which is not ideal for the purpose of incrementally up-

dating model parameters. Therefore, I modified L-BFGS algorithm for my use in DeltaGrad

in such a way that the number of iterations in which the gradients are explicitly evaluated

is minimized. The algorithmic details of DeltaGrad are shown in Algorithm 9.

In the first j0 iteration of this algorithm, ∇F (wI
t ) is explicitly evaluated and cached.

Afterwards, ∇F (wI
t ) is only evaluated every T0 iterations, which is also cached for estimating

the gradients for the later iterations. Hence at the iterations t where t ≤ j0 or t − j0

mod T0 = 0, the gradients ∇F (wI
t ) is explicitly evaluated. For all the other iterations,

109



Algorithm 9: DeltaGrad
Input : The full training set (X,Y), model parameters cached during the training phase

over the full training samples {wt}Tt=1 and corresponding gradients
{∇F (wt)}Tt=1, the indices of the removed training samples R, period T0, total
iteration number T , history size m0, “burn-in” iteration number j0, learning rate
ηt

Output: Updated model parameter wI
t

1 Initialize wI
0 ← w0

2 Initialize an array ∆G = []
3 Initialize an array ∆W = []
4 for t = 0; t < T ; t+ + do
5 if [((t− j0) mod T0) == 0] or t ≤ j0 then
6 compute ∇F

(
wI
t

)
exactly

7 compute ∇F
(
wI
t

)
−∇F (wt) based on the cached gradient ∇F (wt)

8 set ∆G [k] = ∇F
(
wI
t

)
−∇F (wt)

9 set ∆W [k] = wI
t −wt, based on the cached parameters wt

10 k ← k + 1

11 compute wI
t+1 by using exact GD update (equation (4.45))

12 else
13 Pass ∆W [−m0 :], ∆G [−m0 :], the last m0 elements in ∆W and ∆G, which are

from the jth1 , jth2 , . . . , jthm0
iterations where j1 < j2 < · · · < jm0 depend on t,

v = wI
t −wt, and the history size m0, to the L-BFGFS Algorithm (see Algorithm

8) to get the approximation of H(wt)v, i.e., Bjm0
v

14 Approximate ∇F
(
wI
t

)
= ∇F (wt) + Bjm0

(
wI
t −wt

)
15 Compute wI

t+1 by using the "leave-r-out" gradient formula, based on the
approximated ∇F (wI

t )
16 end
17 end
18 return wI

t

∇F (wI
t ) is computed by utilizing Equation (4.47) and the estimation of the product Ht ·

(wI
t −wt) by using Algorithm 8 which utilizes the latest m0 explicitly evaluated gradients

and corresponding parameters, i.e. ∆wj1 ,∆wj2 , . . . , ∆wjm0
and ∆gj1 ,∆gj2 , . . . ,∆gjm0

where ∆wjk = wI
jk
− wjk , ∆gjk = ∇F (wI

jk
) − ∇F (wjk), jk ≤ j0 or jk − j0 mod T0 = 0,

and t− jm0 < T0. Thus the DeltaGrad update is

wI
t+1 −wI

t =
ηt

n− r
·


∑

i 6∈R∇F (wI
t , zi), (t− j0) mod T0 = 0 or t ≤ j0

n[Bjm0
(wI

t −wt) +∇F (wt)]−
∑

i∈R∇F (wI
t , zi), else

(4.48)

in which Bjm0
is the estimation of the integrated hessian matrix Ht and the product

Bjm0
(wI

t−wt) is computed by Algorithm 8, which is an approximation of the term∇F (wI
t )−

110



∇F (wt) according to Equation (4.47). Therefore, n(Bjm0
(wI

t −wt)+∇F (wt)) ≈ n∇F (wI
t ),

which also equals to
∑n

i=1∇F (wI
t , zi) according to Equation (4.46). By further subtract-

ing the sum of the gradients evaluated on the removed samples, the results will be the

approximated gradients on all the remaining samples.

Complexity analysis I will do my complexity analysis assuming that the model is

given by a computation graph. Suppose the number of model parameters is p and the time

complexity for forward propagation is f(p). Then according to the Baur-Strassen theorem

[139], the time complexity of backpropagation in one step will be at most 5f(p) and thus

the total complexity to compute the derivatives for each training sample is 6f(p). Plus,

the overhead of computing the product of Bjm0
(wI

t − wt) is O(m3
0) + 6m0p + p according

to [32], which means that the total time complexity at the step where the gradients are

approximated is 6rf(p) +O(m3
0) + 6m0p+ p (the gradients of r removed/added samples are

explicitly evaluated), which is more efficient than explicit computation of the gradients over

the full batch (a time complexity of 6(n− r)f(p)) when r � n.

Suppose there are T iterations in the training process. Then the running time of BaseL

will be 6(n− r)f(p)T . DeltaGrad evaluates the gradients for the first j0 iterations and once

every T0 iterations. So its total running time is 6(n−r)f(p)×T−j0
T0

+(6rf(p)+O(m3
0)+6m0p+

p)×(1− 1
T0

)(T −j0), which is close to 6nf(p)× T−j0
T0

+(O(m3
0)+6m0p+p)×(1− 1

T0
)(T −j0)

since r is small. Also, when n is large, the overhead of approximate computation, i.e.

(O(m3
0) + 6m0p+ p) should be much smaller than that of explicit computation. Thus speed-

ups of a factor T0 are expected when j0 is far smaller than T .

In terms of the space complexity, DeltaGrad requires storing the model parameters wt

and the corresponding full gradients∇F (wt) for all T iterations, which incurs space overhead

O(Tp).

4.3.1.2 Theoretical analysis

In this subsection, I provide rigorous theoretical analysis on the closeness between wI
t com-

puted by DeltaGrad and wU
t computed by BaseL, which shows that the difference of those

111



two parameters is negligible when only a small portion of the training samples are removed.

To start with, some essential assumptions are introduced before the formal descriptions of

the main results.

Assumption 1 (Small number of samples removed). The number of removed samples, r,

is far smaller than the total number of training samples, n. There is a small constant δ > 0

such that r/n ≤ δ.

Assumption 2 (Strong convexity and smoothness). Each F (w, zi) (i = 1, 2, . . . , n) is

µ−strongly convex and L-smooth with µ > 0, so for any w1,w2

(∇F (w1, zi)−∇F (w2, zi))T (w1 −w2) ≥ µ‖w1 −w2‖2,

‖∇F (w1, zi)−∇F (w2, zi) ‖ ≤ L‖w1 −w2‖.

Then F (w) and FU (w) are L-smooth and µ-strongly convex. Typical choices of ηt

are based on the smoothness and strong convexity parameters, so the same choices lead to

convergence for both wt and wU
t . For instance, GD over a strongly convex objective with

fixed step size ηt = η ≤ 2/[L+ µ] converges geometrically at rate (L− µ)/(L+ µ) < 1. For

simplicity, I will use a constant learning rate ηt = η ≤ 2/[L+ µ].

I assume bounded gradients and Lipschitz Hessians, which are standard [140, 141]. The

proof may be relaxed to weak growth conditions, see the related works for references.

Assumption 3 (Bounded gradients). For any model parameter w in the sequence [w0,w1

,w2, . . . , wt, . . . ], the norm of the gradient at every sample is bounded by a constant c2, i.e.

for all i, j:

‖∇F (wj , zi) ‖ ≤ c2.

Assumption 4 (Lipschitz Hessian). The Hessian H (w) is Lipschitz continuous. There

exists a constant c0 such that for all w1 and w2,

‖H (w1)−H (w2) ‖ ≤ c0‖w1 −w2‖.

112



An assumption specific to Quasi-Newton methods is the strong independence of the

weight updates: the smallest singular value of the normalized weight updates is bounded

away from zero [142, 143]. This has sometimes been motivated empirically, as the iterates

of certain quasi-newton iterations empirically satisfy it [144].

Assumption 5 (Strong independence). For any sequence,
[
∆wj1 ,∆wj2 , . . . ,∆wjm0

]
, the

matrix of normalized vectors

∆Wj1,j2,...,jm0
= [∆wj1 ,∆wj2 , . . . ,∆wjm0

]/sj1,jm0

where sj1,jm0
= max

(
‖∆wj1‖, ‖∆wj2‖, . . . , ‖∆wjm0

‖
)
, has its minimum singular value σmin

bounded away from zero. I have σmin

(
∆Wj1,j2,...,jm0

)
≥ c1 where c1 is independent of

(j1, j2, . . . , jm0).

Empirically, I find c1 around 0.2 for the MNIST dataset using my default hyperpara-

meters.

Based on the assumptions above, if hyper-parameters T0, j0 are chosen such that

A(1− ηµ)j0−m+1d0,(m−1)T0 +
1

1
2 −

r
n

AM1
r

n
< min(

µ

2
, (1− r

n
)µ− c0M1r(n− r)

2n2
),

e.g. m0 = 2, T0 = 5 and

j0 > max(
log( 1

Ad0,5
[µ2 −

1
1
2
− r
n

AM1
r
n)]

log(1− ηµ)
,
log( 1

Ad0,5
[(1− r

n)µ− 1
1
2
− r
n

AM1
r
n)]

log(1− ηµ)
) +m− 1,

then I have the following main results on how far wI
t is away from the model parameters

evaluated on the full training datasets, wt, and the similarity between the integrated hessian

matrix Ht and Bjm0
at the tth iteration (recall that Ht =

∫ 1
0 H

(
wt + x

(
wI
t −wt

))
dx

according to Equation (4.47)).

Theorem 9 (Bound between iterates on full data and incrementally updated ones (all

iterations)). Suppose the size of the set of the removed samples R is r, then for any jm <

113



t < jm + T0 − 1, ‖wI
t − wt‖ ≤ 1

1
2
− r
n

M1
r
n and ‖Ht − Bjm‖ ≤ ξj1,jm , in which M1 = 2c2

µ ,

ξj1,jm := Adj1,jm+T0−1 +A 1
1
2
− r
n

M1
r
n and djk,jq = max (‖wa −wb‖)jk≤a≤b≤jq .

Theorem (9) suggests that the bound on ‖Ht −Bjm‖ depends on dj1,jm+T0−1, which is

analyzed as below.

Lemma 3 (Contraction of the GD iterates). Recall the definition of djk,jq :

djk,jq = max (‖wa −wb‖)jk≤a≤b≤jq .

Then djk,jq ≤ djk−z,jq−z for any positive integers z and djk,jq ≤ (1 − µη)jkd0,jq−jk for any

0 ≤ jk ≤ jq.

This lemma indicates that dj1,jm+T0−1 asymptotically approaches zero when t → ∞,

thus implying that ‖Ht −Bjm‖ is asymptotically bounded by A 1
1
2
− r
n

M1
r
n .

In the end, based on those results, the analysis on the approximation ratio of wI
t with

respect to wU
t is provided as below.

Theorem 10 (Convergence rate of DeltaGrad). For all iterations t, the result wI
t of Del-

taGrad, Algorithm 9, approximates the correct iteration values wU
t at the rate

‖wU
t −wI

t ‖ = o(
r

n
).

So ‖wU
t −wI

t ‖ is of a lower order than r
n .

This theorem indicates that with proper selections of the hyperparameters j0, T0,m0, wI
t

is a good approximation to wU
t , which can be computed very efficiently.

4.3.2 DeltaGrad for SGD

4.3.2.1 Proposed algorithm

When SGD is used to compute the model parameters, by replacing n, n− r,
1

n−r
∑

i 6∈R∇F (·, zi) and ∇F (·) with B, BU
t , ∇F (·,Bt−R) and ∇F (·,Bt) respectively, Equa-

114



tion (4.45) and Equation (4.48) become:

wU
t+1 ← wU

t − ηt∇F
(
wU
t ,Bt −R

)
(4.49)

wI
t+1 −wI

t

=
ηt

|Bt −R|
·


∇F (wI

t ,Bt −R), (t− j0) mod T0 = 0 or t ≤ j0

|Bt|[Bjm0
(wI

t −wt) +∇F (wt,Bt)]− |Bt
⋂
R|∇F (wI

t ,Bt
⋂
R), else

(4.50)

To compute the product of Bjm0
(wI

t −wt), Algorithm 8 is still utilized with a sequence

of past data ∆wj1 ,∆wj2 , . . . , ∆wjr and ∆gj1 ,∆gj2 , . . . ,∆gjr evaluated at the iteration j1,

j2, . . . , jr, where ∆wj = wI
j − wj and ∆gj = ∇F (wI

t ,Bt) − ∇F (wt,Bt). Then Algorithm

9 is applied to compute wI
t , which is slightly modified, i.e. all ∇F (·) are replaced with

∇F (·,Bt).

Complexity analysis Recall that in Section 4.3.1, I analyzed the the total time com-

plexity and space complexity of DeltaGrad when GD update rules are used, which are

6nf(p) × T−j0
T0

+ (O(m3
0) + 6m0p + p) × (1 − 1

T0
)(T − j0) and O(Tp) respectively. In

the case of SGD update rules, by replacing n ith B, the time complexity of DeltaGrad

becomes 6Bf(p) × T−j0
T0

+ (O(m3
0) + 6m0p + p) × (1 − 1

T0
)(T − j0) while the space com-

plexity is still O(Tp). Note that in the context of binary logistic regression, the number

of model parameters p equal to the feature number m0. Plus, recall that 6Bf(p) repres-

ents the overhead to compute the explicit gradients over the full mini-batch, which equals

to O((B − ∆B)m + Cnonm) for the update rule of the binary logistic regression. As a

result, the time complexity of DeltaGrad for binary logistic regression is reformulated as

O((B −∆B)m+Cnonm)× T−j0
T0

+ (O(m3
0) + 6m0m+m)× (1− 1

T0
)(T − j0), which is com-

pared against the performance of PrIU and PrIU-opt in Table 4.7. This result shows that

with larger m0, DeltaGrad saves more memory in comparison to PrIU and PrIU-opt since it

has lower space complexity, in which case, PrIU is preferred to PrIU-optsince the latter one

incurs memory overhead quadratic to the feature number m0. In terms of the time complex-

115



ity, with larger m0 than B, the empirical choice of z and T0 is B/5 and 5 in my experiments

for PrIU and DeltaGrad respectively, which can achieve adequate trade-offs between the ap-

proximation rate and efficiency, in which configurations, the dominate time overhead of PrIU

and DeltaGrad become O(Tzm) = O(BTm5 ) and O((B−∆B)m+Cnonm)× T−j0
T0
≈ O(BTm5 ).

But since PrIU incurs more memory overhead than DeltaGrad, I should expect better per-

formance of DeltaGrad than PrIU for datasets with large feature space, which is empirically

verified in my experiments.

PrIU PrIU-opt DeltaGrad
Space

complexity
O(Tzm) +O(ndTBn e) O(m2) +O(tszm) +

O(nd tsBn e)
O(Tm)

Time
complexity

O(Tzm) +O(T∆Bm) O(ts(zm+ ∆Bm)) +
O(min{∆n,m}m2) +

O((T − ts)m)

O((B−∆B)m+Cnonm)×
T−j0
T0

+ (O(m3
0) + 6m0m+

m)× (1− 1
T0

)(T − j0)

Table 4.7 – Complexity comparison between PrIU, PrIU-opt and DeltaGrad for binary
logistic regression. The complexity expressions of PrIU and PrIU-opt are copied from Table
4.1-4.2

4.3.2.2 Theoretical results

Theorem 11 (SGD bound for DeltaGrad). With probability at least

1− T · [2p exp(−
√
B log(2p)/[4 +

2

3

(
log(2p)

B

2
)1/4

])

+ (p+ 1) exp(− log(p+ 1)
√
B

4 + 2
3

(
log(p+1)

B

2)1/4
) + 2 exp(−2

√
B)],

the result wI
t computed by Equation (4.50) approximates the correct iteration values wU,S

t

at the rate

‖wU,S
t −wI,S

t‖ = o

(
r

n
+

1

B
1
4

)
.

Thus, when B is large, and when r/n is small, my algorithm accurately approximates the

correct iteration values.

Discussions As a by-product, DeltaGrad can also handle the incremental additions for

116



general ML models satisfying strong convexity. Specifically, suppose the set of newly added

training sample is A, then at each iteration, I randomly sample a mini-batch At from A, and

combine it with the mini-batch Bt (used for previous training phase on the original datasets)

to compose a new mini-batch. Therefore, the update rule of DeltaGrad in Equation (4.50)

can be modified as:

wI
t+1 −wI

t

=
ηt

|Bt|+ |At|
·


|Bt|∇F (wI

t ,Bt) + |At|∇F (wI
t ,At), (t− j0) mod T0 = 0 or t ≤ j0

|Bt|[Bjm0
(wI

t −wt) +∇F (wt,Bt)] + |At|∇F (wI
t ,At), else

(4.51)

in which At represents the randomly selected samples from the newly added sample set

at the tth iteration. Based on the above analysis, in the presence of both the deletions and

additions of a small amount of training samples, Equation (4.50) and Equation (4.51) can

be combined as follows:

wI
t+1 −wI

t =
ηt

|Bt −R|+ |At|

·


(|Bt −R|+ |At|)∇F (wI

t , (Bt −R)
⋃
At), (t− j0) mod T0 = 0 or t ≤ j0

|Bt|[Bjm0
(wI

t −wt) +∇F (wt,Bt)]− |Bt
⋂
R|∇F (wI

t ,R)

+ |At|∇F (wI
t ,At)

, else

(4.52)

which can then guide us to generalize Algorithm 9 by taking both the additions and

deletions of small amount of training samples into consideration when SGD is used for

training (see Algorithm 10).

4.3.3 Extension to online deletions/additions

I also extended DeltaGrad to the applications where online deletions/additions are necessary,

for which the history information used in DeltaGrad is updated after each deletion/addition

request is over, prepared for the following deletion/addition requests. The details of the

117



Algorithm 10: DeltaGrad(deletions + additions for SGD)
Input : A training set Z, a set of added training samples, A, a set of deleted training

samples, R, total number of the SGD iterations, T , the model parameters and
gradients cached before Z is updated, {wt}Tt=1 and {∇Fw (wt,Bt)}Tt=1, period T0,
history size m0, “burn-in” iteration number j0

Output: Updated model parameter wI
T

1 Initialize wI
0 ← w0, ∆G = [], ∆W = []

2 for t = 0; t < T ; t+ + do
3 randomly sample a mini-batch, At, from A
4 if [((t− j0) mod T0) == 0] or t ≤ j0 then
5 explicitly compute ∇wF

(
wI
t ;Bt

)
6 compute ∇wF

(
wI
t ; (Bt −R) ∪ At

)
7 set ∆G [r] = ∇F

(
wI
t ;Bt

)
−∇F (wt;Bt), ∆W [r] = wI

t −wt

8 r ← r + 1

9 else
10 pass the last m0 elements in ∆W and ∆G, and v = wI

t −wt to the L-BFGFS
Algorithm to calculate the product, Btv

11 Pass ∆W [−m0 :], ∆G [−m0 :], the last m0 elements in ∆W and ∆G, which are
from the jth1 , jth2 , . . . , jthm0

iterations where j1 < j2 < · · · < jm0
depend on t,

v = wI
t −wt, and the history size m0, to the L-BFGFS Algorithm (see Algorithm

8) to get the approximate Hessian-vector product, Bjm0
v

12 Approximate ∇F
(
wI
t

)
= ∇F (wt) + Bjm0

(
wI
t −wt

)
13 Compute wI

t+1 by using the "leave-r-out" gradient formula, based on the
approximated ∇F (wI

t )
14 approximate ∇wF

(
wI
t ,Bt

)
and compute ∇wF

(
wI
t ; (Bt −R) ∪ At

)
by utilizing

Equation (4.52)
15 end
16 end
17 update wI

t to wI
t+1 with ∇wF

(
wI
t ; (Bt −R) ∪ At

)
18 return wI

T

118



online version of DeltaGrad are presented in Algorithm 11 with modifications on Algorithm

9 highlighted.

Algorithm 11: DeltaGrad (online deletion/addition)
Input : The full training set (X,Y), model parameters cached during the training phase

for the full training samples {wt}Tt=1 and corresponding gradients {∇F (wt)}Tt=1,
the index of the removed training sample or the added training sample ir, period
T0, total iteration number T , history size m0, warmup iteration number j0,
learning rate η

Output: Updated model parameter wI
t

1 Initialize wI
0 ← w0

2 Initialize an array ∆G = []
3 Initialize an array ∆W = []
4 for t = 0; t < T ; t+ + do
5 if [((t− j0) mod T0) == 0] or t ≤ j0 then
6 compute ∇F

(
wI
t

)
exactly

7 compute ∇F
(
wI
t

)
−∇F (wt) based on the cached gradient ∇F (wt)

8 set ∆G [k] = ∇F
(
wI
t

)
−∇F (wt)

9 set ∆W [k] = wI
t −wt, based on the cached parameters wt

10 k ← k + 1

11 compute wI
t+1 by using exact GD update (equation (4.45))

12 wt ← wI
t

13 ∇F (wt)← ∇F (wI
t )

14 else
15 Pass ∆W [−m :], ∆G [−m :], the last m0 elements in ∆W and ∆G, which are from

the jth1 , jth2 , . . . , jthm iterations where j1 < j2 < · · · < jm depend on t, v = wI
t −wt,

and the history size m0, to the L-BFGFS Algorithm (See Supplement) to get the
approximation of H(wt)v, i.e., Bjmv

16 Approximate ∇F
(
wI
t

)
= ∇F (wt) + Bjm

(
wI
t −wt

)
17 Compute wI

t+1 by using the "leave-1-out" gradient formula, based on the
approximated ∇F (wI

t )
18 wt ← wI

t

19 ∇F (wt)← η
n−1 [n(Bjm(wI

t −wt) +∇F (wt))−∇F (wt, zir )]

20 end
21 end
22 return wI

t

As shown in Algorithm 11, the history information used at each deletion request, i.e. wt

and ∇F (wt), is updated at prior deletion requests, which may lead to gradual deviations of

wI
t fromwU

t with more and more deletion requests are processed. However, with a reasonable

assumption that the total number of removed samples is still a small portion of the entire

training dataset, I can provide rigorous analysis on the approximation rate of the online

version DeltaGrad. In this analysis, I only assume the occurrence of online deletions, which,

119



however, is pretty straightforward to be generalized to online additions and the mixture of

online additions and online deletions. By using wI
t (r) and wU

t (r) to denote the resulting

model parameters updated by DeltaGrad and BaseL after the rth deletion requests at the

tth iteration respectively, I have the following results for the online version of DeltaGrad.

Theorem 12 (Convergence rate of DeltaGrad (online deletion)). At the rth deletion request,

for all iterations t, the result wI
t (r) of DeltaGrad, Algorithm 11, approximates the correct

iteration values wU
t (r) at the rate

‖wU
t (r)−wI

t (r)‖ = o(
r

n
).

So ‖wU
t (r)−wI

t (r)‖ is of a lower order than r
n .

This suggests that wI
t (r) and wU

t (r) are still pretty close in the online addition/deletion

scenario.

4.3.4 Extension to DNNs

For the original version of the L-BFGS algorithm, strong convexity for the objective function

is essential. In this subsection, I present my extension of DeltaGrad to non-strongly convex,

non-smooth objectives.

To deal with non-strongly convex objectives, I assume that convexity holds in some local

regions. When constructing the arrays ∆G and ∆W , only the model parameters and their

gradients where local convexity holds are used.

For local non-smoothness, I found that even a small distance between wt and wI
t can

make the estimated gradient ∇F (wI
t ) drift far away from ∇F (wt). To deal with this, I

explicitly check if the norm of Bjm(wt−wI
t ) (which equals to ∇F (wI

t )−∇F (wt)) is larger

than the norm of L(wt−wI
t ) for a constant L. In my experiments, L is configured as 1. The

details of the modifications above are highlighted in Algorithm 12. Since whenever local

convexity or smoothness is violated at certain iteration t, I have to explicitly evaluate the

gradients on the current mini-batch, which, in the worst case, will force the explicit gradient

120



evaluations at all iterations, thus reduced to BaseL,

4.3.5 Empirical studies

4.3.5.1 Experimental setup

Datasets. I used four datasets for evaluation: MNIST [145], covtype [146], HIGGS [147]

and RCV1 [148] 8 . MNIST contains 60,000 images as the training dataset and 10,000 images

as the test dataset; each image has 28×28 features (pixels), containing one digit from 0 to 9.

The covtype dataset consists of 581,012 samples with 54 features, each of which may come

from one of the seven forest cover types; as a test dataset, I randomly picked 10% of the

data. HIGGS is a dataset produced by Monte Carlo simulations for binary classification,

containing 21 features with 11,000,000 samples in total; 500,000 samples are used as the

test dataset. RCV1 is a corpus dataset; I use its binary version which consists of 679,641

samples and 47,236 features, of which the first 20,242 samples are used for training.

Machine configuration. All experiments are run over a GPU machine with one In-

tel(R) Core(TM) i9-9920X CPU with 128 GB DRAM and 4 GeForce 2080 Titan RTX GPUs

(each GPU has 10 GB DRAM). I implemented DeltaGrad with PyTorch 1.3 and used one

GPU for accelerating the tensor computations.

Deletion/Addition benchmark. I run regularized logistic regression over the four

datasets with L2 norm coefficient 0.005, fixed learning rate 0.1. The mini-batch sizes for

RCV1 and other three datasets are 16384 and 10200 respectively (Recall that RCV1 only has

around 20k training samples). I also evaluated my approach over a two-layer neural network

with 300 hidden ReLU neurons over MNIST. There L2 regularization with rate 0.001 is

added along with decaying learning rate (first 10 iterations with learning rate 0.2 while the

rest of iterations with learning rate 0.1) and batch size equal to the training dataset size

(i.e. deterministic gradient descent is used). Note that there are no strong convexity and

smoothness guarantees for DNN models. Thus some modifications are made over Algorithm

9 (see Algorithm 12).
8I used its binary version from LIBSVM:

121



I evaluate two cases of addition/deletion: batch and online. Multiple samples are grouped

together for addition and deletion in the former, while samples are removed one after another

in the latter. Algorithm 9 are slightly modified to fit the online deletion/addition cases (see

Algorithm 11 in the Appendix). To simulate deleting training samples, w∗ is evaluated

over the full training dataset of n samples, which is followed by the random removal of r

samples and evaluation over the remaining n − r samples using BaseL or DeltaGrad. To

simulate adding training samples, r samples are deleted first. After w∗ is evaluated over the

remaining n− r samples, the r samples are added back to the training set for updating the

model. The ratio of r to the total number of training samples n is called the Delete rate

and Add rate for the two scenarios, respectively. I also provided other experiments in this

section to compare the performance of DeltaGrad with that of state-of-the-art work, and

study the effect of mini-batch sizes and hyper-parameters of DeltaGrad.

Throughout the experiments, the running time of BaseL and DeltaGrad to update the

model parameters is recorded. To show the difference betweenwU∗ (the output of BaseL, and

the correct model parameters after deletion or addition) and wI∗ (the output of DeltaGrad),

I compute the `2-norm or distance ‖wU∗ − wI∗‖. For comparison, and justify the theory

in Section 4.3.1.2 and Section 4.3.2.2, ‖w∗ −wU∗‖ is also recorded (w∗ are the parameters

trained over the full training data). Given the same set of added or deleted samples, the

experiments are repeated 10 times, with different minibatch randomness each time. After

the model updates, wU∗ and wI∗ are evaluated over the test dataset and their prediction

performance is reported.

Hyperparameter setup. I set T0 (the period of explicit gradient updates) and j0

(the length of the inital “burn-in") as follows. For regularized logistic regression, I set

T0 = 10, j0 = 10 for RCV1, T0 = 5, j0 = 10 for MNIST and covtype, and T0 = 3, j0 = 300

for HIGGS. For the 2-layer DNN, T0 = 2 is even smaller and the first quarter of the iterations

are used as “burn-in". The history size m0 is 2 for all experiments.

122



4.3.6 Experimental results

4.3.6.1 Batch addition/deletion.

Figure 4.5 – Running time and distance with varied add rate

Figure 4.6 – Running time and distance with varied delete rate

To test the robustness and efficiency of DeltaGrad in batch deletion, I vary the Delete and

Add rate from 0 to 0.01. Figures 4.5 and 4.6 show the running time of BaseL and DeltaGrad

(blue and red dotted lines, resp.) and the two distances, ‖wU∗−w∗‖ and ‖wU∗−wI∗‖ (blue

and red solid lines, resp.) over the four datasets using regularized logistic regression. The

results on the use of 2-layer DNN over MNIST are presented in Figure 4.7, which is denoted

by MNISTn.

The running time of BaseL and DeltaGrad is almost constant regardless of the delete or

123



Figure 4.7 – Running time and distance with varied delete rate/add rate for MNISTn

add rate, confirming the time complexity analysis of DeltaGrad in Section 4.3.1 and Section

4.3.2. The theoretical running time is free of the number of removed samples r, when r is

small. For any given delete/add rate, DeltaGrad achieves significant speed-ups (up to 2.6x

for MNIST, 2x for covtype, 1.6x for HIGGS, 6.5x for RCV1) compared to BaseL. On the

other hand, the distance between wU∗ and wI∗ is quite small; it is less than 0.0001 even

when up to 1% of samples are removed or added. When the delete or add rate is close to

0, ‖wU∗ −wI∗‖ is of magnitude 10−6 (10−8 for RCV1), indicating that the approximation

brought by wI∗ is negligible. Also, ‖wU∗ −wI∗‖ is at least one order of magnitude smaller

than ‖wU∗−w∗‖, confirming my theoretical analysis comparing the bound of ‖wU∗−wI∗‖

to that of ‖wU∗ −w∗‖.

To investigate whether the tiny difference betweenwU∗ andwI∗ will lead to any difference

in prediction behavior, the prediction accuracy using wU∗ and wI∗ is presented in Table

4.8. Due to space limitations, only results on a very small (0.005%) and the largest (1%)

add/delete rates are presented. Due to the randomness in SGD, the standard deviation for

the prediction accuracy is also presented. In most cases, the models produced by BaseL

and DeltaGrad end up with effectively the same prediction power. There are a few cases

where the prediction results of wU∗ and wI∗ are not exactly the same (e.g. Add (1%) over

MNIST), their confidence intervals overlap, so that statistically wU∗ and wI∗ provide the

same prediction results.

For the 2-layer net model where strong convexity does not hold, see the last sub-figures in

124



Figure 4.5 and 4.6. The figure shows that DeltaGrad achieves about 1.4x speedup compared

to BaseL while maintaining a relatively small difference betweenwI∗ andwU∗. This suggests

that it may be possible to extend my analysis for DeltaGrad beyond strong convexity; this

is left for future work.

4.3.6.2 Online addition/deletion.

To simulate deletion and addition requests over the training data continuously in an on-line

setting, 100 random selected samples are added or deleted sequentially. Each triggers model

updates by either BaseL or DeltaGrad. The running time comparison between the two ap-

proaches in this experiment is presented in Figure 4.8, which shows that DeltaGrad is about

2.5x, 2x, 1.8x and 6.5x faster than BaseL on MNIST, covtype, HIGGS and RCV1 respect-

ively. The accuracy comparison is shown in Table 4.9. There is essentially no prediction

performance difference between wU∗ and w∗.

Discussion. By comparing the speed-ups brought by DeltaGrad and the choice of T0,

I found that the theoretical speed-ups are not fully achieved. One reason is that in the

approximate L-BFGS computation, a series of small matrix multiplications are involved.

Their computation on GPU vs CPU cannot bring about very significant speed-ups compared

to the larger matrix operations9, which indicates that the overhead of L-BFGS is non-

negligible compared to gradient computation. Besides, although r is far smaller than n, to

compute the gradients over the r samples, other overhead becomes more significant: copying

data from CPU DRAM to GPU DRAM, the time to launch the kernel on GPU, etc. This

leads to non-negligible explicit gradient computation cost over the r samples. It would be

interesting to explore how to adjust DeltaGrad to fully utilize the computation power of

GPU in the future.
9See the matrix computation benchmark on GPU with varied matrix sizes:

https://developer.nvidia.com/cublas

125



Figure 4.8 – Running time comparison of BaseL and DeltaGrad with 100 continuous dele-
tions/addition

Figure 4.9 – Running time and distance comparison with varying mini-batch size under fixed
j0 = 10 and varying T0 (T0 = 20 VS T0 = 10 VS T0 = 5)

4.3.6.3 Influence of hyper-parameters on performance

To begin with, the influence of different hyper-parameters used in SGD and DeltaGrad

is explored. I delete one sample from the training set of MNIST by running regularized

logistic regression with the same learning rate and regularization rate as in Section 4.3.5.1

and varying mini-batch sizes (1024 - 60000), T0 (T0 = 20, 10, 5) and j0 (j0 = 5, 10, 50). The

experimental results are presented in Figure 4.9-4.10. For different mini-batch sizes, I also

used different epoch numbers to make sure that the total number of running iterations/steps

in SGD are roughly the same. In what follows, I analyze how the mini-batch size, the hyper-

parameters T0 and j0 influence the performance, thus providing some hints on how to choose

126



Figure 4.10 – Running time and distance comparison with varying mini-batch size under
fixed T0 = 5 and varying j0 (j0 = 5 VS j0 = 10 VS j0 = 50)

Figure 4.11 – Comparison of DeltaGrad and PrIU

proper hyper-parameters when DeltaGrad is used.

Influence of the mini-batch size. It is clear from Figure 4.9-4.10 that with larger

mini-batch sizes, DeltaGrad can gain more speed with longer running time for both BaseL

and DeltaGrad. As discussed before, to compute the gradients, other GPU-related overhead

(the overhead to copy data from CPU DRAM to GPU DRAM, the time to launch the kernel

on GPU) cannot be ignored. This can become more significant when compared against the

smaller computational overhead for smaller mini-batch data. Also notice that, when T0 = 5,

with increasing B, the difference between wU and wI becomes smaller and smaller, which

matches my conclusion in Theorem 11, i.e. with larger B, the difference o( rn+ 1

B
1
4

) is smaller.

Influence of T0. By comparing the three sub-figures in Figure 4.9, the running time

127



slightly (rather than significantly) decreases with increasing T0 for the same mini-batch size.

This is explained by the earlier analysis in this section on the non-ideal performance for GPU

computation over small matrices. Interestingly, when T0 = 10 or T0 = 20, ‖wI,S − wU,S‖

does not decrease with larger mini-batch sizes. So to make the bound o(( rn + 1

B
1
4

)) hold,

proper choice of T0 is important. For example, T0 = 5 is a good choice for MNIST dataset.

This can achieve speed-ups comparable to larger T0 without sacrificing the closeness between

wI,S and wU,S .

Influence of j0. By comparing the three sub-figures in Figure 4.10, with increasing j0,

long “burn-in” iterations are expected, thus incurring more running time. This, however,

does not significantly reduce the distance between wI,S and wU,S . It indicates that I can

select smaller j0, e.g. 5 or 10 for more speed-up.

Discussions on tuning the hyper-parameters for DeltaGrad. Through my ex-

tensive experiments, I found that for regularized logistic regression, setting T0 as 5 and j0

as 5− 20 would lead to some of the most favorable trade-offs between running time and the

error ‖wU,S − wI,S‖. But in terms of more complicated models, e.g. 2-layer DNN, higher

j0 (even half of the total iteration number) and smaller T0 (2 or 1) are necessary. Similar

experiments were also conducted on adding training samples, in which similar trends were

observed.

4.3.6.4 Comparison against the state-of-the-art work

In this subsection, I compared DeltaGrad (with T0 = 5 and j0 = 10) against PrIU by

running regularized logistic regression over MNIST and covtype with the same mini-batch

size (16384), the same learning rate and regularization rate, but with varying deletion rates.

The running time and the distance term ‖wU −wI‖ of both PrIU and DeltaGrad with

varying deletion rate are presented in Figure 4.11. First, it shows that DeltaGrad is always

faster than PrIU, with more significant speed-ups on MNIST. The reason is that the time

complexity of PrIU is O(rp) for each iteration where p represents the total number of model

parameters while r represents the reduced dimension after Singular Value Decomposition

128



is conducted over some p × p matrix. This is a large integer for large sparse matrices, e.g.

MNIST.

As a result, O(rp) is larger than the time complexity of DeltaGrad. Also, the memory

usage of PrIU and DeltaGrad is shown in Table 4.10. PrIU needs much more DRAM (even

10x in MNIST) than DeltaGrad. The reason is that to prepare for the model update phase,

PrIU needs to collect more information during the training phase over the full dataset. This

is needed in the model update phase and is quadratic in the number of the model parameters

p. As discussed in Section 4.2, PrIU cannot provide good performance over sparse datasets

in terms of running time, error term wU − wI and memory usage. In contrast, both the

time and space overhead of DeltaGrad are smaller, which thus indicates the potential of its

usage in the realistic, large-scale scenarios.

4.4 Acknowledgement

For this part of the dissertation, I collaborated closely with Dr. Val Tannen, who helped

with the development and analysis of PrIU, and Dr. Edgar Dobrian, who helped with the

formalization and analysis of DeltaGrad.

129



Algorithm 12: DeltaGrad (general models)
Input : The full training set (X,Y), model parameters cached during the training phase

for the full training samples {w0,w1, . . . ,wt} and corresponding gradients
{∇F (w0) ,∇F (w1) , . . . ,∇F (wt)}, the removed training sample or the added
training sample R, period T0, total iteration number T , history size m0, warmup
iteration number j0, learning rate η

Output: Updated model parameter wI
t

1 Initialize wI
0 ← w0

2 Initialize an array ∆G = []
3 Initialize an array ∆W = []
4 Initialize last_t = j0
5 is_explicit = False
6 for t = 0; t < T ; t+ + do
7 if (t− lastt) mod T0 == 0 or t ≤ j0 then
8 is_explicit = True
9 else

10 end
11 if is_explicit == True or t ≤ j0 then
12 last_t = t

13 compute ∇F
(
wI
t

)
exactly

14 compute ∇F
(
wI
t

)
−∇F (wt) based on the cached gradient ∇F (wt)

/* check local convexity */
15 if < ∇F

(
wI
t

)
−∇F (wt) ,wI

t −wt >≤ 0 then
16 compute wI

t+1 by using exact GD update (equation (4.45))
17 continue
18 end
19 set ∆G [k] = ∇F

(
wI
t

)
−∇F (wt)

20 set ∆W [k] = wI
t −wt, based on the cached parameters wt

21 k ← k + 1

22 compute wI
t+1 by using exact GD update (equation (4.45))

23 else
24 Pass ∆W [−m :], ∆G [−m :], the last m0 elements in ∆W and ∆G, which are from

the jth1 , jth2 , . . . , jthm iterations where j1 < j2 < · · · < jm depend on t, v = wI
t −wt,

and the history size m0, to the L-BFGFS Algorithm (See Supplement) to get the
approximation of H(wt)v, i.e., Bjmv

/* check local smoothness */
25 if ‖Bjmv‖ ≥ ‖v‖ then
26 go to line 12
27 end
28 Approximate ∇F

(
wI
t

)
= ∇F (wt) + Bjm

(
wI
t −wt

)
29 Compute wI

t+1 by using the "leave-r-out" gradient formula, based on the
approximated ∇F (wI

t )
30 end
31 end
32 return wI

t

130



Table 4.8 – Prediction accuracy of BaseL and DeltaGrad with batch addition/deletion.
MNISTn refers to MNIST with a neural net.

Dataset BaseL(%) DeltaGrad(%)

Add
(0.005%)

MNIST 87.530± 0.0025 87.530± 0.0025
MNISTn 92.340± 0.002 92.340± 0.002
covtype 62.991± 0.0027 62.991± 0.0027
HIGGS 55.372± 0.0002 55.372± 0.0002
RCV1 92.222± 0.00004 92.222± 0.00004

Add
(1%)

MNIST 87.540± 0.0011 87.542± 0.0011
MNISTn 92.397± 0.001 92.397± 0.001
covtype 63.022± 0.0008 63.022± 0.0008
HIGGS 55.381± 0.0007 55.380± 0.0007
RCV1 92.233± 0.00010 92.233± 0.00010

Delete
(0.005%)

MNIST 86.272± 0.0035 86.272± 0.0035
MNISTn 92.203± 0.004 92.203± 0.004
covtype 62.966± 0.0017 62.966± 0.0017
HIGGS 52.950± 0.0001 52.950± 0.0001
RCV1 92.241± 0.00004 92.241± 0.00004

Delete
(1%)

MNIST 86.082± 0.0046 86.074± 0.0048
MNISTn 92.373± 0.003 92.370± 0.003
covtype 62.943± 0.0007 62.943± 0.0007
HIGGS 52.975± 0.0002 52.975± 0.0002
RCV1 92.203± 0.00007 92.203± 0.00007

Table 4.9 – Distance and prediction performance of BaseL and DeltaGrad in online dele-
tion/addition

Dataset Distance Prediction accuracy (%)
‖wU∗ −w∗‖ ‖wI∗−wU∗‖ BaseL DeltaGrad

MNIST (Addition) 5.7× 10−3 2× 10−4 87.548± 0.0002 87.548± 0.0002
MNIST (Deletion) 5.0× 10−3 1.4× 10−4 87.465± 0.002 87.465± 0.002
covtype (Addition) 8.0× 10−3 2.0× 10−5 63.054± 0.0007 63.054± 0.0007
covtype (Deletion) 7.0× 10−3 2.0× 10−5 62.836± 0.0002 62.836± 0.0002
HIGGS (Addition) 2.1× 10−5 1.4× 10−6 55.303± 0.0003 55.303± 0.0003
HIGGS (Deletion) 2.5× 10−5 1.7× 10−6 55.333± 0.0008 55.333± 0.0008
RCV1 (Addition) 0.0122 3.6× 10−6 92.255± 0.0003 92.255± 0.0003
RCV1 (Deletion) 0.0119 3.5× 10−6 92.229± 0.0006 92.229± 0.0006

Table 4.10 – Memory usage of DeltaGrad and PrIU(GB)

Deletion rate MNIST covtype
PrIU DeltaGrad PrIU DeltaGrad

2× 10−5 26.61 2.74 9.30 2.56
5× 10−5 27.02 2.74 9.30 2.56
1× 10−4 27.13 2.74 9.30 2.55
2× 10−4 27.75 2.74 9.31 2.56
5× 10−4 29.10 2.74 10.67 2.56
1× 10−3 29.10 2.74 10.67 2.56

131



CHAPTER 5: Cleaning probabilistic labels with CHEF

In Chapter 4, I have discussed how to incrementally update ML models with PrIU and

DeltaGrad. One use of those two methods is to facilitate the efficient evaluation of the

training sample importance. In this chapter, I present how this goal is achieved in one

application, i.e. in the application of cleaning probabilistic labels. As indicated in Chapter

1, the label cleaning pipeline is iterative, consisting of three phases, i.e. the sample selector

phase, the annotation phase and the model constructor phase, which are described in detail

next.

Sample selector phase. Finding the most influential training samples can be done with

several different influence measures, e.g., the influence function [44], the Data Shapley val-

ues [113], the noisy label detection algorithms [46, 111], the active learning technique [45]

or using a bi-level optimization solution [115]. Unfortunately, these do not work well for

cleaning weak labels. I therefore develop a variant of the influence function called Infl which

can simultaneously detect the most influential samples and suggest cleaned labels. One

key technical challenge in the efficient implementation of Infl concerns the explicit evalu-

ation of gradients on every training sample. I address this challenge by developing

Increm-INFL, which removes uninfluential training samples early and can thus

incrementally recommend the most influential training samples to human an-

notators.

Human annotation phase After influential samples are selected, the next step is for

human annotators to clean the labels of those samples. Recall that multiple human annot-

ators may be used to independently label each training sample, and inconsistencies between

the labels are resolved, e.g., by majority vote [41]. To reduce the cost of the human

132



annotation phase, I consider the suggested clean labels from the sample selector

phase as one alternative labeler, which can be combined with results provided

by the human annotators to reduce annotation cost.

Model constructor phase. The previously described provenance-based algorithm Del-

taGrad [95] can be used to incrementally update model parameters after the deletion or

addition of a small subset of training samples. Since the result of the human annotation

phase can be regarded as the deletion of top-B samples with probabilistic labels, and inser-

tion of those same samples with cleaned labels, DeltaGrad can be adapted for this setting.

This algorithm is called DeltaGrad-L. To accelerate the model constructor phase,

rather than retraining from scratch after cleaning the labels of a small set of

training samples, I incrementally update the model using DeltaGrad-L.

Redesign of the cleaning pipeline The final contribution of CHEF, which is enabled by

the reduced cost of the sample selection, human annotation, and model construction phases,

is a re-design of the pipeline in Figure 1.1 (see the loop 2 ). Rather than providing all

top-B influential training samples (and suggesting how to fix the label uncertainty) at once,

the sample selector gives the human annotator the next top-b influential training samples,

where b is smaller than B and is specified by the user. The model is then refreshed using

the cleaned labels, and the next top-b samples to be given to the human annotator are

calculated. This continues until the initial budget B has been exhausted or the expected

prediction performance is reached (thus terminating early). This can not only improve

the overall model performance, but also lead to early termination, thus further

saving the cost of human annotation. Note that to enable incremental computation

by Increm-INFL and DeltaGrad-L, some “provenance” information is necessary, and can be

pre-computed offline in an Initialization step prior to the start of loop 2 .

I demonstrate the effectiveness of CHEF using several crowd-sourced datasets as well

as real medical image datasets. Our experiments show that CHEF achieves up to 54.7x

speed-up in the sample selector phase, and up to 7.5x speed-up in the model constructor

133



phase. Furthermore, by using Infl and smaller batch sizes b, the overall model quality can

be improved.

The rest of this chapter is organized as follows. Preliminary notation, definitions and

assumptions are given in Section 5.1, followed by our algorithms, Infl, Increm-INFL and

DeltaGrad-L in Section 5.2. Experimental results are discussed in Section 5.3.

5.1 Preliminaries

In this section, I introduce essential notation and assumptions, and then describe the influ-

ence function and DeltaGrad.

5.1.1 Notation

A C-class classification task is a classification task in which the number of classes is C. Sup-

pose that the goal is to construct a machine learning model on a training set, Z = Zd
⋃
Zp,

in which Zd = {zi}Ndi=1 = {(xi, yi)}Ndi=1 and Zp = {z̃i}
Np
i=1 = {(x̃i, ỹi)}

Np
i=1, denoting a set of

Nd training samples with deterministic labels and Np training samples with probabilistic

labels, respectively. A probabilistic label, ỹi, is represented by a probabilistic vector of length

C, in which the value in the cth entry (c = 0, 1, . . . , C − 1) denotes the probability that z̃i

belongs to the class c. The performance of the model constructed on Z is then validated

on a validation dataset Zval and tested on a test dataset Ztest. Note that the size of Zval

and Ztest are typically small, consisting of samples with ground-truth labels or deterministic

labels verified by the human annotators. Due to the possibly negative effect brought by

the uncleaned training samples with probabilistic labels, it is reasonable to regularize those

samples in the following objective function (e.g. see [149]):

F (w) =
1

N
[
∑Nd

i=1
F (w, zi) +

∑Np

i=1
γF (w, z̃i)] (5.1)

In the formula above, I use w to represent the model parameter, F (w, z) to denote the

loss incurred on a sample z with the model parameter w and γ (0 < γ < 1, specified by

134



users) to denote the weight on the uncleaned training samples. Furthermore, the first order

gradient of this loss can be denoted by ∇wF (w, z), and the second order gradient (i.e. the

Hessian matrix) by H(w, z). I further use ∇wF (w) and H(w) to denote the first order

gradient and the Hessian matrix averaged over all weighted training samples.

To optimize Equation (5.1), stochastic Gradient Descent (SGD) can be applied. At each

SGD iteration t, one essential step is to evaluate the first-order gradients of a randomly

sampled mini-batch of training samples, Bt (I denote the size of Bt as |Bt|), i.e.:

∇wF (w,Bt) =
1

|Bt|
∑

z∈Bt

γz∇wF (w, z) ,

in which γz is 1 if z ∈ Zd and γ otherwise.

Since the loop 2 in Figure 1.1 may be repeated for multiple rounds, I use Z(k)

to denote the updated training dataset after k rounds and w(k) to represent the model

constructed on Z(k).

5.1.2 Assumptions

I make two assumptions: the strong convexity assumption, and the small cleaning budget

assumption.

Strong convexity assumption Following [95], I focus on model classes satisfying

µ−strong convexity, meaning that the minimal eigenvalue of each Hessian matrix H(w, z)

is always greater than a non-negative constant µ for arbitrary w and z. One typical model

satisfying this property is logistic regression with L2 norm regularization.

Small cleaning budget assumption Since manually cleaning labels is time-consuming

and expensive, I assume that the cleaning budget B is far smaller than the size of training

set, Z.

5.1.3 Influence function

The influence function method [44] is originally proposed to estimate how the prediction

performance on one test sample ztest is varied if I delete one training sample z, or add an

135



infinitely small perturbation on the feature of z. This is formulated as follows:

Idel(z) = −∇wF (w, ztest)
>H−1(w)∇wF (w, z)

Ipert(z) = −∇wF (w, ztest)
>H−1(w)∇x∇wF (w, z).

I can then leverage Idel(z) and Ipert(z)δ to approximate the additional errors incurred

on the test sample ztest after deleting the training sample z, or perturbing the feature of z

by δ.

As [44] indicates, by evaluating the training sample influence with the above influence

function, the “harmful” training samples on the model prediction (i.e. the one with negative

influence) can be distinguished from the “helpful” ones (i.e. the one with positive influence). I

can then prioritize the most “harmful” training samples with probabilistic labels for cleaning.

In practice, due to the invisibility of the test samples in most cases, the validation set is

used instead, leading to the following modified influence functions:

Idel(z) = −∇wF (w,Zval)
>H−1(w)∇wF (w, z) (5.2)

Ipert(z) = −∇wF (w,Zval)
>H−1(w)∇x∇wF (w, z) (5.3)

The two formulas above also follow the modified influence function in [115] which uses a

set of trusted validation samples instead of test samples to estimate the influence of each

training sample.

5.2 Methodology

In this section, I describe the system design in detail for the sample selector phase (Section

5.2.1), the model constructor phase (Section 5.2.2) and the human annotation phase (Section

5.2.3).

5.2.1 The sample selector phase

Sample selection accomplishes two things: 1) it calculates the training sample influence

using Infl in order to prioritize the most influential uncleaned training samples for cleaning,

136



and simultaneously suggests possibly cleaned labels for them (see Section 5.2.1.1); and 2)

it filters out uninfluential training samples early using Increm-INFL at each round of loop

2 (see Section 5.2.1.3).

5.2.1.1 Infl

The goal of Infl is to calculate the influence of an uncleaned training sample, z̃, by estimating

how much additional error will be incurred on the validation set Zval if 1) the probabilistic

label of z̃ is updated to some deterministic label; and 2) z̃ is up-weighted to 1 after it is

cleaned, which is similar to (but fully not covered by) the intuition of the influence function

method [44]. To capture this intuition, I propose the following modified influence function

(its derivation is postponed until Section 5.2.1.2):

Ipert(z̃, δy, γ) ≈ N · (F (wU ,Zval)− F (w,Zval))

= −∇wF (w,Zval)
>H−1(w)[∇y∇wF (w, z̃)δy + (1− γ)∇wF (w, z̃)],

(5.4)

in which δy denotes the difference between the original probabilistic label of z̃ and one

deterministic label (ranging from 0 to C−1) and wU denotes the updated model parameters

after the label is cleaned and z̃ is up-weighted. To calculate δy, the deterministic label is

first converted to its one-hot representation, i.e. a vector of length C taking 1 in the cth

entry (c = 0, 1, . . . , C − 1) for the label c and taking 0 in all other entries (recall that C

represents the number of classes).

To recommend the most influential uncleaned training samples to the human annotators

and suggest possibly cleaned labels, I 1) explicitly evaluate Equation (5.4) for each uncleaned

training sample for all possible deterministic labels, 2) prioritize the most “harmful” training

samples for cleaning, i.e. the ones with the smallest negative influence values after their

labels are updated to some deterministic labels, and 3) suggest those deterministic labels as

the potentially cleaned labels for the human annotators.

Comparison to [115] As discussed earlier, DUTI [115] can also recommend the most

influential training samples for cleaning and suggest possibly cleaned labels, which is ac-

137



complished through solving a bi-level optimization problem. However, solving this problem

is computationally challenging, and therefore this method cannot be used in real-time over

multiple rounds (i.e. in loop 2 ).

The authors of [115] also modified the influence function to reflect the perturbations of

the training labels as follows:

Ipert(z̃) = −∇wF (w,Zval)
>H−1(w)∇y∇wF (w, z̃), (5.5)

and compared it against DUTI. Equation (5.5) is equivalent to removing δy (which quantifies

the effect of label changes) and (1− γ)∇wF (w, z̃) from Equation (5.4). As will be shown

in Section 5.3, ignoring δy in Equation (5.5) can lead to worse performance than Infl even

when all the training samples are equally weighted.

Computing ∇y∇wF (w, z̃) At first glance, it seems that the term ∇y∇wF (w, z̃) cannot

be calculated using auto-differentiation packages such as Pytorch, since it involves the partial

derivative with respect to the label of z̃. However, I notice that this partial derivative can be

explicitly calculated when the loss function F (w, z̃) is the cross-entropy function, which is the

most widely used objective function in the classification task. Specifically, the instantiation

of the loss function F (w, z̃) into the cross-entropy function can be expressed as:

F (w, z̃) = −
∑C

k=1
ỹ(k) log(p(k)(w, x̃)), (5.6)

In this formula above, ỹ = [ỹ(1), ỹ(2), . . . , ỹ(C)] is the label of an input sample z̃ =

(x̃, ỹ) and [p(1)(w, x̃), p(2)(w, x̃), . . . , p(C)(w, x̃)] represents the model output given this input

sample, which is a probabilistic vector of length C depending on the model parameter w

and the input feature x̃. Then I can observe that Equation (5.6) is a linear function of the

label ỹ. Hence, ∇y∇wF (w, z̃) can be explicitly evaluated as:

∇y∇wF (w, z̃) = [−∇w log(p(1)(w, x̃)), . . . ,−∇w log(p(C)(w, x̃))] (5.7)

138



As a result, each −∇w log(p(c)(w, x̃)), c = 0, 1, . . . , C − 1 can be calculated with the auto-

differentiation package.

Computing H−1(w) Recall that H(w) denotes the Hessian matrix averaged on all

training samples. Rather than explicitly calculating its inverse, by following [44], I leverage

the conjugate gradient method [150] to approximately compute the Matrix-vector product

∇wF (w,Zval)>H−1(w) in Equation (5.4).

5.2.1.2 Derivation of Equation (5.4)

According to [44], to analyze the influence of the label changes on one training sample z̃ as

well as re-weighting this sample, I need to consider the following objective function:

Fε1,ε2,z̃ (w) =
1

N
[
∑Nd

i=1
F (w, zi) +

∑Np

i=1
γF (w, z̃i)] + ε1F (w, z̃(δy))− ε2F (w, z̃) (5.8)

in which z̃ = (x̃, ỹ) ∈ Zp = {z̃i}
Np
i=1, z̃(δy) = (x̃, ỹ + δy), representing the z̃ with the

cleaned label ỹ + δy, and ε1 and ε2 are two small weights. I can adjust the values of ε1 and

ε2 to obtain a new objective function such that the effect of the z̃ is cancelled out and its

cleaned version is up-weighted. To achieve this, I can set ε1 = 1
N and ε2 = γ

N .

Then when Equation (5.8) is minimized, its gradient should be zero. Then by denoting

its minimizer as ŵε1,ε2,z̃, the following equation holds:

∇wFε1,ε2,z̃ (ŵε1,ε2,z̃) =
1

N
[
∑Nd

i=1
∇wF (ŵε1,ε2,z̃, zi) +

∑Np

i=1
γ∇wF (ŵε1,ε2,z̃, z̃i)]

+ ε1∇wF (ŵε1,ε2,z̃, z̃(δy))− ε2∇wF (ŵε1,ε2,z̃, z̃) = 0

I also denote the minimizer of argminwF0,0,z̃ (w) as ŵ, which is also the minimizer of

Equation (5.1) and is derived before any training sample is cleaned. Due to the closeness of

ŵε1,ε2,z̃
1 and ŵ as both ε1 and ε2 are near-zero values, I can then apply Taylor expansion

1this is one implicit assumption of the influence function method

139



on ∇wF (ŵε1,ε2,z̃, ε1, ε2), i.e.:

0 = ∇wF (ŵε1,ε2,z̃, ε1, ε2) ≈ ∇wF (ŵ, ε1, ε2) + Hε1,ε2,z̃ (ŵ) (ŵε1,ε2,z̃ − ŵ)

=
1

N
[
∑Nd

i=1
∇wF (ŵ, zi) +

∑Np

i=1
γ∇wF (ŵ, z̃i)]

+ ε1∇wF (ŵ, z̃(δy))− ε2∇wF (ŵ, z̃) + Hε1,ε2,z̃ (ŵ) (ŵε1,ε2,z̃ − ŵ),

(5.9)

in which Hε1,ε2,z̃ (∗) denotes the Hessian matrix of Fε1,ε2,z̃ (w). Then by using the fact

that 1
N [
∑Nd

i=1∇wF (ŵ, zi)+
∑Np

i=1 γ∇wF (ŵ, z̃i)] = 0 (since ŵ is the minimizer of F0,0,z̃ (w))

and Hε1,ε2,z̃ (ŵ) ≈ H0,0,z̃ (ŵ) = H (ŵ) (since ε1 and ε2 are near zero, recall that H (∗) is the

Hessian matrix of Equation (5.1)), the formula above is derived as:

ŵε1,ε2,z̃ − ŵ = −Hε1,ε2,z̃ (ŵ)−1 [ε1∇wF (ŵ, z̃(δy))− ε2∇wF (ŵ, z̃)] (5.10)

Recall that ε1 = 1
N and ε2 = γ

N for the purpose of cleaning the labels of z̃ and re-weighting

it afterwards. Then the formula above is further reformulated as:

ŵ 1
N
, γ
N
,z̃ − ŵ = −H 1

N
, γ
N
,z̃ (ŵ)−1 [

1

N
∇wF (ŵ, z̃(δy))−

γ

N
∇wF (ŵ, z̃)]

By further reorganizing the formula above and utilize the Cauchy mean value theorem,

the following formula could be derived:

ŵ 1
N
, γ
N
,z̃ − ŵ = −H 1

N
, γ
N
,z̃ (ŵ)−1 [

1

N
∇wF (ŵ, z̃(δy))−

γ

N
∇wF (ŵ, z̃)]

= −H 1
N
, γ
N
,z̃ (ŵ)−1 [

1

N
∇wF (ŵ, z̃(δy))−

1

N
∇wF (ŵ, z̃) +

1

N
∇wF (ŵ, z̃)− γ

N
∇wF (ŵ, z̃)]

= −H 1
N
, γ
N
,z̃ (ŵ)−1 [

1

N
∇w∇yF (ŵ, z̃) δy +

1

N
∇wF (ŵ, z̃)− γ

N
∇wF (ŵ, z̃)]

= −H 1
N
, γ
N
,z̃ (ŵ)−1 [

1

N
∇w∇yF (ŵ, z̃) δy +

1− γ
N
∇wF (ŵ, z̃)]

(5.11)

Recall that the influence function is to quantify how much the loss on the validation

dataset varies after z̃ is cleaned and re-weighted. Therefore, this version of the influence

140



function is obtained as follows:

Ipert(z, δy, γ) = N · (F (ŵ 1
N
, γ
N
,z̃,Zval)− F (ŵ,Zval))

≈ N · (∇wF (ŵ,Zval)(ŵ 1
N
, γ
N
,z̃ − ŵ))

= −∇wF (ŵ,Zval)>H−1(ŵ)[∇y∇wF (ŵ, z)δy + (1− γ)∇wF (ŵ, z)],

5.2.1.3 Increm-INFL

The goal of using Infl is to quantify the influence of all uncleaned training samples and select

the Top-b influential training samples for cleaning. But in loop 2 , this search space could

be reduced by employing Increm-INFL. Specifically, other than the initialization step, I can

leverage Increm-INFL to prune away most of the uninfluential training samples early in

following rounds, thus only evaluating the influence of a small set of candidate influential

training samples in those rounds. Suppose this set of samples is denoted as Z(k)
inf for the

round k; the derivation of this set is outlined in Algorithm 14. As this algorithm indicates,

the first step is to effectively estimate the maximal perturbations of Equation (5.4) at the

kth cleaning round for each uncleaned training sample z̃ and each possible label change δy

(see line 2), which are assumed to take I0(z̃, δy, γ) (see Theorem 13 for its definition) as the

perturbation center. Then the first part of Z(k)
inf consists of all the training samples which

produce the Top-b smallest values of I0(z̃, δy, γ) with a given δy (see line 6). For those b

smallest values, I also collect the maximal value of their upper bound, L. I then include in

Z(k)
inf all the remaining training samples whose lower bound, is smaller than L with certain

δy (see line 4). This indicates the possibility of those samples becoming the Top-b influential

samples.

To intuitively illustrate the above process to obtain Z(k)
inf , I provided an example in Fig-

ure 5.1. In this figure, I use I1 ≤ I2 ≤ I3 ≤ . . . to denote the sorted list of {I0(z̃, δy, γ)|z̃ =

(x̃, ỹ) ∈ Zp, δy = ỹ − c, c ∈ {0, 1, . . . , C − 1}} calculated among all the training samples

and all possible label perturbations. As described in Section 5.2.1.3, the set of candid-

ate influential training samples consists of two parts, one comprised of training samples

141



Figure 5.1 – Intuitive illustration of Increm-INFL

producing Top-b smallest values of I0(z̃, δy, γ), i.e., the training samples generating the

value I1, I2, I3, . . . , Ib for I0(z̃, δy, γ). The other part includes all the other training samples

whose lower bound on I0(z̃, δy, γ) is smaller than the largest upper bound of the items,

I1, I2, I3, . . . , Ib. For example, in Figure 5.1, the training samples corresponding to the value,

Ib+1, Ib+2, Ib+3, . . . , Ib+h−1 will become the candidate training samples while the sample pro-

ducing value, Ib+h, will not be counted as the candidate influential sample.

As described above, it is critical to estimate the maximal perturbation of Equation (5.4)

for each uncleaned training sample, z̃, and each label perturbation, δy, which requires the

following theorem.

Theorem 13. For a training sample z̃ = (x̃, ỹ) which has not been cleaned before the kth

round of loop 2 , the following bounds hold for Equation (5.4) evaluated on the training

sample z̃ and a label perturbation δy:

| − I(k)pert(z̃, δy, γ)− I0(z̃, δy, γ)− 1− γ
2

e1µ−
∑C

j=1
δy,je1‖H(j)(w(k), z̃)‖|

≤
∑C

j=1
|δy,j |e2‖H(j)(w(k), z̃)‖+

1− γ
2

e2µ

in which, I0(z̃, δy, γ) = v>[∇y∇wF (w(0), z̃)δy + (1− γ)∇wF (w(0), z̃)],

142



v> = −∇wF (w(k),Zval)
>H−1(w(k)), δy = [δy,1, δy,2, . . . , δy,C ],

H(j)(w(k), z̃) =
∫ 1

0 −∇
2
w log(p(j)(w(0) + s(w(k) −w(0)), x̃))ds,

µ = ‖
∫ 1

0 H(w(0) + s(w(k) −w(0)), z̃)ds‖, and, e1 = v>(w(k) −w(0)), e2 = ‖v‖‖w(k) −w(0)‖.

Proof. Recall that I0(z̃, δy, γ) = v>∇y∇wF (w(0), z)δy, then the following equation holds:

(−I(k)
pert(z̃, δy, γ)− I0(z̃, δy, γ))

= v>[∇y∇wF (w(k), z)δy + (1− λ)∇wF (w(k), z)]

− v>[∇y∇wF (w(0), z)δy + (1− λ)∇wF (w(0), z)]

= v>[∇y∇wF (w(k), z)δy −∇y∇wF (w(0), z)δy]︸ ︷︷ ︸
Diff1

+ (1− λ)v>[∇wF (w(k), z)−∇wF (w(0), z)]︸ ︷︷ ︸
Diff2

(5.12)

Then by plugging the definition of ∇y∇wF (w(k), z) into the formula Diff1 above, I can

get:

Diff1 = v>[−[∇w log(p(1)(w(k),x))−∇w log(p(1)(w(0),x))]

, . . . ,−[∇w log(p(C)(w(k),x))−∇w log(p(C)(w(0),x))]]δy

Then by utilizing the Cauchy mean value theorem, the formula above can be rewritten

as:

Diff1 = v>[−[∇w log(p(1)(w(k),x))−∇w log(p(1)(w(0),x))]

, . . . ,−[∇w log(p(C)(w(k),x))−∇w log(p(C)(w(0),x))]]δy

= v>[

∫ 1

0
−∇2

w log(p(1)(w,x))|w=w(0)+s(w(k)−w(0))ds(w
(k) −w(0))

, . . . ,

∫ 1

0
−∇2

w log(p(C)(w,x))|w=w(0)+s(w(k)−w(0))ds(w
(k) −w(0))]δy

= v>[H(1)(w(k), z)(w(k) −w(0)), . . . ,H(C)(w(k), z)(w(k) −w(0))]δy

143



Then by using the definition of δy, i.e. δy = [δy,1, δy,2, . . . , δy,C ], the formula above can

be further derived as:

Diff1 =
C∑
j=1

δy,jv>H(j)(w(k), z)(w(k) −w(0)). (5.13)

Note that since each H(j)(w(k), z), j = 0, 1, . . . , C − 1 is a semi-positive definite matrix

for strongly convex models, it can thus be decomposed with its eigenvalues and eigenvectors,

i.e.:

H(j)(w(k), z) =

m∑
s=1

σsusu>s

Therefore, for each summed term in Equation (5.13), it can be rewritten as below by

using the formula above:

v>H(j)(w(k), z)(w(k) −w(0)) = v>(
m∑
s=1

σsusu>s )(w(k) −w(0))

=
m∑
s=1

σsv>usu>s (w(k) −w(0))

(5.14)

Since v>us and u>s (w(k) − w(0)) are two scalars, they can be rewritten as u>s v and

(w(k) −w(0))>us respectively. As a result, the formula above can be rewritten as:

v>H(j)(w(k), z)(w(k) −w(0)) =

m∑
s=1

σsu>s v(w(k) −w(0))>us, (5.15)

Then for each summed term above, it is still a scalar. Therefore, I can also rewrite it as

follows by introducing its transpose:

u>s v(w(k) −w(0))>us =
1

2

[
(u>s v(w(k) −w(0))>us + (u>s v(w(k) −w(0))>us)>

]
=

1

2

[
u>s v(w(k) −w(0))>us + u>s (w(k) −w(0))v>us

]
=

1

2
u>s [v(w(k) −w(0))> + (w(k) −w(0))v>]us

(5.16)

144



Note that [v(w(k)−w(0))>+(w(k)−w(0))v>] is a symmetric matrix, which has orthogonal

eigenvectors and thus can be decomposed with its eigenvectors as follows:

[v(w(k) −w(0))> + (w(k) −w(0))v>] = ŨAŨ
>

=
m∑
t=1

atũtũ>t

in which a1 ≥ a2 ≥ · · · ≥ am are the eigenvalues and each ũt is a mutually orthogonal

eigenvector. The formula above is then plugged into Equation (5.16), which results in:

u>s v(w(k) −w(0))>us =
1

2

[
u>s v(w(k) −w(0))>us + (u>s v(w(k) −w(0))>us)>

]
=

1

2

[
u>s v(w(k) −w(0))>us + u>s (w(k) −w(0))v>us

]
=

1

2
u>s [v(w(k) −w(0))> + (w(k) −w(0))v>]us

=
1

2
u>s [

m∑
t=1

atũtũ>t ]us

This formula is then plugged into Equation (5.15), leading to:

v>H(j)(w(k), z)(w(k) −w(0)) =
m∑
s=1

σsu>s v(w(k) −w(0))>us

=

m∑
s=1

σs

[
1

2
u>s [

m∑
t=1

atũtũ>t ]us

]
=

1

2

m∑
s=1

m∑
t=1

σsatu>s ũtũ
>
t us

=
1

2

m∑
s=1

m∑
t=1

σsatũ>t usu
>
s ũt =

1

2

m∑
t=1

atũ>t

[
m∑
s=1

σsusu>s

]
ũt

(5.17)

Recall that

H(j)(w(k), z) =
m∑
s=1

σsusu>s

, which is a semi-definite positive matrix. As a result, the following inequality holds for

arbitrary vector u:

0 ≤ u>H(j)(w(k), z)u ≤ ‖H(j)(w(k), z)‖u>u = ‖H(j)(w(k), z)‖‖u‖2

145



Therefore, Equation (5.17) can be bounded as:

v>H(j)(w(k), z)(w(k) −w(0)) ≤ 1

2

∑
at≥0

at‖H(j)(w(k), z)‖‖ũt‖2 +
1

2

∑
at<0

0

=
1

2

∑
at≥0

at‖H(j)(w(k), z)‖ = ‖H(j)(w(k), z)‖1

2

∑
at≥0

at

(5.18)

and:

v>H(j)(w(k), z)(w(k) −w(0)) ≥ 1

2

∑
at<0

at‖H(j)(w(k), z)‖‖ũt‖2 +
1

2

∑
at≥0

0

=
1

2

∑
at<0

at‖H(j)(w(k), z)‖ = ‖H(j)(w(k), z)‖1

2

∑
at<0

at

(5.19)

Note that the two non-zero eigenvalues of v(w(k)−w(0))>+(w(k)−w(0))v> are v>(w(k)−

w(0))±‖v‖‖(w(k)−w(0))‖, which correspond to the eigenvectors ‖v‖(w(k)−w(0))±‖(w(k)−

w(0))‖v. For those two non-zero eigenvalues, v>(w(k)−w(0))+‖v‖‖(w(k)−w(0))‖ is greater

than 0 while v>(w(k)−w(0))−‖v‖‖(w(k)−w(0))‖ is smaller than 0. Therefore, I can explicitly

derive 1
2

∑
at≥0 at and

1
2

∑
at<0 at as follows:

1

2

∑
at≥0

at =
1

2
[v>(w(k) −w(0)) + ‖v‖‖(w(k) −w(0))‖]

1

2

∑
at<0

at =
1

2
[v>(w(k) −w(0))− ‖v‖‖(w(k) −w(0))‖]

As a result, Equation (5.18) and Equation (5.19) can be further bounded as:

v>H(j)(w(k), z)(w(k) −w(0)) ≤ 1

2
[v>(w(k) −w(0)) + ‖v‖‖(w(k) −w(0))‖]‖H(j)(w(k), z)‖

and:

v>H(j)(w(k), z)(w(k) −w(0)) ≥ 1

2
[v>(w(k) −w(0))− ‖v‖‖(w(k) −w(0))‖]‖H(j)(w(k), z)‖

Based on the results above, I can then derive the upper bound of Equation (5.13) as

146



follows:

Diff1 =
C∑
j=1

δy,jv>H(j)(w(k), z)(w(k) −w(0))

≤
∑
δy,j≥0

δy,j‖H(j)(w(k), z)‖[1
2

[v>(w(k) −w(0)) + ‖v‖‖(w(k) −w(0))‖]]

+
∑
δy,j<0

δy,j‖H(j)(w(k), z)‖[1
2

[v>(w(k) −w(0))− ‖v‖‖(w(k) −w(0))‖]]

(5.20)

Similarly, the lower bound of Equation (5.13) is derived as:

Diff1 ≥
∑
δy,j<0

δy,j‖H(j)(w(k), z)‖[1
2

[v>(w(k) −w(0)) + ‖v‖‖(w(k) −w(0))‖]]

+
∑
δy,j≥0

δy,j‖H(j)(w(k), z)‖[1
2

[v>(w(k) −w(0))− ‖v‖‖(w(k) −w(0))‖]]
(5.21)

Then I move on to derive the bounds on Diff2 in Equation (5.12). As the first step, I

utilize the Cauchy mean value theorem on this term as follows:

Diff2 = v>[∇wF (w(k), z)−∇wF (w(0), z)]

= v>[

∫ 1

0
H(w(0) + s(w(k) −w(0)), z)ds](w(k) −w(0))

which thus follows the same form as Equation (5.14). Therefore, by following the same

derivation of the bounds on Equation (5.14), the formula above is bounded as:

Diff2 = v>[∇wF (w(k), z)−∇wF (w(0), z)]

∈
[

1

2
[v>(w(k) −w(0))− ‖v‖‖w(k) −w(0)‖]‖

∫ 1

0
H(w(0) + s(w(k) −w(0)), z)ds‖,

1

2
[v>(w(k) −w(0)) + ‖v‖‖w(k) −w(0)‖]‖

∫ 1

0
H(w(0) + s(w(k) −w(0)), z)ds‖

] (5.22)

As a consequence, by utilizing the results in Equation (5.20), (5.21) and (5.22), Equation

147



(5.12) is bounded as:

I(k)
pert(z̃, δy, γ)− I0(z̃, δy, γ)

≤
∑
δy,j≥0

δy,j‖H(j)(w(k), z)‖[1
2

[v>(w(k) −w(0)) + ‖v‖‖(w(k) −w(0))‖]]

+
∑
δy,j<0

δy,j‖H(j)(w(k), z)‖[1
2

[v>(w(k) −w(0))− ‖v‖‖(w(k) −w(0))‖]]

+
1− γ

2
[v>(w(k) −w(0)) + ‖v‖‖w(k) −w(0)‖]‖

∫ 1

0
H(w(0) + s(w(k) −w(0)), z)ds‖

Then by denoting e1 = v>(w(k)−w(0)) and e2 = ‖v‖‖(w(k)−w(0))‖ , the upper bound

of I(k)
pert(z̃, δy, γ)− I0(z̃, δy, γ) can be denoted as:

I(k)
pert(z̃, δy, γ)− I0(z̃, δy, γ)

≤
∑
δy,j≥0

δy,j‖H(j)(w(k), z)‖(e1 + e2) +
∑
δy,j<0

δy,j‖H(j)(w(k), z)‖(e1 − e2)

+
1− γ

2
(e1 + e2)‖

∫ 1

0
H(w(0) + s(w(k) −w(0)), z)ds‖

=
C∑
j=1

[δy,je1 + |δy,j |e2]‖H(j)(w(k), z)‖+
1− γ

2
(e1 + e2)‖

∫ 1

0
H(w(0) + s(w(k) −w(0)), z)ds‖

148



Similarly, I can derive the lower bound of Equation (5.12), i.e.:

I(k)
pert(z̃, δy, γ)− I0(z̃, δy, γ)

≥
∑
δy,j<0

δy,j‖H(j)(w(k), z)‖[1
2

[v>(w(k) −w(0)) + ‖v‖‖(w(k) −w(0))‖]]

+
∑
δy,j≥0

δy,j‖H(j)(w(k), z)‖[1
2

[v>(w(k) −w(0))− ‖v‖‖(w(k) −w(0))‖]]

+
1− γ

2
[v>(w(k) −w(0))− ‖v‖‖w(k) −w(0)‖]‖

∫ 1

0
H(w(0) + s(w(k) −w(0)), z)ds‖

=
∑
δy,j<0

δy,j‖H(j)(w(k), z)‖(e1 + e2) +
∑
δy,j>0

δy,j‖H(j)(w(k), z)‖(e1 − e2)

+
1− γ

2
(e1 − e2)‖

∫ 1

0
H(w(0) + s(w(k) −w(0)), z)ds‖

=
C∑
j=1

[δy,je1 − |δy,j |e2]‖H(j)(w(k), z)‖

+
1− γ

2
(e1 − e2)‖

∫ 1

0
H(w(0) + s(w(k) −w(0)), z)ds‖

Lemma 4. if the model is a binary logistic regression model (meaning that C = 2), then for

a training sample z̃ = (x̃, ỹ) which has not been cleaned before the kth round of loop 2 ,

the following bounds hold for Equation (5.4) evaluated on the training sample z̃ and a label

perturbation δy:

| − I(k)pert(z̃, δy, γ)− I0(z̃, δy, γ)− 1− γ
2

e1µ‖| ≤
1− γ

2
e2µ

in which, I0(z̃, δy, γ) = v>[∇y∇wF (w(0), z̃)δy + (1− γ)∇wF (w(0), z̃)],

v> = −∇wF (w(k),Zval)
>H−1(w(k)), δy = [δy,0, δy,1],

µ = ‖
∫ 1

0 H(w(0) + s(w(k) −w(0)), z̃)ds‖, and, e1 = v>(w(k) −w(0)), e2 = ‖v‖‖w(k) −w(0)‖.

Proof. Similar to the proof of Theorem 13, I start by calculating the difference between

149



−I(k)
pert(z̃, δy, γ) and I0(z̃, δy, γ), i.e.:

(−I(k)
pert(z̃, δy, γ)− I0(z̃, δy, γ))

= v>[∇y∇wF (w(k), z)δy + (1− λ)∇wF (w(k), z)]−

v>[∇y∇wF (w(0), z)δy + (1− λ)∇wF (w(0), z)]

= v>[∇y∇wF (w(k), z)δy −∇y∇wF (w(0), z)δy]︸ ︷︷ ︸
Diff1

+ (1− λ)v>[∇wF (w(k), z)−∇wF (w(0), z)]︸ ︷︷ ︸
Diff2

(5.23)

Then by plugging the definition of ∇y∇wF (w(k), z) into the formula Diff1 above and

utilizing the Cauchy mean value theorem afterwards, the following formula could be derived:

Diff1 = v>[−[∇w log(p(1)(w(k),x))−∇w log(p(1)(w(0),x))]

,−[∇w log(p(2)(w(k),x))−∇w log(p(2)(w(0),x))]]δy

= v>[

∫ 1

0
−∇2

w log(p(0)(w,x))|w=w(0)+s(w(k)−w(0))ds(w
(k) −w(0))

,

∫ 1

0
−∇2

w log(p(1)(w,x))|w=w(0)+s(w(k)−w(0))ds(w
(k) −w(0))]δy

= v>[H(0)(w(k), z)(w(k) −w(0))δy,0 + H(1)(w(k), z)(w(k) −w(0))δy,1]

(5.24)

Note that for the binary classification problem, δy = onehot(c) − ỹ = onehot(c) −

[ỹ0, ỹ1], c = 0, 1, which is equivalent to [−ỹ0, 1− ỹ1] or [1− ỹ0,−ỹ1] (depending on the value

of c). Recall that ỹ0 and ỹ1 represent the probability that the sample z belongs to the class

0 and class 1 respectively, which satisfies ỹ0 + ỹ1 = 1. Then δy can be further transformed

into the following formula:

δy = onehot(c)− ỹ =


[−ỹ0, 1− ỹ1] = [−ỹ0, ỹ0], c=0

[1− ỹ0,−ỹ1] = [ỹ1,−ỹ1], c=1

The above formula tells us that the two entries in the vector δy have the same magnitude

150



but have different symbols. Therefore, I can rewrite δy as δy = [−δ, δ], δ = ỹ0 or − ỹ1, which

can be plugged into Equation (5.24), leading to the following results:

Diff1 = v>δ[H(1)(w(k), z)−H(0)(w(k), z)](w(k) −w(0)) (5.25)

Recall that here I am focusing on the binary logistic regression model, meaning that

I can explicitly derive the closed-form of H(0)(w(k), z) and H(1)(w(k), z). Specifically, for

the binary logistic regression model, Equation (5.6), i.e. the loss on each sample, can be

instantiated as:

F (w, z̃) = −
∑2

c=1
ỹ(c−1) log(p(c−1)(w, x̃)) = −

∑2

c=1
ỹ(c−1) log(softmax(c−1)(w>x̃))

= −ỹ(0) log(
exp−w>0 x̃

exp−w>0 x̃ + exp−w>1 x̃
)− ỹ(1) log(

exp−w>1 x̃

exp−w>0 x̃ + exp−w>1 x̃
),

in which p(c−1)(w, x̃) = softmax(c−1)(w>x̃) and I can split the model parameter w into

two parts, i.e., w0 and w1, i.e. the model parameter corresponding to the class 0 and the

class 1. Then by utilizing the definition of H(c)(w(k), z), c = 0, 1, it can be derived as below

for the logistic regression model:

H(c)(w(k), z) = −
∫ 1

s=0
∇2

w log(p(c)(w,x))|w=w(0)+s(w(k)−w(0))ds

= −
∫ 1

s=0
∇2

w log(softmax(c)(w))|w=w(0)+s(w(k)−w(0))ds

= −
∫ 1

s=0
∇2

w log(
exp−w>c x̃

exp−w>0 x̃ + exp−w>1 x̃
)|w=[w0,w1]=vec(w(0)+s(w(k)−w(0)))ds

In the above formula, first of all, I can explicitly derive the second derivative of

log( exp−w>c x̃

exp−w>0 x̃ + exp−w>1 x̃
) with respect to w, which is calculated for w0 and w1 respectively

151



(due to w = [w0,w1]), i.e.:

∇2
w0

log(
exp−w>c x̃

exp−w>0 x̃ + exp−w>1 x̃
) =

− exp−w>0 x̃−w>1 x̃ x̃x̃>

(exp−w>0 x̃ + exp−w>1 x̃)2

∇2
w1

log(
exp−w>c x̃

exp−w>0 x̃ + exp−w>1 x̃
) =

− exp−w>0 x̃−w>1 x̃ x̃x̃>

(exp−w>0 x̃ + exp−w>1 x̃)2

∇w0∇w1 log(
exp−w>c x̃

exp−w>0 x̃ + exp−w>1 x̃
)

=
exp−w>0 x̃−w>1 x̃ x̃x̃>

(exp−w>0 x̃ + exp−w>1 x̃)2

which is surprisingly free of c, meaning that ∇2
w log( exp−w>c x̃

exp−w>0 x̃ + exp−w>1 x̃
) leads to the same

results for both c = 0 and c = 1.

Therefore, I can conclude that H(0)(w(k), z) = H(1)(w(k), z), which can be further

plugged into Equation (5.25), resulting in:

Diff1 = 0

This thus indicates that:

(−I(k)
pert(z̃, δy, γ)− I0(z̃, δy, γ)) = Diff2.

Then by following similar analysis on the bound on Diff2 in the proof for Theorem 13, I

can derive the final result in Lemma 4.

To reduce the computational overhead, the integrated Hessian matrices,
∫ 1

0 H(w(0) +

s(w(k) − w(0)), z̃)ds and H(j)(w(k), z̃), are approximated by their counterparts evaluated

at w(0), i.e., H(w(0), z̃) and −∇2
w log(p(j)(w(0), x̃)). As a consequence, the bounds can

be calculated by applying several linear algebraic operations on v, w(k), w(0) and some

pre-computed formulas, i.e., the norm of the Hessian matrices, ‖ − ∇2
w log(p(j)(w(0), x̃))‖

and ‖H(w(0), z̃)‖, and the gradients, ∇y∇wF (w(0), z̃) and ∇wF (w(0), z̃), which can be

152



computed as “provenance” information in the initialization step. Note that pre-computing

∇y∇wF (w(0), z̃) and ∇wF (w(0), z̃) is quite straightforward by leveraging Equation (5.7).

Then the remaining question is how to compute ‖−∇2
w log(p(j)(w(0), x̃))‖ and ‖H(w(0), z̃)‖

efficiently without explicitly evaluating the Hessian matrices. Since those two terms calculate

the norm of one Hessian matrix, I therefore only take one of them as a running example to

describe how to compute them in a feasible way, as shown below.

Pre-computing ‖H(w(0), z̃)‖ Since 1) a Hessian matrix is symmetric (due to its positive

definiteness); and 2) the L2-norm of a symmetric matrix is equivalent to its eigenvalue with

the largest magnitude [151], the L2 norm of one Hessian matrix is thus equivalent to its

largest eigenvalue. To evaluate this eigenvalue, I use the Power method [152], which is

shown in Algorithm 13.

Algorithm 13: Pre-compute ‖H(w(0), z̃)‖ in the initialization step
Input : A training sample z ∈ Z, the class j and the model parameter obtained in the

initialization step: w(0)

Output: ‖H(w(0), z̃)‖
1 Initialize g as a random vector;
2 // Power method below
3 while g is not converged do
4 Calculate H(w(0), z̃)g by using the auto-differentiation package

5 Update g: g = H(w(0),z̃)g
‖H(w(0),z̃)g‖

6 end

7 Calculate the largest eigenvalue of H(w(0), z̃) in magnitude by using g>H(w(0),z̃)g
‖g‖ , which is

equivalent to ‖H(w(0), z̃)‖. return ‖H(w(0), z̃)‖.

Note that the algorithm above relies on the auto-differentiation package for calculating

the Hessian-vector product effectively. Specifically, for a Hessian-vector productH(w(0), z̃)g,

it can be further rewritten as follows:

H(w(0), z̃)g = ∇2
wF (w(0), z̃)g = ∇w(∇wF (w(0), z̃))g

= ∇w(∇wF (w(0), z̃)g)

(5.26)

in which the first equality utilizes the definition of the Hessian matrix while the last

equality regards the vector g as a constant with respect to w and utilizes the chain rule in

153



reverse. Therefore, to obtain the result of H(w(0), z̃)g, I can invoke the auto-differentiation

package twice. The first one is on the loss F (w(0), z̃), resulting in the first order derivative

∇wF (w(0), z̃), while the second one is on the product ∇wF (w(0), z̃)g, leading to the final

result of H(w(0), z̃)g.

Time complexity of Increm-INFL According to Theorem 13, evaluating the bound

on I(k)
pert(z̃, δy, γ) requires four major steps, including 1) computing the Hessian-vector product,

v, by employing the solution shown in Equation (5.26), which can be computed once

for all training samples (suppose the time complexity of this step is O(v); 2) computing

v[∇y∇wF (w(0), z)δy + (1 − γ)∇wF (w(0), z)] in I0(z̃, δy, γ) with two matrix-vector multi-

plications (recall that ∇y∇wF (w(0), z) and ∇wF (w(0), z) are pre-computed), which requires

O(Cm) operations (m is used to denote the dimension ofw); 3) computing v(w(k)−w(0)) and

‖v‖‖w(k)−w(0)‖, which requires O(m) operations; 4) computing
∑C

r=1 |δy,r|‖H
(r)(w(k), z)‖

and
∑C

r=1 δy,r‖H
(r)(w(k), z)‖, which requires O(C) operations (recall that ‖H(r)(w(k), z)‖ is

also pre-computed). Hence, the overall overhead of evaluating the bound on I(k)
pert(z̃, δy, γ)

for all N training samples and all possible C classes is O(v) +NC(O(Cm) +O(m) +O(C)).

Suppose after Algorithm 14 is invoked, n(� N) samples become the candidate influ-

ential training samples. Then the next step is to evaluate Equation (5.4) on each of those

candidate samples for each possible deterministic class. Note that the main overhead of each

invocation of Equation (5.4) comes from deriving the class-wise gradient ∇y∇wF (w(k), z)

and the sample-wise gradient ∇wF (w(k), z), which is supposed to have time complexity

O(Grad). Therefore, the total time complexity of utilizing the Algorithm 14 first and eval-

uating Equation (5.4) on n candidate training samples afterwards is O(v) +NC(O(Cm) +

O(m) + O(C)) + ncO(Grad). In contrast, without utilizing Algorithm 14, it is essential to

evaluate Equation (5.4) on every training sample which thus requires O(v) +NC ·O(Grad)

operations. Considering the fact that the time overhead of single gradient computation is

much larger than O(Cm), O(m) or O(C), then I can expect that with small n, Increm-INFL

can lead to significant speed-ups.

154



Algorithm 14: Increm-INFL
Input : The number of samples to be cleaned at the kth round: b
Output: A set of prioritized training samples for cleaning: Z(k)

inf

1 Initialize Z(k)
inf = {}

2 Calculate I0(z̃, δy, γ) and the perturbation bound on this term by using Theorem 13 for
each uncleaned sample, z̃ = (x̃, ỹ), and each label perturbation,
δy = ỹ − onehot(c), (c = 0, 1, . . . , C − 1) Add the training samples producing Top-b
smallest I0(z̃, δy, γ) to Z(k)

inf

3 obtain the largest perturbation upper bound, L, for all Top-b smallest I0(z̃, δy, γ)
4 For any remaining training sample, z̃, if its lower perturbation bound of I0(z̃, δy, γ) is

smaller than L with a certain δy, add it to Z(k)
inf return Z(k)

inf

5.2.2 The model constructor phase (DeltaGrad-L)

At the kth round of loop 2 , after the human annotators clean the labels for a set of

b influential training samples, R(k), provided by the Sample selector, the next step is to

update the model parameters in the Model constructor. To reduce the overhead of this

step, I can regard the process of updating labels as two sub-processes, i.e. the deletions

of the training samples, R(k) (with the associated weight, γ), and the additions of those

training samples with the cleaned labels (with the updated weight, 1), thus facilitating the

use of DeltaGrad in this scenario. Specifically, the following modifications to Algorithm 10

are required: 1) the input deleted training samples should be R(k); 2) the input cached

model parameters and the corresponding gradients become the ones obtained at the k− 1st

round of the loop 2 ; 3) in line 3, instead of randomly sampling a mini-batch At from

the added training samples A, At should be replaced with the removed training samples

from Bt, i.e., Bt
⋂
R(k), but with updated labels; 4) the cleaned training samples and the

uncleaned training samples so far are weighted by 1 and γ respectively (this only slightly

modifies how the loss is calculated for each mini-batch).

5.2.3 The human annotation phase

As discussed in the beginning of this chapter, the Sample selector not only suggests which

samples should be cleaned, but also suggests the candidate cleaned labels, which can be

155



regarded as one independent label annotator. When multiple annotators exist, I aggregate

their labels by using majority vote to resolve possible label conflicts.

5.3 Experiments

I conducted extensive experiments in Python 3.6 and PyTorch 1.7.0 [102]. All experiments

were conducted on a Linux server with an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz,

3 GeForce 2080 Titan RTX GPUs and 754GB of main memory. Code has been released in

GitHub2.

5.3.1 Experimental setup

In this section, I present necessary details on how to set up the experiments.

5.3.1.1 Datasets

Two types of datasets are used, one of which is annotated with ground-truth labels but no

human generated labels, while the other is fully annotated with crowdsourced labels but

only partially annotated by ground-truth labels. The former type (referred to as Fully clean

datasets) is used to evaluate the quality of labels suggested by Infl by comparing them

against the ground-truth labels. The latter type (referred to as Crowdsourced datasets) is

used for evaluating the performance of our methods in more realistic settings.

Fully clean datasets: Three real medical image datasets are used: MIMIC-CXR-JPG

(MIMIC for short) [153], Chexpert [41] and Diabetic Retinopathy Detection (Retina for

short) [154]. The datasets are used to identify whether one or more diseases or findings exist

for each image sample. In the experiments, I am interested in predicting the existence of

findings called “Lung Opacity”, “the referable Diabetic Retinopathy” and “Cardiomegaly” for

MIMIC, Retina and Chexpert, respectively. The detailed descriptions of the three datasets

are given below.
2see https://github.com/thuwuyinjun/Chef

156



MIMIC dataset is a large chest radiograph dataset containing 377,110 images, which

have been partitioned into training set, validation set and test set. There are 13 binary

labels for each image, corresponding to the existence of 13 different findings. Those labels are

automatically extracted from the text [155], thus leading to possibly undetermined labels for

some finds. In the experiments, I focused on predicting whether the finding “Lung Opacity”

exists for each image and only retained those training samples with determined binary labels

for this finding, eventually producing 85046 samples, 579 samples and 1628 samples in the

training set, validation set and test set respectively.

Chexpert dataset is another large chest radiograph dataset consisting of 223,415 X-ray

images as the training set and another 234 images as the validation set. Since the test set is

not publicly available yet, I regard the original validation set as the test set and randomly

selected 10% of the training samples as the validation set. This dataset is used to predict

whether each of the 14 observations exists in each X-ray image. In the experiments, I focus

on predicting the existence of the observation “Cardiomegaly” in each image. Similar to

the pre-processing operations on MIMIC, I removed the training samples and the validation

samples with undetermined labels (labeled as -1) for this observation, leading to 38629

samples and 4251 samples in the training set and validation set respectively. All the test

samples, i.e. the original validation samples, are fully labeled, which are all retained in the

experiments.

Retina dataset is an image dataset consisting of fully labeled retinal fundus photo-

graphs [154]. The target use of this dataset is to diagnose one eye disease called Diabetic

Retinopathy (DR) for each image, which is classified into 5 categories based on severity. I

followed [156] to predict whether an image belongs to a referable DR, which regard the label

1 and 2 as the referable one and the label 3-5 as the non-referable one. As a consequence,

the original five-class classification problem is transformed into a binary classification prob-

lem. In the original version of Retina dataset, there are 35127 samples and 53576 samples

in the training set and test. I randomly select 10% of the training samples as the validation

samples and use the rest of them as the training set in the experiments.

157



Crowdsourced datasets: Three realistic crowdsourced datasets are used: Fashion 10000

(Fashion for short)3 [157], Fact Evaluation Judgement (Fact for short)4, and Twitter sen-

timent analysis (Twitter for short)5. Only a small portion of samples in the datasets have

ground-truth labels while the rest are labeled by crowdsourcing workers (e.g., the labels

of the Fashion dataset are collected through the Amazon Mechanical Turk (AMT) crowd-

sourcing platform). The Fashion dataset is an image dataset for distinguishing fashionable

images from unfashionable ones; the Fact dataset uses RDF triples to represent facts about

public figures and the classification task is to judge whether or not each fact is true; and

the Twitter dataset consists of plain-text tweets on major US airlines for sentiment analysis,

i.e., identifying positive or negative tweets. For the Fashion and Fact datasets, extra text

is also associated with each sample, e.g. user comments on each image in Fashion and the

evidence for each fact in Fact, which is critical for producing probabilistic labels (see Section

5.3.1.3). I further describe the three datasets in Crowdsourced datasets in details below.

Fashion dataset includes 30525 images and the label of each image represents whether

it is fashionable or not, annotated by three different human annotators. In addition to those

labels, some text information such as the users’ comments is also associated with each image.

However, ground-truth labels are not available in this dataset and simulated with the labels

by aggregating the human annotated labels through majority vote. For the experiments in

Section 5.3, similar to Fully clean datasets, I apply ResNet50 for feature transformation and

run logistic regression model afterwards.

Fact dataset Each sample in Fact dataset is an RDF triple for representing one fact and

there are over 40000 of such facts. Each such fact is labeled as true, false or ambiguous by

five different human annotators. But the total number of human annotators is 57. Among

all the samples, only 577 samples have ground-truth labels. In the experiments, I removed

the samples with the ground-truth label “ambiguous” and randomly partition the remaining

samples with ground-truth labels into two parts, Although there are three different labels,
3available at http://skuld.cs.umass.edu/traces/mmsys/2014/user05.tar
4available at https://sites.google.com/site/crowdscale2013/shared-task/task-fact-eval
5available at https://github.com/naimulhuq/Capstone/blob/master/Data/

Airline-Full-Non-Ag-DFE-Sentiment%20(raw%20data).csv

158

http://skuld.cs.umass.edu/traces/mmsys/2014/user05.tar
https://sites.google.com/site/crowdscale2013/shared-task/task-fact-eval
https://github.com/naimulhuq/Capstone/blob/master/Data/Airline-Full-Non-Ag-DFE-Sentiment%20(raw%20data).csv
https://github.com/naimulhuq/Capstone/blob/master/Data/Airline-Full-Non-Ag-DFE-Sentiment%20(raw%20data).csv


I ignore the label ‘ambiguous’, meaning that I only conduct a binary classification task on

this dataset. However, it is likely that the aggregated label for some uncleaned training

sample becomes ‘ambiguous’ even after I resolve the labeling conflicts between different

human annotators. To deal with this, the probabilistic labels of this sample is not updated

for representing the labeling uncertainties from the human annotators.

To facilitate the feature transformation as mentioned in Section 5.3, I concatenate each

RDF triple as one sentence and then employ the pre-trained bert-based transformer [158]

for transforming each raw text sample into a sequence of embedding vectors. To guarantee

batch training on this dataset, only the last 20 embedding vectors are used. If the total

number of embedding sequence for a sample is smaller than 20, I pad this sequence with

zero vectors. As introduced in Section 5.3, to identify whether a fact is true or not, it

is essential to compare this RDF triple against the associated evidence (represented by a

sentence). Therefore, by following the above principle, I transform each piece of evidence

into a embedding sequence and trim the length of this sequence to 20 for accelerating the

training process.

Twitter dataset is comprised of ∼12k tweets for sentimental analysis. In other words,

the classification problem on this dataset is to judge whether the expression in each tweet

is positive, negative or neutral. The labels of those samples are provided by a group of 507

human annotators and each individual tweet is labeled by three different human annotators.

Among all the samples, 577 of them have ground-truth labels. Similar to Fact dataset, only

the positive label and the negative label are employed in the experiments. Therefore, the

samples taking the neutral label as the ground truth are removed. Also, if the aggregated

human annotated labels on one uncleaned sample is neural, then the probabilistic label on

this sample is not updated Plus, I generate a 768-D embedding sequence by running the pre-

trained bert-based transformer on each tweet and trim the length of the resulting embedding

sequence to 20. When logistic regression model is used,

159



5.3.1.2 Partition training-validation-test sets

Prior to initiating the model training process, one necessary setup is to produce appropriate

training, validation and test sets for the above six datasets, which are described below.

Since some samples in the datasets have missing or unknown ground-truth labels, I

remove them in the experiments. Also, except for MIMIC which has 579 validation samples

and 1628 test samples, other datasets do not have well-defined validation and test set. For

example, as of the time the experiments were performed, the test samples of Chexpert had

not been released. To remedy this, I partition the Chexpert validation set into two parts to

create validation and test sets, each of which have 234 samples. Since there was no validation

set for Retina, I randomly select roughly 10% training samples, i.e., 3512 samples, as the

validation set. Similarly, for the Twitter and Fact datasets, I randomly partition the set

of samples with ground-truth labels as the validation set and test set, and regard all the

other samples as the training set. Since ground-truth labels are not available in the Fashion

dataset, I randomly select roughly 0.5%6 of the sample samples as the validation set and test

set, each containing 146 samples. The “ground-truth” labels for those samples are determined

by aggregating human annotated labels using majority vote. The remaining samples in this

dataset are then regarded as training samples. In the end, the six datasets, i.e., MIMIC,

Retina, Chexpert, Fashion, Fact and Twitter include ∼78k,∼31k,∼38k,∼29k,∼38k and ∼12k

training samples. More detailed statistics of the six datasets are given in Table 5.1.

Table 5.1 – Sizes of Fully clean datasets and Crowdsourced datasets
Dataset MIMIC Retina Chexpert Fashion Fact Twitter

Training set 78487 31615 37882 29031 38176 11606
Validation set 579 3512 234 146 255 37
Test set 1628 53576 234 146 259 37
# of samples with
ground truth

80649 88703 43114 29323 514 74

6This ratio is determined based on the observation that in the Twitter and Fact datasets, the percentage
of samples with ground-truth labels is less than 1% of the size of the entire dataset.

160



5.3.1.3 Producing probabilistic labels

Due to the lack of probabilistic labels or labeling functions [35] for the datasets, I leverage

[48],[159] or [160] to automatically derive suitable labeling functions and thus probabilistic

labels in the experiments. Note that [48] and [159] deal with text data (including the text

associated with image data) while [160] targets pure image data. However, the time and

space complexity of [160] is quadratic in the dataset size, and does not scale to large image

datasets such as our Fully clean datasets. Furthermore, no text information is available for

images in Fully clean datasets, so it is not feasible to use [48] or [159]. As a result, random

probabilistic labels are produced for all training samples. For Crowdsourced datasets, I

apply [48] on the extra text information in Fashion (e.g. user comments for each image) and

the plain-text tweets in the Twitter dataset to produce probabilistic labels. For the Fact

dataset, the two texts for each sample (i.e. the RDF triples and the associated evidence)

are compared using [161] to generate labeling functions.

5.3.1.4 Human annotator setup

For Crowdsourced datasets, I can use the crowdsourced labels as the cleaned labels for the

uncleaned training samples. However, no such labels are available in Fully clean datasets.

To remedy this, I note that the error rate of manually labeling medical images is typically

between 3% and 5%, but sometimes can be up to 30% [162]. I therefore produce synthetic

human annotated labels by flipping the ground truth labels of a randomly selected 5% of the

samples 7. I assume three independent annotators, and aggregate their labels as the cleaned

labels using majority vote (denoted INFL (one)). Since Infl and DUTI [115] can suggest

cleaned labels, those labels can be used as cleaned labels by themselves for the uncleaned

samples (denoted INFL (two)) or be combined with two other simulated human annotators

for label cleaning (denoted INFL (three)).
7Recall that although the samples have probabilistic labels, their true labels are known by construction.

161



5.3.1.5 Model constructor setup

Throughout the paper I assume that strong convexity holds on the ML models. Therefore, in

this section, to justify the performance advantage of our design as a whole (including Increm-

INFL, DeltaGrad-L and Infl), I focus on a scenario where pre-trained models are leveraged

for feature transformation and then a logistic regression model is used for classification,

which has emerged as a convention for medical image classification tasks [156]. Specifically,

in the experiments, I use a pre-trained ResNet50 [163] for the image datasets (Fully clean

datasets and Fashion), and use a pre-trained BERT-based transformer [158] for the text

datasets (Fact and Twitter). Unless explicitly stated, stochastic gradient descent (SGD) is

used in the subsequent training process with the default mini-batch size of 2000, and the

default weight γ = 0.8 on the uncleaned samples. Early stopping is also applied to avoid

overfitting. Other hyper-parameters for model training are included in Table 5.2.

Table 5.2 – The hyper-parameters for each dataset
Dataset MIMIC Retina Chexpert Fashion Fact Twitter

Learning rate 0.0005 0.001 0.02 0.05 0.005 0.01
L2 regularization 0.05 0.05 0.05 0.001 0.01 0.01
# of epochs 150 200 200 200 150 400

As discussed in the beginning of this chapter, other than the initialization step, I can

construct the models by either retraining from scratch (denoted Retrain) or leveraging Del-

taGrad for incremental updates. As indicated in Algorithm 10, it is essential to specify three

hyper-parameters for DeltaGrad, i.e., the period T0, the history size m0 and the “burn-in”

iteration number j0, which are configured as m0 = 2, j0 = 10 and T0 = 10 in the experi-

ments.

However, the strong convexity assumption on model type is only required for Increm-

INFL and DeltaGrad-L, but not for Infl. Hence, extra experiments are conducted using

convolutional neural networks (CNNs), which are presented in the Section 5.3.3.1. The

results also demonstrate the performance advantage of Infl in more general settings.

162



5.3.1.6 Sample selector setup

I assume that the clean budge B = 100, meaning that 100 training samples are cleaned in

total. I further vary the number of samples to be cleaned at each round, i.e. the value of b.

5.3.1.7 Baseline methods

Baseline against Infl I compare Infl against several baseline methods, including other

versions of the influence function, i.e. Equation (5.2) [44] (denoted by Infl-D, which is also

INFL in Chapter 4) and Equation (5.5) [115] (denoted by Infl-Y) and DUTI. Since solving

the bi-level optimization problem in DUTI is extremely expensive, I only run DUTI once to

identify the Top-100 influential training samples.

Since active learning and noisy sample detection algorithms can prioritize the most

influential samples for label cleaning, they are also compared against Infl. Specifically, I

consider two active learning methods, i.e., least confidence based sampling method (denoted

by Active (one)) and entropy based sampling method (denoted by Active (two)) [45], and

two noisy sample detection algorithms, i.e., O2U [46] and TARS [111].

Note that many of these baseline methods are not applicable in the presence of probabil-

istic labels and regularization on uncleaned training samples. Hence, I modify the methods

to handle these scenarios or adjust the experimental set-up to create a fair comparison. For

example, at the end of this section, I present necessary modifications to DUTI so that it can

handle probabilistic labels. However, it is not straightforward to modify DUTI for quan-

tifying the effect of up-weighting the training samples after they are cleaned. I therefore

only compare DUTI against Infl when all the training samples are equally weighted (i.e.

γ = 1 in Equation (5.1)) Similarly, TARS is only applicable when the noisy labels are either

0 or 1 rather than probabilistic ones. Therefore, to compare Infl and TARS, I round the

probabilistic labels to their nearest deterministic labels for a fair comparison. For other

baseline methods such as Active (one), Active (two), O2U and Infl-D, no modifications are

made other than using Equation (5.1) for model training.

Baseline against DeltaGrad-L and Increm-INFL Recall that DeltaGrad-L incre-

163



mentally updates the model after some training samples are cleaned. I compare this with

retraining the model from scratch (denoted as Retrain). I also compare the running time

for selecting the influential training samples with and without Increm-INFL. When Increm-

INFL is not used, it is denoted as Full.

Adapting DUTI to handle probabilistic labels According to [115], the original

version of DUTI is as follows:

min
Y′=[y′1,y

′
2,...,y

′
n],ŵ

[
1

|Zval|
∑

z∈Zval

F (ŵ, z) +
1

n

n∑
i=1

F (ŵ, (x, y′i)) +
γ

n

n∑
i=1

(1− y′i,yi)],

s.t. ŵ = argminw
1

n

n∑
i=1

F (w, (xi, y′i))

(5.27)

which is defined on the training dataset Z = {(xi, yi)}ni=1 and the validation dataset

Zval = {(xi, yi)}|Zval|
i=1 . In the formula above, each y′i is a vector of length C (recall that C

represents the number of classes) and the term y′i,yi indicates the (yi)th entry in the vector

y′i, which implicitly suggests that each yi should be a deterministic label.

Note that if yi is a probabilistic label (represented by a probabilistic vector of length C),

I cannot calculate the term y′i,yi . Therefore, I replace yi in y
′
i,yi

by using the index with the

largest entry in yi.

Figure 5.2 – Comparison of accumulated running time between DeltaGrad-L and Retrain

164



Table 5.3 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Fully clean datasets (b = 100, γ = 0.8)

MIMIC Retina Chexpert
uncleaned 0.6284±0.0012 0.5565±0.0019 0.5244±0.0016
Infl-D 0.6283±0.0011 0.5556±0.0012 0.5244±0.0033
Active (one) 0.6286±0.0008 0.5566±0.0029 0.5248±0.0024
Active (two) 0.6286±0.0008 0.5566±0.0029 0.5248±0.0024
O2U 0.1850±0.0006 0.1331±0.0012 0.5276±0.0012
INFL (one) 0.6292±0.0005 0.5580±0.0013 0.5286±0.0023
INFL (two) 0.6293±0.0012 0.5582±0.0011 0.5297±0.0022
INFL (three) 0.6293±0.0008 0.5581±0.0009 0.5289±0.0022

Table 5.4 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Crowdsourced datasets (b = 100, γ = 0.8)

Fashion Fact Twitter
uncleaned 0.5140±0.0142 0.6595±0.0017 0.6485±0.0050
Infl-D 0.5143±0.0146 0.6596±0.0018 0.6530±0.0088
Active (one) 0.5145±0.0144 0.6598±0.0017 0.6540±0.0045
Active (two) 0.5145±0.0144 0.6598±0.0017 0.6540±0.0045
O2U 0.5148±0.0142 0.6599±0.0014 0.6481±0.0023
INFL (one) 0.5178±0.0132 0.6601±0.0021 0.6594±0.0034
INFL (two) 0.5177±0.0132 0.6609±0.0021 0.6680±0.0044
INFL (three) 0.5177±0.0126 0.6603±0.0021 0.6594±0.0032

5.3.2 Experimental design

In this section, I design the following three experiments:

Table 5.5 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Fully clean datasets (b = 10, γ = 0.8)

MIMIC Retina Chexpert
uncleaned 0.6284±0.0012 0.5565±0.0019 0.5244±0.0016
Infl-D 0.6283±0.0011 0.5556±0.0016 0.5246±0.0036
Active (one) 0.6287±0.0005 0.5568±0.0001 0.5246±0.0020
Active (two) 0.6287±0.0005 0.5568±0.0016 0.5246±0.0020
O2U 0.1850±0.0008 0.1314±0.0006 0.5281±0.0016
INFL (one) 0.6292±0.0007 0.5579±0.0013 0.5287±0.0024
INFL (two) 0.6293±0.0011 0.5582±0.0003 0.5300±0.0024
INFL (two)+ DeltaGrad 0.6292±0.0005 0.5610±0.0010 0.5295±0.0030
INFL (three) 0.6292±0.0008 0.5581±0.0018 0.5291±0.0023

165



Table 5.6 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Crowdsourced datasets (b = 10, γ = 0.8)

Fashion Fact Twitter
uncleaned 0.5140±0.0142 0.6595±0.0017 0.6485±0.0050
Infl-D 0.5143±0.0144 0.6596±0.0018 0.6518±0.0081
Active (one) 0.5145±0.0135 0.6600±0.0017 0.6515±0.0082
Active (two) 0.5145±0.0135 0.6600±0.0017 0.6515±0.0082
O2U 0.5152±0.0143 0.6598±0.0010 0.6490±0.0067
INFL (one) 0.5178±0.0125 0.6601±0.0019 0.6578±0.0039
INFL (two) 0.5181±0.0131 0.6609±0.0020 0.6697±0.0058
INFL (two)+ DeltaGrad 0.5195±0.0144 0.6609±0.0065 0.6597±0.0027
INFL (three) 0.5180±0.0128 0.6602±0.0022 0.6586±0.0032

Table 5.7 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Fully clean datasets (b = 100, γ = 1)

MIMIC Retina Chexpert
uncleaned 0.6310±0.0010 0.5547±0.0020 0.5360±0.0123
Infl-D 0.6310±0.0010 0.5543±0.0015 0.5354±0.0108
Infl-Y 0.6310±0.0011 0.5546±0.0019 0.5360±0.0118
DUTI 0.6310±0.0011 0.5558±0.0019 0.5361±0.0127
Active (one) 0.6314±0.0008 0.5554±0.0018 0.5366±0.0127
Active (two) 0.6314±0.0008 0.5554±0.0018 0.5366±0.0127
O2U 0.1278±0.0080 0.0940±0.0023 0.5282±0.0043
INFL (one) 0.6320±0.0011 0.5564±0.0020 0.5403±0.0122
INFL (two) 0.6321±0.0011 0.5567±0.0021 0.5444±0.0080
INFL (three) 0.6321±0.0010 0.5565±0.0021 0.5403±0.0131

Table 5.8 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Crowdsourced datasets (b = 100, γ = 1)

Fashion Fact Twitter
uncleaned 0.5264±0.0078 0.6584±0.0015 0.7034±0.0062
Infl-D 0.5262±0.0076 0.6587±0.0016 0.6853±0.0140
Infl-Y 0.5265±0.0081 0.6584±0.0015 0.7102±0.0125
DUTI 0.5238±0.0070 0.6582±0.0056 0.6230±0.0149
Active (one) 0.5267±0.0041 0.6580±0.0020 0.7051±0.0089
Active (two) 0.5267±0.0041 0.6580±0.0020 0.7051±0.0089
O2U 0.5277±0.0065 0.6587±0.0006 0.6401±0.0175
INFL (one) 0.5297±0.0068 0.6586±0.0016 0.7164±0.0017
INFL (two) 0.5301±0.0053 0.6588±0.0016 0.7349±0.0290
INFL (three) 0.5299±0.0059 0.6585±0.0017 0.7200±0.0109

166



Table 5.9 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Fully clean datasets (b = 10, γ = 1)

MIMIC Retina Chexpert
uncleaned 0.6310±0.0010 0.5547±0.0020 0.5360±0.0123
Infl-D 0.6310±0.0010 0.5543±0.0015 0.5355±0.0112
Infl-Y 0.6310±0.0011 0.5547±0.0018 0.5359±0.0121
Active (one) 0.6316±0.0007 0.5552±0.0018 0.5368±0.0127
Active (two) 0.6316±0.0007 0.5552±0.0018 0.5368±0.0127
O2U 0.1284±0.0077 0.0934±0.0021 0.5281±0.0036
INFL (one) 0.6321±0.0010 0.5564±0.0018 0.5402±0.0117
INFL (two) 0.6321±0.0010 0.5567±0.0019 0.5412±0.0120
INFL (three) 0.6321±0.0010 0.5564±0.0019 0.5406±0.0124

Table 5.10 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Crowdsourced datasets (b = 10, γ = 1)

Fashion Fact Twitter
uncleaned 0.5264±0.0078 0.6584±0.0015 0.7034±0.0062
Infl-D 0.5263±0.0076 0.6585±0.0015 0.5854±0.0099
Infl-Y 0.5265±0.0081 0.6585±0.0017 0.6999±0.0020
Active (one) 0.5268±0.0041 0.6584±0.0021 0.7030±0.0109
Active (two) 0.5268±0.0041 0.6584±0.0021 0.7030±0.0109
O2U 0.5275±0.0065 0.6586±0.0020 0.6268±0.0069
INFL (one) 0.5298±0.0068 0.6585±0.0016 0.7153±0.0019
INFL (two) 0.5303±0.0053 0.6588±0.0016 0.7420±0.0019
INFL (three) 0.5300±0.0059 0.6585±0.0017 0.7171±0.0029

Table 5.11 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Fully clean datasets (b = 100, γ = 0)

MIMIC Retina Chexpert
uncleaned 0.6323±0.0041 0.5614±0.0018 0.5231±0.0009
Infl-D 0.8880±0.0174 0.6728±0.0138 0.5709±0.0059
Active (one) 0.8641±0.0348 0.6898±0.0038 0.5752±0.0512
Active (two) 0.8641±0.0348 0.6898±0.0038 0.5752±0.0512
O2U 0.8933±0.0082 0.6707±0.0340 0.5825±0.0195
INFL (one) 0.8740±0.0306 0.6756±0.0133 0.5853±0.0238
INFL (two) 0.8989±0.0008 0.6894±0.0048 0.5924±0.0171
INFL (three) 0.8853±0.0196 0.6884±0.0077 0.5878±0.0188

Table 5.12 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Crowdsourced datasets (b = 100, γ = 0)

Fashion Fact Twitter
uncleaned 0.5057±0.0163 0.6604±0.0020 0.6335±0.0301
Infl-D 0.5789±0.0437 0.6584±0.0221 0.6534±0.0248
Active (one) 0.5593±0.0089 0.6723±0.0185 0.6324±0.0024
Active (two) 0.5593±0.0089 0.6723±0.0185 0.6324±0.0112
O2U 0.5830±0.0021 0.6553±0.0232 0.7703±0.0210
INFL (one) 0.5905±0.0212 0.6618±0.0192 0.6029±0.0689
INFL (two) 0.6020±0.0431 0.6691±0.0159 0.6739±0.0403
INFL (three) 0.5975±0.0139 0.6616±0.0221 0.6232±0.0560

167



Table 5.13 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Fully clean datasets (b = 10, γ = 0)

MIMIC Retina Chexpert
uncleaned 0.6323±0.0041 0.5614±0.0018 0.5231±0.0009
Infl-D 0.9013±0.0006 0.6550±0.0613 0.5736±0.0100
Active (one) 0.9008±0.0007 0.6916±0.0038 0.5890±0.0190
Active (two) 0.9007±0.0007 0.6916±0.0038 0.5890±0.0190
O2U 0.9010±0.0008 0.6962±0.0193 0.5775±0.0271
INFL (one) 0.9007±0.0004 0.6902±0.0007 0.6275±0.0329
INFL (two) 0.8991±0.0012 0.6904±0.0254 0.6382±0.0225
INFL (three) 0.9008±0.0010 0.6802±0.0108 0.6254±0.0206

Table 5.14 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned on Crowdsourced datasets (b = 10, γ = 0)

Fashion Fact Twitter
uncleaned 0.5057±0.0163 0.6604±0.0020 0.6335±0.0301
Infl-D 0.5956±0.0296 0.6511±0.0306 0.6140±0.0226
Active (one) 0.5651±0.0407 0.6532±0.0305 0.6891±0.0024
Active (two) 0.5651±0.0407 0.6532±0.0305 0.6891±0.0086
O2U 0.5498±0.0486 0.6829±0.0157 0.7547±0.0087
INFL (one) 0.6449±0.0126 0.6576±0.0283 0.7406±0.1798
INFL (two) 0.6926±0.0148 0.6871±0.0801 0.8184±0.0446
INFL (three) 0.6706±0.0174 0.6582±0.0229 0.7711±0.0258

Table 5.15 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned (against TARS, b=100)

MIMIC Chexpert Retina Fashion
uncleaned 0.6413±0.0008 0.5359±0.0040 0.5702±0.0015 0.6280±0.0035
Infl-D 0.6647±0.0129 0.5506±0.0015 0.6077±0.0090 0.6318±0.0047
Active (one) 0.6569±0.0240 0.5404±0.0025 0.5910±0.0028 0.6329±0.0070
Active (two) 0.6569±0.0240 0.5404±0.0025 0.5910±0.0028 0.6329±0.0070
O2U 0.6686±0.0016 0.5419±0.0008 0.6021±0.0110 0.6380±0.0027
TARS 0.6022±0.0016 0.5257±0.0031 0.5573±0.0295 0.4964±0.0022
INFL (one) 0.6606±0.0117 0.5505±0.0022 0.6015±0.0082 0.6365±0.0022
INFL (two) 0.6375±0.0445 0.5671±0.0065 0.6168±0.0063 0.6460±0.0060
INFL (three) 0.6600±0.0079 0.5537±0.0037 0.6057±0.0076 0.6372±0.0026

Table 5.16 – Comparison of the model prediction performance (F1 score) after 100 training
samples are cleaned (against TARS, b=10)

MIMIC Chexpert Retina Fashion
uncleaned 0.6413±0.0008 0.5359±0.0040 0.5702±0.0015 0.6280±0.0035
Infl-D 0.6874±0.0110 0.5581±0.0119 0.6098±0.0111 0.6318±0.0047
Active (one) 0.6815±0.0063 0.5404±0.0136 0.5989±0.0062 0.6329±0.0070
Active (two) 0.6815±0.0063 0.5404±0.0136 0.5989±0.0062 0.6329±0.0070
O2U 0.6698±0.0019 0.5396±0.0045 0.6026±0.0012 0.6380±0.0027
TARS 0.6025±0.0008 0.5333±0.0029 0.5572±0.0296 0.4964±0.0022
INFL (one) 0.6867±0.0005 0.5626±0.0061 0.6136±0.0097 0.6365±0.0022
INFL (two) 0.6968±0.0220 0.5863±0.0046 0.6347±0.0034 0.6460±0.0060
INFL (three) 0.6925±0.0149 0.5579±0.0128 0.6173±0.0070 0.6372±0.0026

168



Table 5.17 – Comparison of the model prediction performance (average F1 score) after 100
training samples are cleaned (CNN, b = 100)

uncleaned Infl-D Active
(one)

Active
(two)

O2U INFL
(one)

INFL
(two)

INFL
(three)

MIMIC 0.6301 0.6563 0.6569 0.6569 0.6616 0.6598 0.6642 0.6614
Retina 0.5539 0.5697 0.5698 0.5698 0.5707 0.5700 0.5732 0.5701
Fact 0.6883 0.7560 0.7566 0.7516 0.7739 0.7553 0.8063 0.7654
Twitter 0.6697 0.6707 0.6670 0.6670 0.6763 0.6903 0.6980 0.6897

Table 5.18 – Comparison of the model prediction performance (average F1 score) after 100
training samples are cleaned (CNN, b = 10)

uncleaned Infl-D Active
(one)

Active
(two)

O2U INFL
(one)

INFL
(two)

INFL
(three)

MIMIC 0.6301 0.6591 0.6601 0.6601 0.6593 0.6566 0.6646 0.6593
Retina 0.5539 0.5699 0.5699 0.5699 0.5695 0.5699 0.5731 0.5702
Fact 0.6883 0.7560 0.7566 0.7516 0.7739 0.7553 0.8063 0.7654
Twitter 0.6697 0.6712 0.6668 0.6668 0.6772 0.6901 0.6887 0.6929

5.3.2.1 Experiments for evaluating Infl

Exp1 In this experiment, I compared the model prediction performance after Infl and other

baseline methods (including Infl-D, Active (one), Active (two), O2U) are applied to select

100 training samples for cleaning. Recall that there are three different strategies that Infl

can use to provide cleaned labels and their performance is compared. To show the benefit

of using a smaller batch size b, I choose two different values for b, i.e. 100 and 10. Since the

ground-truth labels are available for all samples in Fully clean datasets, I count how many

of them match the labels suggested by Infl. Also other than the default value of γ as 0.8, I

choose two other different values, 0 and 1 for γ for more extensive comparisons between Infl

and other baseline methods. As mentioned in Section 5.3.1.7, when γ = 1, meaning that all

the training samples are equally weighted, I can also conduct fair comparison between Infl

and DUTI.

Exp2 In this experiment, I aim at comparing Infl against TARS. As mentioned in Sec-

tion 5.3.1.7, TARS is only applicable when the noisy labels are either 0 or 1 rather than

probabilistic ones. Therefore, for a fair comparison between Infl and TARS, I round the

probabilistic labels on the uncleaned training samples to their nearest deterministic labels.

I notice that TARS may not be suitable for all the datasets. This is because to determine the

169



Table 5.19 – Running time of Increm-INFL and Full
Timeinf (s) Timegrad (s)

Full Increm-INFL Full Increm-INFL
MIMIC 151.4±0.5 2.77±0.03 (54.7x) 145.4±0.7 0.17±0.03 (855x)
Retina 74.0±0.6 1.36±0.04 (54.4x) 70.8±0.6 0.21±0.03 (337x)
Chexpert 72.5±0.2 17.9±1.9 (4.1x) 69.3±0.2 14.7±1.5 (4.7x)
Fashion 66.4±3.6 8.7±0.6 (7.6x) 57.1±3.3 0.81±0.07 (70.5x)
Fact 73.8±4.0 6.1±0.8 (12.1x) 72.5±6.0 4.7±0.1 (15.4x)
Twitter 33.1±2.3 14.1±0.4 (2.3x) 30.2±1.1 12.7±0.1 (2.4x)

influence of each uncleaned training sample, TARS needs to estimate how each uncleaned

label will be changed if it is to be cleaned. This depends on “all” the possible combinations

of labels provided by “all” human annotators, which are thus exponential in the number of

human annotators. Therefore, since the number of human annotators for Fact and Twitter

dataset is not small (over 50), I only compare Infl against TARS on Fully clean datasets and

Fashion dataset. In this experiment, I still train logistic regression models on the features

transformed by using the pre-trained models.

Exp3 I also conduct some initial experiments when neural network models are used

in the Model constructor. To goal is to compare Infl (with different strategies to clean

labels) against all the baseline methods mentioned in Section 5.3 (including Infl-D, Active

(one), Active (two), and O2U) in this more general setting. Specifically, for the image

dataset, I applied the LeNet [164] (a classical convolutional neural network structure) on

the original image features (instead of features transformed by using transfer learning). For

the text dataset, such as Fact and Twitter dataset, similar to Section 5.3, I still transform

each plain-text sample into the corresponding embedding representations by using the pre-

trained bert-based transformer and then applied one 1D convolutional neural network on the

transformed embedding representations. I found that the performance of applying LeNet

model on Fashion and Chexpert dataset is significantly worse than that when the pre-trained

models are used, even when all the ground-truth labels or the aggregated human annotated

labels are used. Therefore, I only present the experimental results on MIMIC, Retina, Fact

and Twitter dataset.

Exp4 Finally, I conduct an experiment to explore an appropriate b value which can bal-

170



ance the model performance and the running time given a fixed cleaning budget. Specifically,

I set up the clean budget as 1000 and vary b from 10 to 1000. All the other hyper-parameters

are the same as the above experimental design.

5.3.2.2 Experiments for evaluating Increm-INFL

Exp5 This experiment compares the running time of selecting the Top-b (with b = 10)

influential training samples (denoted Timeinf ) with and without using Increm-INFL at each

round in the Sample selector phase. Recall that the most time-consuming step to evaluate

Equation (5.4) is to compute the class-wise gradients for each sample and the sample-wise

gradients. Therefore, its running time (denoted as Timegrad) is also recorded. For Increm-

INFL, the time to compute the bounds in Theorem 13 is also included in Timeinf .

5.3.2.3 Experiments for evaluating DeltaGrad-L

Exp6 The main goal of this experiment is to explore the difference in running time between

Retrain and DeltaGrad-L for updating the model parameters in theModel constructor phase.

In addition, the model parameters produced by DeltaGrad-L and Retrain are not exactly the

same [95], which could lead to different influence values for each training sample and thus

produce different models in subsequent cleaning rounds. Therefore, I also explore whether

such differences produce divergent prediction performance for DeltaGrad-L and Retrain.

5.3.3 Experimental results

5.3.3.1 Experiments for evaluating Infl

Exp1 Experimental results are given in Table 5.3-5.14. When γ = 0.8 or γ = 1, I observe

that with fixed b, e.g., 10, INFL (two) performs best across almost all datasets. Recall that

INFL (two) uses the derived labels produced by Infl as the cleaned labels without additional

human annotated labels. Due to its superior performance, especially on Crowdsourced data-

sets, this implies that the quality of the labels provided by Infl could actually be better than

that of the human annotated labels.

171



(a) Twitter (b) Fashion

Figure 5.3 – Visualization of the validation samples, test samples and the most influen-
tial training sample S (‘+’, ‘-’ and ‘X’ denote the positive ground-truth samples, negative
ground-truth samples and the sample S respectively)

To further understand the reason behind this, I compared the labels suggested by Infl

against their ground-truth labels for Fully clean datasets. It turns out that over 70% are

equivalent (89 for Retina, 79 for Chexpert and 95 for MIMIC). Note that even the ground-

truth labels of these three datasets are not 100% accurate. In the Chexpert dataset, for

example, the ground-truth labels are generated through an automate labeling tool rather

than being labeled by human annotators, thereby leading to possible labeling errors. Those

erroneous labels may not match the labels provided by Infl, thus leading to worse model per-

formance (see the performance difference between INFL (one) and INFL (two) for Chexpert

dataset).

However, the above comparison could not be done for Crowdsourced datasets due to the

lack of ground-truth labels. I therefore investigate the relationship between the samples

with ground-truth labels and the influential samples identified by Infl. Specifically, I use

t-SNE [165] to visualize the samples with ground-truth labels for the Twitter and Fashion

datasets after feature transformation using the pre-trained models (see Figure 5.3). As

described in Section 5.3.1, those samples belong to validation or test set. In addition, in this

figure, I indicate the position of the most influential training sample S identified by Infl. As

this figure indicates, the sample S is proximal to the samples with negative ground-truth

labels for the Twitter dataset (positive for the Fashion dataset). To guarantee the accurate

172



predictions on those nearby ground-truth samples, it is therefore reasonable to label S as

negative (positive for Fashion dataset), which matches the labels provided by Infl but differs

from ones given by the human annotators. This indicates the high quality of the labels given

by Infl. Thus, when high-quality human labelers are not available, Infl can be an alternative

labeler for reducing the labeling overhead without harming the labeling quality.

It is also worth noting that when γ is one where all the training samples are equally

weighted. DUTI performs worse than Infl. Based on our observations in the experiments,

this phenomenon might be due to the difficulty in exactly solving the bi-optimization problem

in DUTI, thus producing sub-optimal selections of the influential training samples.

Plus, when γ = 1, I also observe that Infl-Y performs worse than Infl. Recall that by

comparing against Infl, Infl-Y quantifies the influence of each training sample without taking

the magnitude of the label changes into the considerations. Since Infl-Y fails to outperform

Infl, it thus justifies the necessity of explicitly considering the label changes in the influence

function.

On the other hand, when γ = 0, except MIMIC and Retina, Infl can still beat other

baseline methods, thus indicating that the potential of Infl when the uncleaned labels are not

included in the training process. Note that for MIMIC and Retina dataset, the performance

of Infl is not ideal. One possible reason is that with γ = 0, the samples with probabilistic

labels are not included in the training process, meaning that only a small portion of samples

(up to 100) are used for model training. Note that there are 100 samples cleaned in total,

thus violating the small cleaning budge assumption. Plus, note that for the influence function

method, due to the Taylor expansion in Equation (5.9), one implicit assumption is thus the

slight modification on model parameter after small amount of training samples are modified.

However, I also observe that significant updates on the model parameters occur after the

100 samples are cleaned for MIMIC and Retina dataset (due to the violation of the small

cleaning budge assumption), thus leading to inaccurate estimate on the training sample

influence. How to handle this pathological scenario will be also part of our future work.

It is also worth noting that by comparing Table 5.7-5.10 and Table 5.11-5.14, it is worth

173



noting that with γ = 1, the model performance is worse with respect to that with γ = 0,

thus implying the negative effect of the probabilistic labels. But when γ = 1, the strong

negative effect of the probabilistic labels do not hurt the performance of Infl, thus suggesting

the robustness of Infl when the probabilistic labels are not ideal.

Table 5.3-5.14 also exhibits the benefit of using smaller batch sizes b since it results in

better model performance when Infl, especially INFL (two), is used for some datasets (e.g,

see its model performance comparison between b = 100 and b = 10 for Twitter dataset in

Table 5.3 and Table 5.5). Intuitively, Infl only quantifies the influence of cleaning single

training sample rather than multiple ones. Therefore, the larger b is, the more likely that

Infl selects a sub-optimal set of b samples for cleaning. Ideally, b should be one, meaning

that one training sample is cleaned at each round. However, this can inevitably increase the

number of rounds and thus the overall overhead. In Exp4, I empirically explored how to

choose an appropriate b to balance the model performance and the total running time.

Exp2 The experimental results of Exp2 are included in Table 5.15-5.16. According

to these two tables, Infl still results in much better models than other baseline methods,

including TARS. This thus demonstrates the performance advantage of Infl even when the

uncleaned labels are all deterministic. So in comparison to TARS, Infl is not only suitable

for more general scenarios, but also capable of producing higher-quality models in those

scenarios.

Exp3 I present the results of Exp3 in Table 5.17. As this table indicates, INFL (two) can

still achieve the best model performance for those four datasets, thus indicating the potential

of applying Infl even when a neural network model is used. Note that the LeNet model is

less complicated than other large neural network models, such as ResNet50. Therefore, in

the future I would like to do more extensive experiments to evaluate the performance of Infl

when large neural network models are used. Since Increm-INFL and DeltaGrad-L are only

applicable for strongly convex models such as logistic regression models, I would also like to

study how to extend them to handle neural network models.

Exp4 The experimental results are provided in Table 5.20. As this table shows, when

174



Table 5.20 – Comparison of the model prediction performance (F1 score) with varied b on
Twitter dataset (INFL (two))

uncleaned b=1000 b=500 b=200 b=100 b=50 b=20 b=10
Twitter 0.6509 0.8672 0.8932 0.8939 0.9149 0.9105 0.9046 0.9064
Fashion 0.6605 0.6942 0.6993 0.6990 0.7042 0.7065 0.7089 0.7082

the cleaning budget is 1000 and b is 100, i.e. roughly 10% of the cleaning budget, the model

performance is close to the peak performance. When b becomes smaller, the model perform-

ance does not significantly improve and the overall running time increases. Therefore, to

balance between model performance and running time, setting b as the 10% of the cleaning

budget is recommended.

Exp5 In this experiment, I compare the running time of Increm-INFL and Full in se-

lecting the Top-10 influential training samples (Timeinf ) at each cleaning round of the loop

2 (with b = 10). Due to space, I only include results for the last round in Table 5.19,

which are similar to results in other rounds. As Table 5.19 indicates, Increm-INFL is up to

54.7x faster than Full, which is due to the significantly decreased overhead of computing the

class-wise gradients for each sample (i.e. Timegrad) when Increm-INFL is used. To further

illustrate this point, I also record the number of candidate influential training samples whose

influence values are explicitly evaluated with and without using Increm-INFL. The result

indicates that due to the early removal of uninfluential training samples using Increm-INFL,

I only need to evaluate the influence of a small portion of training samples, thus reducing

Timegrad by up to two orders of magnitude and thereby significantly reducing the total run-

ning time, Timeinf . In addition, I observe that Increm-INFL always returns the same set of

influential training samples as Full, which thus guarantees the correctness of Increm-INFL.

Exp6 Experimental results of Exp6 are shown in Figure 5.2. The first observation is

that DeltaGrad-L can achieve up to 7.5x speed-up with respect to Retrain on updating

the model parameters. As shown in Section 5.3.2, the models updated by DeltaGrad-L

are not exactly the same as those produced by Retrain, which might cause different model

performance between the two methods. However, I observe that the models constructed by

those two methods have almost equivalent prediction performance (see the second to last row

175



in Table 5.5 and Table 5.6). This indicates that it is worthwhile to leverage DeltaGrad-L

for speeding up the model constructor.

5.4 Acknowledgement

In this portion of the dissertation, I received extensive help from Dr. James Weimer, who

provided the computational resources needed for the experiments, as well as insight on how

to design practical solutions in the medical domains.

176



CHAPTER 6: Extending DeltaGrad and CHEF

Several of the results in this dissertation depend on assumptions on model classes which

may not hold in practice, thus preventing their use in more general scenarios. Therefore,

this chapter presents ideas for future work on how to extend DeltaGrad and CHEF such

that those assumptions could be relaxed. In extending DeltaGrad, I focus on black-box

model inversion attacks, which are more realistic than white-box inversion attacks, and

build a solution base on the online method (see Section 6.1). To extend CHEF for handling

more general models, the main bottleneck is Increm-INFL, for which I leverage an extended

L-BFGS algorithm (see Section 6.2.1). I also note that CHEF could be extended in two

other ways, including a tight integration between CHEF and weakly supervised learning

(see Section 6.2.2), and the combination of CHEF and semi-supervised learning (see Section

6.2.3).

6.1 Extending DeltaGrad

Recall that in Chapter 4, I presented DeltaGrad, an approach to incrementally updating

models, which can not only provide significant speed-ups on updating models, but also

defend against white-box model inversion attack (see the discussion in Section 1.3). One

assumption of this approach is that the models are strongly convex, which, unfortunately,

is not true for general neural network models. In fact, neural network models are highly

sophisticated and usually over-parameterized, meaning that the number of model parameters

is far more than the size of training set. Therefore, such high model complexity brings

about huge challenges for designing a solution that can incrementally update the model and

simultaneously be resistant to the white-box model inversion attack. Intuitively speaking,

the main bottleneck of providing a solution is the need to cache the model parameters and

177



corresponding gradients at each GD or SGD iteration. This can consume a prohibitively

large amount of memory for large over-paremeterized models, but is essential to remove the

effect of the deleted training sample throughout the entire training process.

Therefore, in this section, I will focus on a scenario where a black-box model inversion

attack [101] can occur. This is a more reasonable set-up in practice as mentioned in Section

2.3. Ideally, given a deletion request, to guarantee that an incrementally updated model

is as powerful as a model reconstructed from scratch in defending the black-box attack,

I expect that the two models can always produce the same output predictions given any

input sample such that the adversary is unable to differentiate these two models. As I will

explain in Section 6.1.2.2, the online method is resistant to the black-box model inversion

attack but vulnerable to the white-box one. Therefore, employing the online method is

an appropriate starting point for designing a solution to incrementally update the over-

parameterized models and be resistant to black-box mode inversion attack at the same time.

However, as I will reveal in Section 6.1.2.3, it is insufficient to merely utilize the online

method for updating over-parameterized models since it may fail to forget the removed

training samples. To remedy this issue, I propose to equip the online method with some

additional operations which take the convergence property for the over-parameterized models

into account.

The rest of this section begins with an overview of a recent break-through in over-

parameterized neural network models, including the description of a property that might

be useful for developing the method for incremental updating models. This is followed by

a detailed analysis of the online method, including why it fails to defend against white-box

model inversion attacks and fails to forget removed training samples from over-parameterized

models. This section ends with my proposed solution for incrementally updating over-

parameterized models, which leverages both the online method and the one convergence

property of over-parameterized models.

178



6.1.1 Brief introduction to over-parameterized neural network models

It is widely recognized that many advanced neural network models are very powerful in

providing accurate predictions, even on unseen data. However, this seems to violate the

classical bias-variance trade-off curve, which suggests that neither too simple nor too com-

plicated models are appropriate due to the decreased bias (corresponding to training errors)

and the increased variance (corresponding to test errors) with the rise of the model complex-

ity. To reconcile the conflict between the bias-variance trade-off curve and the practice of

using neural network models, [166] observed that this curve could be complemented with the

double-descent curve. According to this double-descent curve, when the models are under-

parameterized, the classical bias-variance trade-off holds while when the model complexity

exceeds some threshold—in other words, the models become over-parameterized—the train-

ing error approaches zero and the test error gets surprisingly decreased. To fundamentally

understand this phenomenon, [167, 168, 169] provide rigorous theoretical analysis from the

optimization perspective, which shows that when the number of model parameters in one

neural network model is large enough, training this model via gradient descent can prov-

ably produce zero training error. In addition, to explain the generalization power of the

over-parameterized neural network models, [170] analyzes their generalization error, which

is proven to be small enough for large enough training set no matter how complicated the

model is.

Apart from the above optimization and generalization properties of the over

-parameterized neural network models, researchers also explored other convergence prop-

erties for the over-parameterized neural network models. For example, due to the non-

convexity of the over-parameterized neural networks, there are more than one local min-

imum for this type of model, which corresponds to the model parameters producing zero

gradient. However, it has been observed that optimizing this type of model via gradient

descent converges to a specific local minimum. This phenomenon is referred to as implicit

bias. For example, as [171] proves, for a linearly separable dataset, there can be infinite

number of linear classifiers exactly fitting this dataset, which are also the local minimums of

179



Figure 6.1 – Visual interpretation of the implicit bias when an unregularized logistic regres-
sion model is trained on a linearly separable dataset. In this dataset, I use a green ‘+’ and
purple dot to denote the positively and negatively labeled training samples, respectively.
Note that there can be an infinite number of linear classifiers exactly fitting this dataset,
such as the blue solid line and the blue dot line. However, training a logistic regression
model via gradient descent method always leads to the blue solid line as the final solution,
which is the max-margin solution

the objective function defined by applying logistic regression models. However, training an

unregularized logistic regression models on this dataset via gradient descent can provably be

biased toward one local minimum, i.e., the linear classifier which produces the maximal mar-

gin between the classifier and the training samples (see Figure 6.1 for visual interpretations).

For more complicated models such as the over-parameterized two-layer neural network [172],

the over-parameterized linear convolutional networks [173] and general over-parameterized

neural networks [174], gradient descent method also tends to be biased toward certain local

minimum rather than arbitrary local minimums.

6.1.2 Details of the online method

This section gives a detailed description of the online method, which starts by the analysis

on the efficiency of the online method on incrementally updating machine learning models,

followed by the discussions of why the online method is resistant to the black-box model

inversion attack but not the white-box one. In the end, I analyze why merely utilizing on-

line method fails to accurately update over-parameterized models, which is also empirically

180



demonstrated with one experiment.

6.1.2.1 Efficiency of the online method

As described in Section 1.3, only a few GD or SGD iterations are required for incrementally

updating models by employing online method, which relies on the following appropriate

assumptions:

Assumption 6. The model parameter trained on the full training dataset is w∗

Assumption 7. The size of the removed training set, R, is far smaller than the size of the

full training set

Assumption 8. With the model parameter w∗, the gradient evaluated on each training

sample z is bounded by a constant G.

Note that the above assumptions can be applied for arbitrarily complicated models.

Then I derive the following formula based on the above assumptions:

1

|Ztrain|
∑

z∈Ztrain

∇F (w∗, z) = 0

⇐⇒ 1

|Ztrain −R|
∑

z∈Ztrain,z6∈R
∇F (w∗, z) = − 1

|Ztrain −R|
∑
z 6∈R
∇F (w∗, z)

⇐⇒ ‖ 1

|Ztrain −R|
∑

z∈Ztrain,z 6∈R
∇F (w∗, z)‖ = ‖ − 1

|Ztrain −R|
∑
z 6∈R
∇F (w∗, z)‖

≤ |R|G
|Ztrain −R|

≈ 0

(6.1)

The second step moves the gradient on the removed training samples to the right-

hand side of the equality and the last step leverages Assumption 8. This tells us that

with model parameter w∗, the sum of the gradients on the remaining training samples is

close to zero, meaning that w∗ is close to one local minimum for the objective function

1
|Ztrain−R|

∑
z∈Ztrain,z6∈R F (w∗, z). Therefore, I can easily run a few GD or SGD updates to

identify one such local minimum w∗1.

181



It is worth noting that for strongly convex models, the online method always produces

incrementally updated models that are the same as the ones retrained from scratch on the

remaining training samples. This relies on the uniqueness of the local minimum of strongly

convex models, which is also the global minimum.

6.1.2.2 Online method and the model inversion attack

In this section, I analyze why the online method can defend against the black-box model

inversion attack but is vulnerable to the white-box attack.

As shown in Section 6.1.2, the strongly convex models incrementally updated by the

online method are exactly the same as the ones retrained from scratch on the remaining

training samples. This indicates that the two models always produce the same output given

any input training samples and thus cannot be differentiated by the adversary who only has

black-box access to the models. Therefore, one can claim that the online method is able to

defend against the black-box model inversion attack.

In contrast, by assuming that one training sample is deleted, I can craft the following

white-box attack on the updated model by the online method: 1) undo the GD or SGD

updates for t iterations such that the updated models could be rolled back to the model

status before the deletions happen, which can be accomplished by performing t iterations of

gradient ascent or stochastic gradient ascent on the remaining training samples (recall that

t is the number of GD or SGD iterations that the online method requires for incremental

updates); 2) estimate the gradient evaluated on the deleted training sample at the current

model status by leveraging the fact that the gradient on the full training set is close to zero

due to the convergence condition (recall that the adversary may know the remaining training

samples after the deletion requests); 3) reconstruct the deleted sample by employing the

solution from [175], which only uses the gradient on the deleted training sample. Note that

this problem will not arise for PrIU and DeltaGrad as long as the provenance information for

incremental updates is not leaked. Intuitively, PrIU and DeltaGrad “erase" the footprint of

the deleted training sample from every GD or SGD iteration so that the gradient evaluated

182



on the removed training sample cannot be obtained by the adversary, thus safeguarding the

removed training samples.

6.1.2.3 Failure of the online method for incrementally updating

over-parameterized models

Another limitation of the online method is that it cannot accurately update more complic-

ated models, e.g., the over-parameterized neural network models. Intuitively speaking, due

to over-parameterization, different training samples may be memorized by different portions

of model parameters. Therefore, after the deletion request, if the online method is used

without additional operations to explicitly forget the removed training samples from the

models, the model parameters for memorizing those samples will not be affected.

To justify this point, I provide some empirical evidence. To start with, I add 5 randomly

generated noisy training samples into the training set of cifar10 dataset [176] and then train

a VGG16 model [177] on this augmented training set by running SGD for long enough. Note

that the VGG16 model is composed of up to 138 million parameters, which is far more than

the size of cifar10 dataset (i.e. 60000) and thus could be regarded as an over-parameterized

model. After the termination of the training process, it is worth noting that the resulting

model could memorize all the training samples, including those noisy samples, due to the

correct model predictions on those samples, which is consistent with the observation in [178].

Afterwards, the online method is applied to incrementally update this model by continuing

running SGD updates after the noisy training samples are excluded from the training set.

Unfortunately, I observed that no matter how the hyper-parameters (e.g. mini-batch size

and epochs) of the online method are varied, the predictions on those deleted training

samples by using this incrementally updated model are still all correct. In contrast, if the

model is updated by retraining from scratch on the original training set of cifar10 dataset

(without including the noisy samples), then this model would give pretty random prediction

results on those noisy samples. This thus indicates that simply applying the online method

cannot clear the memorization of the removed training samples from the over-parameterized

183



models.

6.1.3 Proposed solution

To facilitate the incremental updates on the over-parameterized models, I proposed to equip

the online method with the implicit bias property for over-parameterized models such that

the incrementally updated models could match the ones by retraining from scratch.

Specifically, after the online method is applied, it is worth noting that this method

would end up with a local minimum of the model constructed on the remaining training

samples, which may not necessarily satisfy the implicit bias property. To identify one local

minimum satisfying this property, one possible way is to search within the parameter space

comprised of all the local minimums rather than the entire parameter space, which can thus

be formalized as the following constrained optimization problem:

implicit bias property holds for w

s.t.‖ 1

|Ztrain −R|
∑

z∈Ztrain,z6∈R
∇F (w, z)‖ = 0

(6.2)

Solving the above formula can take w∗1 as the initialized value (recall that w∗1 is the

local minimum identified by the online method). I can then instantiate the above optim-

ization problem by explicitly considering the implicit bias property for different specific

over-parameterized models. For example, by following the problem set-up in [171], i.e. op-

timizing a logistic regression model on linearly separable data, Equation (6.2) could be

instantiated as:

minw‖w‖,s.t.‖
1

|Ztrain −R|
∑

z∈Ztrain,z 6∈R
∇F (w, z)‖ = 0 (6.3)

In the future, I would like to explore how to instantiate Equation (6.2) for general neural

network models, which may utilize the implicit bias property discovered by [179].

184



6.2 Extending CHEF

This section considers how to extend CHEF to handle more complicated scenarios, which

starts by discussing how of extending CHEF to deal with general machine learning models,

followed by some initial thoughts on how to combine CHEF and weakly supervised learning

as well as semi-supervised learning.

6.2.1 Extending CHEF for general machine learning models

Recall that in Chapter 5, I assume that the machine learning models are strongly convex for

Increm-INFL and DeltaGrad-L. Note that DeltaGrad-L is a variant of DeltaGrad. There-

fore, as long as DeltaGrad is capable of incrementally updating general neural networks by

following the ideas in Section 6.1, it is not difficult to adjust DeltaGrad-L to support general

models. Therefore, in this section, I primarily focus on how to generalize DeltaGrad-L to

deal with more complicated models.

Recall that as the first step toward deriving the perturbation bound on I(k)
pert(z̃, δy, γ), the

formula −I(k)
pert(z̃, δy, γ)−I0(z̃, δy, γ) is partitioned into two components, i.e. Diff1 and Diff2

(see Equation (5.12) in Section 5.2.1.3). I note that Diff1 could be rewritten into Equation

(5.13), which requires to compute a Hessian-vector product, v>H(j)(w(k), z). In the proof

of Theorem 13, Equation (5.13) is bounded by utilizing the L2 norm of H(j)(w(k), z), which

depends on the strong convexity assumption on the model class and might over-estimate the

bound on Diff1.

However, it is worth noting that the Hessian-vector product, v>H(j)(w(k), z) in the term

Diff1 could be computed in an alternative way, e.g. by leveraging the L-BFGS algorithm

[98, 29, 32, 99, 31, 100, 30]. I note that L-BFGS algorithm can also be extended to the

case where the models are not necessarily convex (see e.g. [47]). As a result, if the Hessian-

vector product, v>H(j)(w(k), z), could be estimated with the extended L-BFGS algorithm

for non-convex models, then the derived bound on I(k)
pert(z̃, δy, γ) could be thus applied for

non-convex models, thus facilitating the use of Increm-INFL in more general scenarios.

185



6.2.2 A tight integration between CHEF and weakly supervised learning

As described in Section 5.3.1.3, if the probabilistic labels are produced by following the

solutions in [48], [159] or [160], then those probabilistic labels depend on small number of

labeled training samples. In CHEF, after the labels of selected training samples are cleaned

at each cleaning iteration, one can use the augmented set of labeled training samples to

further update the probabilistic labels for the remaining uncleaned training samples. This

can improved the overall label quality, but is not considered in CHEF. Therefore, in this

section, I discuss how to address this by tightly integrating CHEF with weakly supervised

learning. The main bottleneck is adjusting INFL to take into account the updates of the

probabilistic labels on the uncleaned training samples.

To address this problem, recall that for INFL in Chapter 5, to estimate the influence

of cleaning the label of each uncleaned training sample, Equation (5.8) is analyzed first,

which, is modified as follows when the updates of probabilistic labels occur due to the label

cleaning operations on the sample z̃r:

Fε1,ε2,z̃ (w) =
1

N
[
∑Nd

i=1
F (w, zi) +

∑Np

i=1
γF (w, z̃i)]

+ ε1F (w, z̃r(δy,r))− ε2F (w, z̃r)

− ε3
∑

i 6=r
F (w, z̃i) + ε3

∑
i 6=r

F (w, z̃i(δy,i(δy,r)))

(6.4)

in which, δy,r denotes the label updates on the sample z̃r after this sample is cleaned and

δy,i(δy,r), i 6= r denotes the label updates on other uncleaned training samples triggered by

the label updates on the sample z̃r. Then by denoting the minimum of the above objective

function as ŵε1,ε2,z̃ and following the same derivation in the proof of Equation (5.4), i.e.,

186



Section 5.2.1.2, the following formula could be derived:

ŵε1,ε2,z̃ − ŵ = −Hε1,ε2,z̃ (ŵ)−1 [ε1∇wF (ŵ, z̃r(δy,r))− ε2∇wF (ŵ, z̃r)

− ε3
∑

i 6=r
∇wF (w, z̃i) + ε3

∑
i 6=r
∇wF (w, z̃i(δy,i(δy,r)))]

= −Hε1,ε2,z̃ (ŵ)−1 [ε1∇wF (ŵ, z̃r(δy,r))− ε2∇wF (ŵ, z̃r)

+ ε3
∑

i 6=r
∇w∇yF (w, z̃i) δy,i(δy,r)]

(6.5)

The last step utilizes the Cauchy mean value theorem and the fact that ∇wF (w, z̃i) is

linear in the label of z̃i. Therefore, as long as the quantity δy,i(δy,r) in the above formula is

obtained, one can thus obtain the adjusted influence function when the probabilistic labels

are also dynamically updated after the label of the sample z̃r is cleaned. But note that the

updated probabilistic labels (and thus δy,i(δy,r)) are obtained after the solution in [48], [159]

or [160] is re-applied on the updated set of cleaned training samples, which requires to train

complicated generative models. Therefore, it is crucial to estimate the quantity δy,i(δy,r)

efficiently without reconstructing those generative models from scratch since δy,i(δy,r) varies

with varied training sample, zr, and the updates on its label, δy,r, which will be left as future

work.

6.2.3 Integrating CHEF with semi-supervised learning

As described in Section 2.4, when a plethora of training samples are unlabeled, there is

a trend in combining active learning with semi-supervised learning for developing better

models and saving the human labeling cost at the same time. Since the method INFL

could be regarded as an alternative to the classical active learning methods for selecting un-

labeled samples for labeling, it is thus worth considering its integration with semi-supervised

learning, which could follow the framework proposed by [56].

In [56], the machine learning model is constructed by optimizing the following semi-

187



supervised learning (SSL) based objective function:

F (w) =
1

N
[
∑Nd

i=1
F (w, zi) + γ

∑Np

i=1
FSSL (w, x̃i)] (6.6)

Here, I borrow notation used in Equation (5.1) from Chapter 5. For example, F (w, zi)

still denotes the loss on a labeled training sample zi = (xi, yi). Note that for all the other

training samples except the labeled training sample set {zi}Ndi=1, Equation (5.1) calculates

the loss on those samples by utilizing their probabilistic labels. In contrast, those samples

are assumed to be unlabeled in the loss, FSSL (w, z̃i) in Equation (6.6), which is the loss

developed in semi-supervised learning for unlabeled training samples. There are a variety

of choices for this loss. In [56], the following loss is used to minimize the sensitivity with

respect to the small perturbations on each unlabeled training sample:

FSSL (w, x̃i) = D([p(0)(w, x̃i), p(1)(w, x̃i), . . . , p(C−1)(w, x̃i)]

, [p(0)(w, x̃′i), p
(1)(w, x̃′i), . . . , p

(C−1)(w, x̃′i)])
(6.7)

I reuse the notation, p(j)(w, x̃i), j = 0, 1, . . . , C − 1, from Equation (5.6) to denote the

probability that x̃i is predicted as the class j by the model. In addition, x̃′i represents the

sample feature after a small and model-free perturbation is added to x̃i and the function

D(·, ·) is used to measure the model output difference between the x̃i and x̃′i, which could

be the KL-divergence measure.

Then given the objective function in Equation (6.6), I can then follow the same intuition

as INFL in Chapter 5 to derive an influence function such that it can reflect how labeling a

certain unlabeled training sample influences the prediction performance, i.e.:

Issl(x̃, y, γ) ≈ N · (F (wU ,Zval)− F (w,Zval))

= −∇wF (w,Zval)>H−1(w)[∇wF (w, (x̃, y))− γ∇wF
SSL(w, x̃)],

(6.8)

Here y represents some possible label for the sample x̃ and H(w) represents the Hessian

matrix evaluated on the objective function, Equation (6.6). Then Equation (6.8) could be

188



employed for selecting the most informative samples for labeling and providing possibly

cleaned labels for those samples. The derivation of Equation (6.8) is provided below.

Proof. Similar to the derivation of Equation (5.4), i.e. Section 5.2.1.2, the following objective

function is considered first for an uncleaned training sample x̃ and one of its possibly clean

label y:

Fε1,ε2,x̃,y (w) =
1

N
[
∑Nd

i=1
F (w, zi) +

∑Np

i=1
γFSSL (w, x̃i)]

+ ε1F (w, (x̃, y))− ε2FSSL (w, x̃i)
(6.9)

By denoting the minimizer of the formula above as ŵε1,ε2,x̃,y, the following equation on

ŵε1,ε2,x̃,y holds:

∇wFε1,ε2,x̃,y (ŵε1,ε2,x̃,y) =
1

N
[
∑Nd

i=1
∇wF (ŵε1,ε2,x̃,y, zi) +

∑Np

i=1
γ∇wF

SSL (ŵε1,ε2,x̃,y, x̃i)]

+ ε1∇wF (ŵε1,ε2,x̃,y, (x̃, y))− ε2∇wF
SSL (ŵε1,ε2,x̃,y, x̃) = 0

Similar to the derivation of Equation (5.4), I again represent the minimizer of F0,0,x̃,y (w)

as ŵ, which is also the minimizer of Equation (6.7). Then due to the closeness of ŵε1,ε2,x̃,y

and ŵ as both ε1 and ε2 are near-zero values, I can then apply Taylor expansion on

∇wFε1,ε2,x̃,y (ŵε1,ε2,x̃,y, ε1, ε2), i.e.:

0 = ∇wFε1,ε2,x̃,y (ŵε1,ε2,x̃,y, ε1, ε2) ≈ ∇wFε1,ε2,x̃,y (ŵ, ε1, ε2) + Hε1,ε2,x̃,y (ŵ) (ŵε1,ε2,x̃,y − ŵ)

=
1

N
[
∑Nd

i=1
∇wF (ŵ, zi) +

∑Np

i=1
γ∇wF (ŵ, x̃i)]

+ ε1∇wF (ŵ, (x̃, y))− ε2∇wF
SSL (ŵ, x̃) + Hε1,ε2,x̃,y (ŵ) (ŵε1,ε2,x̃,y − ŵ),

(6.10)

in which Hε1,ε2,x̃,y (∗) denotes the Hessian matrix of Fε1,ε2,x̃,y (w). Then by using the

fact that 1
N [
∑Nd

i=1∇wF (ŵ, zi) +
∑Np

i=1 γ∇wF (ŵ, x̃i)] = 0 (since ŵ is the minimizer of

F0,0,x̃,y (w)) and Hε1,ε2,x̃,y (ŵ) ≈ H0,0,x̃,y (ŵ) = H (ŵ) (since ε1 and ε2 are near zero, recall

189



that H (∗) is the Hessian matrix of Equation (5.1)), the formula above is derived as:

ŵε1,ε2,x̃,y − ŵ = −Hε1,ε2,x̃,y (ŵ)−1 [ε1∇wF (ŵ, (x̃, y))− ε2∇wF
SSL (ŵ, x̃)]

Considering the similarity between the above formula and Equation (5.10) in Section

5.2.1.2, the rest of the derivation would be same as that in Section 5.2.1.2, which would

eventually result in Equation (6.8).

Discussion Similar to INFL in CHEF, Equation (6.8) could be evaluated for every train-

ing sample with all possible deterministic labels. Therefore, this could not only determine

which unlabeled training samples should be labeled by the human annotators, but also

automatically suggest possibly clean labels. As a consequence, due to the lower annotation

overhead, one can expect that this method would be preferable if it does not perform signi-

ficantly worse than the modified active learning method in [56]. This empirical comparison

is left as future work.

190



CHAPTER 7: Conclusions

I conclude the dissertation by summarizing its contributions, and presenting a vision for

future work.

7.1 Summary

My dissertation concerns leveraging fine-grained provenance to deal with emerging data

science applications, including the problem of producing fine-grained data citations, the

problem of incrementally updating machine learning models upon the deletion of training

samples, and the problem of reducing the overhead in the pipeline of cleaning label uncer-

tainties.

To produce fine-grained data citations, I provided two types of approaches, i.e. the

Rewriting-based approach and the Provenance-based approach. The former utilizes fine-

grained provenance implicitly for producing citations for simple queries and views, i.e. con-

junctive queries and conjunctive views, while the latter utilizes fine-grained provenance

explicitly to handle a more general type of queries and views, i.e. aggregate queries and

aggregate views. Note that leveraging fine-grained provenance for large datasets can incur

extremely high overhead, which motivates a series of optimization techniques in both the

Rewriting-based approach and the Provenance-based approach for speed-ups.

To facilitate incremental updates on machine learning models after small number of

training samples are removed, I proposed two solutions, i.e. PrIU and DeltaGrad. The

former method aims at incrementally updating linear regression, logistic regression models

and possibly generative additive models, which is accomplished by linearizing the non-linear

components in their GD or SGD update rules, followed by explicitly utilizing the provenance-

semiring framework extended to linear algebra formulas. In contrast to PrIU, DeltaGrad

191



is capable of incrementally updating a more general class of models, i.e., strongly convex

models, by using pre-cached information (which can be regarded as provenance information)

and the L-BFGS algorithm to incrementally maintain the gradients calculated at each GD

or SGD iteration. Extensive experiments on benchmark datasets demonstrate that both

approaches achieve significant speed-ups on updating ML models in comparison to recon-

structing the models from scratch. I also proposed some initial ideas on how to incrementally

maintain general machine learning models as part of the future work.

Based on this solution to incrementally update ML models, I then developed CHEF to

reduce the overhead and cost at each phase of the label cleaning pipeline. This solution

consists of 1) INFL to identify the most influential training samples for cleaning and auto-

matically suggesting cleaned labels; 2) Increm-INFL to reduce the overhead of evaluating

training sample influence with INFL by filtering out uninfluential training samples early; 3)

DeltaGrad-L (adapted from DeltaGrad) to incrementally update ML models after the labels

of the most influential training are cleaned; 4) a redesign of the label cleaning pipeline to

allow human annotators to clean smaller batch of training samples, which enables better

overall model performance and potentially early termination of the label cleaning process

once satisfactory model performance is reached. I also discussed how to extend CHEF to

handle more general machine learning models, and how to integrate CHEF with weakly-

supervised and semi-supervision learning for further model performance improvements.

7.2 Future work

In the near future, it would be interesting to see how my solutions for incrementally updating

machine learning models can be used in various real applications. For example, in the

state-of-the-art provenance-enabled data science platforms, the input-output dependency

is constructed for the entire pipeline such that the results could be refreshed effectively

with provenance after the updates of the input or parameters (see e.g., [180, 181, 182]).

But the machine learning models appearing in those platforms can only be updated from

scratch to reflect the updates of input data. Therefore, I can envision that as the solutions for

192



incrementally updating machine learning models become more mature, it would be beneficial

to integrate these solutions into the above data science tools such that the provenance

support in those tools become more efficient. Similar situations occur in the application of

optimizing DBMS internals with neural network models. Typical examples include learning-

based indexes [183], learning-based join order selections [184] and learning-based cardinality

estimation [185]. However, under OLTP-like workloads, especially when certain records are

deleted from the databases, it still remains a challenge on how to effectively refresh the

learned models by utilizing the above techniques. Hence, it would be an inspiring option

to integrate the solution to incrementally update machine learning models with the above

learning-based techniques inside DBMSs such that those techniques could be compatible to

realistic database workloads.

We also note that CHEF is only a first step towards a full-fledged solution for label

cleaning in the medical domain. This is because there are considerable practical concerns

that still need to be addressed. For example, confidence intervals of prediction results and

cleaned labels are important for physician to understand how certain the results are, which

is crucial for making life-critical decisions [186]. It is also worth noting that privacy is a big

concern in the medical domain, meaning that the medical records might be encrypted before

the model training phase [187]. Therefore, modifications to CHEF are required to make it

suitable for such privacy-preserving scenarios. Focusing on these practical considerations is

an interesting future research direction to explore.

In addition to data provenance, other database techniques could be used for constructing

high-quality models. For example, in addition to efficiently refining the labels of training

samples, which is what CHEF addresses, other data preparation steps are essential to guar-

antee the quality of the training data. These operations include integrating data from

various sources [188], extracting structured data from text corpora [189], crowdsourcing

data for model training [190], and cleaning training sample features [2], which all require

database-related techniques. In particular, incremental update techniques for these opera-

tions have not been well-studied yet, but are important in practice when the underlying raw

193



data changes. Therefore, as another part of the future work, I will explore whether the ideas

of incremental computation in CHEF can be applied to these more general data preparation

operations.

Beyond the need for incremental computation in the data science pipeline, I am also

interested in interpretability of complex models such as neural network models. It is widely

known that although neural network models are very powerful in providing accurate predic-

tions in various classification tasks, these models are generally regarded as black boxes and

thus it is challenging to interpret why certain predictions are given. However, such inter-

pretability is essential in many safety-critical applications, such as self-driving cars, portfolio

management in financial domain and disease diagnostics in medical domain [20]. In fact,

different types of interpretations could be given for the model predictions, such as inter-

preting “which feature of the input (test) sample is most important for the model output”

and “which training sample is most important for the model output of a certain input (test)

sample”. These two questions could be answered by the feature-level Shapley value [191]

and the instance-level Shapley value (i.e. Data Shapley value) respectively [5]. As discussed

in Section 1.3, evaluating the Data Shapley value needs to refresh the models repetitively

after the small updates on the training set. Therefore, the solutions to incrementally update

machine learning models could support efficient evaluations of the Data Shapley value. In

the future, I would love to explore whether data provenance could benefit other types of ex-

planations for the model predictions, such as explanations of feature importance by utilizing

the feature-level Shapley value, which may require the use of fine-grained provenance at the

feature level [25]. Other than the efficiency issues mentioned above, there also remain other

issues in the model interpretability problem. For example, explaining the entire model be-

haviors (referred to as global interpretation) is significantly more challenging than providing

explanations for a single prediction (referred to as local interpretation) [192]. Hence, I would

also love to explore how to deal with this global interpretation problem and other related

issues on model interpretability in future.

Last but not least, due to the strong connections between data provenance and logical

194



reasoning, I would also like to explore the use of logical reasoning with neural network mod-

els, which is another emerging research topic in machine learning community. It appears

that logic can be combined with neural network models in various ways to take advantage

of the prediction power of the neural network models and the interpretability of logical reas-

oning at the same time. For example, [193] proposes to evaluate certain predicates in the

first-order logic rules with the model output, which could leverage the background know-

ledge encoded by the logic rules to enhance the model prediction performance. However,

the integration between the neural network models and logic could also bring about new

challenges. To name a few, how to optimize a neural network model to fit a training dataset

has been extensively studied in the last few decades. However, it is still unclear how to

perfectly optimize neural network models when the logic rules are involved in the training

process. It also still remains a difficult task to effectively extract knowledge from neural

network models [194].

195



BIBLIOGRAPHY

[1] X. Niu, B. Glavic, D. Gawlick, Z. H. Liu, V. Krishnaswamy and V. Radhakrish-

nan, “Interoperability for provenance-aware databases using prov and json,” in 7th

USENIX Workshop on the Theory and Practice of Provenance (TaPP 15), 2015.

[2] S. Krishnan, J. Wang, E. Wu, M. J. Franklin and K. Goldberg, “Activeclean: inter-

active data cleaning for statistical modeling,” Proceedings of the VLDB Endowment,

vol. 9, no. 12, pp. 948–959, 2016.

[3] D. Kang, D. Raghavan, P. Bailis and M. Zaharia, Model assertions for debugging

machine learning, Preprint, 2018.

[4] A. Heidari, J. McGrath, I. F. Ilyas and T. Rekatsinas, “Holodetect: few-shot learning

for error detection,” arXiv preprint arXiv:1904.02285, 2019.

[5] A. Ghorbani and J. Zou, “Data shapley: equitable valuation of data for machine

learning,” in International Conference on Machine Learning, 2019, pp. 2242–2251.

[6] S. B. Davidson, D. Deutsch, T. Milo and G. Silvello, “A model for fine-grained data

citation,” in CIDR 2017, 8th Biennial Conference on Innovative Data Systems Re-

search, Online Proceedings, 2017.

[7] T. J. Green, G. Karvounarakis and V. Tannen, “Provenance semirings,” in Proceedings

of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, ACM, 2007, pp. 31–40.

[8] Y. Amsterdamer, D. Deutch and V. Tannen, “Provenance for aggregate queries,” in

Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Prin-

ciples of database systems, ACM, 2011, pp. 153–164.

[9] P. Buneman, S. Khanna and T. Wang-Chiew, “Why and where: a characterization

of data provenance,” in International conference on database theory, Springer, 2001,

pp. 316–330.

196



[10] T. J. Green, G. Karvounarakis, Z. G. Ives and V. Tannen, “Update exchange with

mappings and provenance,” in Proceedings of the 33rd international conference on

Very large data bases, VLDB Endowment, 2007, pp. 675–686.

[11] S. B. Davidson, D. Deutch, T. Milo and G. Silvello, “A model for fine-grained data

citation.,” in CIDR, 2017.

[12] Y. Wu, A. Alawini, S. B. Davidson and G. Silvello, “Data citation: giving credit where

credit is due,” in Proceedings of the 2018 International Conference on Management

of Data, ACM, 2018, pp. 99–114.

[13] Y. Wu, A. Alawini, D. Deutch, T. Milo and S. Davidson, “Provcite: provenance-based

data citation,” Proceedings of the VLDB Endowment, vol. 12, no. 7, pp. 738–751, 2019.

[14] A. J. Pawson, J. L. Sharman, H. E. Benson, E. Faccenda, S. P. Alexander, O. P.

Buneman, A. P. Davenport, J. C. McGrath, J. A. Peters, C. Southan et al., “The

iuphar/bps guide to pharmacology: an expert-driven knowledgebase of drug targets

and their ligands,” Nucleic acids research, vol. 42, no. D1, pp. D1098–D1106, 2014.

[15] J. F. Armstrong, E. Faccenda, S. D. Harding, A. J. Pawson, C. Southan, J. L. Shar-

man, B. Campo, D. R. Cavanagh, S. P. Alexander, A. P. Davenport et al., “The

iuphar/bps guide to pharmacology in 2020: extending immunopharmacology content

and introducing the iuphar/mmv guide to malaria pharmacology,” Nucleic acids re-

search, vol. 48, no. D1, pp. D1006–D1021, 2020.

[16] S. Proell and A. Rauber, “A scalable framework for dynamic data citation of arbitrary

structured data.,” in DATA, 2014, pp. 223–230.

[17] L. B. Honor, C. Haselgrove, J. A. Frazier and D. N. Kennedy, “Data citation in

neuroimaging: proposed best practices for data identification and attribution,” Fron-

tiers in neuroinformatics, vol. 10, p. 34, 2016.

[18] S. Rizvi, A. Mendelzon, S. Sudarshan and P. Roy, “Extending query rewriting tech-

niques for fine-grained access control,” in Proceedings of the 2004 ACM SIGMOD

international conference on Management of data, 2004, pp. 551–562.

197



[19] F. Psallidas and E. Wu, “Smoke: fine-grained lineage at interactive speed,” Proceed-

ings of the VLDB Endowment, vol. 11, no. 6, pp. 719–732, 2018.

[20] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti and D. Pedreschi,

“A survey of methods for explaining black box models,” ACM Computing Surveys

(CSUR), vol. 51, no. 5, p. 93, 2018.

[21] P. Voigt and A. Von dem Bussche, “The eu general data protection regulation (gdpr),”

A Practical Guide, 1st Ed., Cham: Springer International Publishing, 2017.

[22] M. H. Quenouille, “Notes on bias in estimation,” Biometrika, vol. 43, no. 3/4, pp. 353–

360, 1956.

[23] M. Fredrikson, S. Jha and T. Ristenpart, “Model inversion attacks that exploit con-

fidence information and basic countermeasures,” in Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, 2015, pp. 1322–

1333.

[24] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J. Stoyanovich and V. Tannen,

“Putting lipstick on pig: enabling database-style workflow provenance,” Proceedings

of the VLDB Endowment, vol. 5, no. 4, pp. 346–357, 2011.

[25] Z. Yan, V. Tannen and Z. G. Ives, “Fine-grained provenance for linear algebra op-

erators,” in Proceedings of the 8th USENIX Conference on Theory and Practice of

Provenance, USENIX Association, 2016, pp. 1–6.

[26] R. Kress, “Interpolation,” in Numerical Analysis. New York, NY: Springer New York,

1998, pp. 151–188, isbn: 978-1-4612-0599-9.

[27] Y. Wu, V. Tannen and S. B. Davidson, “Priu: a provenance-based approach for in-

crementally updating regression models,” arXiv preprint arXiv:2002.11791, 2020.

[28] T. Hastie and R. Tibshirani, “Generalized additive models,” Statistical Science, vol. 1,

no. 3, pp. 297–318, 1986.

[29] J. Nocedal, “Updating quasi-newton matrices with limited storage,” Mathematics of

computation, vol. 35, no. 151, pp. 773–782, 1980.

198



[30] A. Mokhtari and A. Ribeiro, “Global convergence of online limited memory bfgs,”

The Journal of Machine Learning Research, vol. 16, no. 1, pp. 3151–3181, 2015.

[31] C. Zhu, R. H. Byrd, P. Lu and J. Nocedal, “Algorithm 778: l-bfgs-b: fortran sub-

routines for large-scale bound-constrained optimization,” ACM Transactions on Math-

ematical Software (TOMS), vol. 23, no. 4, pp. 550–560, 1997.

[32] R. H. Byrd, J. Nocedal and R. B. Schnabel, “Representations of quasi-newton matrices

and their use in limited memory methods,” Mathematical Programming, vol. 63, no. 1-

3, pp. 129–156, 1994.

[33] S. Neel, A. Roth and S. Sharifi-Malvajerdi, “Descent-to-delete: gradient-based meth-

ods for machine unlearning,” in Algorithmic Learning Theory, PMLR, 2021, pp. 931–

962.

[34] T. Olatunji, L. Yao, B. Covington, A. Rhodes and A. Upton, “Caveats in generating

medical imaging labels from radiology reports,” arXiv preprint arXiv:1905.02283,

2019.

[35] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu and C. RÃľ, “Snorkel: rapid

training data creation with weak supervision,” in Proceedings of the VLDB En-

dowment. International Conference on Very Large Data Bases, NIH Public Access,

vol. 11, 2017, p. 269.

[36] L Smyth, “Training-valuenet: a new approach for label cleaning on weakly-supervised

datasets,” 2020.

[37] S. H. Bach, D. Rodriguez, Y. Liu, C. Luo, H. Shao, C. Xia, S. Sen, A. Ratner, B.

Hancock, H. Alborzi et al., “Snorkel drybell: a case study in deploying weak super-

vision at industrial scale,” in Proceedings of the 2019 International Conference on

Management of Data, 2019, pp. 362–375.

[38] M. Nashaat, A. Ghosh, J. Miller and S. Quader, “Wesal: applying active supervision

to find high-quality labels at industrial scale,” in Proceedings of the 53rd Hawaii

International Conference on System Sciences, 2020.

199



[39] D. Hao, L. Zhang, J. Sumkin, A. Mohamed and S. Wu, “Inaccurate labels in weakly-

supervised deep learning: automatic identification and correction and their impact

on classification performance,” IEEE journal of biomedical and health informatics,

vol. 24, no. 9, pp. 2701–2710, 2020.

[40] M. Mahdavi, F. Neutatz, L. Visengeriyeva and Z. Abedjan, “Towards automated data

cleaning workflows,” Machine Learning, vol. 15, p. 16, 2019.

[41] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B.

Haghgoo, R. Ball, K. Shpanskaya et al., “Chexpert: a large chest radiograph dataset

with uncertainty labels and expert comparison,” in Thirty-Third AAAI Conference

on Artificial Intelligence, 2019.

[42] Y. Wu, J. Weimer and S. B. Davidson, “Chef: a cheap and fast pipeline for iteratively

cleaning label uncertainties,” Proceedings of the VLDB Endowment, vol. 14, no. 11,

2021.

[43] Y. Wu, J. Weimer and S. B. Davidson, “Chef: a cheap and fast pipeline for iteratively

cleaning label uncertainties (technical report),” arXiv preprint arXiv:2107.08588,

2021.

[44] P. W. Koh and P. Liang, “Understanding black-box predictions via influence func-

tions,” arXiv preprint arXiv:1703.04730, 2017.

[45] B. Settles, “Active learning literature survey,” 2009.

[46] J. Huang, L. Qu, R. Jia and B. Zhao, “O2u-net: a simple noisy label detection ap-

proach for deep neural networks,” in Proceedings of the IEEE International Confer-

ence on Computer Vision, 2019, pp. 3326–3334.

[47] X. Wang, S. Ma, D. Goldfarb and W. Liu, “Stochastic quasi-newton methods for

nonconvex stochastic optimization,” SIAM Journal on Optimization, vol. 27, no. 2,

pp. 927–956, 2017.

200



[48] B. Boecking, W. Neiswanger, E. Xing and A. Dubrawski, “Interactive weak supervi-

sion: learning useful heuristics for data labeling,” arXiv preprint arXiv:2012.06046,

2020.

[49] S. Biegel, R. El-Khatib, L. O. V. B. Oliveira, M. Baak and N. Aben, “Active weasul:

improving weak supervision with active learning,” arXiv preprint arXiv:2104.14847,

2021.

[50] X. J. Zhu, “Semi-supervised learning literature survey,” 2005.

[51] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised learning,” Machine

Learning, vol. 109, no. 2, pp. 373–440, 2020.

[52] G. Tur, D. Hakkani-TÃĳr and R. E. Schapire, “Combining active and semi-supervised

learning for spoken language understanding,” Speech Communication, vol. 45, no. 2,

pp. 171–186, 2005.

[53] X. Zhu, J. Lafferty and Z. Ghahramani, “Combining active learning and semi-supervised

learning using gaussian fields and harmonic functions,” in ICML 2003 workshop on

the continuum from labeled to unlabeled data in machine learning and data mining,

vol. 3, 2003.

[54] M. F. A. Hady and F. Schwenker, “Combining committee-based semi-supervised

learning and active learning,” Journal of Computer Science and Technology, vol. 25,

no. 4, pp. 681–698, 2010.

[55] Y. Leng, X. Xu and G. Qi, “Combining active learning and semi-supervised learning

to construct svm classifier,” Knowledge-Based Systems, vol. 44, pp. 121–131, 2013.

[56] M. Gao, Z. Zhang, G. Yu, S. Ã. ArÄśk, L. S. Davis and T. Pfister, “Consistency-

based semi-supervised active learning: towards minimizing labeling cost,” in European

Conference on Computer Vision, Springer, 2020, pp. 510–526.

[57] Out of Cite, Out of Mind: The Current State of Practice, Policy, and Technology for

the Citation of Data. CODATA-ICSTI Task Group on Data Citation Standards and

Practices, 2013, vol. 12, pp. 1–67.

201



[58] FORCE-11, Data Citation Synthesis Group: Joint Declaration of Data Citation Prin-

ciples, M. Martone, Ed. FORCE11, San Diego, CA, USA, 2014.

[59] J. Klump, R. Huber and M. Diepenbroek, “DOI for Geoscience Data – How Early

Practices Shape Present Perceptions,” Earth Science Inform., pp. 1–14, 2015.

[60] N. Simons, “Implementing DOIs for Research Data,” D-Lib Magazine, vol. 18, no. 5/6,

2012.

[61] J. Brase, I. Sens and M. Lautenschlager, “The Tenth Anniversary of Assigning DOI

Names to Scientific Data and a Five Year History of DataCite,” D-Lib Magazine,

vol. 21, no. 1/2, 2015.

[62] “DataCite Metadata Schema Documentation for the Publication and Citation of Re-

search Data, v4.0,” DataCite Metadata Working Group, Technical Report, 2016.

[63] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski,

B. L. Aken, D. Barrell, A. Zadissa, S. Searle et al., “Gencode: the reference human

genome annotation for the encode project,” Genome research, vol. 22, no. 9, pp. 1760–

1774, 2012.

[64] D. S. Himmelstein, A. Lizee, C. Hessler, L. Brueggeman, S. L. Chen, D. Hadley, A.

Green, P. Khankhanian and S. E. Baranzini, “Systematic integration of biomedical

knowledge prioritizes drugs for repurposing,” Elife, vol. 6, 2017.

[65] J. McEntyre, U. Sarkans and A. Brazma, “The BioStudies database,” Molecular sys-

tems biology, vol. 11, no. 12, p. 847, 2015.

[66] P. Buneman, S. B. Davidson and J. Frew, “Why data citation is a computational

problem,” Communications of the ACM (CACM), vol. 59, no. 9, pp. 50–57, 2016.

[67] S. B. Davidson, P. Buneman, D. Deutch, T. Milo and G. Silvello, “Data citation: A

computational challenge,” in Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI

Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA, May

14-19, 2017, 2017, pp. 1–4.

202



[68] A. Alawini, S. B. Davidson, W. Hu and Y. Wu, “Automating data citation in citedb,”

Proceedings of the VLDB Endowment, vol. 10, no. 12, pp. 1881–1884, 2017.

[69] A. Alawini, S. Davidson, G. Silvello, V. Tannen and Y. Wu, “Data citation: a new

provenance challenge,” Data Engineering, p. 27, 2018.

[70] P. Buneman, G. Christie, J. A. Davies, R. Dimitrellou, S. D. Harding, A. J. Pawson,

J. L. Sharman and Y. Wu, “Why data citation isn’t working, and what to do about

it,” Database, vol. 2020, 2020.

[71] A. Y. Halevy, “Answering queries using views: a survey,” The VLDB Journal, vol. 10,

no. 4, pp. 270–294, 2001.

[72] A. K. Chandra and P. M. Merlin, “Optimal implementation of conjunctive queries in

relational data bases,” in Proceedings of the ninth annual ACM symposium on Theory

of computing, ACM, 1977, pp. 77–90.

[73] S. Chaudhuri, R. Krishnamurthy, S. Potamianos and K. Shim, “Optimizing queries

with materialized views,” in Data Engineering, 1995. Proceedings of the Eleventh

International Conference on, IEEE, 1995, pp. 190–200.

[74] R. Pottinger and A. Y. Levy, “A scalable algorithm for answering queries using views,”

in VLDB, 2000, pp. 484–495.

[75] F. N. Afrati, C. Li and J. D. Ullman, “Using views to generate efficient evaluation

plans for queries,” Journal of Computer and System Sciences, vol. 73, no. 5, pp. 703–

724, 2007.

[76] S. Cohen, W. Nutt and Y. Sagiv, “Deciding equivalences among conjunctive aggregate

queries,” Journal of the ACM (JACM), vol. 54, no. 2, p. 5, 2007.

[77] S. Cohen, W. Nutt and A. Serebrenik, “Rewriting aggregate queries using views,”

in Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, ACM, 1999, pp. 155–166.

[78] D. Srivastava, S. Dar, H. V. Jagadish and A. Y. Levy, “Answering queries with

aggregation using views,” in VLDB, vol. 96, 1996, pp. 318–329.

203



[79] C. Galindo-Legaria and M. Joshi, “Orthogonal optimization of subqueries and ag-

gregation,” in ACM SIGMOD Record, ACM, vol. 30, 2001, pp. 571–581.

[80] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh and M. Urata, “Answering

complex SQL queries using automatic summary tables,” in ACM SiGMOD Record,

ACM, vol. 29, 2000, pp. 105–116.

[81] S. Cohen, W. Nutt and Y. Sagiv, “Rewriting queries with arbitrary aggregation func-

tions using views,” ACM Transactions on Database Systems (TODS), vol. 31, no. 2,

pp. 672–715, 2006.

[82] S. Cohen, “User-defined aggregate functions: bridging theory and practice,” in Pro-

ceedings of the 2006 ACM SIGMOD international conference on Management of data,

ACM, 2006, pp. 49–60.

[83] C. Dwork, “Differential privacy: a survey of results,” in International conference on

theory and applications of models of computation, Springer, 2008, pp. 1–19.

[84] A. Ghorbani, A. Abid and J. Zou, “Interpretation of neural networks is fragile,” arXiv

preprint arXiv:1710.10547, 2017.

[85] M. Birattari, G. Bontempi and H. Bersini, “Lazy learning meets the recursive least

squares algorithm,” in Advances in neural information processing systems, 1999,

pp. 375–381.

[86] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.

[87] Y. Cao and J. Yang, “Towards making systems forget with machine unlearning,” in

2015 IEEE Symposium on Security and Privacy, IEEE, 2015, pp. 463–480.

[88] S. Schelter, “Âăĳamnesiaâăi–towards machine learning models that can forget user

data very fast,” in 1st International Workshop on Applied AI for Database Systems

and Applications (AIDBâĂŹ19), 2019.

[89] N. A. Syed, S. Huan, L. Kah and K. Sung, “Incremental learning with support vector

machines,” 1999.

204



[90] G. Cauwenberghs and T. Poggio, “Incremental and decremental support vector ma-

chine learning,” in Advances in neural information processing systems, 2001, pp. 409–

415.

[91] A. Deshpande and S. Madden, “Mauvedb: supporting model-based user views in data-

base systems,” in Proceedings of the 2006 ACM SIGMOD international conference

on Management of data, ACM, 2006, pp. 73–84.

[92] P. Gupta, N. Koudas, E. Shang, R. Johnson and C. Zuzarte, “Processing analytical

workloads incrementally,” arXiv preprint arXiv:1509.05066, 2015.

[93] A. Ginart, M. Guan, G. Valiant and J. Y. Zou, “Making ai forget you: data deletion

in machine learning,” in Advances in Neural Information Processing Systems, 2019,

pp. 3513–3526.

[94] L. Graves, V. Nagisetty and V. Ganesh, “Amnesiac machine learning,” arXiv preprint

arXiv:2010.10981, 2020.

[95] Y. Wu, E. Dobriban and S. B. Davidson, “Deltagrad: rapid retraining of machine

learning models,” ICML, 2020.

[96] J. E. Dennis Jr and J. J. MorÃľ, “Quasi-newton methods, motivation and theory,”

SIAM review, vol. 19, no. 1, pp. 46–89, 1977.

[97] R. Fletcher, “A new approach to variable metric algorithms,” The computer journal,

vol. 13, no. 3, pp. 317–322, 1970.

[98] H. Matthies and G. Strang, “The solution of nonlinear finite element equations,”

International journal for numerical methods in engineering, vol. 14, no. 11, pp. 1613–

1626, 1979.

[99] R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, “A limited memory algorithm for bound

constrained optimization,” SIAM Journal on scientific computing, vol. 16, no. 5,

pp. 1190–1208, 1995.

[100] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business Me-

dia, 2006.

205



[101] X. Wu, M. Fredrikson, S. Jha and J. F. Naughton, “A methodology for formalizing

model-inversion attacks,” in 2016 IEEE 29th Computer Security Foundations Sym-

posium (CSF), IEEE, 2016, pp. 355–370.

[102] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W,

2017.

[103] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.

Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.

Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu and X. Zheng, TensorFlow: large-scale machine

learning on heterogeneous systems, Software available from tensorflow.org, 2015.

[104] J. M. Hellerstein, C. RÃľ, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S.

Ng, C. Welton, X. Feng, K. Li et al., “The madlib analytics library,” Proceedings of

the VLDB Endowment, vol. 5, no. 12, 2012.

[105] S. S. Sandha, W. Cabrera, M. Al-Kateb, S. Nair and M. Srivastava, “In-database

distributed machine learning: demonstration using teradata sql engine,” Proceedings

of the VLDB Endowment, vol. 12, no. 12, 2019.

[106] M. Schleich, D. Olteanu and R. Ciucanu, “Learning linear regression models over

factorized joins,” in Proceedings of the 2016 International Conference on Management

of Data, 2016, pp. 3–18.

[107] M. A. Khamis, H. Q. Ngo, X. Nguyen, D. Olteanu and M. Schleich, “Ac/dc: in-

database learning thunderstruck,” in Proceedings of the Second Workshop on Data

Management for End-To-End Machine Learning, 2018, pp. 1–10.

206



[108] M. Schleich, D. Olteanu, M. Abo Khamis, H. Q. Ngo and X. Nguyen, “A layered

aggregate engine for analytics workloads,” in Proceedings of the 2019 International

Conference on Management of Data, 2019, pp. 1642–1659.

[109] X. Zhou, C. Chai, G. Li and J. Sun, “Database meets artificial intelligence: a survey,”

IEEE Transactions on Knowledge and Data Engineering, 2020.

[110] S. C. Hoi, D. Sahoo, J. Lu and P. Zhao, “Online learning: a comprehensive survey,”

arXiv preprint arXiv:1802.02871, 2018.

[111] M. Dolatshah, M. Teoh, J. Wang and J. Pei, “Cleaning crowdsourced labels using

oracles for statistical classification,” Proceedings of the VLDB Endowment, vol. 12,

no. 4,

[112] L. Aguilar Melgar, D. Dao, S. Gan, N. M. GÃĳrel, N. Hollenstein, J. Jiang, B.

KarlaÅą, T. Lemmin, T. Li, Y. Li et al., “Ease. ml: a lifecycle management system for

machine learning,” in 11th Annual Conference on Innovative Data Systems Research

(CIDR 2021)(virtual), CIDR, 2021.

[113] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. GÃĳrel, B. Li, C. Zhang,

D. Song and C. J. Spanos, “Towards efficient data valuation based on the shapley

value,” in The 22nd International Conference on Artificial Intelligence and Statistics,

PMLR, 2019, pp. 1167–1176.

[114] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang and M. Sugiyama, “Co-

teaching: robust training of deep neural networks with extremely noisy labels,” in

Advances in neural information processing systems, 2018, pp. 8527–8537.

[115] X. Zhang, X. Zhu and S. Wright, “Training set debugging using trusted items,” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[116] Y. Zhang, J. Wen, X. Wang and Z. Jiang, “Semi-supervised learning combining

co-training with active learning,” Expert Systems with Applications, vol. 41, no. 5,

pp. 2372–2378, 2014.

207



[117] M. Nashaat, A. Ghosh, J. Miller, S. Quader, C. Marston and J.-F. Puget, “Hybridiz-

ation of active learning and data programming for labeling large industrial datasets,”

in 2018 IEEE International Conference on Big Data (Big Data), IEEE, 2018, pp. 46–

55.

[118] M. Nashaat, A. Ghosh, J. Miller and S. Quader, “Asterisk: generating large training

datasets with automatic active supervision,” ACM Transactions on Data Science,

vol. 1, no. 2, pp. 1–25, 2020.

[119] D. S. Himmelstein and S. E. Baranzini, “Heterogeneous network edge prediction: a

data integration approach to prioritize disease-associated genes,” PLoS computational

biology, vol. 11, no. 7, e1004259, 2015.

[120] Y. Amsterdamer, D. Deutch, T. Milo and V. Tannen, “On provenance minimization,”

ACM Transactions on Database Systems (TODS), vol. 37, no. 4, p. 30, 2012.

[121] D. Dueck and B. J. Frey, “Non-metric affinity propagation for unsupervised image

categorization,” in Computer Vision, 2007. ICCV 2007. IEEE 11th International

Conference on, IEEE, 2007, pp. 1–8.

[122] P. Slavik, “A tight analysis of the greedy algorithm for set cover,” Journal of Al-

gorithms, vol. 25, no. 2, pp. 237–276, 1997.

[123] F. N. Afrati, C. Li and J. D. Ullman, “Using views to generate efficient evaluation

plans for queries,” Journal of Computer and System Sciences, vol. 73, no. 5, pp. 703–

724, 2007.

[124] B. S. Arab, S. Feng, B. Glavic, S. Lee, X. Niu and Q. Zeng, “Gprom-a swiss army

knife for your provenance needs,” Data Eng. Bull, vol. 41, no. 1, pp. 51–62, 2018.

[125] A. Alawini, S. Davidson, S. Pandey, G. Silvello and Y. Wu, “DBLP-NSF dataset SQL

dump”, Mendeley Data, v5.

[126] A. Weiser and S. E. Zarantonello, “A note on piecewise linear and multilinear table

interpolation in many dimensions,” Mathematics of Computation, vol. 50, no. 181,

pp. 189–196, 1988.

208



[127] H. Karimi, J. Nutini and M. Schmidt, “Linear convergence of gradient and proximal-

gradient methods under the polyak- lojasiewicz condition,” in Joint European Con-

ference on Machine Learning and Knowledge Discovery in Databases, Springer, 2016,

pp. 795–811.

[128] J. She and M. Schmidt, “Linear convergence and support vector identifiation of se-

quential minimal optimization,” in 10th NIPS Workshop on Optimization for Machine

Learning, 2017, p. 5.

[129] R. Kumar and M. Schmidt, “Convergence rate of expectation-maximization,” in 10th

NIPS Workshop on Optimization for Machine Learning, 2017.

[130] M. Schmidt, “Convergence rate of stochastic gradient with constant step size,” 2014.

[131] L. Bottou, F. E. Curtis and J. Nocedal, “Optimization methods for large-scale ma-

chine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[132] H. Ning, W. Xu, Y. Chi, Y. Gong and T. S. Huang, “Incremental spectral clustering

by efficiently updating the eigen-system,” Pattern Recognition, vol. 43, no. 1, pp. 113–

127, 2010.

[133] E. Jones, T. Oliphant, P. Peterson et al., SciPy: open source scientific tools for Py-

thon, 2001–.

[134] M. Nikolic, M. Elseidy and C. Koch, “LINVIEW: incremental view maintenance for

complex analytical queries,” in International Conference on Management of Data,

SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, 2014, pp. 253–264.

[135] S. Hasani, S. Thirumuruganathan, A. Asudeh, N. Koudas and G. Das, “Efficient

construction of approximate ad-hoc ml models through materialization and reuse,”

Proceedings of the VLDB Endowment, vol. 11, no. 11, pp. 1468–1481, 2018.

[136] J. Darzentas, “Problem complexity and method efficiency in optimization,” Journal

of the Operational Research Society, vol. 35, no. 5, pp. 455–455, 1984.

209



[137] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation by av-

eraging,” SIAM Journal on Control and Optimization, vol. 30, no. 4, pp. 838–855,

1992.

[138] Y. A. LeCun, L. Bottou, G. B. Orr and K.-R. MÃĳller, “Efficient backprop,” in Neural

networks: Tricks of the trade, Springer, 2012, pp. 9–48.

[139] A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of

algorithmic differentiation. Siam, 2008, vol. 105.

[140] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,

2004.

[141] L. Bottou, F. E. Curtis and J. Nocedal, “Optimization methods for large-scale ma-

chine learning,” arXiv preprint arXiv:1606.04838, 2016.

[142] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in

several variables. Siam, 1970, vol. 30.

[143] A. R. Conn, N. I. Gould and P. L. Toint, “Convergence of quasi-newton matrices

generated by the symmetric rank one update,” Mathematical programming, vol. 50,

no. 1-3, pp. 177–195, 1991.

[144] A. R. Conn, N. I. Gould and P. L. Toint, “Testing a class of methods for solving

minimization problems with simple bounds on the variables,” Mathematics of com-

putation, vol. 50, no. 182, pp. 399–430, 1988.

[145] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[146] J. A. Blackard and D. J. Dean, “Comparative accuracies of artificial neural networks

and discriminant analysis in predicting forest cover types from cartographic vari-

ables,” Computers and electronics in agriculture, vol. 24, no. 3, pp. 131–151, 1999.

[147] P. Baldi, P. Sadowski and D. Whiteson, “Searching for exotic particles in high-energy

physics with deep learning,” Nature communications, vol. 5, p. 4308, 2014.

210



[148] D. D. Lewis, Y. Yang, T. G. Rose and F. Li, “Rcv1: a new benchmark collection for

text categorization research,” Journal of machine learning research, vol. 5, no. Apr,

pp. 361–397, 2004.

[149] S. Sukhbaatar and R. Fergus, “Learning from noisy labels with deep neural networks,”

arXiv preprint arXiv:1406.2080, vol. 2, no. 3, p. 4, 2014.

[150] J. Martens, “Deep learning via hessian-free optimization.,” in ICML, vol. 27, 2010,

pp. 735–742.

[151] C. D. Meyer, Matrix analysis and applied linear algebra. Siam, 2000, vol. 71.

[152] G. H. Golub and H. A. Van der Vorst, “Eigenvalue computation in the 20th century,”

Journal of Computational and Applied Mathematics, vol. 123, no. 1-2, pp. 35–65, 2000.

[153] A. Johnson et al., “Alistair johnson, matt lungren, yifan peng, zhiyong lu, roger mark,

seth berkowitz, steven horng,”

[154] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S.

Venugopalan, K. Widner, T. Madams, J. Cuadros et al., “Development and validation

of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus

photographs,” Jama, vol. 316, no. 22, pp. 2402–2410, 2016.

[155] A. E. Johnson, T. J. Pollard, N. R. Greenbaum, M. P. Lungren, C.-y. Deng, Y. Peng,

Z. Lu, R. G. Mark, S. J. Berkowitz and S. Horng, “Mimic-cxr-jpg, a large publicly

available database of labeled chest radiographs,” arXiv preprint arXiv:1901.07042,

2019.

[156] M. Raghu, C. Zhang, J. Kleinberg and S. Bengio, “Transfusion: understanding trans-

fer learning for medical imaging,” arXiv preprint arXiv:1902.07208, 2019.

[157] B. Loni, L. Y. Cheung, M. Riegler, A. Bozzon, L. Gottlieb and M. Larson, “Fashion

10000: an enriched social image dataset for fashion and clothing,” in Proceedings of

the 5th acm multimedia systems conference, 2014, pp. 41–46.

211



[158] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, “Bert: pre-training of deep bidirec-

tional transformers for language understanding,” arXiv preprint arXiv:1810.04805,

2018.

[159] P. Varma and C. RÃľ, “Snuba: automating weak supervision to label training data,”

in Proceedings of the VLDB Endowment. International Conference on Very Large

Data Bases, NIH Public Access, vol. 12, 2018, p. 223.

[160] N. Das, S. Chaba, R. Wu, S. Gandhi, D. H. Chau and X. Chu, “Goggles: automatic

image labeling with affinity coding,” in Proceedings of the 2020 ACM SIGMOD In-

ternational Conference on Management of Data, 2020, pp. 1717–1732.

[161] O. Chatterjee, G. Ramakrishnan and S. Sarawagi, “Data programming using continu-

ous and quality-guided labeling functions,” arXiv preprint arXiv:1911.09860, 2019.

[162] A. P. Brady, “Error and discrepancy in radiology: inevitable or avoidable?” Insights

into imaging, vol. 8, no. 1, pp. 171–182, 2017.

[163] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778.

[164] Y. Le Cun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson,

R. E. Howard andW. Hubbard, “Handwritten digit recognition: applications of neural

network chips and automatic learning,” IEEE Communications Magazine, vol. 27,

no. 11, pp. 41–46, 1989.

[165] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of machine

learning research, vol. 9, no. 11, 2008.

[166] M. Belkin, D. Hsu, S. Ma and S. Mandal, “Reconciling modern machine-learning prac-

tice and the classical bias–variance trade-off,” Proceedings of the National Academy

of Sciences, vol. 116, no. 32, pp. 15 849–15 854, 2019.

212



[167] S. S. Du, X. Zhai, B. Poczos and A. Singh, “Gradient descent provably optimizes

over-parameterized neural networks,” in International Conference on Learning Rep-

resentations, 2018.

[168] Z Allen-Zhu, Y Li and Y Liang, “Learning and generalization in overparameterized

neural networks, going beyond two layers,” Advances in neural information processing

systems, 2019.

[169] S. Du, J. Lee, H. Li, L. Wang and X. Zhai, “Gradient descent finds global minima

of deep neural networks,” in International Conference on Machine Learning, PMLR,

2019, pp. 1675–1685.

[170] S. Arora, S. Du, W. Hu, Z. Li and R. Wang, “Fine-grained analysis of optimization

and generalization for overparameterized two-layer neural networks,” in International

Conference on Machine Learning, PMLR, 2019, pp. 322–332.

[171] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar and N. Srebro, “The implicit bias

of gradient descent on separable data,” The Journal of Machine Learning Research,

vol. 19, no. 1, pp. 2822–2878, 2018.

[172] L. Chizat and F. Bach, “Implicit bias of gradient descent for wide two-layer neural

networks trained with the logistic loss,” in Conference on Learning Theory, PMLR,

2020, pp. 1305–1338.

[173] S. Gunasekar, J. D. Lee, N. Srebro and D. Soudry, “Implicit bias of gradient descent on

linear convolutional networks,” Advances in Neural Information Processing Systems,

vol. 2018, pp. 9461–9471, 2018.

[174] M. Kubo, R. Banno, H. Manabe and M. Minoji, “Implicit regularization in over-

parameterized neural networks,” arXiv preprint arXiv:1903.01997, 2019.

[175] L. Zhu and S. Han, “Deep leakage from gradients,” in Federated Learning, Springer,

2020, pp. 17–31.

[176] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny im-

ages,” 2009.

213



[177] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[178] C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals, “Understanding deep learn-

ing requires rethinking generalization,” 2016.

[179] A. Bietti and J. Mairal, “On the inductive bias of neural tangent kernels,” in Neur-

IPS 2019-Thirty-third Conference on Neural Information Processing Systems, vol. 32,

2019, pp. 12 873–12 884.

[180] L. Rupprecht, J. C. Davis, C. Arnold, Y. Gur and D. Bhagwat, “Improving reprodu-

cibility of data science pipelines through transparent provenance capture,” Proceed-

ings of the VLDB Endowment, vol. 13, no. 12, pp. 3354–3368, 2020.

[181] J. Hu, J. Joung, M. Jacobs, K. Z. Gajos and M. I. Seltzer, “Improving data scientist

efficiency with provenance,” in 2020 IEEE/ACM 42nd International Conference on

Software Engineering (ICSE), IEEE, 2020, pp. 1086–1097.

[182] J. F. N. Pimentel, V. Braganholo, L. Murta and J. Freire, “Collecting and analyz-

ing provenance on interactive notebooks: when ipython meets noworkflow,” in 7th

USENIX Workshop on the Theory and Practice of Provenance (TaPP 15), 2015.

[183] T. Kraska, A. Beutel, E. H. Chi, J. Dean and N. Polyzotis, “The case for learned index

structures,” in Proceedings of the 2018 International Conference on Management of

Data, 2018, pp. 489–504.

[184] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein and I. Stoica, “Learning to optim-

ize join queries with deep reinforcement learning,” arXiv preprint arXiv:1808.03196,

2018.

[185] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Heller-

stein, S. Krishnan and I. Stoica, “Deep unsupervised cardinality estimation,” Pro-

ceedings of the VLDB Endowment, vol. 13, no. 3, pp. 279–292, 2019.

[186] V. Trkulja and P. Hrabač, “Confidence intervals: what are they to us, medical doc-

tors?” Croatian medical journal, vol. 60, no. 4, p. 375, 2019.

214



[187] G. A. Kaissis, M. R. Makowski, D. RÃĳckert and R. F. Braren, “Secure, privacy-

preserving and federated machine learning in medical imaging,” Nature Machine In-

telligence, vol. 2, no. 6, pp. 305–311, 2020.

[188] X. L. Dong and T. Rekatsinas, “Data integration and machine learning: a natural

synergy,” in Proceedings of the 2018 international conference on management of data,

2018, pp. 1645–1650.

[189] H. Mousavi, S. Gao and C. Zaniolo, “Ibminer: a text mining tool for constructing

and populating infobox databases and knowledge bases,” Proceedings of the VLDB

Endowment, vol. 6, no. 12, pp. 1330–1333, 2013.

[190] Y. Li, B. Rubinstein and T. Cohn, “Exploiting worker correlation for label aggregation

in crowdsourcing,” in International Conference on Machine Learning, PMLR, 2019,

pp. 3886–3895.

[191] I. E. Kumar, S. Venkatasubramanian, C. Scheidegger and S. Friedler, “Problems with

shapley-value-based explanations as feature importance measures,” in International

Conference on Machine Learning, PMLR, 2020, pp. 5491–5500.

[192] “Explainable artificial intelligence: a survey,” in 2018 41st International conven-

tion on information and communication technology, electronics and microelectronics

(MIPRO), IEEE, 2018, pp. 0210–0215.

[193] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester and L. De Raedt, “Deep-

problog: neural probabilistic logic programming,” Advances in Neural Information

Processing Systems, vol. 31, pp. 3753–3760, 2018.

[194] A. d. Garcez, T. R. Besold, L. De Raedt, P. FÃűldiak, P. Hitzler, T. Icard, K.-U.

KÃĳhnberger, L. C. Lamb, R. Miikkulainen and D. L. Silver, “Neural-symbolic learn-

ing and reasoning: contributions and challenges,” in 2015 AAAI Spring Symposium

Series, 2015.

215


	Towards The Efficient Use Of Fine-Grained Provenance In Datascience Applications
	Recommended Citation

	Towards The Efficient Use Of Fine-Grained Provenance In Datascience Applications
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Acknowledgement
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Review of data provenance
	Using data provenance in data citation
	Using data provenance for incrementally updating machine learning models
	Using data provenance to reduce the cost of cleaning label uncertainties
	Future extensions for DeltaGrad and CHEF
	Summary and Roadmap

	Related work
	Data provenance
	Generating fine-grained data citations with fine-grained provenance
	Incrementally update machine learning models with provenance
	Related work on cleaning label uncertainties for machine learning models

	Reasoning about fine-grained data citations with provenance
	Preliminary
	Citation view models
	View mappings and Query extensions

	Reasoning about validity of view mappings
	Rewriting-Based Approach (RBA)
	Tuple-level approach (TLA)
	Semi-Schema-level approach (SSLA)
	Optimization in the implementations

	Provenance-Based Approach (PBA)
	The need for provenance
	Preliminary of PBA
	PBA for conjunctive queries
	PBA for aggregate queries
	Valid view mappings for aggregate queries
	Algorithmic details of ProvCite
	Optimizations in the implementations


	Citation generation
	Covering sets
	Optimizations to computing covering sets
	Policy to generate citations

	Experimental evaluations
	Experiment setups
	Experimental results
	Synthetic experimental results on conjunctive queries
	Realistic experimental results on conjunctive queries
	Synthetic experimental results on aggregate queries
	Realistic experimental results on aggregate queries


	Acknowledgement

	Incrementally updating machine learning models using provenance
	Preliminary
	Provenance-based ML model updates
	Provenance semiring model for linear algebra operators yan2016fine
	Constructing tensor products for SGD/GD update rules
	Constructing tensor products for SGD/GD update rules of liner regression model
	Constructing tensor products for SGD/GD update rules of logistic regression model

	Theoretical analysis
	PrIU for linear regression
	PrIU for logistic regression
	Empirical evaluations
	Experimental setup
	Experiment design
	Experimental results


	L-BFGS based ML model updates
	DeltaGrad for GD
	Proposed algorithm
	Theoretical analysis

	DeltaGrad for SGD
	Proposed algorithm
	Theoretical results

	Extension to online deletions/additions
	Extension to DNNs
	Empirical studies
	Experimental setup

	Experimental results
	Batch addition/deletion.
	Online addition/deletion.
	Influence of hyper-parameters on performance
	Comparison against the state-of-the-art work


	Acknowledgement

	Cleaning probabilistic labels with CHEF
	Preliminaries
	Notation
	Assumptions
	Influence function

	Methodology
	The sample selector phase
	Infl
	Derivation of Equation (5.4)
	Increm-INFL

	The model constructor phase (DeltaGrad-L)
	The human annotation phase

	Experiments
	Experimental setup
	Datasets
	Partition training-validation-test sets
	Producing probabilistic labels
	Human annotator setup
	Model constructor setup
	Sample selector setup
	Baseline methods

	Experimental design
	Experiments for evaluating Infl
	Experiments for evaluating Increm-INFL
	Experiments for evaluating DeltaGrad-L

	Experimental results
	Experiments for evaluating Infl


	Acknowledgement

	Extending DeltaGrad and CHEF
	Extending DeltaGrad
	Brief introduction to over-parameterized neural network models
	Details of the online method
	Efficiency of the online method
	Online method and the model inversion attack
	Failure of the online method for incrementally updating over-parameterized models

	Proposed solution

	Extending CHEF
	Extending CHEF for general machine learning models
	A tight integration between CHEF and weakly supervised learning
	Integrating CHEF with semi-supervised learning


	Conclusions
	Summary
	Future work

	BIBLIOGRAPHY

