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ABSTRACT

ALGORITHMIC PROCESSES AND SOCIAL VALUES

Zachary Ian Schutzman

Aaron Roth

In this thesis, we study several problems at the interface of algorithmic decision-making and

society, focusing on the tensions that arise between these processes and social values like fairness

and privacy. In the first chapter, we examine the design of financial portfolios which adequately

serve all segments of the population. In the second, we examine an allocation setting where the

allocator wishes to distribute a scarce resource across many groups fairly, but does not know ahead

of time which groups have a need for the resource. In the third, we study a game-theoretic model of

information aggregation and the effects of individuals acting to preserve the privacy of their personal

beliefs on the collective welfare of the population. Finally, we look at some of the issues that arise

from the desire to apply automated techniques to problems in redistricting, including fundamental

flaws in the definitions and frameworks typically used.
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Chapter 1

Introduction

Although the ubiquity of computing has allowed for a rapid increase in both the frequency and the

breadth of algorithmic processes making decisions that affect our day-to-day lives, the idea of taking

some information from an individual or a group of people, feeding it through an algorithm, and

using the output to inform some action or policy is far from a new phenomenon. Shop owners use

product popularity information to decide which goods to stock and how to price them. An enormous

set of formulas takes as input the amount of money an individual earns in a year and outputs the

amount they ought to pay in taxes. Voting systems aggregate voter preferences into decisions about

who should lead a country. Of course, concerns that algorithmic decision-making might flout social

norms are not new either. What kinds of people face higher or lower tax burdens? Does monitoring

a customer’s shopping habits violate their privacy? What kinds of views are shut out from political

representation?

The landscape of algorithmically-informed decision-making has only become more complex with

the rise of computing and ‘big data’. Every time you open a webpage, an algorithm decides which ads

to display based on some combination of the information about the page in particular, your personal

browsing habits, and the advertiser’s willingness-to-pay to serve you an ad. Similarly, algorithms

tell us which schools to attend, which news to read, and which roads to drive on. Hundreds of times
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per day, as algorithmic processes make decisions for and about us, we are left to worry about how

the algorithm designers and data collectors are respecting social norms like fairness and privacy.

In this dissertation, we look at four settings in which we study an algorithmic process together

with a question about how to modify it to comport with a social norm. We examine these contexts

from a computational perspective, considering the design and analysis of algorithms and developing

mathematical proofs to describe what these algorithms formally can and cannot accomplish.

The first setting we examine is optimal portfolio design, which is the process of constructing a

collection of financial assets for a customer which maximizes the amount of monetary returns they

receive while limiting the risk they are exposed to. We study this together with the question of ‘How

might we prevent the designer from constructing products which only serve a small segment of the

population?’ We think about a designer who must offer a small number of investment options for

a broad population, which is divided into groups. We might think of these groups as corresponding

to demographics or a particular employment status or some other label which is sensible in this

context. In a standard profit maximization setup, the designer would probably want to design

portfolios which serve wealthier customers well and ignore the segment of the population that is less

well-off. In our model, we develop a notion of minmax fairness, which asks that no group’s access

to desirable portfolios is substantially worse than any other group’s.

In the United States and many other Western nations, wealth inequalities are magnified by

exclusive access to certain classes of assets and investments. For example, in the U.S. one must show

a minimum amount of wealth or income in order to invest in hedge funds, startups, and venture

capital vehicles. While putatively for the protection of ordinary consumers against risky investments,

such restrictions prevent large swaths of society from reaping the often outsized returns that they

provide over time. In addition to such explicit barriers, many of the aforementioned asset classes also

have implicit and social barriers, requiring personal connections and status to access them. Overall

such frictions fall disproportionately on the less wealthy members of society, which itself correlates

with demographic factors such as race and ethnicity.

2



In Chapter 2 we study financial asset design with fairness as an explicit goal. We consider a

variation on the classical problem of optimal portfolio design. In this setting, there is a collection

of individual financial assets, each with an expected return and a risk, which is the variance of the

distribution from which the actual return is drawn. The returns on these assets may be correlated

with one another, either positively or negatively. The collection of assets can therefore be abstractly

represented as a vector of returns and a covariance matrix of risks. Then, an individual consumer is

specified by their risk tolerance and the classical portfolio design problem asks to choose a weight for

each asset such that the total weight does not exceed one and the risk level of the resulting portfolio

does not exceed their risk tolerance.

If the designer can only offer a small number of different portfolios, then a consumer might be

assigned to a portfolio which does not achieve as high of a return as a bespoke one designed for

them. We can then impose fairness considerations by asking that the suite of portfolios the designer

chooses does not result in this gap between realized and bespoke returns falling disproportionately

on some group of consumers.

Our main results are algorithms for optimal and near-optimal portfolio design for both social

welfare and fairness objectives, both with and without assumptions on the underlying group struc-

ture. We describe an efficient algorithm based on an internal two-player zero-sum game that learns

near-optimal fair portfolios ex ante and show experimentally that it can be used to obtain a small set

of fair portfolios ex post as well. For the special but natural case in which group structure coincides

with risk tolerances (which models the reality that wealthy consumers generally tolerate greater

risk), we give an efficient and optimal fair algorithm. We also provide generalization guarantees for

the underlying risk distribution that has no dependence on the number of portfolios and illustrate

the theory with simulation results.

The next setting is a resource allocation problem where an allocator wants to distribute a resource

to deserving candidates across multiple groups, which we might think of again as corresponding to

demographics or the groups might be geographic, such as neighborhoods. The question we ask is
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‘If the allocator does not know how many people in each group are deserving of the resource and can

only learn about it by making an allocation and observing some outcome of that allocation, what can

the allocator do to ensure fair distribution?’ The natural concern here is of feedback loops, where if

the allocator incorrectly believes that one group has a high number of candidates, that group will

continue to be overallocated the resource and not enough will be learned about the other groups

to eventually correct the mistake. We study this problem from a learning-theoretic perspective and

give a natural algorithm to solve the problem.

Many settings can be modelled as a central agent allocating a limited resource among several

groups, such as administering loans or scholarships, distributing consumer goods to retail locations,

or assigning doctors to hospitals. The allocator typically has a straightforward objective of maximiz-

ing the number of individuals who receive the resource: qualified loan applicants who successfully

pay back loans, retail sales, and patients given medical care. Often in such settings, fairness is a

concern. One natural notion of fairness, based on general principles of equality of opportunity , asks

that conditional on an individual being a candidate for the resource in question, the probability of

actually receiving it is approximately independent of the individual’s group. For example, equally

creditworthy individuals in different racial groups ought to have roughly equal chances of receiving a

loan; sick patients who live in different neighborhoods shouldn’t face dramatically different waiting

times to see a doctor at a clinic. In these settings, the allocator does not know ahead of time the

exact number of individuals in each group who will need the resource, and rather operates in a

censored feedback environment. The allocator only learns the amount of the resource that was used

at a particular time step in a particular group.

In Chapter 3, we formalize this general notion of fairness for allocation problems and investigate

its algorithmic consequences. Our main technical results include an efficient learning algorithm that

converges to an optimal fair allocation even when the allocator does not know the distributions of

the frequency of candidates in each group. This algorithm operates in a censored feedback model in

which only the number of candidates who received the resource in a given allocation can be observed,
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rather than the true number of candidates in each group.

The third setting is one where we examine privacy concerns in a strategic setting. The Keynesian

Beauty Contest is a classical game in which strategic agents seek to both accurately guess the true

state of the world as well as the average action of all agents. We study an augmentation of this

game where agents are concerned about revealing their private information and additionally suffer

a loss based on how well an observer can infer their private signals. We solve for an equilibrium of

this augmented game and quantify the loss of social welfare as a result of agents acting to obscure

their private information, which we call the ‘price of privacy’. We analyze two versions of this

this price: one from the perspective of the agents measuring their diminished ability to coordinate

due to acting to obscure their information and another from the perspective of an aggregator whose

statistical estimate of the true state of the world is of lower precision due to the agents adding random

noise to their actions. We show that these quantities are high when agents care very strongly about

protecting their personal information and low when the quality of the signals the agents receive is

poor.

The final setting is in applying algorithms to redistricting, particularly electoral redistricting.

Jurisdictions draw geographic districts for all sorts of purposes, including to assign children to

schools, fire stations to homes, and legislative seats to voters. Over the last decade, there has been a

strong interest in using more automated and computer-supported decision-making in drawing these

districts. The arguments in favor of this tend to follow the belief that while human line-drawers

might draw the lines for some personal or nefarious reason, a computer algorithm brings no such

biases. The question we ask is ‘How might proposed frameworks for fair algorithmic redistricting still

be susceptible to the influence of human decision-makers and to what degree are these frameworks

compatible with each other?’ We explore this question in two parts.

In the first, we look at compactness scores, perhaps the most classical way of infusing algorithmic

constraints into the redistricting process. In political redistricting, the compactness of a district is

used as a quantitative proxy for its fairness. Several well-established, yet competing, notions of
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geographic compactness are commonly used to evaluate the shapes of regions, including the Polsby-

Popper score, the convex hull score, and the Reock score, and these scores are used to compare two

or more districts or plans. In the first part of Chapter 5, we prove mathematically that any map

projection from the sphere to the plane reverses the ordering of the scores of some pair of regions

for all three of these scores. We evaluate these results empirically on United States congressional

districts and demonstrate that this order-reversal does occur in practice with respect to commonly-

used projections. Furthermore, the Reock score ordering in particular appears to be quite sensitive

to the choice of map projection.

Second, we examine two prototypical frameworks for fair automated redistricting: draw districts

to be as compact as possible and draw districts to be as politically representative as possible. What

constitutes a ‘fair’ electoral districting plan is a discussion dating back to the founding of the United

States and, in light of several recent court cases, mathematical developments, and the approaching

2020 U.S. Census, is still a fiercely debated topic today. In light of the growing desire and ability to

use algorithmic tools in drawing these districts, we discuss two prototypical formulations of fairness in

this domain: drawing the districts by a neutral procedure or drawing them to intentionally induce

an equitable electoral outcome. We then generate a large sample of districting plans for North

Carolina and Pennsylvania and consider empirically how compactness and partisan symmetry, as

instantiations of these frameworks, trade off with each other – prioritizing the value of one of these

necessarily comes at a cost in the other.
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Chapter 2

Fair Portfolios

2.1 Introduction

In this work, we initiate the study of financial portfolio design with fairness as an explicit goal. In

many economies, including (but not limited to) the United States and many other Western nations,

financial assets serve as a vehicle that allow consumers to build long-term wealth; unequal access

to these assets can greatly exacerbate economic inequality and social immobility. Some assets, such

as stocks, bonds, and other publicly-traded securities, yield a relatively small but steady expected

return that allows wealth to grow over time, yet are unequally held across groups; for instance,

an analysis by the Federal Reserve of the 2019 Survey of Consumer Finances found that while 60

percent of White households had direct or indirect equity, only 33 percent of Black households and

24 percent of Hispanic households did (Bhutta et al., 2020). For riskier assets, in the United States,

potential investors must meet minimum wealth or income requirements in order to invest in hedge

funds, startups, and venture capital vehicles.

While putatively for the protection of ordinary consumers against risky investments, such re-

strictions prevent large swaths of society from reaping the often-outsized returns they provide over

time. In addition to such explicit barriers, many of the aforementioned asset classes also have social

7



barriers, requiring connections to access them. Overall, such frictions fall disproportionately on the

less wealthy, and as such may also be correlated with race and other demographic factors.

While these structural inequalities may not be entirely mitigated by fairer portfolio design alone,

explicitly incorporating fairness concerns into this process could have significant impacts on the lives

of individual consumers. In this work, we consider algorithmic and learning problems in the fair

design of financial products under a simple model. We imagine a large population of individual retail

investors or consumers, each of whom has her own tolerance for investment risk in the form of a

limit on the variance of returns. It is well known in quantitative finance that for any set of financial

assets, the optimal expected returns on investment are increasing with risk.

We assume that a large retail investment firm (such as Vanguard or Fidelity) wishes to design

portfolios to serve these consumers under the common practice of assigning consumers only to

portfolios with lower risks than their tolerances. The firm would like to design and offer only

a small number of such products — much smaller than the number of consumers — since the

execution and maintenance of portfolios is costly and ongoing. The overarching goal is to design

the products to minimize consumer regret — the loss of returns due to being assigned to lower-risk

portfolios compared to the bespoke portfolios saturating tolerances — both with and without fairness

considerations. We highlight that fairness concerns are becoming increasingly more prominent among

both practitioners and academics in the financial sector - see discussion in, for instance, Klein, Lee

and Floridi (2020), Shu and Ucla (2012), and Sarra (2014).

We consider a notion of group fairness adapted from the literature on fair division. Consumers

belong to underlying groups that may be defined by standard demographic features such as race,

gender or age, or they may be defined by the risk tolerances themselves, as higher risk appetite

is generally correlated with higher wealth. We study minmax group fairness, in which the goal

is to minimize the maximum regret across groups — i.e. to optimize for the least well-off group.

Compared to the approach of constraining regret to be equal across groups (which is not even always

feasible in our setting), minmax optimal solutions have the property that they Pareto-dominate
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regret-equalizing solutions; under the minmax-optimal suite of portfolios, every group experiences

regret less than or equal to the all-groups-equal-optimal suite.

2.1.1 Related Work

Our work generally falls within the literature on fairness in machine learning, which is too broad

to survey in detail here; see Chouldechova and Roth (2020) for a recent overview. We are perhaps

closer in spirit to research in fair division or allocation problems Barman and Krishnamurthy (2017);

Procaccia and Wang (2014); Budish (2011), in which a limited resource must be distributed across a

collection of players so as to maximize the utility of the least well-off; here, the resource in question

is the small number of portfolios to design. However, we are not aware of any technical connections

between our work and this line of research. While our work is inspired and motivated by the context

of and applications to the portfolio design problem in finance, there are similarities between the

problem we study and one-dimensional clustering and one-dimensional facility location problems

Nielsen and Nock (2014); Bellman (1973); Chen and Wang (2011); Hassin and Tamir (1991). In these

problems, there are a collection of individuals along the real line, and the algorithm designer must

choose a collection of points on the line to serve as ‘centers’ so as to minimize some cost function

associated with the individuals accessing the centers. The algorithm we give in Section 2.3 for the

problem absent fairness is a standard dynamic programming formulation for these settings. There is

some recent literature on fair facility location problems Jung et al. (2019); Mahabadi and Vakilian

(2020), which attempt to choose a small number of “centers” to minimize a cost function together

with constraints informed by the need to serve a large and diverse population. Our work also has

similarities to work on designing algorithms for “fair allocation” problems that arise in contexts such

as loan administration or predictive policing Ensign et al. (2017); Elzayn et al. (2019); Donahue and

Kleinberg (2020).

There seems to have been relatively little explicit consideration of fairness issues in quantitative

finance generally and optimal portfolio design specifically. An exception is Iancu and Trichakis
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(2014), in which the interest is in fairly amortizing transaction costs of a single portfolio across

investors rather than designing multiple portfolios to meet a fairness criterion.

2.1.2 Our Results and Techniques

In Section 2.3, we provide a dynamic program to find p products that optimize the average regret

of a single population. In Section 2.4, we divide the population into different groups and develop

techniques to guarantee minmax group fairness: in Section 2.4.1, we show a separation between de-

terministic solutions and randomized solutions (i.e. distributions over sets of p products) for minmax

group fairness; in Section 2.4.2, we leverage techniques for learning in games to find a distribution

over products that optimizes for minmax group fairness; in Section 2.4.3, we focus on deterministic

solutions and extend our dynamic programming approach to efficiently optimize for the minmax

objective when the number of groups is constant. In Section 2.5 we give an approximate greedy

algorithm leveraging the submodularity of the regret function. Section 2.6 discusses a generalization

of our regret notion where we allow users to be assigned to products with a higher level of risk

than their tolerance. Finally, in Section 2.7, we provide experiments to complement our theoretical

results.

2.2 Model and Preliminaries

We aim to create products (portfolios) consisting of weighted collections of assets with differing

means and standard deviations (risks). Each consumer is associated with a real number τ ∈ R≥0,

which is the risk tolerance of the consumer — an upper bound on the standard deviation of returns.

We assume that consumers’ risk tolerances are bounded.
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2.2.1 Bespoke Problem

We adopt the standard Markowitz framework Markowitz (1952) for portfolio design. Given a set

of m assets with mean µ ∈ Rm+ and covariance matrix Σ ∈ Rm×m, and a consumer risk tolerance

τ , the bespoke portfolio achieves the maximum expected return that the consumer can realize by

assigning weights a over the assets (where the weight of an asset represents the fraction of the

portfolio allocated to said asset) subject to the constraint that the overall risk, quantified as the

standard deviation of the mixture a over assets, does not exceed their tolerance τ . Finding a

consumer’s bespoke portfolio can be written down as an optimization problem. We formalize the

bespoke problem in Equation (2.1) below, and call the solution r(τ).

r(τ) = max
a∈Rm

{
a>µ |a>Σa ≤ τ2,1>a = 1

}
(2.1)

Here we note that optimal portfolios are summarized by r(τ), which is non-decreasing. Since con-

sumer tolerances are bounded, we let B denote the maximum value of r(τ) across all consumers.

2.2.2 A Regret Notion

To frame our problem in terms of standard algorithmic formulations, we need a notion of regret.

Two considerations inform our particular choice of regret definition. First, we would like the solution

to our problem to correspond to a good outcome for consumers, and this requires that the regret

of a choice of products measures how well the consumers could have done under some other choice

(as opposed to thinking about how well the portfolio designer could have done, which may or may

not align with consumer interests). The solution to the bespoke problem is, by definition, the best

the consumer could have done given their risk tolerance, and thus is an appropriate benchmark.

Second, the realized outcome of any given asset or portfolio may include significant randomness, and

so it is more useful to consider the expected value of instruments. Hence, the notions of regret we

will consider will use the difference in expected return between a consumer’s best choice under our

selected portfolio and their bespoke portfolio.
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Suppose there are n consumers to whom we want to offer products. Our goal is to design p� n

products that minimize a notion of regret for a given set of consumers. A product has a risk (standard

deviation) which we will denote by c. We assume throughout that in addition to the selected p

products, there is always a risk-free product (say cash) available that has zero return; we will denote

this risk-free product by c0 ≡ 0 throughout the paper (r(c0) = 0). For a given consumer with risk

threshold τ , the regret of the consumer with respect to a set of products c = (c1, c2, . . . , cp) ∈ Rp≥0

is the difference between the return of her bespoke product and the maximum return of any product

with risk that is less than or equal to her risk threshold. To formalize this, the regret of products

c for a consumer with risk threshold τ is defined as Rτ (c) = r(τ) − max
cj≤τ

r(cj). Note since c0 = 0

always exists, the maxcj≤τ r(cj) term is well defined. Now for a given set of consumers S = {τi}ni=1,

the regret of products c on S is simply defined as the average regret of c on S:

RS(c) ,
1

n

n∑
i=1

Rτi(c) (2.2)

When S includes the entire population of consumers, we call RS(c) the population regret. The

following notion for the weighted regret of c on S, given a vector w = (w1, . . . , wn) of weights for

each consumer, will be useful in Sections 2.3 and 2.4:

RS(c,w) ,
n∑
i=1

wi Rτi(c) (2.3)

Absent any fairness concern, our goal is to design efficient algorithms to minimize RS(c) for a

given set of consumers S and target number of products p: minc RS(c). This will be the subject

of Section 2.3. We can always find an optimal set of products as a subset of the n consumer risk

thresholds S = {τi}i, because if any product cj is not in S, we can replace it by min{τi | τi ≥ cj}

without decreasing the return for any consumer. We let Cp(S) represent the set of all subsets of size

p for a given set of consumers S: Cp(S) = {c = (c1, c2, . . . , cp) ⊆ S}.

We can reduce our regret minimization problem to the following problem:

R (S, p) , min
c∈Cp(S)

RS(c) (2.4)

Similarly, we can reduce the weighted regret minimization problem to the following problem:
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R (S,w, p) , min
c∈Cp(S)

RS(c,w). (2.5)

Remark 2.1. Later, we consider a more general regret framework that allows consumers to be

assigned to products with risk higher than their tolerance. In this case, it is not necessarily optimal

to always place products on the consumer risk thresholds; in turn, the techniques we use are of

independent interest and different from those used in the main body of the paper.

2.2.3 Group Fairness: ex post and ex ante

Like much of the literature, we focus on group fairness, but our setting is somewhat unique. First,

while a designer with access to demographic information may well wish to enforce fairness with

respect to traditional protected statuses like race, gender, and age, other consideration may also

be reasonable and important. For instance, partitions of risk tolerances themselves - e.g. high

risk tolerance, medium risk tolerance, and low risk-tolerance - are likely correlated with wealth,

socioeconomic status, or race and ethnicity. If this data is not available to the designer, enforcing

fairness with respect to classes of risk tolerance may be a reasonable way to proxy for demographic

fairness. Our framework is agnostic to what the groups represent.

Additionally, in settings such as designing portfolios for large organizations, enforcing fairness

with respect to job groups (for instance, executives versus support staff) may be another natural

concern. We also highlight that our methods provide a form of individual fairness if groups are

taken to be the individuals themselves, at the cost of runtime and sample size increases accordingly.

Our approach also engenders nuance in the timing of fairness considerations. That is, as we use

randomized algorithms, one may consider the regret that will be achieved in expectation before the

randomness of the algorithm is realized, or first realize the randomness and then measure fairness

with respect to the portfolios ultimately selected. Both notions are useful: ex ante fairness is easier

to satisfy computationally, and may also capture repeated settings where the portfolios are modified

frequently and the risk tolerances of consumers are not known in advance. On the other hand, the
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stronger notion of ex post fairness captures settings where redesign opportunities may be few and far

between or the consumers’ tolerances are fixed in advance (such as providing retirement investment

products to a class of employees in a single large firm).

Suppose consumers are partitioned into g groups: S = {Gk}gk=1, e.g. based on their attributes

like race or risk levels. Each Gk consists of the consumers of group k represented by their risk

thresholds. We will often abuse notation and write i ∈ Gk to denote that consumer i has threshold

τi ∈ Gk. Given this group structure, minimizing the regret of the whole population absent any

constraint might lead to some groups incurring much higher regret than others. With fairness

concerns in mind, we turn to the design of efficient algorithms to minimize the maximum regret over

groups (we call this maximum “group regret”):

Rfair (S, p) , min
c∈Cp(S)

{
max

1≤k≤g
RGk(c)

}
(2.6)

The set of products c that solves the above minmax problem will be said to satisfy ex post minmax

fairness (for brevity, we call this “fairness” throughout). One can relax Program (2.6) by allowing

the designer to randomize over sets of p products and output a distribution over Cp(S) (as opposed

to one deterministic set of products) that minimizes the maximum expected regret of groups:

R̂fair (S, p) , min
C∈∆(Cp(S))

{
max

1≤k≤g
E c∼C [RGk(c)]

}
(2.7)

where ∆(A) represents the set of probability distributions over the set A, for any A. The

distribution C that solves the above minmax problem will be said to satisfy ex ante minmax fairness

— meaning fairness is satisfied in expectation before realizing any set of products drawn from the

distribution C — but there is no fairness guarantee on the realized draw from C. Such a notion of

fairness is useful in settings in which the designer has to make repeated decisions over time and has

the flexibility to offer different sets of products in different time steps. In Section 2.4, we provide

algorithms that solve both problems cast in Programs (2.6) and (2.7). We note that while there is

a simple integer linear program (ILP) that solves Programs (2.6) and (2.7), such an ILP is often

intractable to solve. We use it in our experiments on small instances to evaluate the quality of our
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efficient algorithms.

2.3 Regret Minimization Absent Fairness

In this section, we provide an efficient dynamic programming algorithm for finding the set of p prod-

ucts that minimizes the (weighted) regret for a collection of consumers (absent fairness constraints).

This dynamic program will be used as a subroutine in our algorithms for finding optimal products

for minmax fairness. A firm uninterested in fairness could use such a program (choosing weights

increasing in customer profitability) to minimize regret for profitable customers and consequently,

maximize its own profits; the fact that this approach is only an ingredient, not sufficient alone, in

finding a fair portfolio highlights the fact that the fairness-constrained problem is considerably more

technically challenging.

Let S = {τi}ni=1 be a collection of consumer risk thresholds and w = (wi)
n
i=1 be their weights,

such that τ1 ≤ · · · ≤ τn (without loss of generality). The key idea is as follows: suppose that

consumer index z defines the riskiest product in an optimal set of p products. Then all consumers

z, . . . , n will be assigned to that product and the consumers 1, . . . , z−1 will not be. Therefore, if we

knew the highest risk product in an optimal solution, we would be left with a smaller subproblem

in which the goal is to optimally choose p− 1 products for the first z − 1 consumers. Our dynamic

programming algorithm finds the optimal p′ products for the first n′ consumers for all values of

n′ ≤ n and p′ ≤ p.

More formally for any n′ ≤ n, let S[n′] = {τi}n
′

i=1 and w[n′] denote the n′ lowest risk consumers

and their weights. For any n′ ≤ n and p′ ≤ p, let T (n′, p′) = R(S[n′],w[n′], p′) be the optimal

weighted regret achievable in the subproblem using p′ products for the first n′ weighted consumers.

We make use of the following recurrence relations:

Lemma 2.2. The function T defined above satisfies the following properties:

1. For any 1 ≤ n′ ≤ n, we have T (n′, 0) =
n′∑
i=1

wir(τi).

15



2. For any 1 ≤ n′ ≤ n and 0 ≤ p′ ≤ p, we have

T (n′, p′) = min
z∈{p′,...,n′}

T (z − 1, p′ − 1) +

n′∑
i=z

wi
(
r(τi)− r(τz)

) .

Proof. The first property is immediate, because when p′ = 0, we do not choose any products, and

there is only one valid solution that assigns all consumers to the zero-risk cash product. For this

solution, the weighted regret is simply the sum of the weighted returns for each consumer’s bespoke

portfolio.

We now turn to proving the second property. For any consumer index z ∈ [n′], define T (n′, p′, z)

to be the optimal weighted regret for the first n′ consumers using p′ products subject to the constraint

that the highest risk product has risk threshold set to τz. That is,

T (n′, p′, z) = min
c=(c1,...,cp′ )⊂S[n′]

c1,...,cp′≤τz
cp′=τz

RS[n′](c,w[n′]).

The products achieving weighted regret T (n′, p′, z) must choose cp′ = τz and choose c1, . . . , cp′−1

to be optimal products for the consumers indexed 1, . . . , z − 1, who are not served by the product

cp′ because it is too high risk. On the other hand, the weighted regret of consumers z, . . . , n′ when

assigned to a product with risk limit τz is given by
n′∑
i=z

wi ·
(
r(τi) − r(τz)

)
. Together, this implies

that

T (n′, p′, z) = T (z − 1, p′ − 1) +

n′∑
i=z

wi ·
(
r(τi)− r(τz)

)
.

On the other hand, for any n′ and p′, we have that T (n′, p′) = min
z∈[n′]

T (n′, p′, z), because the optimal

p′ products for the first n′ consumers has a largest risk threshold equal to some consumer risk

threshold. Combining these equalities gives

T (n′, p′) = min
z∈[n′]

T (n′, p′, z)

= min
z∈[n′]

T (z − 1, p′ − 1) +

n′∑
i=z

wi ·
(
r(τi)− r(τz)

)
,

as required.

The running time of our dynamic programming algorithm, which uses the above recurrence
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relations to solve all subproblems, is summarized below.

Theorem 2.3. There exists an algorithm that, given a collection of consumers S = {τi}ni=1 with

weights w = (wi)
n
i=1 and a target number of products p, outputs a collection of products c ∈ Cp(S)

with minimal weighted regret: RS(c,w) = R(S,w, p). This algorithm runs in time O(n2p).

Proof. The algorithm computes a table containing the values T (n′, p′) for all values of n′ ≤ n and

p′ ≤ p using the above recurrence relations. The first column, when p′ = 0, is computed using

property 1 from Lemma 2.2, while the remaining columns are filled using property 2. By keeping

track of the value of the index z achieving the minimum in each application of property 2, we can

also reconstruct the optimal products for each subproblem.

To bound the running time, observe that the sums appearing in both properties can be computed

in O(1) time, after pre-computing all partial sums of the form
n′∑
i=1

wir(τi) and
n′∑
i=1

wi for n′ ≤ n.

Computing these partial sums takes O(n) time. With this, the first property can be evaluated in

O(1) time, and the second can be evaluated in O(n) time by iterating over the values of z. In total,

we can fill out all O(np) table entries in O(n2p) time. Reconstructing the optimal set of products

takes O(p) time given the completed table.

2.4 Regret Minimization with Group Fairness

In this section, we consider the problem of choosing a set of p products in a way that satisfies

group fairness. As noted before, groups can correspond to protected classes such as race, gender,

age, and so on, or can simply correspond to partitions of risk tolerances (which may be correlated1

with protected status). Importantly, in our notion of minmax fairness, our objective is to optimize

the welfare of the worst-off group under our choice. Thus we are implicitly enforcing fairness to

protect all groups from inequity, while still achieving good overall performance. This may not be

appropriate in certain settings - for instance, if the designer wished to prioritize specific groups
1It is important to note that correlation is not causation. Indeed, while some research has found differences in risk

aversion by race, other work has argued that these differences are driven by financial status or other circumstantial,
rather than preferential, factors. See discussion in, for instance, Yao et al. (2005) and Fang et al. (2013).
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to remedy historical inequity, they may prefer to solve a weighted regret-minimization using the

dynamic program described in Section Section 2.3 and weight the groups they wish to protect.

Formally, we study the problem of choosing p products when the consumers can be partitioned

into g groups and we want to optimize minmax fairness across groups, for both the ex post minmax

fairness Program (2.6) and the ex ante minmax fairness Program (2.7).

We start the discussion of minmax fairness by showing a separation between the ex post objective

in Program (2.6) and the ex ante objective in Program (2.7). More precisely, we show in Section 2.4.1

that the objective value of Program (2.6) can be Ω(g) times higher than the objective value of

Program (2.7).

In the remainder of the section, we provide algorithms to solve Programs (2.6) and (2.7). In Sec-

tion 2.4.2, we provide an algorithm that solves Program (2.7) to any desired additive approximation

factor via no-regret dynamics. In Section 2.4.3, we provide a dynamic program approach that finds

an approximately optimal solution to Program (2.6) when the number of groups g is small.

2.4.1 Separation Between Randomized and Deterministic Solutions

The following theorem shows a separation between the minmax (expected) regret achievable by

deterministic versus randomized strategies (as per Programs (2.6) and (2.7)); in particular, the

regret Rfair of the best deterministic strategy can be Ω(g) times worse than the regret R̂fair of the

best randomized strategy:

Theorem 2.4. For any g and p, there exists an instance S consisting of g groups such that

R̂fair (S, p)

Rfair (S, p)
≤ 1

p+ 1

⌈
p+ 1

g

⌉

Proof. Note there is a one-to-one relation (on some domain [0, a] for risk thresholds) between any

risk threshold τ and its corresponding return given by r(τ) by Equation (2.1) — we will therefore

(only for simplicity of exposition) construct our instance by defining a set of returns instead of risk
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thresholds. Let A , {r, 2r, . . . , (p + 1)r} be the set of all possible returns in our instance for some

constant r > 0. We will take r ≡ 1 for simplicity but our proof extends to any r > 0.

Our instance construction is simple. If g ≤ p + 1, we partition A into g subsets of size at most

dp+1
g e, and we let each group be defined as one of the partition elements. In this case, there will be

one consumer for every return value in A. For e.g., if p = 4 and g = 2, we can define G1 = {1, 2, 3}

and G2 = {4, 5}. If g > p + 1 (allowing consumers having the same return) we let each group be

defined by a single return value in A. For e.g., if p = 2 and g = 4, we can define G1 = {1}, G2 = {2},

and G3 = G4 = {3}. To formalize this construction, define s , min{g, p + 1} and let {Pi}si=1 be a

s-sized partition of R such that maxi |Pi| = dp+1
g e. Instance S of size n = max{g, p+ 1} is defined

as follows.

S = {Gk}gk=1 where ∀ k ∈ [g] : Gk =

{
Pk k ≤ s
Ps k > s

Let Ap = {B ⊆ A : |B| = p} and observe that |Ap| = p+ 1. We have that

Rfair (S, p)= min
B∈Ap

{
max

1≤k≤g
RGk(B)

}
=

1

maxk |Gk|

=
1

dp+1
g e

where the first equality follows from the definition of Rfair (S, p) in this specific instance that all

consumer returns are specified by the set A of size p+ 1. The second follows from the fact that for

any set of products B ∈ Ap, all groups Gk that have a consumer with return A \ B will incur an

average regret of 1/|Gk|. Finally, the third holds because maxk |Gk| = maxi |Pi| = dp+1
g e. Next, by

looking at the uniform distribution over Ap,

R̂fair (S, p)≤ max
1≤k≤g

1

p+ 1

∑
B∈Ap

RGk(B)

= max
1≤k≤g

1

p+ 1

∑
r∈Gk

1

|Gk|
=

1

p+ 1

where the inequality in the first line follows from the definition of R̂fair (S, p). The equality in

the second line follows from the fact that for every group k and every r ∈ Gk, there is one (and only
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one) set of products, namely B = A \ {r}, that makes Gk incur a regret of 1/|Gk|. We therefore

have that

R̂fair (S, p)

Rfair (S, p)
≤ 1

p+ 1

⌈
p+ 1

g

⌉
.

In the following theorem, we show that for any instance of our problem, by allowing a multiplica-

tive factor g blow-up in the target number of products p, the optimal deterministic minmax value

will be at least as good as the randomized minmax value with p products.

Theorem 2.5. We have that for any instance S consisting of g groups, and any p,

Rfair (S, gp) ≤ R̂fair (S, p)

Proof. Fix any instance S = {Gk}gk=1 and any p. Let c∗k , argmin
c∈Cp(S)

RGk(c) which is the best set of

p products for group Gk. We have that

Rfair (S, gp) = min
c∈Cgp(S)

max
1≤k≤g

RGk(c)

≤ max
1≤k≤g

RGk (∪kc∗k)

≤ max
1≤k≤g

RGk(c∗k)

≤ max
1≤k≤g

Ec∼C [RGk(c)]

where the last inequality follows from the definition of c∗k and it holds for any distribution C ∈

∆(Cp(S)).

2.4.2 An Algorithm to Optimize for ex ante Fairness

In this section, we provide an algorithm to solve the ex ante Program (2.7). Recall that the opti-

mization problem is given by

R̂fair (S, p) , min
C∈∆(Cp(S))

{
max

1≤k≤g
E c∼C [RGk(c)]

}
.

Algorithm 2.1 relies on the dynamics introduced by Freund and Schapire (1996) to solve Pro-
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gram (2.7). The algorithm interprets this minmax optimization problem as a zero-sum game between

the designer, who wants to pick products to minimize regret, and an adversary, whose goal is to

pick the highest regret group. This game is played repeatedly, and agents update their strategies at

every time step based on the history of play. In our setting, the adversary uses the multiplicative

weights algorithm to assign weights to groups (as per Freund and Schapire (1996)) and the designer

best-responds using the dynamic program from Section 2.3 to solve Equation (2.8) to choose an

optimal set of products, noting that

Ek∼D(t) [RGk(c)] =
∑
k∈[g]

Dk(t)
∑
i∈Gk

Rτi(c)

|Gk|

=

n∑
i=1

Rτi(c)
∑
k∈[g]

Dk(t)I{i ∈ Gk}
|Gk|

= RS (c,w(t))

where wi(t) ,
∑
k∈[g]

Dk(t)
|Gk| I{i ∈ Gk} denotes the weight assigned to agent i, at time step t.

Algorithm 2.1 2-Player Dynamics for the Ex Ante Minmax Problem
Input: p target number of products, consumers S partitioned in groups G1, . . . , Gg, and T .
Initialization: The no-regret player picks the uniform distribution D(1) =

(
1
g , . . . ,

1
g

)
∈ ∆([g]),

for t = 1, . . . , T do
The best-response player chooses c(t) = (c1(t), . . . , cp(t)) ∈ Cp(S) so as to solve

c(t) = argmin
c∈Cp(S)

Ek∼D(t) [RGk(c)] . (2.8)

The no-regret player observes uk(t) = RGk(c(t))/B for all k ∈ [g].
The no-regret player sets D(t+1) via multiplicative weight update with β = 1

1+
√

2 ln g
T

∈ (0, 1),

as follows:

Dk(t+ 1) =
Dk(t)βuk(t)

g∑
h=1

Dh(t)βuh(t)

∀k ∈ [g],

Output: CT : the uniform distribution over {c(t)}Tt=1.

Theorem 2.6 shows that the time-average of the strategy of the designer in Algorithm 2.1 is an

approximate solution to minmax Program (2.7).

Theorem 2.6. Suppose that for all i ∈ [n], r(τi) ≤ B. Then for all T > 0, Algorithm 2.1 runs in

time O(Tn2p) and the output distribution CT satisfies

max
k∈[g]

Ec∼CT [RGk(c)] ≤ R̂fair (S, p) +B

(√
2 ln g

T
+

ln g

T

)
. (2.9)
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Proof. Note that the action space of the designer Cp(S) and the action set of the adversary {Gk}gk=1

are both finite, so our zero-sum game can be written in normal form. Further, uk(t) ∈ [0, 1], noting

that the return of each agent is in [0, B] — so must be the average return of a group. Therefore, our

minmax game fits the framework of Freund and Schapire (1996), and we have that

max
k∈[g]

Ec∼CT [RGk(c)]

≤ min
C∈∆(Cp(S))

max
G∈∆([g])

Ek∼G, c∼C [RGk(c)]

+B

(√
2 ln g

T
+

ln g

T

)
.

(2.10)

The approximation statement is obtained by noting that for any distribution G over groups,

max
G∈∆([g])

Ek∼G, c∼C [RGk(c)] = max
1≤k≤g

Ec∼C [RGk(c)] .

With respect to running time, note that at every time step t ∈ [T ], the algorithm first solves

c(t) = argmin
c∈Cp(S)

Ek∼D(t) [RGk(c)] .

We note that this can be done in time O(n2p) as per Section 2.3, remembering that

Ek∼D(t) [RGk(c)] = RS (c,w(t))

i.e., Equation (2.8) is a weighted regret minimization problem. Then, the algorithm computes uk(t)

for each group k, which can be done in time O(n) (by making a single pass through each customer i

and updating the corresponding uk for i ∈ Gk). Finally, computing the g weights takes O(g) ≤ O(n)

time. Therefore, each step takes time O(n2p), and there are T such steps, which concludes the

proof.

Importantly, Algorithm 2.1 outputs a distribution over p-sets of products; Theorem 2.6 shows

that this distribution CT approximates the ex ante minmax regret R̂fair. CT can be used to construct

a deterministic set of products with good regret guarantees: while each p-set in the support of CT

may have high group regret, the union of all such p-sets must perform at least as well as CT and

therefore meet benchmarks R̂fair and Rfair. However, this union may lead to an undesirable blow-up

in the number of deployed products. The experiments in Section 2.7 show how to avoid such a

blow-up in practice.

22



2.4.3 An ex post Minmax Fair Strategy for Few Groups

In this section, we present a dynamic programming algorithm to find p products that approximately

optimize the ex post maximum regret across groups, as per Program (2.6). Recall, the optimization

problem is given by

Rfair (S, p) = min
c∈Cp(S)

{
max

1≤k≤g
RGk(c)

}
(Program (2.6))

The algorithm aims to build a set of all g-tuples of average regrets (RG1 , . . . ,RGg ) that are simul-

taneously achievable for groups G1, . . . , Gg. However, doing so may be computationally infeasible,

as there can be as many regret tuples as there are ways of choosing p products among n consumer

thresholds, i.e.
(
n
p

)
of them. Instead, we discretize the set of possible regret values for each group

and build a set that only contains rounded regret tuples via recursion over the number of products

p. The resulting dynamic program runs efficiently when the number of groups g is a small constant

and can guarantee an arbitrarily good additive approximation to the minmax regret.

Given bound B on the maximum group regret and a step size of α, we let

N (α) ,

{
iα : i ∈

{
0, . . . ,

⌈
B

α

⌉}}
be a net of discretized regret values in [0, B] with discretization size α. Given any regret R, we let

ceilα(R) be the regret obtained by rounding R up to the closest higher regret value in N (α). I.e.,

ceilα(R) is uniquely defined so as to satisfy R ≤ ceilα(R) < R +α and ceilα(R) ∈ N (α). Our dynamic

program implements the following recursive relationship:

F (α)(n′, p′) ,

{ceilα

RGk +

n′∑
i=z

1 {i ∈ Gk}
|Gk|

Rτi(τz)

g

k=1

s.t. z ≤ n′, (RGk)
g
k=1 ∈ F (α)(z − 1, p′ − 1)

} (2.11)

where for all n′ ≤ n,

F (α)(n′, 0) ,


 n′∑
i=1

1 {i ∈ Gk}
|Gk|

r(τi)

g

k=1

 . (2.12)

Note that F (α)(n′, 0) contains a single regret tuple, whose k-th coordinate is the weighted regret of

agents Gk ∩ {1, . . . , n′} when using weight 1/|Gk| and offering no product.
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Intuitively, F (α)(n′, p′) keeps track of a rounded up version of the feasible tuples of weighted

group regrets when using weight 1/|Gk| in group Gk and when offering p′ products and considering

the regret of consumers 1 to n′ only. The corresponding set of products used to construct the regret

tuples in F (α)(n′, p′) can be kept in a hash table whose keys are the regret tuples in F (α)(n′, p′); we

denote such a hash table by I(α)(n, p). While there can be several p′-tuples of products that lead to

the same rounded regret tuple in F (α)(n′, p′), the dynamic program only stores one of them in the

corresponding entry in the hash table at each time step. The program terminates after computing

F (α)(n, p), I(α)(n, p), and outputting the product vector in I(α)(n, p) corresponding to the regret

tuple with smallest regret for the worst-off group in F (α)(n, p). The sets F (α)(n, p), I(α)(n, p) satisfy

the following guarantee:

Lemma 2.7. Fix any α > 0. Let (RG1
, . . . ,RGg ) be any regret tuple that can be achieved using p

products. There exist consumer indices (z1, . . . , zp) ∈ I(α)(n, p) such that the corresponding regret

tuple (R
(α)
G1
, . . . ,R

(α)
Gg

) ∈ F (α)(n, p) satisfies

RGk(c) ≤ R
(α)
Gk
≤ RGk +pα, ∀k ∈ [g],

where c = (τz1 , . . . , τzp).

Proof. We let F(n′, p′) be the set of weighted regret tuples that are achievable using p′ thresholds

when only agents 1 to n′ are considered, and the regret of agents in group Gk is weighted by 1/|Gk|

– importantly, this reweighting is independent of the choice of n′ and computes the average regret of

a group as if all of its consumers were present. The set F(n, p) contains all feasible tuples of average

regret given groups {Gk}gk=1. Importantly, F(n, p) is different from F (α)(n, p): F(n, p) contains

all achievable tuples of regret, even those that do not belong to the net N (α); in turn F(n, p) may

contain up to
(
n
p

)
regret tuples. In comparison, F (α)(n, p) is a smaller set of size at most

(⌈
B
α

⌉
+ 1
)g

that only contains regret tuples with values in the net N (α). F (α)(n, p) is built with the intent of

approximating the true set of achievable regret tuples, F(n, p).

The proof idea is to show that F (α)(n, p) is a good approximation of F(n, p), as intended. More

precisely, we want to show that for every feasible regret tuple (RGk)
g
k=1 in F(n, p), the discretized
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set F (α)(n, p) contains a regret tuple
(

R
(α)
Gk

)g
k=1

that is at most pα away from (RGk)
g
k=1; further,

the corresponding product vector c(α) ∈ I(α)(n, p) has true, unrounded regret also within pα of

(RGk)
g
k=1.

We start by showing that F(n, p) obeys the following recursive relationship:

Claim 2.8. F(n, p) satisfies

F(n′, p′) =

{RGk +

n′∑
i=z

1 {i ∈ Gk}
|Gk|

Rτi(τz)

g

k=1

s.t. z ≤ n′, (RGk)
g
k=1 ∈ F(z − 1, p′ − 1)

} (2.13)

where

F(n′, 0) , F (α)(n′, 0) =


 n′∑
i=1

1 {i ∈ Gk}
|Gk|

r(τi)

g

k=1

 . (2.14)

Proof. When p′ = 0, the result is immediate, noting that agents 1 to n′ are assigned to the cash

option c0 with 0 return and incur regret r(τi) each. The total regret in group Gk, considering agents

1 to n′ and reweighting regret by 1/|Gk|, is given by

n′∑
i=1

1 {i ∈ Gk}
|Gk|

r(τi).

Now, take p′ > 0. Fix the highest offered product to be τz, corresponding to consumer z. First,

agents z, . . . , n′ are assigned to product τz corresponding to consumer z; the weighted regret incurred

by these agents, limited to those in group Gk, is exactly

n′∑
i=z

1 [i ∈ Gk]

|Gk|
(r(τi)− r(τz)) =

n′∑
i=z

1 [i ∈ Gk]

|Gk|
Rτi(τz).

The remaining agents are 1 to z − 1 and have p′ − 1 products available to them; hence, a regret

tuple (RG1
, . . . ,RGg ) can be feasibly incurred by these agents if and only if (RG1

, . . . ,RGg ) ∈ F(z−

1, p′− 1), by definition of F(z− 1, p′− 1). To conclude the proof, it is enough to note that the total

regret incurred by agents in group Gk is the sum of the regrets of agents {1, . . . , z− 1}∩Gk and the

regret of agents {z, . . . , n′} ∩Gk.

25



We now show that for any α > 0, F (α)(n, p) provides a pα-additive approximation to the true

set of possible regret tuples F(n, p):

Lemma 2.9. For all p ∈ N , for all z ∈ [n], and for any regret tuple (RG1
, . . . ,RGg ) ∈ F(n, p),

there exists a regret tuple (R
(α)
G1
, . . . ,R

(α)
Gg

) ∈ F (α)(n, p) such that R
(α)
Gk
≤ RGk +pα for all k ∈ [g].

Proof. The proof follows by induction on p. At step p′ ≤ p, the induction hypothesis states that for

all n′, for any regret tuple (RG1
, . . . ,RGg ) ∈ F(n′, p′), there exists a regret tuple (R

(α)
G1
, . . . , R

(α)
Gg

) ∈

F (α)(n′, p′) such that R(α)
Gk
≤ RGk +p′α for all k ∈ [g].

First, when p′ = 0, the induction hypothesis holds immediately: by definition, F (α)(n′, 0) =

F(n′, 0). Now, suppose the induction hypothesis holds for p′ − 1. Pick any regret tuple

(RG1
(n′, p′), . . . ,RGg (n′, p′)) ∈ F(n′, p′); we will show that the induction hypothesis holds for this

tuple. First, note that there exists z and (RG1(z−1, p′−1), . . . ,RGg (z−1, p′−1)) ∈ F(z−1, p′−1)

such that

RGk(n′, p′) = RGk(z − 1, p′ − 1) +

n′∑
i=z

1 [i ∈ Gk]

|Gk|
Rτi(τz) ∀k ∈ [g]

by definition of F(n′, p′). Further, by induction hypothesis, there exists a g-tuple of rounded regret

(R
(α)
G1

(z − 1, p′ − 1), . . . ,R
(α)
Gg

(z − 1, p′ − 1)) in F (α)(z − 1, p′ − 1) such that

R
(α)
Gk

(z − 1, p′ − 1) ≤ RGk(z − 1, p′ − 1) + (p′ − 1)α ∀k ∈ [g].

Combining the above two equations, we get that

R
(α)
Gk

(z − 1, p′ − 1) +

n′∑
i=z

1 [i ∈ Gk]

|Gk|
Rτi(τz)

≤ RGk(z − 1, p′ − 1) +

n′∑
i=z

1 [i ∈ Gk]

|Gk|
Rτi(τz) + (p′ − 1)α

= RGk(n′, p′) + (p′ − 1)α ∀k ∈ [g].

Now, let

R
(α)
Gk

(n′, p′)

= ceilα

R
(α)
Gk

(z − 1, p′ − 1) +

n′∑
i=z

1 [i ∈ Gk]

|Gk|
Rτi(τz)

 .
(2.15)
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First, (R
(α)
G1

(n′, p′), . . . ,R(α)
Gg

(n′, p′)) is in F (α)(n′, p′) by definition. Second,

R
(α)
Gk

(n′, p′) = ceilα

R
(α)
Gk

(z − 1, p′ − 1) +

n′∑
i=z

1 [i ∈ Gk]

|Gk|
Rτi(τz)


≤ R

(α)
Gk

(z − 1, p′ − 1) +

n′∑
i=z

1 [i ∈ Gk]

|Gk|
Rτi(τz) + α

≤ RGk(n′, p′) + p′α.

This concludes the induction.

To conclude the proof, let (RG1
, . . . ,RGg ) be a tuple of regret that can be achieved using p

products. The tuple belongs to F(n, p), by definition of F(n, p). Therefore, by Lemma 2.9, there

exists a regret tuple (R
(α)
G1
, . . . ,R

(α)
Gg

) ∈ F (α) such that

R
(α)
Gk
≤ RGk +pα ∀k ∈ [g].

Let c , {c1, . . . , cp} ∈ I(α)(n, p) be the product vector that was used to construct regret tuple(
R

(α)
Gk

)g
k=1

. Since at each step p′, the dynamic program rounds regret tuples to higher values, a

simple induction shows that

RGk(c) ≤ R
(α)
Gk
∀k ∈ [g].

Combining the two above equations, we get the result:

RGk(c) ≤ R
(α)
Gk
≤ RGk +pα ∀k ∈ [g].

In particular, Lemma 2.7 implies that the dynamic program run with discretization parameter α

approximately minimizes the maximum regret across groups (i.e., the optimal value of Program (2.6))

within an additive approximation factor of pα. Letting α = ε
p yields an ε-approximation to the

minmax regret.

The running time of our dynamic program is summarized below:

Theorem 2.10. Fix any α > 0. There exists a dynamic programming algorithm that, given a

collection of consumers S = {τi}ni=1, groups {Gk}gk=1, and a target number of products p, computes
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F (α)(n, p) and I(α)(n, p) in time O
(
n2p

(⌈
B
α

⌉
+ 1
)g).

When the desired accuracy is ε, the dynamic program uses α = ε
p and has running time

O
(
n2p

(⌈
Bp
ε

⌉
+ 1
)g)

.

This running time is efficient when g is small, with a much better dependency in parameters p

and n than the brute force approach that searches over all
(
n
p

)
ways of picking p products.

Proof. Note that each set F (α)(n′, p′) and I(α)(n′, p′) built by the dynamic program has size at

most
(⌈
B
α

⌉
+ 1
)g, as F (α)(n′, p′) only contains regret values in N (α) by construction and I(α)(n′, p′)

contains one product tuple per regret tuple in F (α)(n′, p′).

Each sum used in the dynamic program can be computed in time O(1), given that
n′∑
i=1

1{i∈Gk}
|Gk| r(τi)

and
n′∑
i=1

1{i∈Gk}
|Gk| have been precomputed for all n′ ∈ [n], k ∈ [g] and stored in a hash table. The

precomputation and storage of these partial sums can be done in O(gn) time.

Now, each time step of the dynamic program corresponds to the p′-th product with p′ ≤ p. In

each time step p′, we construct O(n) sets F (α) (n′, p′), one for each value of n′. For each value of

n′, the dynamic program searches over i) z ∈ [n] and ii) at most
(⌈
B
α

⌉
+ 1
)g tuples of regret in

F (α)(z, p′ − 1). Therefore, building F (α)(n, p) can be done in time O
(
n2p

(⌈
B
α

⌉
+ 1
)g)

Finally, finding the tuple with the smallest maximum regret in F (α)(n, p) requires searching over

at most
(⌈
R
α

⌉
+ 1
)g product tuples in I(α)(n, p). Therefore, running the dynamic program requires

time O
(
n2p

(⌈
B
α

⌉
+ 1
)g).

2.4.4 Optimizing for Population vs. Least Well-Off Group: An Example

In this section, we show that optimizing for population regret may lead to arbitrarily bad maximum

group regret, and optimizing for maximum group regret may lead to arbitrarily bad population

regret. To do so, we consider the following example: there is a set S of n consumers, divided into

two groups G1 and G2. We let |G1| = 1 and |G2| = n− 1 and assume the single consumer in group

G1 has risk threshold τ1, and the n − 1 consumers in group G2 all have the same risk threshold
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τ2 > τ1. We let r1 < r2 be the returns corresponding to risk thresholds τ1, τ2. Let p = 1, i.e. the

designer can pick only one product; either c = τ1 or c = τ2.

When picking c = τ1, we have that the average group and population regrets are given by:

RG1
(τ1) = 0, RG2

(τ1) = r2 − r1, RS(τ1) =
(n− 1)(r2 − r1)

n
.

When picking c = τ2 instead, we have

RG1
(τ2) = r1, RG2

(τ2) = 0, RS(τ2) =
r1

n
.

Suppose 0 < r2−r1 < r1 and n−1 > r1
r2−r1 . Then, the optimal product to optimize for maximum

group regret is cgrp = τ1, and the optimal product to optimize for population regret is cpop = τ2.

Then, we have that

1. The ratio of population regret using cgrp over that of cpop is given by:

RS(cgrp)

RS(cpop)
=

(n− 1)(r2 − r1)/n

r1/n
=

(n− 1)(r2 − r1)

r1
.

This ratio can be made arbitrarily large by letting n→ +∞, at r2−r1
r1

constant.

2. The ratio of maximum group regret using cpop over that of cgrp is given by:

max (RG1
(cpop), RG2

(cpop))

max (RG1
(cgrp), RG2

(cgrp))
=

r1

r2 − r1
.

This ratio can be made arbitrarily large by letting r2 − r1 → 0 at r1 constant.

2.5 Approximate Population Regret Minimization via Greedy

Algorithm

Recall that given S = {τi}ni=1 and set c ⊆ S of products, the population regret of S is given by

RS(c) =
1

n

n∑
i=1

Rτi(c) =
1

n

n∑
i=1

(r(τi)− fτi(c)) =
1

n

n∑
i=1

r(τi)− fS(c)

where for any τ , fτ (c) , max
cj≤τ

r(cj), and

fS : 2S → R≥0, fS(c) ,
1

n

n∑
i=1

fτi(c).
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First, note that when no product is offered, consumers pick the cash option c0 and get return

r(c0) = 0:

Fact 2.11 (Centering). For any S, fS(∅) = 0.

Second, fS is immediately monotone non-decreasing, as consumers deviate to an additional

product only when they get higher return from doing so:

Fact 2.12 (Monotonicity). For any S, if c ⊆ d, then fS(c) ≤ fS(d).

Finally, fS is submodular:

Claim 2.13 (Submodularity). For any S, fS is submodular.

Proof. We first show that for every i, fτi(·) is submodular: for any c,d ⊆ S, we have that

fτi(c ∪ d) + fτi(c ∩ d) ≤ fτi(c) + fτi(d).

If c = ∅ or d = ∅, the claim trivially holds. So assume c,d 6= ∅. Let c be such that fτi(c∪d) = r(c).

If c = c0 = 0, the claim holds because all four terms above will be zero. If c ∈ c, the claim

holds because fτi(c ∪ d) = fτi(c) and fτi(d) ≥ fτi(c ∩ d) by Fact 2.12. The same argument holds

when c ∈ d by symmetry. The proof is complete by noting that any simple average of submodular

functions (in general, any linear combination with non-negative coefficients) is submodular.

Remark 2.14. Claim 2.13 extends to any weighted set of consumers: fix any set S = {τi}ni=1 of

consumers and any nonnegative weight vector w ∈ Rn≥0. Then the function fS : 2S → R given by

fS(c) =
∑n
i=1 wifτi(c) is submodular.

We therefore have that for any S and any target number of products p,

min
c∈Cp(S)

RS(c) =
1

n

n∑
i=1

r(τi)− max
c⊆S, |c|=p

fS(c)

where by Facts 2.11 and 2.12 and Claim 2.13, the maximization problem on the right hand side

is the maximization of a nonnegative monotone submodular function with a cardinality constraint.

Using a greedy algorithm (that runs in O(np) time), we get p products represented by cgrd such that
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RS(cgrd) ≤ 1

n

n∑
i=1

r(τi)−
(
1− e−1

)
· max
c⊆S, |c|=p

fS(c).

2.6 A More General Regret Notion

In this section we propose a family of regret functions parametrized by a positive real number that

captures the regret notion we have been using throughout the paper as a special case. We will show

how minor tweaks allow us to extend the dynamic program for whole population regret minization

of Section 2.3, as well as the no-regret dynamics for ex ante fair regret minimization of Section 2.4.2,

to this more general notion of regret. For a given consumer with risk threshold τ , and for any

α ∈ (0,∞], the regret of the consumer when assigned to a single product with risk threshold c is

defined as follows:

Rα
τ (c) =

{
r(τ)− r(c) c ≤ τ
α (c− τ) c > τ

(2.16)

When offering more than one product, say p products represented by c = (c1, c2, . . . , cp), the

regret of a consumer with risk threshold τ is the best regret she can get using these products.

Concretely,

Rα
τ (c) = min

1≤i≤p
Rα
τ (ci) (2.17)

We note that our previous regret notion is recovered by setting α =∞. When α 6=∞, a consumer

may be assigned to a product with higher risk threshold, and the consumer’s regret is then measured

by the difference between her desired risk and the product’s risk, scaled by a factor of α. We note

that in practice, consumers may have different behavior as to whether they are willing to accept a

higher risk product, i.e. different consumers may have different values of α; in this section, we use a

unique value of α for all consumers for simplicity of exposition and note that our insights generalize

to different consumers having different α’s. The regret of a set of consumers S = {τi}ni=1 is defined

as the average regret of consumers, as before. In other words,
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Rα
S(c) =

1

n

n∑
i=1

Rα
τi(c) (2.18)

We first show in Lemma 2.16 how we can find one single product to minimize the regret of a set

of consumers represented by a set S = {τi}ni=1. Note this general formulation of regret will allow

choosing products that do not necessarily fall onto the consumer risk thresholds. In Lemma 2.16

we will show that given access to the derivative function r′(τ), the problem minc∈R+
Rα
S(c) can be

reduced to an optimization problem that can be solved exactly in O(n) time. Before that, we first

observe the following property of function r(τ) Equation (2.1) which will be used in Lemma 2.16:

Claim 2.15. The function r is concave.

Proof. Let X be the vector of random variables representing m assets and recall µ is the mean of

X and Σ is its covariance matrix. Fix τ1, τ2 ≥ 0, and β ∈ (0, 1). For i ∈ {1, 2}, let wi be an optimal

solution to the optimization problem for r(τi), i.e., wi is such that r(τi) = w>i µ. We want to show

that

r (βτ1 + (1− β) τ2) ≥ βr(τ1) + (1− β)r(τ2) = (βw1 + (1− β)w2)
>
µ (2.19)

So all we need to show is that w , βw1 +(1−β)w2 is feasible in the corresponding optimization

problem for r (βτ1 + (1− β) τ2). Then, by definition, Equation (2.19) holds. We have that

1
>w = β(1>w1) + (1− β)(1>w2) = 1

and

w>Σw = β2w>1 Σw1 + (1− β)2w>2 Σw2 + 2β(1− β)w>1 Σw2

≤ β2τ2
1 + (1− β)2τ2

2 + 2β(1− β) · Cov
(
w>1 X,w

>
2 X

)
≤ β2τ2

1 + (1− β)2τ2
2 + 2β(1− β) ·

√
V ar(w>1 X)V ar(w>2 X)

= β2τ2
1 + (1− β)2τ2

2 + 2β(1− β) ·
√

(w>1 Σw1)(w>2 Σw2)

≤ β2τ2
1 + (1− β)2τ2

2 + 2β(1− β)τ1τ2

= (βτ1 + (1− β)τ2)
2

where the second inequality follows from Cauchy-Schwarz inequality.

Note also that Cov
(
w>1 X,w

>
2 X

)
= w>1 Σw2 and V ar(w>i X) = w>i Σwi, for i ∈ {1, 2}.
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Lemma 2.16. Let S = {τi}ni=1 where τ1 ≤ τ2 ≤ . . . ≤ τn. We have that Rα
S(c) is a convex function

and

min
c∈R≥0

Rα
S(c)

= min

{
min

1≤i≤n
Rα
S(τi), min

1≤i≤n−1
Rα
S(ci) · I∞{τi < ci < τi+1}

} (2.20)

where for every 1 ≤ i ≤ n− 1, ci = (r′)−1
(
αi
n−i

)
(ci =∞ if (r′)−1

(
αi
n−i

)
does not exist) and

I∞{τi < ci < τi+1} ,
{

1 τi < ci < τi+1

∞ otherwise

Proof. First observe that Claim 2.15 implies for every τ , Rα
τ (c) defined in Equation (2.16) is convex.

Hence, Rα
S(c) is convex because it is an average of convex functions. We have that for a single

product c,

Rα
S(c) =

1

n

n∑
j=1

{(r(τj)− r(c)) I{c ≤ τj}+ α (c− τj) I{c > τj}}

Note that Rα
S(τ1) ≤ Rα

S(c) for every c < τ1 and Rα
S(τn) ≤ Rα

S(c) for every c > τn. We can

therefore focus on the domain [τ1, τn] to find the minimum. The function Rα
S(c) is differentiable

everywhere except for the points given by consumers’ risk thresholds: S = {τi}ni=1. This justifies the

first term appearing in the min{·, ·} term of Equation (2.20). For every 1 ≤ i ≤ n− 1, the function

Rα
S(c) on domain (τi, τi+1) is differentiable and can be written as:

Rα
S(c) =

1

n

α∑
j≤i

(c− τj) +
∑
j≥i+1

(r(τj)− r(c))


The minimum of Rα

S(c) on domain (τi, τi+1) is achieved on points c where

d

dc
Rα
S(c) =

1

n
[αi− r′(c)(n− i)] = 0 =⇒ r′(ci) =

αi

n− i

We note that Rα
S(c) is a convex function by the first part of this Lemma implying that ci (if

belongs to the domain (τi, τi+1)) is a local minimum. This justifies the second term appearing in

the min{·, ·} term of Equation (2.20) and completes the proof.

Remark 2.17. Given any set of weights w ∈ Rn≥0 over consumers, Lemma 2.16 can be easily

extended to optimizing the weighted regret of a set of consumers given by:
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Rα
S(c,w) =

n∑
i=1

wi Rα
τi(c)

In fact, for any S and w, we have that Rα
S(c,w) is a convex function and

min
c∈R≥0

Rα
S(c,w)

= min

{
min

1≤i≤n
Rα
S(τi,w), min

1≤i≤n−1
Rα
S(ci,w) · I∞{τi < ci < τi+1}

} (2.21)

where for every 1 ≤ i ≤ n− 1,

ci = (r′)−1

 α
∑
j≤i

wj∑
j≥i+1

wj


(we take (ci =∞ if the right hand side does not exist) and

I∞{τi < ci < τi+1} ,
{

1 τi < ci < τi+1

∞ otherwise

We now provide the idea behind a dynamic programming approach for choosing p products

that minimize the weighted regret of a population S = {τi}ni=1. The approach relies on the simple

observation that there exists an optimal solution such that if the consumers in set S(p′) are assigned

to the p′-th product cp′ , cp′ ∈ argminc∈R+ RS(p′)(c) (for a single product c). On the one hand, for all

p′ and given S(p′), picking cp′ in such a manner provides a lower bound on the achievable average

regret. On the other hand, cp′ yields S(p′) as a set of consumers assigned to cp′ in an optimal

solution. Indeed, if consumers in S(p′) strictly preferred picking a different product, this could only

be because they would get strictly better regret from doing so: by picking a different product, they

would then decrease the population regret below our lower bound, which is a contradiction..

Therefore, to find an optimal choice of products, it suffices to i) correctly guess which subset

S(p′) of consumers are assigned to the p′-th product, then ii) optimize the choice of product for

S(p′), which can be done using Lemma 2.16. Noting that S(p′) is an interval for all p′, S(p′) is

entirely characterized by z, the first agent assigned to cp′ , and n′, the last agent assigned to cp′ . In

turn, as in Section 2.3, our dynamic program can be characterized by a recursive relationship of the

form
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T (n′, p′) = min
z∈{1,...,n′}

T (z − 1, p′ − 1) + min
c∈R+

n′∑
i=z

wi Rα
τi(c)

 , (2.22)

where T (n′, p′) represents the minimum weighted regret that can be achieved by providing p′

products to consumers 1 to n′. Our dynamic program will implement this recursive relationship.

The results of Section 2.4.2 immediately extends to this more general regret notion, given that

dynamic Equation (2.22) can be used as an optimization oracle for the problem solved by the best-

response player in Algorithm 2.1.

2.7 Experiments

In this section, we present experiments that complement our theoretical results.

2.7.1 Data

The underlying data for our experiments consists of time series of daily closing returns for 50 publicly

traded U.S. equities over a 15-year period beginning in 2005 and ending in 2020; the equities chosen

were those with the highest liquidity during this period. From these time series, we extracted the

average daily returns and covariance matrix, which we then annualized by the standard practice of

multiplying returns and covariances by 252, the number of trading days in a calendar year. The

mean annualized return across the 50 stocks is 0.13, and all but one are positive due to the long

time period spanned by the data. The correlation between returns and risk (standard deviation of

returns) is 0.29 and significant at P = 0.04. The annualized returns and covariances are then the

basis for the computation of optimal portfolios given a specified risk limit τ as per Section 2.2.2

In Figure 2.1, we show a scatter plot of risk vs. returns for these 50 stocks. For sufficiently

small risk values, the optimal portfolio has almost all of its weight in cash, since all of the equities

have higher risk and insufficient independence. At intermediate values of risk, the optimal portfolio
2For ease of understanding, here we consider a restriction of the Markowitz portfolio model of Markowitz (1952)

and Equation (2.1) in which short sales are not allowed, i.e. the weight assigned to each asset must be non-negative.
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concentrates its weight on just the seven stocks highlighted in red in Figure 2.1 and listed in the

table in Figure 2.1. This figure also plots the optimal risk-return frontier, which generally lies to

the northwest (lower risk and higher return) of the stocks themselves, due to the optimization’s

exploitation of independence. The black dot highlights the optimal return for risk tolerance 0.1, for

which we show the optimal portfolio weights in Figure 2.1. Note that once the risk tolerance reaches

that of the single stock with highest return (the red point lying on the optimal frontier, representing

Netflix), the frontier becomes flat, since at that point the optimal portfolio is one fully invested in

this single stock.

2.7.2 Algorithms and Benchmarks

We consider both population and group regret and a number of algorithms: the integer linear

program (ILP) for optimizing group regret; an implementation of the no-regret dynamics (NR) for

group regret described in Algorithm 2.1; two strategies for “sparsifying” NR (described below); the

dynamic program (DP) of Section 2.3 for optimizing population regret; and a greedy heuristic, which

iteratively chooses the product that reduces population regret the most.The average population

return fS(c) = 1
n

∑
i maxcj≤τi r(cj) is submodular, and thus the greedy algorithm, which has the

advantage of O(np) running time compared to the O(n2p) of the DP, also enjoys the standard

approximate submodular performance guarantees.

Note that the NR algorithm (Algorithm Algorithm 2.1) outputs a distribution over sets of p

products; a natural way of extracting a fixed set of products is to take the union of the support, but

in principle this could lead to far more than p products. We propose two sparsification techniques

that extract p products from the support, both of which try to remove redundant products (i.e.,

products with very similar returns). Our first strategy, which we refer to as NR-Sparse-G, is a greedy

algorithm that repeatedly finds the pair of products with closest returns and removes the higher risk

one until only p products remain. The second algorithm is based on a version of one-dimensional

asymmetric k-center clustering, which we refer to as NR-Sparse-C. NR-Sparse-C optimally selects p
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products from the NR support such that the maximum difference in return from any product in the

NR support to the closest selected product with lower risk is minimized. Details for NR-Sparse-C

are given in the extended version.
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Figure 2.1: Asset Risks and Returns, Optimal Frontier and Portfolio Weights

2.7.3 Experimental Design and Results

Our first experiment compares the population and minimax group regrets of the algorithms we have

discussed on two different population distributions as we vary the number of products, p. Both

population distributions have n = 100 consumers divided into g = 5 groups and the consumers

belonging to group i ∈ {1, . . . , 5} have risk thresholds drawn from a Gaussian distribution with

mean µi = i/10 and standard deviation σi = 0.01. Any negative risk thresholds are set to 0. In the

first population distribution, which we call the unbalanced distribution, each consumer belongs to

group 2 with probability 5/9, and each of the remaining groups with probability 1/9. In the second

population distribution, called the balanced distribution, consumers belong to each group with

equal probability. We compare the NR algorithm run for T = 200 iterations, both NR sparsification

algorithms, the dynamic program from Section 2.3, and the greedy algorithm. Results are averaged

over 100 populations sampled from the population distribution. Further experimental details are
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given in the extended version.

Unbalanced Distribution. Figure 2.2 shows the performance of each algorithm averaged over

100 samples from the unbalanced population distribution for p ∈ {5, . . . , 9} products. The NR

algorithm achieves the lowest population and minimax group regret. However, we are plotting the

regret of the union of the products in the support of the output distribution, which contains many

more than p products: for p ∈ {5, 6, 7, 8, 9}, NR used an average of {10.31, 10.3, 10.75, 11.62, 12.53}

products on the unbalanced distribution, respectively. The ILP algorithm achieves the optimal

minimax group regret with exactly p products, but is significantly more computationally expensive

than the other methods; for p = 5, the average solve time for the ILP was 17.64 seconds, while the

dynamic program ran in just 0.0008 seconds on average. For larger sets of consumers, solving the

ILP becomes intractable. The two NR sparsification algorithms have the next best minimax group

regret, and for p ∈ {5, 6, 7}, using NR-Sparse-C with p+ 1 products results in minimax group regret

lower than the ILP solution with p products. Finally, the dynamic program and greedy algorithm

for minimizing population regret have the worst minimax group regret across all values of p. As

expected, the dynamic program achieves the optimal average population regret, followed closely by

the greedy algorithm.
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Figure 2.2: Algorithm Performance on the Unbalanced Population Distribution
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Balanced Distribution. Figure 2.3 plots the same performance measures for the balanced dis-

tribution. As in the unbalanced distribution, the NR algorithm achieves the lowest population and

minimax group regret, but this is again due to it using more than p products. Unlike the unbalanced

distribution, there is less variation in the performance of the algorithms, and our NR sparsification

strategies no longer outperform the dynamic program and greedy algorithms on the minimax group

regret. One possible explanation is that on the balanced distribution, solutions that minimize the

overall population regret also do a reasonably good job at minimizing the minimax group regret,

making this an easy case for the DP algorithm. Consider the case where p = 5 = g. Intuitively,

since the groups form mostly non-overlapping risk intervals, the optimal minimax group regret so-

lution will tend to select one product from each group. On the other hand, since the groups are

all equally sized, minimizing the average population regret also requires that we choose products to

serve each group (by symmetry, there is no reason for the algorithm to focus on any one group more

than any other). When these intuitions hold, an optimal set of products for minimizing the average

population regret may be nearly optimal for minimizing the minimax group regret as well. This is

consistent with our empirical results, where we see that the gaps in both population and minimax

group regret between the ILP and DP solutions are small.
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Figure 2.3: Algorithm Performance on the Balanced Population Distribution

Our second experiment explores generalization. We fix p = 5 and use the NR-Sparse-C algorithm
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to choose products. We draw a test set of 5000 consumers from the unbalanced distribution described

above. For sample sizes of {25, 50, ..., 500} consumers, we obtain product sets using NR-Sparse-C

and calculate the incurred regret using these products on both the training and test sets. We repeat

this process 1000 times for each sample size and average them. This is plotted in Figure 2.4; we

observe that measured both by population regret as well as by group regret, the test regret converges

to the training regret as the sample size increases. The decay rate is roughly 1/
√
n, as suggested by

theory, but our theoretical bound is loose due to sub-optimal constants.3 Training regret increases

with sample size because, for a fixed number of products, it is harder to satisfy a larger number of

consumers.
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Figure 2.4: Generalization for NR-Sparse-C with p = 5 on the unbalanced distribution.

2.8 Conclusion

2.8.1 Future Directions

Our work is the first (to our knowledge) to study portfolio design from the perspective of fairness, and

examining other consumer-facing applications of these classical optimization problems is a rich area

for future study. Additionally, we develop a particular definition of group fairness which constrains
3The theoretical bound is roughly an order of magnitude higher than the experimental bound; we do not plot it

as it makes the empirical errors difficult to see.
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the maximum regret across all groups, but there may be other notions of fairness to consider in

this setting which may lead to different algorithmic results. Finally, we note that because of the

similarity of our problem to a variant of a one-dimensional facility location problem, our work may

point to interesting extensions in the fair facility location domain, which is also a relatively new and

exciting area of study.

2.8.2 Broader Impacts

As with many papers in the fairness in machine learning literature, this paper is written with positive

broader impacts in mind but also is at risk of providing a technical facade of “fairness” that might

mask more serious underlying issues. Our aim in this paper is to provide efficient algorithms to allow

financial companies to choose products not just to optimize for the overall benefit for their customers

on average (which naturally favors majority groups over minority groups) but to instead optimize

for the least well-off subgroup. Providing algorithms for this task, as well as simply clearly laying

out the goal, helps lessen the institutional frictions that might otherwise prevent companies from

even investigating fairness motivated objectives. This is particularly salient in the finance domain

where algorithmic processes such as quantitative trading and so-called ‘robo-advisors’ are already

widely used in consumer-facing settings. We therefore see fair algorithms such as those in this work

as demonstrating that these practices can be improved for the benefit of those users who may be

harmed by a standard profit-maximization approach to algorithm design.

On the other hand, we stress that we are guaranteeing only a particular technical notion of

fairness that does not aim to address many underlying financial inequities. There is always a risk

with such technologies that they will be applied and then used to justify doing nothing more, because

some notion of “fairness” has been satisfied. We additionally recognize that the similarities between

the finance context we study and certain kinds of one-dimensional facility location problems may

lead to future work that lifts our algorithms into that context. We aim to avoid these outcomes with

a clear discussion of what our methods can (and cannot) promise and we urge researchers building
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on this work to make similar considerations.
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Chapter 3

Fair Allocations

3.1 Introduction

The bulk of the literature on algorithmic fairness has focused on classification and regression prob-

lems (see e.g. Hardt et al. (2016); Joseph et al. (2016); Kleinberg et al. (2017); Jabbari et al. (2017);

Dwork et al. (2012); Zafar et al. (2017); Corbett-Davies et al. (2017); Woodworth et al. (2017); Zemel

et al. (2013); Liu et al. (2018); Chierichetti et al. (2017); Calders et al. (2013); Berk et al. (2018,

2017) for a collection of recent work), but fairness concerns also arise naturally in many resource

allocation settings. Informally, a resource allocation problem is one in which there is a limited supply

of some resource to be distributed across multiple groups with differing needs. Resource allocation

problems arise in financial applications (e.g. allocating loans), disaster response (allocating aid),

and many other domains. In this work we use the running example of a public health authority dis-

tributing medical tests for diagnosing a particular condition to neighborhood clinical sites. We can

think of the service area of each site as being a group, and each group has a different prevalence of

the condition which may change over time. We model this by considering the number of individuals

with the condition in each group to be drawn from some distribution. The allocator’s goal (absent

fairness concerns) is to distribute tests in a way that maximizes the number of cases of the condition
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detected.

Since the allocator does not know the number of candidates for the resource in each group or

even the distribution from which these numbers are drawn ahead of time, they must run some sort

of learning algorithm to form estimates of these distributions. Furthermore, the allocator only learns

about these distributions by making allocations and receives feedback in the form of the number of

candidates in each group who received the resource. A key challenge is therefore for the allocator to

disentangle observing a small number of candidates in a group who received the resource as a result

of there simply not being a large number of candidates in that group from that feedback being the

result of underallocating to that group.

The primary fairness concern in this setting is falling into feedback loops, where an underallocation

to a particular group leads the allocator to believe that there are not many candidates for the resource

in that group and therefore to continue to underallocate. This problem is particularly salient in the

domain of predictive policing, and a line of work on algorithmic feedback loops in that setting inspired

the technical basis of this work. In the predictive policing problem, the resource to be distributed

is police officers, which can be dispatched to different districts. Each district has a different crime

distribution, and the goal (absent additional fairness constraints) might be to maximize the number

of crimes caught. Of course, fairness concerns abound in this setting, and recent work (see e.g. Lum

and Isaac (2016); Ensign et al. (2018a,b)) has highlighted the extent to which algorithmic allocation

might exacerbate those concerns. For example, Lum and Isaac (2016) show that if predictive policing

algorithms such as PredPol are trained using past arrest data to predict future crime, then these

pernicious feedback loops can arise, which misestimate the true crime rates in certain districts,

leading to an overallocation of police. The model in Ensign et al. (2018a) incorporates notions of

algorithmic fairness and implicitly considers an allocation to be fair if police are allocated across

districts in direct proportion to the district’s true crime rate, and examines the implications of falsely

believing that a particular neighborhood has a higher crime rate than another. Generally extended,

this definition asks that units of a resource are allocated according to the group’s share of the total
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candidates for that resource.

In our work, we study a different notion of allocative fairness that has a similar motivation to the

notion of equality of opportunity proposed by Hardt et al. (2016) in classification settings. Informally

speaking, it asks that the probability that a candidate for a resource be allocated a resource should

be independent of their group.

3.1.1 Our Results

To define the extent to which an allocation satisfies our fairness constraint, we must model the

specific mechanism by which resources deployed to a particular group reach their intended targets.

We study two such discovery models, and we the explicit framing of this modeling step is one of the

contributions of our work; the implications of a fairness constraint depend strongly on the details of

the discovery model. Selecting and articulating such a model is an important step in making one’s

assumptions transparent.

We study two discovery models which capture two extremes of targeting ability, and the difference

in both the qualitative and quantitative aspects of the technical results in these two models highlights

how critical these modelling choices are. In the random discovery model, however many units of

the resource are allocated to a given group, all individuals within that group are equally likely to

be assigned a unit, regardless of whether they are a candidate for the resource or not. Units of the

resource assigned to non-candidates are considered ‘wasted’ and do not contribute to the allocator’s

utility. In other words, the probability that a candidate receives a resource is equal to the ratio of

the number of units of the resource assigned to their group to the size of the group (independent of

the number of candidates in the group).

At the other extreme, in the precision discovery model, units of the resource are given only to

actual candidates within a group, as long as there is sufficient supply of the resource. In this model,

the only units of the resource that are ‘wasted’ are those allocated to a particular group beyond

the number of candidates in that group. In other words, the probability that a candidate receives a
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resource is equal to the ratio of the number of units of the resource assigned to their group to the

number of candidates within that group.

In the context of medical testing, these two models can be viewed as two (unrealistic) extremes for

targeting individuals with the condition. The random model corresponds to simple random testing.

If a neighborhood is allocated v tests, clinicians draw the names of v residents from a hat and

test them. In the precision model, perhaps testing for the disease occurs further downstream in the

patient care process, and therefore tests are only administered to individuals who doctors are already

nearly certain have the condition. This highlights the importance of specifying the discovery model

in analyzing the fairness implications of algorithms in this context. For highly contagious diseases

with community spread, a testing strategy closer to the random model may be the one preferred by

health experts, and for other kinds of conditions, the precision model may be more realistic.

Since these different discovery models have different implications for fairness, we analyse them

separately. In the random model, fairness constrains resources to be distributed in amounts pro-

portional to group sizes, regardless of the distribution of candidates, and so is uninteresting from a

learning perspective, since we take the population of each group to be known. On the other hand,

the precision model yields an interesting fairness-constrained learning problem when the distribution

of the number of candidates in each group must be learned via observation, and what counts as a

‘fair’ allocation depends greatly on these distributions.

Formally, we study learning in a censored feedback setting: each round, the algorithm can choose

a feasible deployment of resources across groups. Then the number of candidates for the current

round in each group is drawn from a fixed, but unknown group-dependent distribution (which might

be not be independent from the distributions in other groups). The algorithm does not observe the

number of candidates present in each group, but only the number of candidates that received the

resource. Thus, the extent to which the algorithm can learn about the distribution in a particular

group is limited by the number of resources it deploys there. The goal of the algorithm is to converge

to an optimal fairness-constrained allocation, where both the objective value of the solution and the
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constraints imposed on it depend on the unknown distributions.

One trivial solution to the learning problem is to sequentially deploy all of the resources to each

group in turn for a sufficient amount of time to accurately learn the candidate distributions. This

would reduce the learning problem to an offline constrained optimization problem, which we show

can be efficiently solved by a greedy algorithm. But this algorithm is unreasonable: it has a large

exploration phase in which it uses nonsensical deployments, vastly overallocating to some groups

and underallocating to others.

A more natural approach would be for the allocator to maintain estimates of the candidate

distributions for each group, greedily deploys an allocation to each group that is fair with respect

to these estimates, and then updates its beliefs according to both the feedback from this current

allocation as well as its past history of actions. However, we show that this algorithm will not

converge to an allocation which is fair with respect to the true underlying distributions without

more assumptions on the structure of these distributions, and we carefully develop this impossibility

result in Section 3.3.3.

This impossibility result motivates us to consider the learning problem in which the unknown

distributions are from a known parametric family in Section 3.3.4. The natural algorithm uses

an optimal fair deployment at each round given the maximum likelihood estimates of candidate

distributions given its (censored) observations so far; for concreteness, we analyze this algorithm

in case of the Poisson distribution, and show that it converges to an optimal fair allocation, but

our analysis generalizes for any single-parameter Lipschitz-continuous family of distributions. We

characterize the price of fairness of this algorithm, which is the loss in utility to the allocator for

meeting the fairness constraint rather than simply allocating in a way that maximizes the number

of individuals (irrespective of their groups) who receive the resource.

We conclude with a brief discussion of future directions in this area as well as some of the

modelling gaps between our work and a real-world deployment of these ideas.
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3.1.2 Further Related Work

Our precision discovery model is inspired by and has technical connections to the model of Ganchev

et al. (2009), which models the dark pool problem from quantitative finance, in which a trader wishes

to execute a specified number of trades across a set of exchanges of unknown but independently

distributed liquidity. Ganchev et al. (2009) design an optimal allocation algorithm under the censored

feedback of the precision model. It is straightforward to map their setting onto ours, but they assume

independence between different exchanges, while the candidate distributions in our setting need

not be independent. Regardless, we show that their allocation algorithm can be used to compute

an optimal allocation (ignoring fairness) even when the independence assumption is relaxed (see

Remark 3.2). Later, Agarwal et al. (2010) extended the dark pool problem to an adversarial (rather

than distributional) setting. This is quite closely related to the work of Ensign et al. (2018b) who

also consider the precision model (under a different name) in an adversarial predictive policing

setting. They provide no-regret algorithms for this setting by reducing the problem to learning in

a partial monitoring environment. Since their setting is equivalent to that of Agarwal et al. (2010),

the algorithms in that work can be directly applied to the problem studied by Ensign et al. (2018b).

Our desire to study the natural greedy algorithm rather than an algorithm which uses “unreason-

able” allocations during an exploration phase is an instance of a general concern about exploration

in fairness-related problems, as in Bird et al. (2016). There has been much recent work on the

performance of greedy algorithms in different settings for this reason, such as Bastani et al. (2017);

Kannan et al. (2018); Raghavan et al. (2018). Lastly, the term fair allocation appears in the fair

division literature (see e.g. Procaccia (2013) for a survey), but that body of work is technically quite

distinct from the problem we study here.
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3.2 Setting

We study an allocator with V units of a resource and tasked with distributing them across a popu-

lation partitioned into G groups. Each group is divided into candidates, who are the individuals the

allocator would like to receive the resource, and non-candidates, who are the remaining individuals.

We let mi denote the total number of individuals in group i. The number of candidates ci in group

i is a random variable drawn from a fixed but unknown distribution Ci called the (marginal) candi-

date distribution. We do not make any assumptions about the relationship between the candidate

distributions across different groups and in particular these distributions need not be independent.

We use M to denote the total size of all groups (i.e., M =
∑
i∈[G]

mi). An allocation v = (v1, . . . , vG)

is a partitioning of these V units, where vi ∈ {0, . . . ,V} denotes the units of resources allocated to

group i. Every allocation is bound by a feasibility constraint which requires that
∑
i∈[G]

vi ≤ V.

A discovery model is a (possibly randomized) function disc(vi, ci) mapping the number of units

vi allocated to group i and the number of candidates ci in group i to the number of candidates

discovered in group i. In the learning setting, upon fixing an allocation v, the learner will get to

observe (a realization of) disc(vi, ci) for the realized value of ci for each group i. Fixing an allocation

v, a discovery model disc(·) and candidate distributions for all groups C = {Ci : i ∈ [G]}, we define

the total expected number of discovered candidates, χ(v,disc(·), C), as

χ (v,disc(·), C) =
∑
i∈[G]

E
ci∼Ci

[
disc(vi, ci)

]
, (3.1)

where the expectation is taken over Ci and any randomization in the discovery model disc(·). When

the discovery model and the candidate distributions are fixed, we will simply write χ(v) for brevity.

We also use the total expected number of discovered candidates and (expected) utility interchange-

ably. We refer to an allocation that maximizes the expected number of discovered candidates over

all feasible allocations as an optimal allocation and denote it by w∗.
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3.2.1 Allocative Fairness

We take as our definition of fairness that an allocation is fair if it satisfies approximate equality of

candidate discovery probability across groups. We call this discovery probability for brevity. This

formalizes the intuition that it is unfair if candidates in one group have an inherently higher or lower

probability of receiving the resource than candidates in another. Formally, we define our notion of

allocative fairness as follows.

Definition 3.1 (α-fair allocation). Fix a discovery model disc(·) and the candidate distributions C.

For an allocation v, let

fi (vi,disc(·), Ci) = E
ci∼Ci

[
disc (vi, ci)

ci

]
,

denote the expected probability that a random candidate from group i receives a unit of the resource

at allocation v (i.e. the discovery probability in group i). Then for any α ∈ [0, 1], v is α-fair if∣∣∣fi (vi,disc(·), Ci)− fj (vj ,disc(·), Cj)
∣∣∣ ≤ α,

for all pairs of groups i and j.

When it is clear from the context, for brevity, we write fi(vi) for the discovery probability in group

i. We emphasize that this definition depends crucially on the chosen discovery model, and requires

and implies nothing about the treatment of non-candidates. We think of this as a minimal definition

of fairness where natural extensions might include constraining the treatment of non-candidates or

enriching the space of candidates.

Since discovery probabilities fi(vi) and fj(vj) are in [0, 1], the absolute value of their difference

is always in [0, 1]. Therefore, taking α = 1 imposes no fairness constraints whatsoever on the

allocations and α = 0 corresponds to exact fairness.

We write the allocator’s utility as χ(·) and refer to a feasible allocation v that maximizes χ(v)

subject to α-fairness as an optimal α-fair allocation wα. In general, χ(wα) is a non-increasing

quantity in α, since as α increases towards one, the set of feasible α-fair allocations only becomes

larger.
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Remark 3.2. Both the utility and discovery probabilities can be written solely in terms of the

marginal candidate distributions in each of the groups, even when these distributions are not inde-

pendent. This is because the number of candidates discovered in a group depends only on the number

of candidates in the group and the allocation to that group, regardless of those values in other groups.

This assumption together with the linearity of expectation allows us to write the expected utility as

in the right hand side of Equation (3.1).

3.3 The Precision Discovery Model

We begin by describing the precision model of discovery. Allocating vi units to group i in the

precision model results in the discovery of disc(ci, vi) , min(ci, vi) candidates. This models the

ability to perfectly discover and reach candidates in a group with resources deployed to that group,

limited only by the number of deployed resources and the number of candidates present.

The precision model results in censored observations that have a particularly intuitive form.

Recall that in general, a learning algorithm at each round gets to choose an allocation v and then

observes disc(vi, ci) for each group i. In the precision model, this results in the following kind of

observation: when vi is larger than ci, the allocator learns the number of candidates ci present on

that day exactly. We refer to this kind of feedback as an uncensored observation. When vi is smaller

than ci, all the allocator learns is that the number of candidates is at least vi. We refer to this kind

of feedback as a censored observation.

The rest of this section is organized as follows. In Sections 3.3.1 and 3.3.2 we characterize

optimal and optimal fair allocations for the precision model when the candidate distributions are

known. In Section 3.3.3 we focus on learning an optimal fair allocation when these distributions

are unknown. We show that any learning algorithm that is guaranteed to find a fair allocation in

the worst case over candidate distributions must have the undesirable property that at some point,

it must allocate a vast number of its resources to each group individually. To bypass this hurdle,
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in Section 3.3.4 we show that when the candidate distributions have a parametric form, a natural

greedy algorithm which always uses an optimal fair allocation for the current maximum likelihood

estimates of the candidate distributions converges to an optimal fair allocation. The analysis in this

section is with respect to the marginal candidate distributions being Poisson, although the results

immediately generalize to any family of Lipschitz-continuous, single-parameter distributions. The

Poisson distribution arises naturally when examining the expected number of times an independent

event with a particular mean rate occurs over a given period. For example, if every day, each person

independently develops a particular medical condition with probability p, then the number of people

who develop the condition over the course of a week is drawn from a Poisson distribution with

parameter λ = 7p.

3.3.1 Optimal Allocation

We first describe how an optimal allocation (absent fairness constraints) can be computed efficiently

when the marginal candidate distributions Ci are known.

We can use the same algorithm as in Ganchev et al. (2009) to compute an optimal allocation

in our setting; this is because, as stated in Remark 3.2, the utility in both settings can be written

solely in terms of the (marginal) candidate distributions even when the candidate distributions are

not independent across different groups. Here, we present the high level ideas of their algorithm in

the language of our model. While they assume that the distributions of shares across different dark

pools are independent, our formulation does not require this assumption of independence.

Let Ti(c) = Prci∼Ci [ci ≥ c] denote the probability that there are at least c candidates in group i.

We refer to Ti(c) as the tail probability of Ci at c. Recall that the value of the cumulative distribution

function (CDF) of Ci at c is defined to be

Fi(c) =
∑
c′≤c

Prci∼Ci [ci = c′] .

So Ti(c) can be written in terms of CDF values as Ti(c) = 1−Fi(c− 1).

We first show how the expected number of discovered candidates in a group in the precision
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model can be written as a function of the tail probabilities of the group’s candidate distribution.

Lemma 3.3 (Ganchev et al. (2009)). The expected number of discovered candidates in the precision

model when allocating vi units of resource to group i can be written as Eci∼Ci [min (ci, vi)] =
vi∑
c=1
Ti(c).

Proof. We have

E
ci∼Ci

[min(ci, vi)] =

mi∑
c=1

Prci∼Ci [ci = c] ·min(c, vi)

=

vi−1∑
c=1

Prci∼Ci [ci = c] · c+ viTi(vi)

=

vi−2∑
c=1

Prci∼Ci [ci = c] · c+ (vi − 1)Ti(vi − 1) + Ti(vi)

= Ti(1) + · · ·+ Ti(vi − 1) + Ti(vi)

=

vi∑
c=1

Ti(c).

Note that we can perform the telescoping in the 3rd and 4th lines by observing that

Prci∼Ci [ci = c− 1] + Ti(c) = Ti(c− 1).

Using this, we can give a greedy algorithm to find an optimal allocation in the precision model

when the candidate distributions are known.

Lemma 3.4 (Theorem 1 in Ganchev et al. (2009)). The allocation returned by greedily allocating

the next unit of resource to a group in

argmax
i∈[G]

(
Ti(vti + 1)− Ti(vti)

)
,

where vti is the current allocation to group i at the tth round maximizes the expected number of

candidates discovered.

Proof. Since the tail probability functions Ti(c) are all non-increasing (that is, for c ≤ c′, we have

Ti(c′) ≤ Ti(c)), the greedy allocation returns an allocation v which maximizes
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χ(v) =
∑
i∈[G]

vi∑
c=1

Ti(c) such that
∑
i∈[G]

vi = V.

Using Lemma 3.3 we have that

∑
i∈[G]

E
ci∼Ci

[min (ci, vi)] =
∑
i∈[G]

vi∑
c=1

Ti(c).

So the above double-summation is exactly equal to the expected number of discovered candidates. To

see that the greedy solution is optimal, notice that any solution which does not allocate the marginal

resource to the tail with the highest remaining probability can be improved by reallocating the final

allocated resource in some lower tail probability group to the one in the higher tail probability.

Finally since each term in the objective function is non-negative an optimal allocation would use all

the V units of resource (so the feasibility constraint is tight).

3.3.2 Optimal Fair Allocation

We next show how to compute an optimal α-fair allocation in the precision model when the candidate

distributions are known and do not need to be learned. To build intuition for how the algorithm

works, imagine that the group i has the highest discovery probability in wα, and the allocation wαi

to that group is somehow known to the algorithm ahead of time. The constraint of α-fairness then

implies that the discovery probability for each other group j in wα must satisfy fj ∈ [fi−α, fi]. This

in turn implies upper and lower bounds on the feasible allocations wαj to group j. The algorithm

is then simply a constrained greedy algorithm: subject to these implied constraints, it iteratively

allocates the next unit so as to maximize their marginal probability of reaching another candidate.

Since the group i maximizing the discovery probability in wα and the corresponding allocation

wαi are not known ahead of time, the algorithm simply iterates through each possible choice of

i. Pseudocode is given in Algorithm 3.2. We prove that this algorithm returns an optimal α-fair

allocation in Theorem 3.5.

Theorem 3.5. Algorithm 3.2 computes an optimal α-fair allocation for the precision model in time
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Algorithm 3.2 Computing an optimal fair allocation in the precision model
Input: α, C and V.
Output: An optimal α-fair allocation wα.
wα ← ~0. . Initialize the output.
χmax ← 0. . Keep track of the utility of the output.
for i ∈ [G] do . Guess for group with the highest probability of discovery.

v← ~0.
for vi ∈ {0, . . .V} do . Guess for the allocation to that group.

Set vi in v and compute fi(vi).
ubi ← vi. . Upper bound on allocation to group i.
lbi ← vi. . Lower bound on allocation to group i.
for j 6= i, j ∈ [G] do . Upper and lower bounds for other groups.

Update lbj and ubj using fi(vi), α and Cj .
vj ← lbj . . Assign the lower bound allocation to group j.

if Σi∈[G]vi > V then
continue. . Allocation is not feasible.

Vr = V − Σi∈[G]vi
for t = 1, . . . ,Vr do . Allocate the remaining resources greedily while obeying fairness.

j∗ ∈ argmax
j∈[G]

(Tj(vj + 1)− Tj(vj)) s.t. vj < ubj .

vj∗ ← vj∗ + 1.
χ(v) = Σi∈[G]Σ

vi
c=1Ti(c). . Compute the utility of v.

if χ(v) > χmax then . Update the best α-fair allocation found so far.
χmax ← χ(v).
wα ← v.

return wα.

57



O(GV(GV +M)).

Proof. Fix an optimal α-fair allocation wα. In wα, some group i has the highest fi and receives

allocation wαi . Suppose we know i and wαi ; we will relax this assumption at the end of the proof.

Using knowledge of Ci, we can compute fi(wαi ). This implies that fj ∈ [fi − α, fi] for every other

group j, which in turn can be used to derive the set of all possible allowable allocations wαj which

do not violate α-fairness.

We claim that if we initialize the allocation wαj to be the lower bound of the interval corresponding

to group j, then greedily assign the surplus units with the added restriction that wαj is always inside

of its respective interval, we achieve an optimal α-fair allocation.

Since we assume we know the allocation to group i in an optimal fair allocation wαi , this allocation

must be achievable by picking some value from each of the intervals, thus initializing the allocation

to the lower bound of each interval certainly cannot assign more than V units in total. By the same

argument as for the unconstrained greedy algorithm, since the objective function is concave (recall

that the tail probabilities are non-increasing) and increasing in each argument wαj , a greedy search

over this feasible region finds the desired allocation.

The algorithm does not know a priori the group i which has the maximum fi or wαi , so it must

search over these options. There are G guesses for group i and V+1 guesses for the allocation to the

group. So there are a total of G(V + 1) guesses that need to be considered. For each guess, it takes

O(M) time to compute the upper and lower bounds on the allocation to each of the groups and

O(GV) time to run the greedy algorithm. So the running time of Algorithm 3.2 is O(GV(GV +M)).

3.3.3 Learning May Require Brute-Force Exploration

In Sections 3.3.1 and 3.3.2 we assumed the candidate distributions were known. When the candidate

distributions are unknown, learning algorithms intending to converge to optimal α-fair allocations

must learn a sufficient amount about the distributions in question to certify the fairness of the
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allocation they finally output. Because learners must deal with feedback in the censored observation

model, this places constraints on how they can proceed. Unfortunately, as we show in this section,

in the worst case, the candidate distributions might force the learner to engage in “brute-force

exploration” — the iterative deployment of a large fraction of the resources to each subgroup in

turn. This is formalized in Theorem 3.6.

Theorem 3.6. Define m∗ = max
i∈[G]

mi to be the size of the largest group and assume mi > 6 for all

i and G ≥ 2. Let α ∈ [0, 1/(2m∗)), δ ∈ (0, 1/2), and A be any learning algorithm for the precision

model which runs for a finite number of rounds and outputs an allocation. Suppose that there is

some group i for which A has not allocated at least mi/2 units for at least k ln(1/δ)/(αmi) rounds

upon termination, where k is an absolute constant. Then there exists a candidate distribution such

that, with probability at least δ, A outputs an allocation that is not α-fair.

Proof. Let i denote the group to which A has not allocated at least

mi/2 units for at least k ln(1/δ)/(αmi) rounds upon its termination. We fix an arbitrary allocation

v and design two candidate distributions for group i such that the discovery probabilities given vi

computed under the two different distributions are at least 2α-apart.1 Any algorithm guaranteeing

α-fairness must distinguish between these two distributions with high probability, or v could have

higher unfairness than α. We then show that to distinguish between these two candidate distribu-

tions, with probability of at least 1− α, any algorithm is required to send mi/2 units to group i for

at least k ln(1/δ)/(αmi) rounds.

Consider two candidate distributions Ci and C′i for group i. We use the shorthand pi(c) =

Prci∼Ci [ci = c] and similarly for p′i(c). Let c∗ = mi/2− 2. We require only that Ci and C′i satisfy the

following conditions.

1. pi(c) = p′i(c) for all c′ ≤ c∗.

2. Σc≤c∗pi(c) = Σc≤c∗p′i(c) = 1− 2αmi.

1We assume v sends at least one unit to group i, otherwise it would be easy to construct an example where the
algorithm allocating according to v is unfair.
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3. pi(c∗ + 1) = 2αmi and pi(c) = 0 for all c ∈ {c∗ + 1, . . . ,mi}.

4. p′i(c) = 0 for all c ∈ {c∗ + 1, . . . ,mi − 1} and p′i(mi) = 2αmi.

In other words, any two distributions that are the same up to c∗, have a CDF value of 2αmi at c∗,

and differ in where in the tail they assign the remaining mass, will serve our purposes.

Let fi(vi) and f ′i(vi) denote the discovery probability given allocation v which assigns vi units

to group i for candidate distributions Ci and C′i, respectively. Then

|fi(vi)− f ′i(vi)| = 2αmi

∣∣∣∣ vi
c∗ + 1

− vi
mi

∣∣∣∣ .
This difference is minimized at vi = 1, in which case∣∣∣∣ vi

c∗ + 1
− vi
mi

∣∣∣∣ > 2

mi
− 1

mi
=

1

mi
.

Hence, for any allocation v, |fi(vi)− f ′i(vi)| > 2α.

Finally, because Ci and C′i do not differ on any potential observation less than c∗, distinguishing

between the two candidate distributions requires observing at least one uncensored observation of c∗

or higher. Under the precision model, this requires sending at least mi/2 units to group i. However,

conditioning on sending at least mi/2 units, the probability of observing an uncensored observation

is at most 2αmi. Hence, to distinguish between Ci and C′i (and thus to guarantee that an allocation

v is α-fair) with probability of at least 1 − δ, a learning algorithm must allocate mi/2 units for

k ln(1/δ)/(αmi) rounds to group i.

When m∗, the size of the largest group, is larger than 2V, then Theorem 3.6 implies that no algo-

rithm can guarantee α-fairness for sufficiently small α. Moreover, even when m∗ ≤ 2V, Theorem 3.6

shows that in general, if we want algorithms that have provable guarantees for arbitrary candidate

distributions, it is impossible to avoid something akin to brute-force search, following a trivial al-

gorithm of the kind that simply allocates all resources to each group in turn, for sufficiently many

rounds to approximately learn the CDF of the candidate distribution, and then solves the offline

problem. In the next section, we circumvent this by giving an algorithm with provable guarantees,
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assuming that the candidate distributions have a known parametric form.

3.3.4 Poisson Distributions and Convergence of the MLE

In this section, we assume that all the candidate distributions have a particular and known parametric

form but that the parameters of the these distributions are not known to the allocator. Concretely,

we assume that the candidate distribution for each group is Poisson2 (denoted by C(λ)) and write

λ∗ = (λ∗1, . . . , λ
∗
G) for the true underlying parameters of the marginal candidate distributions. This

assumption allows an algorithm to learn the tails of these distributions without needing to rely

on brute-force search, thus circumventing the limitation given in Theorem 3.6. Indeed, we show

that a small variant of the natural greedy algorithm incorporating these distributional assumptions

converges to an optimal fair allocation.

At a high level, in each round, our algorithm uses Algorithm 3.2 to calculate an optimal fair

allocation with respect to the current maximum likelihood estimates of the group distributions;

then, it uses the new observations it obtains from this allocation to refine these estimates for the

next round. This is summarized in Algorithm 3.3. Much of the work in this section is towards

showing that by using this algorithm, the allocator’s sequence of estimates of λ∗ converge to the

truth over time.

The algorithm differs from this purely greedy strategy in one respect, to overcome the following

subtlety: there is a possibility that Algorithm 3.2, when operating on a preliminary estimate for

the candidate distributions, will suggest sending zero units to some group, even when the optimal

allocation for the true distributions sends some units to every group. Such a deployment would result

in the algorithm receiving no feedback for the zero-allocated group that round. If this suggestion is

followed and a lack of feedback is allowed to persist indefinitely, the algorithm’s parameter estimate

for the zero-allocated group will also stop updating — potentially at an incorrect value. In order
2To match our model, we would technically need to assume a truncated Poisson distribution to satisfy the bounded

support condition. However, the distinction will not be important for the analysis, and so to minimize technical
overhead, we perform the analysis assuming an untruncated Poisson.
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to avoid this problem and continue making progress in learning, our algorithm chooses another

allocation in this case. As we show, any allocation that allocates positive resources to all groups

will suffice; in particular, our algorithm makes the natural choice of simply repeating the allocation

from the previous round.

Algorithm 3.3 Learning an optimal fair allocation
Input: α, V and T (total number of rounds).
Output: An allocation vT+1 and estimates to parameters {λTi }.
v1 ← (b(V/G)c, . . . , b(V/G)c). . Allocate uniformly.
for rounds t = 1, . . . , T do

if ∃i such that vti == 0 then . Check whether every group is allocated a resource.
vt ← vt−1.

Observe oti = min{vti , cti} for each group.
for i = 1, . . . ,G do

Update history ht+1
i with oti and vti .

λ̂ti ← argmaxλ∈[λmin,λmax] L̂(ht+1
i , λ). . Solve the maximum likelihood estimation problem.

vt+1 ← Algorithm 3.2(α, {C(λ̂ti)},V). . Compute an allocation to be deployed in the next
round.
return vT+1 and {λTi }.

Notice that Algorithm 3.3 chooses an allocation at every round which is fair with respect to

its estimates of the parameters of the candidate distributions; hence, asymptotic convergence of its

output to an optimal α-fair allocation follows directly from the convergence of the estimates to true

parameters. However, we seek a stronger, finite sample guarantee, as stated in Theorem 3.7.

Theorem 3.7. Let ε, δ > 0 and let D = max
i∈[G]

DTV (C(λ∗i ), C(λ̂i)) where DTV denotes the total

variation distance between two distributions. Suppose that the candidate distributions are Pois-

son distributions with unknown parameters in the vector λ∗, where λ∗ lies in the known interval

[λmin, λmax]G. Suppose we run Algorithm 3.3 for t > Õ(ln(G/δ)/(η(ε))2) , Tmax rounds, where η(·)

is some distribution-specific function3 to get an allocation v̂ and estimated parameters λ̂i for all

groups i. Then for all i in [G], |λ̂i − λ∗i | ≤ ε, with probability at least 1− δ, v̂ is (α + 4D)-fair and

has utility at most 4DGV smaller than the utility of an optimal (α − 4D)-fair allocation. That is,

χ(v̂) ≥ χ(wα−4D)− 4DGV.

Remark 3.8. Theorem 3.7 implies that in the limit, the allocation from Algorithm 3.3 will converge
3See Corollary 3.19 for the relationship between η and ε. Also Õ hides poly-logarithmic terms in 1/η(ε).
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to an optimal α-fair allocation. As t→∞, λ̂i
p→ λ∗i for all i, meaning D → 0 and more importantly,

v̂ will be α-fair and optimal.

The rest of this section is dedicated to the proof of Theorem 3.7. First, we introduce notation.

Since we assume the candidate distribution for each group is Poisson, the probability mass function

(PMF) and the CDF of the candidate distribution Ci for group i can be written as

Prci∼C(λ∗i ) [ci = c;λ∗i ] =
λ∗i
ce−λ

∗
i

c!
and F (c;λ∗i ) = Prci∼C(λ∗i ) [ci ≤ c;λ∗i ] = e−λ

∗
i

c∑
x=0

λ∗i
x

x!
.

Given an allocation of vi units of the resource to group i we use oi to denote the (possibly censored)

observation received by Algorithm 3.3. So while the candidates in group i are generated according to

C(λ∗i ), the observations of Algorithm 3.3 follow a censored Poisson distribution which we abbreviate

by Co(λ∗i , vi). We can write the PMF of this distribution as

Proi∼Co(λ∗i ,vi)
[oi = o;λ∗i , vi] =

{
λ∗i
oe−λ

∗
i

o! , o < vi,

1− F (vi − 1;λ∗i ), o = vi,

where F(vi − 1;λ∗i ) is the CDF value of C(λ∗i ) at vi − 1.

Since Algorithm 3.3 operates in rounds, we use the superscript t throughout to index the time

period. For each round t, denote the history of the units allocated to group i and observations

received (candidates discovered) in rounds up to t by hti = (v1
i , o

1
i , . . . , v

t−1
i , ot−1

i ). We use ht =

(ht1, . . . , h
t
G) to denote the history for all groups. All the probabilities and expectations in this

section are over the randomness of the observations drawn from the censored Poisson distributions

unless otherwise noted; we suppress related notation for brevity and clarity. Finally, an allocation

function A in round t is a mapping from the history of all groups ht to the number of units to be

allocated to each group i.e. A : ht → vt. We use A(ht)i to denote the allocation vti at round t. We

now define the likelihood functions.

Definition 3.9 (Likelihood functions). Let p(vti , oti;λ) := Pr[oti;λ, v
t
i ] denote the (censored) likeli-

hood of discovering oti candidates given an allocation vti to group i assuming the candidate distri-

bution follows C(λ). We write `(vti , oti;λ) as log p(vti , o
t
i;λ). So, given any history ht, the empirical

log-likelihood function for group i is
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L̂i
(
ht, λ

)
=

1

t

t∑
s=1

` (A(hs)i, osi ;λ) .

The expected log-likelihood function given the history of allocations but over the randomness of the

candidacy distribution can be written as

L∗i
(
ht, λ

)
=

1

t

t∑
s=1

E [` (A(hs)i, osi ;λ)] ,

where the expectation is over the randomness of osi drawn from Co(λ∗,A(hs)i).

Proof of Theorem 3.7

To prove Theorem 3.7, we first show that any sequence of allocations selected by Algorithm 3.3 will

eventually recover the true parameters. There are two conceptual difficulties here: the first is that

standard convergence results typically leverage the assumption of independence, which does not hold

in this case as Algorithm 3.3 computes adaptive allocations which depend on the allocations and

feedback from previous rounds, the second is the potential censoring of these observations. Despite

these difficulties, we give quantifiable rates with which the estimates converge to the true parameters.

Next, we show that computing an optimal α-fair allocation using the estimated parameters will result

in an allocation that is (α+4D)-fair with respect to the true candidate distributions where D denotes

the maximum total variation distance between the true and estimated Poisson distributions across all

groups. Finally, we show that this allocation also achieves a utility that is comparable to the utility

of an optimal (α − 4D)-fair allocation. We note that while Theorem 3.7 is only stated for Poisson

distributions, our results can be generalized to any unimodal, single parameter, Lipschitz-continuous

family of distributions (see Remark 3.23).

3.3.5 Closeness of the Estimated Parameters

Our argument can be stated at a high level as follows: for any group i and any history ht, the

empirical log-likelihood converges to the expected log-likelihood for any sequence of allocations made

by Algorithm 3.3 as formalized in Lemma 3.16. We then show in Lemma 3.17 that the closeness of the
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empirical and expected log-likelihoods implies that the maximizers of these quantities (corresponding

to the estimated and true parameters) will also become close. Since in our analysis we consider the

groups separately, we fix a group i throughout the rest of this section and drop the subscript i for

convenience.

Our first lemma shows that the true underlying parameter λ∗ uniquely maximizes E[`] for any

allocation. Since L∗ is just a sum of E[`] terms, it follows as a corollary that L∗ is uniquely maximized

at λ∗ for any sequence of allocations. This is stated as Lemma 3.10 and Corollary 3.11.

Lemma 3.10. For any v, argmax
λ

Eo[`(v, o;λ)] = {λ∗}.

Proof. Notice that since the expected log-likelihood function is the average over time periods of

individual `(vti , cti, λ) terms, λ∗ being the unique maximizer of each term individually will imply that

it is the unique maximizer of the the expected log-likelihood function. Thus we aim to show that

E
[
`
(
vt, ot, λ∗

)]
≥ E

[
`
(
vt, ot, λ

)]
.

Notice that this is true if and only if

E
[
− log

(
p(vt, ot, λ)

p(vt, ot, λ∗)

)]
≥ 0. (3.2)

The left hand side of Inequality (3.2) is the KL-divergence between two distributions, which is

always non-negative, and thus the inequality holds. Since the KL-divergence is zero if and only if

λ = λ∗, we have that λ∗ is the unique maximizer of the expected log-likelihood.

Corollary 3.11. For any ht, argmax
λ

L∗(λ,ht) = {λ∗}.

Lemma 3.12. |` (vt, ot;λ)| ≤ max (|` (V,V;λmin)| , |` (V − 1,V;λmin)| , |` (1, 0;λmax)|) .

Proof. The Poisson’s PMF is unimodal and achieves its maximum at λ, where p(vt, ot;λ) will be at

most one, meaning `(vt, ot;λ) ≤ 0. In order to bound the absolute value, we will bound how small

` can be.

For uncensored observations, the minimum log-likelihood is achieved at either 0 or at V − 1 due

to unimodality. In this case, the choice of λ that can result in the minimum value is at λmax or
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λmin, respectively. In the case of a censored observation, `(vt, ot;λ) = log(1− F (vt − 1;λ)). So the

minimum will be achieved at `(V,V;λmin).

Next we show that for any fixed λ, with high probability over the randomness of {ot}, L̂ converges

to L∗ for any sequence of allocations {vt} that Algorithm 3.3 could have chosen.

Lemma 3.13. For any λ ∈ [λmin, λmax] and any ht

Pr
[∣∣∣L̂(ht, λ)− L∗(ht, λ)

∣∣∣ > ε
]
≤ 2e−

tε2

2C2 ,

where C is a constant, and in the case of Poisson distribution

C =
1

2
max

(
|` (V,V;λmin)| , |` (V − 1,V;λmin)| , |` (1, 0;λmax)|

)
.

Proof. Let A(hs) denote the allocation to the group we are considering. We define Qt as follows.

Qt := t
(
L̂
(
ht, λ

)
− L∗

(
ht, λ

))
=

t∑
s=1

` (A(hs), os;λ)−
t∑

s=1

E [` (A(hs), os;λ)] .

Qt is the sum of the difference between each period’s observed and expected conditional log-likelihood

function and is a martingale, as E[Qt+1|Qt] = Qt. Moreover, its terms form a bounded difference

sequence since `(A(hs), os;λ) is continuous in osi with osi ∈ [0,V] and λ ∈ [λmin, λmax]. In particular,

we show in Lemma 3.12 that `(vt, ot;λ)| ≤ 2C.

Since {Qt} is a bounded martingale difference sequence, we can apply Azuma’s inequality to get

Pr
[∣∣Qt −Q0

∣∣ ≥ tε] ≤ 2e−
tε2

2C2 .

Rearranging gives the claim.

For k values of λ, taking the union bound and setting ε =
√

2C2 ln(2kG/δ)/t provides the

following corollary.

Corollary 3.14. Let Λ be a set of k values in [λmin, λmax]. Then with probability at least 1− δ/G

max
λ∈Λ

∣∣∣L̂(ht, λ)− L∗(ht, λ)
∣∣∣ ≤

√
2C2 ln( 2kG

δ )

t
,
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where C is as in Lemma 3.13.

We now need to show that the likelihood functions are Lipschitz-continuous:

Lemma 3.15. For any λ, λ′ ∈ [λmin, λmax] such that |λ − λ′| < ε, we have that |`(vti , oti, λ) −

`(vti , o
t
i, λ
′)| ≤ bε for some constant b.

Proof. A differentiable function is Lipschitz-continuous if and only if its derivative is bounded, so,

by definition,

`
(
vtot;λ

)
:=

{
log
(
e−λλo

t

ot!

)
, ot < vt,

log (1− F (vt − 1;λ)) , otherwise.

In the uncensored case (ot < vt), we have that

`
(
vt, ot, λ

)
= −λ+ ot log λ− log ot! =⇒ ∂`

∂λ
= −1 +

ot

λ
.

For λ ∈ [λmin, λmax] with λmin > 0, this function is continuous and its domain is bounded, so its

image is bounded.

In the censored case (ot = vt), we can write

`
(
vt, ot;λ

)
= log

(
1− F

(
vt − 1;λ

))
= log

( ∞∑
k=vt

λke−λ

k!

)
= −λ+ log

( ∞∑
k=vt

λk

k!

)
.

Again taking the derivative, we get

∂`

∂λ
= −1 +

∂
∂λ

∞∑
k=vt

λk

k!∑
k=vt

λk

k!

= −1 +

∂
∂λ

[
eλ −

vt−1∑
k=0

λk

k!

]
∞∑
k=vt

λk

k!

= −1 +

λ−
vt−1∑
k=1

λk−1

(k−1)!

λk

k!

.

The fraction is the quotient of two continuous functions and the denominator is non-zero, so ∂`/∂λ

is continuous in λ. Since the image of a continuous function on a compact set remains compact,

∂`/∂λ is bounded for all t. Thus `(vt, ot;λ) is Lipschitz-continuous in this case as well.
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We next consider the rate of convergence of the empirical log-likelihood to the expected log-

likelihood.

Lemma 3.16. With probability at least 1− δ/G, for any t and any ht observed by Algorithm 3.3,

sup
λ∈[λmin,λmax]

∣∣∣L̂ (ht, λ)− L∗ (ht, λ)∣∣∣ ≤ O(√ ln(tG/δ)
t

)
.

Proof. Define an ε-net Nε = {λmin, λmin + ε, λmin + 2ε, . . . , λmax} and let k = |Nε| denote its

cardinality, so k = dλmax − λmine/ε. Note that for any λ ∈ [λmin, λmax], there exists λ′ ∈ Nε such

that |λ− λ′| ≤ ε.

By Corollary 3.14, for Λ = {λ1, λ2, . . . , λk}, with probability 1− δ,

max
λ∈Λ

∣∣∣L̂ (ht, λ)− L∗ (ht, λ)∣∣∣ ≤√2C2

t
ln

(
2kG
δ

)
. (3.3)

Now, for any λ ∈ [λmin, λmax] by the triangle inequality we have that∣∣∣L̂ (ht, λ)− L∗ (ht, λ)∣∣∣ ≤ ∣∣∣L̂ (ht, λ)− L̂ (ht, λ′)∣∣∣
+
∣∣∣L̂ (ht, λ′)− L∗ (ht, λ′)∣∣∣

+
∣∣L∗ (ht, λ′)− L∗ (ht, λ)∣∣ .

By Lemma 3.15, the first and third term are at most εb where b is the Lipschitz constant in

Lemma 3.15. Applying this to the closest λk ∈ Nε and noting that the inequality in Inequality (3.3)

binds on the middle term with C as in Lemma 3.13, we have

∣∣∣L̂ (ht, λ)− L∗ (ht, λ)∣∣∣ ≤ εb+

√
2C2 ln

(
2kG
δ

)
t

+ εb

≤ 2εb+

√
2C2 ln

(
2kG
δ

)
t

≤ 2εb+

√√√√2C2 ln
(

2Gdλmax−λmine
εδ

)
t

.

Setting ε = 1/t yields the claim. As t→∞, the difference approaches zero.

The true and estimated parameters for each group correspond to the maximizers of the expected

and empirical log-likelihoods, respectively (see Corollary 3.11). We next show that closeness of the

68



empirical and expected log-likelihoods implies that the true and estimated parameters are also close.

Lemma 3.17. Let λ̂ denote the estimate of the Algorithm 3.3 after Tmax rounds. Then with proba-

bility at least 1− δ/G, |λ̂− λ∗| < ε.

Proof. Since Corollary 3.11 gives that L(ht, λ) has a unique maximizer at λ∗ and Corollary 3.19

gives that there exists some η(ε) such that for any λ′ satisfying |L∗(ht, λ′)− L∗(ht, λ∗)| < η(ε), we

must have that |λ′ − λ∗| < ε. We denote η(ε) by η for brevity and define the empirical maximizer

λ̂ to be the maximizer of L̂(ht, λ). That is,

λ̂ ∈ argmax
λ∈[λmin,λmax]

L̂
(
ht, λ

)
. (3.4)

Applying Lemma 3.16 implies that for any ht with t > Tmax and λ′ ∈ [λmin, λmax], with probability

at least 1− δ/G, ∣∣∣L̂(ht, λ′)− L∗(ht, λ′)
∣∣∣ < η

2
.

In particular, we must have that∣∣∣L̂ (ht, λ∗)− L∗ (ht, λ∗)∣∣∣ < η

2
and

∣∣∣L̂(ht, λ̂)− L∗ (ht, λ̂)∣∣∣ < η

2
. (3.5)

Since λ̂ is a maximizer of Inequality (3.4), we have that

L̂
(
ht, λ̂

)
≥ L̂

(
ht, λ∗

)
≥ L∗

(
ht, λ∗

)
− η

2
,

where the last inequality is by Inequality (3.5). This implies that

L∗
(
ht, λ̂

)
> L̂

(
ht, λ̂

)
− η

2

> L∗
(
ht, λ∗

)
− η

2
− η

2

= L∗
(
ht, λ∗

)
− η,

where the last inequality is by Inequality (3.5). Therefore, L∗(ht, λ̂) > L∗(ht, λ∗) − η, and thus

Corollary 3.19 gives that |λ̂− λ∗| < ε.

Combining Lemma 3.17 with a union bound over all groups show that, with probability 1 − δ,

if Algorithm 3.3 is run for Tmax rounds, then |λ̂i − λ∗i | < ε, for all i. Note that as t → ∞, the

maximum total variation distance D between the estimated and the true distribution will converge
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in probability to 0.

3.3.6 Fairness of the Allocation

Now that we have shown convergence, we next need to demonstrate that the fairness violation (i.e.

the maximum difference in discovery probabilities over all pairs of groups) is linear in terms of

D. Therefore, as the running time of the Algorithm 3.3 increases and hence, D → 0, the fairness

violation of v̂ approaches α.

Lemma 3.18. Suppose that a continuous function g(x) : [a, b] 7→ R has a unique maximizer x∗.

Then for every ε > 0 there exists a value η > 0 such that g(x∗)− g(x) < η implies |x− x∗| < ε. In

particular, this η can be written as

η = g(x∗)− max
x∈[a,b]\Xε

g(x),

where Bε(x∗) denotes the open ε-ball centered at x∗. When g is concave and differentiable, η can be

found by evaluating g at a constant number of points.

Proof. Let Xε be the ε-radius open ball centered at x∗, and let Θ be [a, b] \Xε. Since Xε is open, Θ

is closed and bounded, and therefore compact. Since g is continuous, the restriction of g to Θ has

some maximum g(x̂) for some (not necessarily unique) x̂ ∈ Θ.

Observe that, if for any x ∈ [a, b], we have that g(x) > g(x̂), then x must be in Xε. Otherwise

x̂ would not be a maximizer of the restriction of f to Θ. Choose η = g(x∗) − g(x̂). Then, because

g(x) > g(x̂), we have that g(x∗) − g(x) < g(x∗) − g(x̂) = η. Therefore, |g(x∗) − g(x)| < η implies

|x∗ − x| < ε, completing the proof of existence.

The dependence of η on ε is function-dependent, but by construction, η(ε) can be computed

by taking the maximum of g on Θ \ Xε and subtracting it from g(x∗). Notice that in the case of

concavity and differentiability, this maximization problem is easy to calculate. If g is concave and

differentiable over [a, b], its restrictions to [a, x∗ − ε] and [x∗ + ε, b] are as well. A differentiable,

concave function on an interval can only be maximized at an interior critical point or at one of the
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two end points. Hence if x∗ is interior, it must be a critical point, and by concavity it is the unique

critical point on [a, b], so g can have no critical points on Θ \Xε. Thus g restricted to [a, x∗ − ε] is

maximized at either a or x∗ − ε; similarly for g restricted to [x∗ + ε, b]. On the other hand, if x∗ is

either a or b, there is just one interval in Θ\Xε to check, and checking the endpoints of that interval

plus exhaust the possible maximizers. In either case, no more than 4 points need be checked; in

contrast, without concavity or differentiability, finding the maximum on g on Θ \Xε could require

more involved optimization techniques.

Corollary 3.19. For any fixed ht and λ ∈ [λmin, λmax], the following must hold true for L∗(ht, λ)

whose unique maximizer is λ∗. For every ε, there exists a value η > 0 such that L∗(ht, λ∗) −

L∗(ht, λ) < η implies |λ− λ∗| < ε, where η is

L∗(ht, λ∗)− max
[λmin ,λmax ]\Xε

L∗(ht, λ).

Fixing any group, we show that for any fixed allocation v, the difference between the discovery

probabilities with respect to the true and estimated candidate distributions is proportional to the

total variation distance between the true and estimated distributions.

Lemma 3.20. Let v be any fixed allocation to the group. Then

∣∣∣f(v, C(λ∗))− f(v, C(λ̂))
∣∣∣ ≤ 2DTV (C(λ∗), C(λ̂)).

Proof. We have∣∣∣f(v, C(λ∗))− f(v, C(λ̂))
∣∣∣ =

∣∣∣∣∣ E
c∼C(λ∗)

[
min(v, c)

c

]
− E

c∼C(λ̂)

[
min(v, c)

c

]∣∣∣∣∣
=

∣∣∣∣∣
∞∑
c=0

min(v, c)

c

(
Pr[c;λ∗]− Pr[c; λ̂]

)∣∣∣∣∣
≤
∞∑
c=0

min(v, c)

c

∣∣∣Pr[c;λ∗]− Pr[c; λ̂]
∣∣∣

≤
∞∑
c=0

∣∣∣Pr[c;λ∗]− Pr[c; λ̂]
∣∣∣

≤ 2DTV (C(λ∗), C(λ̂)).
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Formally, the fairness violation approaches α in the following sense.

Lemma 3.21. Let v̂ denote the allocation returned by Algorithm 3.3 after Tmax rounds. Then with

probability at least 1− δ, |fi(v̂i)− fj(v̂j)| ≤ α+ 4D,∀i, j ∈ [G].

Proof. For any i, j ∈ [G] we have that

|fi(v̂i)− fj(v̂j)| =
∣∣fi(v̂i, C(λ∗i ))− fj(v̂j , C(λ∗j ))

∣∣
≤
∣∣∣fi(v̂i, C(λ∗i ))− fi(v̂i, C(λ̂i))∣∣∣

+
∣∣∣fi(v̂i, C(λ̂i))− fj(v̂j , C(λ̂j))

∣∣∣
+
∣∣∣fj(v̂j , C(λ∗j ))− fj(v̂j , C(λ̂j))∣∣∣

≤ 2DTV (C(λ∗i ), C(λ̂i)) + α+ 2DTV (C(λ∗j ), C(λ̂j))
= α+ 4D.

The first inequality follows from the triangle inequality. In the second inequality, the second term can

be bounded because Algorithm 3.2 returns an α-fair allocation with respect to its input distribution.

The first and third term in the second inequality can be bounded by Lemma 3.20. Lemma 3.20

shows that for any fixed allocation the difference between the discovery probability with respect

to the true and estimated candidate distributions in group i is proportional to the total variation

distance between the true and estimated distributions.

3.3.7 Utility of the Allocation

The final component of proving theorem 3.7 is to analyze the utility of the allocation returned by

Algorithm 3.3. We know that in the limit as the number of rounds Algorithm 3.3 is run grows, the

algorithm learns an optimal α-fair allocation.

Lemma 3.22. Let v̂ denote the allocation returned by Algorithm 3.3 after Tmax rounds. Then with

probability at least 1− δ, χ(v̂) > χ(wα−4D)− 4DGV.

Proof. Consider the following optimization problem, P(α, {λi}, {λ̄i},V).
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max
v

χ (v, {C(λi)}) ,

subject to
∣∣fi (vi, C(λ̄i))− fj (vj , C(λ̄i))∣∣ ≤ α,∀i and j,∑
i∈[G]

vi ≤ V,

vi ∈ N .

We can think of the above optimization problem as the case where the underlying candidate dis-

tributions used for the objective value and the fairness constraints are different. Let us write

A(α, {λi}, {λ̄i},V) to denote an optimal allocation in the above optimization problem, P(α, {λi}, {λ̄i},V).

So an optimal fair allocation and the allocation returned by Algorithm 3.3 can be written as

A(α, {λ∗i }, {λ∗i },V) and A(α, {λ̂i}, {λ̂i},V), respectively.

Note that for any fixed allocation v

∣∣∣χ(v, {C(λ∗i )})− χ(v, {C(λ̂i)})
∣∣∣ =

∣∣∣∣∣∑
i∈G

vi∑
c=0

T ∗i (c)−
∑
i∈G

vi∑
c=0

T̂i(c)
∣∣∣∣∣ ≤ 2GVD, (3.6)

where T̂i is the tail probability of C(λ̂i). This is because |T ∗i (c) − T̂i(c)| is bounded above by

2DTV (C(λi), C(λ̂i)). In other words, even when the underlying candidate distribution changes for

the objective value, an allocation value can change by at most 2GVD.

Now observe that

χ(v̂, {C(λ∗i )}) ≥ χ(v̂, {C(λ̂i)})− 2GVD
= χ

(
A
(
V, {C(λ̂i)}, {C(λ̂i)}, α

)
, {C(λ̂i)}

)
− 2GVD

≥ χ
(
A
(
V, {C(λ̂i)}, {C(λ∗i )}, α− 4D

)
, {C(λ̂i)}

)
− 2GVD

≥ χ (A (V, {C(λ∗i )}, {C(λ∗i )}, α− 4D) , {C(λ∗i )})− 4GVD
= χ(wα−4D)− 4DGV.

The inequalities in the first and fourth lines are by Equation (3.6), which shows how the utility

deteriorates when the underlying distribution for the objective function changes. The inequality in

the third line follows from Lemma 3.21, as any (α − 4D) fair allocation is a feasible allocation to

P(V, {C(λ̂i)}, {C(λ̂i)}, α), and A(α, {λi}, {λ̄i},V) is an optimal solution to this problem.

Remark 3.23. Although we assumed Poisson distributions in this section, all our results hold for

any unimodal, single-parameter, Lipschitz-continuous distribution whose parameter is drawn from
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a compact set. However, the convergence rate of Theorem 3.7 depends on the quantity η(ε) which

depends on the family of distributions used to model the candidate distributions.

3.4 The Random Discovery Model

Finally, we consider the random model of discovery. In the random model, when vi units are allocated

to a group with ci candidates, the number of discovered candidates is a random variable correspond-

ing to the number of candidates that appear in a uniformly random sample of vi individuals from a

group of size mi. Equivalently, when vi units are allocated to a group of size mi with ci candidates,

the number of candidates discovered by disc(·) is a random variable disc(vi, ci) , oi, where oi is drawn

from the hypergeometric distribution with parameters mi, ci and vi. Furthermore, the expected

number of candidates discovered when allocating vi units to group i is E[disc(vi, ci)] = vi E[ci]/mi.

For simplicity, at first we assume mi ≥ V for all i, and we completely relax this assumption to-

wards the end of the section. Moreover, let µi = E[ci]/mi denote the expected fraction of candidates

in group i and without loss of generality that µ1 ≥ µ2 ≥ . . . ≥ µG .

3.4.1 Optimal Allocation

In this section, we characterize optimal allocations. Note that the expected number of candidates

discovered by the allocation choice vi ≤ mi in group i is simply viµi. This suggests a simple

algorithm to compute w∗: allocating every unit of the resource to group 1. More generally, let

G∗ = {i | µi = µ1} denote the subset of groups with the highest expected number of candidates. An

allocation is optimal if and only if it only allocates all resources to groups in G∗.
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3.4.2 Properties of Fair Allocations

We next discuss the properties of fair allocations in the random discovery model. First, we point

out that the discovery probability can be simplified as

fi(vi) = E
ci∼Ci

[
civi/mi

ci

]
=

vi
mi

.

So an allocation is α-fair in the random model if |vi/mi − vj/mj | ≤ α for all groups i and j.

Therefore, fair allocations (roughly) distribute resources in proportion to the size of the groups,

essentially ignoring the candidate distributions within each group.

3.4.3 Price of Fairness

The price of fairness measures the discrepancy in the utility to the allocator between the fair and the

optimal allocations. Because the optimal and fair allocations in this setting are both straightforward

to describe and potentially dramatically different, we can give some bounds on this price in the

random discovery model.

Definition 3.24 (Worst-case price of fairness). Consider the random discovery model and let α ∈

[0, 1]. We define the price of fairness as

PoF(α) = max
C

χ(w∗, C)
χ(wα, C) .

where C ranges over all possible candidate distributions.

We can fully characterize this worst-case price of fairness in the random discovery model.

Theorem 3.25 (Bounds on worst-case price of fairness). The price of fairness in the random

discovery model is

PoF(α) =

{
1, V

m1
≤ α,

M
m1+α(M−m1) ,

V
m1

> α.
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The price of fairness in the random model can be as high as M/m1 in the worst case. If all

groups are identically sized, this grows linearly with the number of groups.

Proof. First, we write down the integer program to compute an optimal α-fair allocation in the

random model as

max
v={v1,...,vG}

G∑
i=1

vi E[ci]

mi
,

subject to
∣∣∣∣ vimi

− vj
mj

∣∣∣∣ ≤ α,∀i and j,
G∑
i=1

vi ≤ V,

vi ∈ N,∀i.

Observe that when V/m1 ≤ α the allocation that sends all of the units of the resource to group 1 is

both optimal and α-fair. For the case that V/m1 > α, we will first provide an upper bound on the

price of fairness by demonstrating an allocation v which is is α-fair and use it to show that imposing

fairness does not decrease the total number of candidates discovered by v as compared to an optimal

α-fair allocation. Then, we will construct specific candidate distributions C′ and compute the price

of fairness to show that the upper bound is tight.

Consider the following allocation v.

vi =

{(V+α(M−m1)
M

)
m1, i = 1,(V−αm1

M

)
mi, otherwise.

(3.7)

We show that v is a feasible α-fair allocation. To show feasibility, observe that∑
i∈[G]

vi =
V − αm1

M

∑
i∈[G]

mi + αm1 = V.

To show that v is α-fair observe that

|f1(v1)− fi(vi)| =
∣∣∣∣ v1

m1
− vi
mi

∣∣∣∣ =

∣∣∣∣V + α(M −m1)

M
− V − αm1

M

∣∣∣∣ = α

|fi(vi)− fj(vj)| = 0, for all i, j 6= 1.

Since v is a feasible α-fair allocation, for any C, we have that

χ(wα, C) ≥ χ(v, C) ≥ µ1v1,
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where the last inequality is derived by counting only the candidates that allocation v discovers in

group 1 according to the random model and ignoring all the discoveries in other groups. Moreover,

for any C, χ(w∗, C) = µ1V by the argument in Section 3.4.1. Therefore,

PoF = max
C

χ(w∗, C)
χ(wα, C) ≤

µ1V
µ1v1

=
VM

m1 (V + α(M −m1))
≤ M

m1 + α(M −m1)
,

where the last inequality uses the assumption that V ≤ m1.

To derive the lower bound on the price of fairness, we construct a candidate distribution C′ and

perform the computation. We then show that the lower bound matches the upper bound, so the

analysis is tight.

To construct C′ assume all groups have size V i.e. mi = V for all i. Furthermore, assume group

1 has V candidates and the rest of the groups have 0 candidates deterministically. Then the optimal

allocation w∗ is to send all the V units of resource to group 1, and doing so will discover V candidates

(since µ1 = 1). As for the optimal α-fair allocation, we show that wα = v where v is the same

allocation as the allocation used in the proof for the upper bound.

For C′, because all groups have the same size, vi = vj for all i, j 6= 1. Since Σi∈[G]vi = V,

vi = (V −v1)/(G−1) for all i 6= 1. Now, any feasible α-fair allocation v′ must have v′1 ≤ v1. Assume

for the sake of contradiction that v′1 > v1. Then, after assigning v′1 units of resource to group 1, the

remaining units that will be strictly less than V − v1 will be distributed among the remaining G − 1

groups. By the pigeonhole principle, there must exist at least one group j such that

v′j <
V − v1

G − 1
= vj =

(V − αm1

M

)
mj .

Now observe that∣∣f1(v′1)− fj(v′j)
∣∣ =

∣∣∣∣ v′1m1
−

v′j
mj

∣∣∣∣ > ∣∣∣∣V + α(M −m1)

M
− V − αm1

M

∣∣∣∣ = α.

So v′ cannot be α-fair. Therefore, v must be an optimal α-fair allocation since in v the maximum

number of units of resources are allocated to group 1 which is the only group that contains candidates.

Note that the number of candidates discovered by wα is exactly v1 since µ1 = 1. So given the
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wα for C′ we can compute the price of fairness as follows.

PoF =
χ(w∗, C′)
χ(wα, C′)

=
V
v1

=
VM

(V + α(M −m1))m1

=
m1M

(m1 + α(M −m1))m1
=

M

m1 + α(M −m1)
.

This lower bound matches the upper bound.

3.4.4 Relaxing the Assumption of V ≤ mi.

In this section we relax the assumption that V ≤ mi for all groups i. We first show how an optimal

allocation can be computed using a greedy algorithm. Recall that we have assumed µ1 ≥ µ2 ≥ . . . ≥

µG . The algorithm allocates v1 = min(V,m1) units of resource to group 1. And recurse with the

remaining V − v1 resources on the rest of the groups. If this algorithm allocates resources to groups

1 through k then the expected utility of the algorithm can be written as

k−1∑
i=1

µimi + µkvk =

k−1∑
i=1

µimi + µk(V −
k−1∑
i=1

mi).

In the case that V ≤ mi, the algorithm allocates all the resources to group 1 without any leftover

resources for other groups. We note that an optimal α-fair allocation can still be computed with

the same integer program. Furthermore, the lower bound on the price of fairness continues to hold

even when we relax this assumption.

However, our upper bound analysis on the price of fairness breaks when we relax the assumption.

A similar upper bound can be derived in this case, but the analysis requires considering a large

number of cases, depending on which groups receive as many units of the resource as they have

people. We do not investigate this direction as the lower bound on the price of fairness shows that

in the random model it can still be quite high even without this assumption on the group sizes.
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3.5 Conclusion and Future Directions

Our presentation of allocative fairness provides a family of fairness definitions, modularly param-

eterized by discovery models. What counts as ‘fair’ or ‘unfair’ depends a great deal on the choice

of discovery model, which makes explicit what would otherwise be unstated assumptions about the

process of tasks like distributing resources across communities. The random and precision models

of discovery studied in this paper represent two extreme points of a spectrum. The precision model

assumes that resources can be perfectly targeted to candidates and the random model assumes the

allocator has no power to direct the resource beyond the initial distribution. An interesting direction

for future work is to study discovery models that lie in between these two.

We have also made a number of simplifying assumptions that could be relaxed. For example,

we assumed the candidate distributions are stationary — fixed independently of the actions of the

algorithm. Of course, the deployment of police officers can change crime distributions. Modeling

this kind of dynamics, and designing learning algorithms that perform well in such dynamic settings

would be interesting. Finally, we have assumed that the same discovery model applies to all groups.

One friction to fairness that one might reasonably conjecture is that the discovery model may differ

between groups — being closer to the precision model for one group, and closer to the random model

for another. We leave the study of these extensions to future work.
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Chapter 4

The Price of Privacy in the

Keynesian Beauty Contest

4.1 Introduction

In recent years, the mathematical study of privacy has become a major subject of inquiry. Much of

the impetus for this work has been a series of data breaches and deanonymization of seemingly safe

private information, perhaps most famously in the use of IMDb reviews to attack Netflix’s data set

over a decade ago (Narayanan and Shmatikov, 2008). Models such as differential privacy alleviate

this problem by providing formal guarantees about how much about any individual an adversary

can learn from the release of some statistic computed from a dataset. However, such techniques

are generally predicated on the presence of a trusted central agent which applies the differentially

private mechanism to the data it collects from individuals. Alternatively, in the case of the local

differential privacy model, the agents are typically instructed in how to privatize their data.

In this work, we endogenize a notion of privacy in the absence of a trusted party to coordinate

the mechanism. We analyze a formalization of a classical game called the Keynesian Beauty Con-
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test, which has been used to study strategic interaction involving information acquisition and the

coordination of collective action. In particular, we show how the traditional formulation of this

game neglects privacy concerns in its equilibrium predictions, and we then provide a framework for

extending the game to incorporate a flexible notion of privacy into the utility of the agents. Using

this, we can characterize a price of privacy, somewhat akin to quantities such as the price of anarchy,

which measures the loss of social welfare in a population of agents who act selfishly to guarantee

their own privacy.

Abstractly, we think about players in a game being perfectly rational Bayesian agents who

observe some information, perform a utility-maximizing computation, and play an action. However,

by observing some player i’s chosen action, player j may be able to learn something about player

i’s private information. For this reason, if players fear that their public actions may reveal private

information, they may be incentivized to deviate from the strategy which maximizes utility in the

absence of privacy concerns. If all players share such concerns, or anticipate others harboring them,

equilibrium behavior may be significantly different than standard predictions.

One setting where there may be tension between privacy and coordination with other players and

some underlying ground truth is intra-organizational information aggregation. Suppose that a firm

wishes to poll a group of employees as to a particular decision, such as a prediction about the success

of a particular product, an evaluation of a colleague, or a new procedure for evaluating and settling

claims. In order to make the best decision possible, it is valuable to aggregate information, opinions,

or signals received by individuals; however, individuals may be reluctant to fully share their opinion

lest it be held against them or they prove to be ‘wrong’. In this situation, simple anonymization

procedures may not be trustworthy or effective, and any such procedure requires trusting an internal

mechanism to which the employee does not have access. If the respondent is concerned about other

agents deanonymizing her survey, then it should be expected that she does not respond honestly.
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4.1.1 Our results

We consider a formal model of the Keynesian Beauty Contest, a game in which each agent observes

some information and submits an estimate about the true ‘state of the world’, then earns utility

based on both how close her action is to the truth as well as how close it is to the average action over

all agents. We describe the game, the information structure, and the strategy space and show the

existence of a symmetric linear Nash equilibrium, where agents’ actions are a convex combination of

the public and private signals they observe, extending the results in Morris and Shin (2002).

We then turn to the privacy-augmented version of the game, where agents face the same utility

function but also suffer a loss of utility based on the ability of other players to infer their private

information. We show that this new game also has an equilibrium in strategies that can be written

as strategies in the original game with added random noise. This leads to two different values which

can be thought of as a ‘price of privacy’. In the first, we consider the perspective of the agents and

quantify the total loss of the players’ utilities as a result of incorporating this concern for privacy. In

the second, we think about an ‘untrusted aggregator’ who wants to compute some statistic using the

agents’ private beliefs but cannot convince them to participate in a privacy-protecting mechanism.

Here, we compute the decrease in the quality of the aggregation due to the players’ addition of noise

to their previously optimal actions.

At a high level, we a consider setting in which there is no centralized planning mechanism, either

to perform the differentially private computation or to instruct the agents who own the data to

add a particular amount of noise to their information in order to perform a locally differentially

private aggregation. Rather, we assume that agents are rational and derive some utility from both

the aggregate-level computation being accurate as well as from the privacy gained by obscuring

the information she releases. A major departure from the local differential privacy framework is in

our treatment of outliers. In local differential privacy, an individual whose data is very different

from the norm may have to add a considerable amount of noise before providing her information

to the aggregator, since we need to worry that her unmodified data might shift the distributions
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of outcomes farther than we would like. In this work, we consider a different flavor of individual

privacy, where an agent with outlying information does not necessarily care about being revealed as

an outlier; she only cares how accurately an observer can guess her private information.

4.1.2 Related Work

Economics

Concretely, our work builds primarily on the results in Morris and Shin (2002), which formalizes

the modern version of a Keynesian Beauty Contest in order to study the tendency for individuals to

over-weight public information. We similarly explore linear equilibria in a Keynesian Beauty Contest

game with public and private signals; the structure of our model is substantially very similar, and we

recover their results as a special case when there is no concern for privacy. Viewing our model as a

generalization of theirs, we expand their result on the existence of such equilibria to a privacy-aware

setting. The results in Hellwig and Veldkamp (2009) build on those in Morris and Shin (2002),

exploring a setting in which agents optimize a selection of information sources with different costs

matching their qualities. While Hellwig and Veldkamp (2009) is quite different mechanically and

in spirit, there is a certain sense in which our paper can be interpreted along similar lines: the

equilibrium noisy action can be viewed as similar to choosing a private signal of differing variances,

and the privacy cost can be thought of as a cost to more precise information. The Keynesian Beauty

Contest is well-studied in the broader macroeconomics literature (see Nagel et al. (2017) for a recent

survey) and is frequently used to study settings where agents derive some value for correctness and

for coordination, such as in financial markets or strategic voting. These settings are natural cases for

the use of formal privacy methods, such as financial analysts wanting to conceal the model they use

to predict asset prices or voters being concerned about their preferences being held against them.

Gradwohl and Smorodinsky (2017) study a setting in which strategic agents are concerned that their

actions in a game will reveal sensitive private information, but their model and approach, which is

based on the concept of signaling games, is considerably different from the setting we consider.
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Differential Privacy

In the last decade, mathematical notions of privacy have been studied extensively in the computer

science literature. The most influential is differential privacy (c.f. Dwork et al. (2006)) which states

roughly that a statistical algorithm is differentially private if the probability that the algorithm

gives any particular output does not change by much when we modify one row of the database the

algorithm is run on. Standard differential privacy is principally a central, rather than individual

notion of privacy, as the algorithms operate under the assumption that the adversary does not have

access to the raw data provided to the analyst. The concept was introduced in Kasiviswanathan

et al. (2011) and recent work has shown that this notion is a powerful framework for addressing

privacy concerns (c.f. Kairouz et al. (2016); Joseph et al. (2018); Bassily (2018)). There is also a

literature on privacy in mechanism design. The work in Chen et al. (2016) and Nissim et al. (2012)

examines settings where agents participate in a data aggregation mechanism and earn utility which

is increasing in the quality of the estimate but decreasing in the data leakage. The model in Chen

et al. (2016) is one of truthful voting. In this work, we study a game-theoretic setting where privacy is

a concern, rather than designing a privacy-preserving mechanism. Our work differs from the formal

study of privacy in that we use a definition of which does not (necessarily) satisfy the strictness of the

various versions of differential privacy. Rather, we consider the perspective of strategic agents who

are concerned with other players’ ability to learn ‘too much’ about their own private information.

In this way, our work is related to the issue of response bias on surveys, where respondents do not

answer questions honestly in order to avoid revealing sensitive information. Work examining the use

of randomization to alleviate this effect goes back several decades (e.g. Warner (1965)).

Our extended game does bear a resemblance to the local model of differential privacy in that

agents add noise to their actions, and one might intuitively map the case where agents add Gaussian

noise to their actions to an instance of the local Gaussian mechanism (see, e.g. Dwork et al. (2006)).

However, agents in our model are not using the Gaussian mechanism to achieve differential privacy,
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and such a guarantee cannot be recovered1, as the fact that agents’ data is unbounded means that

this mechanism cannot give non-vacuous guarantees. To see this, recall that differential privacy

requires that for any set of output of the mechanism must be approximately as likely when input is

neighboring, which typically means differing in one record. In our case, this corresponds to having a

different private signal. The problem is that for any choice of finite variance, adding Gaussian noise

to private signals that are sufficiently distant will produce noisy actions that are far apart, and can

thus be distinguished with high confidence.

More importantly, there is a significant conceptual difference between the models of differential

privacy and our model. In differential privacy models, there is a strict separation of roles: there

is an accuracy-concerned learner that wishes to perform and release the output of a query, and

privacy-concerned agents that supply their data. The addition of noise either centrally or locally

prevents any other party from learning the exact value of the private data with high confidence,

and is assumed to be necessary to make agents willing to supply their data. In contrast, there is no

external learner in our model; instead, agents attempt to coordinate their actions with other agents

and the state of the world, but must add noise to their actions in order to prevent others from

learning their private information. Noisier actions lead to greater variance around the state of the

world and the average actions, and thus lower payoffs. Hence, the agents care about both privacy

and accuracy, and this tradeoff determines how much noise they ultimately add.

4.2 Framework and Model

4.2.1 The Keynesian Beauty Contest

The Keynesian Beauty Contest dates back to John Maynard Keynes’ 1936 General Theory in which

he formulates a game by analogy to a newspaper beauty contest. In this game, players select the

‘most beautiful’ entrants from an array of photographs printed in the newspaper, and those players
1There are other, more complicated mechanisms that can achieve differential privacy with unbounded input data.

We refer readers to Liu (2019) and Wang et al. (2019) for more discussion.
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who choose the most popular faces are eligible for a prize. The salient idea is that a rational

contestant must consider their own opinion about which entrants are the most beautiful as well as

beliefs about the opinions of all other contestants, and perhaps beliefs about the beliefs of the other

players’ opinions of other players, and beliefs about the beliefs about the beliefs about the beliefs

about the opinions of other players, and so on. Keynes originally proposed this as a model to explain

the behavior of financial markets, where the value of an asset depends as much on its fundamental

potential for returns as it does the collective belief in its potential for returns. Since its inception,

this model has been used throughout the economics literature to describe the behavior of rational

agents in strategic environments (c.f. Gao (2008); Allen et al. (2006); Bosch-Domenech et al. (2002);

Cespa and Vives (2015); Nagel et al. (2017); Morris and Shin (2002)), particularly in macroeconomic

settings.

In this paper, we work with a common abstraction of the Keynesian Beauty Contest (see e.g.

Morris and Shin (2002); Hellwig and Veldkamp (2009)) in which there is some true state of the world

s, and each agent submits a guess θi and earns utility equal to

ui(θi, θ−i) = −(1− α)(θi − θ̄)2 − α(θi − s)2,

where θ̄ is the average choice of θi over all players and θ−i denotes the action of all other players

other than i. We refer to the (θi− θ̄)2 term as the coordination component, which rewards how close

player i’s action is to that of the other players, and the (θi − s)2 term as the guessing component,

which describes how close player i’s action is to being the correct guess for the true state of the

world s. The parameter α ∈ [0, 1] is common to all agents and describes the relative weighting of

the values of coordination and guessing the true state of the world correctly.

We let n denote the number of players. In the economics literature, it is standard to consider

a further abstraction of the game with a continuum of agents indexed by the unit interval [0, 1].

In computer science, particularly from an algorithmic perspective, we may be more interested in
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the game with finitely many players n, indexed by a finite set [n] = {1, 2, . . . n}. We consider both

perspectives and a contribution of this work is demonstrating that the results in the infinite setting

can be realized as the limits of the corresponding results in the finite setting.

The fundamental difference between the two cases is in the definition of the average action θ̄. In

the game with finitely many and infinitely many agents, these are

θ̄ =
1

n

n∑
j=1

θj and θ̄ =

∫ 1

0

θjdj,

respectively. In the finite game, agent i’s action θi has a measurable effect on the average action

whereas in the infinite game, the impact is infinitesimal. Therefore, when there are finitely many

players, agent i must consider her own action’s effect on θ̄; in the infinite case, she can treat θ̄ as

simply the average action of all players other than herself. Intuitively, as n grows, any individual’s

ability to unilaterally affect θ̄, so we should expect that the results in the infinite game emerge as

the limits of the results in the finite game as n grows to infinity.

4.2.2 Information Structure

We now describe the information structure of the game. Each player has a common improper

uniform prior distribution over the value of s, supported on the entire real line. There is a public

signal y, drawn from a Gaussian distribution with mean s and variance σ2
y. Additionally, each player

i observes a private signal xi independently drawn from a Gaussian distribution with mean s and

variance σ2
x. Each player observes y and her own xi, but not any other player j’s private signal

xj . Each player i’s utility function ui(θi, θ−i) is identical as given above. The values of σ2
y, σ2

x, α,

the utility functions, and the realization of y are public and common knowledge, and the form of

the priors and structure of the game is also common knowledge. Furthermore, we assume that the

agents are rational and Bayesian. That is, they seek to maximize their expected utility given their

knowledge and their beliefs about other players.

We use the notion of an improper uniform prior belief to align with the economics literature;

however, this concept is not necessarily standard across disciplines. One can think of a (proper)
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uniform prior with compact support as indicating that players believe any underlying parameter

in the support is equally likely to be the truth. An ‘improper uniform prior’ expresses the same

sentiment for an unbounded support. The term ‘improper’ arises because such an object is not a

probability density function, but, when updated with the proper Gaussian signals in our setting,

the posterior is a proper distribution. Berger et al. (2009) provide a useful discussion of settings in

which the improper uniform prior is appropriate.

For readers uncomfortable with such a notion, we present an alternative framing of the informa-

tion structure which is equivalent to the above. The private signals xi, the utility functions, and

the values of α and σ2
x are as before. Rather than y representing a public signal, each agent instead

has a prior belief about the true state of the world s, which is a Gaussian distribution with mean

y and variance σ2
y. This prior is common to all agents and the parameters of the prior are common

knowledge. This framing is equivalent to the previous one since an agent with an improper uniform

prior, upon observing the realization of the public signal y, updates her posterior belief about s to

be Gaussian with mean y and variance σ2
y, which is what she would have believed if she instead

began with the common Gaussian prior.

We write Ii for the information set of player i, which captures the structural information about

the game as well as the values of xi and y. Furthermore, we use Ei (·|Ii) to denote the expectation

of player i at Ii, which is player i’s belief about some quantity given that she knows everything at

Ii. Where it is clear from context, we drop the Ii for notational clarity and simply write Ei(·).

We now consider an equilibrium concept for this game.

Definition 4.1 (Symmetric linear Nash equilibrium). A symmetric linear Nash equilibrium of this

game is an action θi for each player i which can be written as a linear combination of the private

and public signals xi and y such that no player can profitably deviate unilaterally and every player i

chooses the same weight to put on xi and y. That is, a Nash equilibrium in which θi = κxi+(1−κ)y

for all players and κ is identical for all players.

Morris and Shin (2002) describe the unique symmetric linear Nash equilibrium of a slightly
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different version of the game which has the same first order condition; our proof follows a very

similar structure.

Lemma 4.2 (First order condition). In equilibrium, an agent’s optimal choice of θ∗i must satisfy

θ∗i =
αn2 Ei[s]

α(2n− 1) + (n− 1)2
+

(1− α)(n− 1)Ei

[∑
j 6=i

θj

]
α(2n− 1) + (n− 1)2

Proof. Fix the actions of all other players j 6= i and consider the utility of player i, recalling that in

the finite setting,

θ̄ =
1

n
θ∗i +

1

n

∑
j 6=i

θj .

We have

ui(θ
∗
i , θ−i) = −α(θ∗i − s)2 − (1− α)(θ∗i − θ̄)2

= −α(θ∗i − s)2 − (1− α)

θ∗i −
 1

n
θ∗i +

1

n

∑
j 6=i

θj

2

= −α(θ∗i − s)2 − (1− α)

n− 1

n
θ∗i −

 1

n

∑
j 6=i

θj

2

= −α(θ∗i − s)2 − (1− α)
1

n2

(n− 1)θ∗i −

∑
j 6=i

θj

2

Player i’s first order condition will be to maximize this in expectation. Taking an expectation,

we have

E
i
[ui(θi, θ−i)] = E

i

−α(θ∗i − s)2 − (1− α)
1

n2

(n− 1)θ∗i −

∑
j 6=i

θj

2


= −αE
i
[(θ∗i − s)2]− (1− α)

1

n2 Ei


(n− 1)θ∗i −

∑
j 6=i

θj

2


= −αE
i
[(θ∗i )2 − 2sθ∗i + s2]

− (1− α)
1

n2 Ei

(n− 1)2(θ∗i )2 − 2(n− 1)θ∗i

∑
j 6=i

θj

+

∑
j 6=i

θj

2


Differentiating with respect to agent i’s choice of θi gives us that, in equilibrium, θ∗i must satisfy

92



∂

∂θ∗i
= 0 = −α(2θ∗i − 2E

i
[s])− (1− α)

1

n2

2(n− 1)2θ∗i − 2(n− 1)E
i

∑
j 6=i

θj


= α(θ∗i − E

i
[s]) +

1− α
n2

(n− 1)2θ∗i − (n− 1)E
i

∑
j 6=i

θj


= θ∗i

(
α+

(1− α)(n− 1)2

n2

)
−

αE
i
[s] +

(1− α)(n− 1)

n2 E
i

∑
j 6=i

θj


Where we have used the fact that Ei[θ∗i ] = θ∗i , since it is agent i’s choice and not a random

variable.

Rearranging yields the claim.

Proposition 4.3. In the game with infinitely many agents, in equilibrium, an agent’s optimal choice

of θ∗i must satisfy

θ∗i = αE
i
[s] + (1− α)E

i
[θ̄]

Proof. Since agent i chooses his action after observing signals xi and y, they optimize their action

given those signals. We can write:

θ∗i ∈ argmaxE
i
[ui(θi)]

Expanding, we have:

E
i
[ui(θi, θ−i)] = −α(E

i
[θ2
i − 2θis+ s2])− (1− α)(E

i
[θ2
i − 2θiθ̄ + θ̄2]).

We can differentiate with respect to θ∗i and set the derivative equal to zero to find

0 =
∂

∂θi
E
i
[ui(θi, θ−i)] = −α(2θi − 2E

i
[s])− (1− α)[2θi − θ̄].

Where we have used the fact that Ei[θ∗i ] = θ∗i , since it is agent i’s choice and not a random variable,

as well as the fact that ∂θ̄
∂θ∗i

= 0 because there are infinitely many agents, so agent i’s action cannot

affect the average of all of the actions.

Rearranging yields the claim.

These results say that the optimal action is a convex combination of agents’ expectations about

the state and the average actions; this follows directly from the structure of the payoff function.
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Now, if other agents’ strategies are convex combinations of signals, then the unique best response is

also a convex combination of signals. We can match coefficients to solve for this symmetric linear

Nash equilibrium.

Lemma 4.4 (Nash equilibrium and Value of κ). The symmetric linear Nash equilibrium is given by

θi = κxi + (1− κ)y, where

κ =
αn2τx

αn2τx + ((n− 1)2 + α(2n− 1)) τy
, τx =

1

σ2
x

, and τy =
1

σ2
y

for all players i.

Proof. Suppose that all agents play θi = κi + (1− κ)y, and consider a representative agent i.

Since agent i is Bayesian, she aggregates the public and private signals according to their preci-

sions to compute

E
i
[s] =

τxxi + τyy

τx + τy

and her belief about any other agent j’s private signal xj is that

E
i
[xj ] = E

i
[s].

Supposing that each agent acts optimally and chooses θ∗i according to Lemma 4.2, agent i will

write the following. We let C = 1
α(2n−1)+(n−1)2 for clarity of notation.
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θ∗i =
αn2 Ei[s]

α(2n− 1) + (n− 1)2
+

(1− α)(n− 1)Ei

[∑
j 6=i

θj

]
α(2n− 1) + (n− 1)2

= C

αn2 E
i
[s] + (1− α)(n− 1)E

i

∑
j 6=i

(κxj + (1− κ)y)


= C

αn2 E
i
[s] + (1− α)(n− 1)

∑
j 6=i

(
κE
i
[s] + (1− κ)y

)
= C

(
αn2 E

i
[s] + (1− α)(n− 1)2

(
κE
i
[s] + (1− κ)y

))
= C

(
αn2 τxxi + τyy

τx + τy
+ (1− α)(n− 1)2

(
κ
τxxi + τyy

τx + τy
+ (1− κ)y

))
= C

(
αn2 τx

τx + τy
+ (1− α)(n− 1)2κ

τx
τx + τy

)
xi+

+ C
(
αn2 τy

τx + τy
+ (1− α)(n− 1)2

(
κ

τy
τx + τy

+ (1− κ)

))
y

We can then equate κ and the coefficient on xi or the coefficient on y to (1−κ). By construction,

it’s easy to see that the sum of these two coefficients will be one, so it suffices to perform the

computation for κ.

κ = C
(
αn2 τx

τx + τy
+ (1− α)(n− 1)2κ

τx
τx + τy

)
= Cαn2 τx

τx + τy
+ κC(1− α)(n− 1)2 τx

τx + τy

=
Cαn2 τx

τx+τy

1− C(1− α)(n− 1)2 τx
τx+τy

Plugging the value for C back in and simplifying, we get

κ =
αn2τx

αn2τx + ((n− 1)2 + α(2n− 1)) τy

Proposition 4.5. The symmetric linear Nash equilibrium in the game with infinitely many players

is given by

θi = κxi + (1− κ)y, where

κ =
τxα

τxα+ τy
, τx =

1

σ2
x

, and τy =
1

σ2
y
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for all players i. This recovers the analogous result in Morris and Shin (2002).

Proof. Proposition 4.3 shows that agent i’s optimal action is a convex combination of his belief

about the true state s and his belief about the average action of all players θ̄. Ei[s] is independent

of the equilibrium profile, and given by

E
i
[s] =

τxxi + τyy

τx + τy
,

which is the standard prior-free aggregation of independent Gaussian signals.

On the other hand, Ei[θ̄] does depend on the equilibrium profile. In a SLNE, all other players

j 6= i play

θj = κxj + (1− κ)y.

Since agent i is Bayesian:

E
i
[xj ] = E

i
[s]

and

E
i
[θj ] = E

i
[κxj + (1− κ)y] = κE

i
[xj ] + (1− κ)y.

Notice that the expectation of agent i about the belief of any representative player j 6= i is the same,

since his information is symmetric. Thus, we write Ei[θ−i] to emphasize that this is the belief of

player i about any other player. Thus:

E
i
[θ̄] = E

i

∫ 1

0

θjdj =

∫ 1

0
E
i
[θ−i] = E

i
[θ−i] = κE

i
[x−i] + (1− κ)y

where we have used the Fubini-Tonelli theorem to exchange the integral with the expectation.

But now note that

θ∗i = αE
i
[s] + (1− α)[κE

i
[s] + (1− κ)y]

= α
τxxi + τyy

τx + τy
+ (1− α)(κ

τxxi + τyy

τx + τy
) + (1− α)(1− κ)y

We can rearrange this as:

θ∗i =

[
ατx

τx + τy
+ (1− α)

κτx
τx + τy

]
xi +

[
τyα

τx + τy
+ (1− α)

κτy
τx + τy

+ (1− α)(1− κ)

]
y

=

[
τx(α+ (1− α)κ)

τx + τy

]
xi +

[
(1− α)(1− κ) +

ατy + (1− α)κτy
τx + τy

]
y
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Matching coefficients and solving:[
(α+ (1− α)κ)

τx
τx + τy

]
= κ =⇒ κ =

ατx
ατx + τy

as desired.

Notice that if α = 1, the agent is only rewarded based on his closeness to the state, and θ∗i then

dictates that agent i play his best guess of the state. As α falls, the weight Agent i places on his

private signal diminishes, until at α = 0, the agent chooses θ∗i to be equal to y, the public signal.

We can now write the expected utility to each agent in this equilibrium:

Lemma 4.6 (Expected utility). The expected utility of agents for playing θi = κxi+ (1−κ)y, given

s is:

E
i
[ui|s] = −α(κ2σ2

x + (1− κ)2σ2
y)− (1− α)κ2(n− 1)

n
σ2
x

Proof. We can write the expected utility of agents as

E
i
[ui|s] = −αE

i
[(θi − s)2|s]− (1− α)E

i

[(
θi − θ̄

)2∣∣∣ s]
We can plug in the equilibrium strategies and recall the definition of θ̄ to write

E
i
[ui|s] = −αE

i
[(θi − s)2|s]− (1− α)E

i


θi − 1

n

n∑
j=1

θj

2
∣∣∣∣∣∣∣ s


We can write each θj = κxj+(1−κ)y and since we are taking expectations conditional on knowing

s, we can write the signals xj and y as the state s plus mean-zero Gaussian noise with variance σ2
x

and σ2
y, respectively. We write these as s+ εxj and s+ εy, so we can write θj = s+κεxj + (1−κ)εy.

97



E
i
[ui|s] = −αE

i
[(s+ κεxi + (1− κ)εy − s)2|s]

− (1− α)E
i


s+ κεxi + (1− κ)εy −

1

n

n∑
j=1

s+ κεxj + (1− κ)εy

2
∣∣∣∣∣∣∣ s


= −αE
i
[(κεxi + (1− κ)εy)2]− (1− α)E

i


κεxi +− 1

n

n∑
j=1

κεxj

2


= −αE
i
[(κεxi + (1− κ)εy)2]− (1− α)κ2 E

i


εxi +− 1

n

n∑
j=1

εxj

2


= −αE
i
[(κεxi + (1− κ)εy)2]− (1− α)κ2 E

i


n− 1

n
εxi +− 1

n

n∑
j 6=i

εxj

2


= −αE
i
[(κεxi + (1− κ)εy)2]− (1− α)κ2

n2 E
i


(n− 1)εxi +−

n∑
j 6=i

εxj

2


Because all of the εxj and εy are independent with mean zero, we can write

E
i
[ui|s] = −α(κ2σ2

x + (1− κ)2σ2
y)− (1− α)κ2

n2

(
(n− 1)2σ2

x + (n− 1)σ2
x

)2
= −α(κ2σ2

x + (1− κ)2σ2
y)− (1− α)κ2(n− 1)

n
σ2
x

Proposition 4.7. The expected utility of agents for playing θi = κxi + (1 − κ)y, conditional on s

in the game with infinitely many players, is:

E
i
[ui|s] = −α(1− κ)2σ2

y − κ2σ2
x

Proof. We can write the expected utility of agents as

E
i
[ui|s] = −αE

i
[(θi − s)2|s]− (1− α)E

i

[(
θi − θ̄

)2∣∣∣ s]
We can plug in the equilibrium strategies and recall the definition of θ̄ to write

E
i
[ui|s] = −αE

i
[(θi − s)2|s]− (1− α)E

i

[(
θi −

∫ 1

0

θjdj

)2
∣∣∣∣∣ s
]
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We can write each θj = κxj+(1−κ)y and since we are taking expectations conditional on knowing

s, we can write the signals xj and y as the state s plus mean-zero Gaussian noise with variance σ2
x

and σ2
y, respectively. We write these as s+ εxj and s+ εy, so we can write θj = s+κεxj + (1−κ)εy.

E
i
[ui|s] = −αE

i
[(s+ κεxi + (1− κ)εy − s)2|s]

− (1− α)E
i

[(
s+ κεxi + (1− κ)εy −

∫ 1

0

(
s+ κεxj + (1− κ)εydj

))2
∣∣∣∣∣ s
]

= −αE
i
[(κεxi + (1− κ)εy)2]− (1− α)E

i

[(
κεxi +

∫ 1

0

(
κεxjdj

))2
]

Because E[εxj ] = 0,
∫ 1

0

(
κεxjdj

)
= 0. Furthermore, since all of the εxj and εy are independent

we have

E
i
[ui|s] = −αE

i
[(κεxi + (1− κ)εy)2]− (1− α)E

i

[
(κεxi)

2
]

= −α(κ2σ2
x + (1− κ)2σ2

y)− (1− α)κ2σ2
x

= −α(1− κ)2σ2
y − κ2σ2

x

Using the value of κ from the infinite setting for simplicity2 we can now examine how utility

changes as the variances of the signals and number of agents do. We briefly analyze this next.

Corollary 4.8 (Comparative statics). We have

∂ Ei[ui|s]
∂σ2

x

= − (ασ2
y)2

(ασ2
y + σ2

x)3

(
(2− α)α2σ2

xσ
2
y + σ2

y −
n− 1

n
(1− α)(ασ2

y − σ2
x)

)
,

∂ Ei[ui|s]
∂σ2

y

= − α(σ2
x)2

(ασ2
y + σ2

x)3

(
2α2σ2

y − ασ2
y + σ2

x +
n− 1

n
2α(1− α)σ2

y

)
,

and

∂ Ei[ui|s]
∂n

= − (1− α)α2σ2
x(σ2

y)2

n2(ασ2
y + σ2

x)2
.

2For a fixed n, the infinite version of κ differs from the finite version by a multiplicative factor of 1− 1
n2 while the

utilities differ by a factor of 1− 1
n
. Therefore, the value of κ in the infinite case is very close to that in the finite case

for modest values of n, and any countervailing effect of changing the parameters through κ will be dominated by the
direct effects on the utility.
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All else fixed, decreasing σ2
x unambiguously increases utility. The fractional term in ∂ Ei[ui|s]

∂σ2
x

is always positive and the term in the parentheses is also always positive, so ∂ Ei[ui|s]
∂σ2

x
is strictly

decreasing as σ2
x increases. This aligns with the intuition that higher quality information means

that agents will be able to both guess the true state of the world more precisely as well as coordinate

better with one another. A similar intuition holds for the effect of decreasing σ2
y, since the term in

the parentheses is always positive when n ≥ 2. However, the rate at which utility increases when

the signal variances decrease is not the same. Supposing σ2
x = σ2

y, agents gain more value from

decreasing σ2
y than σ2

x for two reasons. The first is the over-weighting of y. Since agents more

heavily weight the public signal y compared to their private information xi, a small improvement

in the precision of y will help agents choose an action θi closer to s than an identical improvement

in the precision of the xi signals. The second reason can be thought of as a second-order effect of

this over-weighting. Since agents over-weight it, improving the quality of the public signal y even

further increases the weight agents will place on it. Therefore, not only will agents actions be closer

(in expectation) to s, but they will be closer to each other, thus also improving the utility in the

coordination component.

As n increases, utility decreases. There is an n−1
n coefficient on the second term in the utility

function, and as n grows, this grows towards 1. We can think of this term as measuring the amount

of non-impact any one agent can have on the average action θ̄. When the number of agents is very

few, agent i’s action θi can’t be too far from the average since the construction of θ̄ will have a high

weight on θi, and this weight decreases as n grows. For very large values of n, agent i has a small

impact on the average action, so the risk of being far away is greater.
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4.2.3 Privacy-Awareness

Now we come to the heart of the privacy issue. Suppose that at the end of the game, each player’s

action θi is made public. Then, upon seeing θi, player j can simply write

xi =
θi − (1− κ)y

κ
,

and since everything on the right hand side is known to player j, she can learn player i’s private

signal xi with perfect precision. This suggests that if the players care at all about preserving the

privacy of their private signals, they ought not to play exactly the equilibrium prediction θi.

As written, privacy is not in the players’ utility functions, and it is too much to ask for a

prediction that incorporates privacy without actually incorporating privacy into the utility function.

To overcome this, we let ρ(θ̃i) denote, abstractly, a measure which describes how ‘private’ the

(possibly randomized) action θ̃i is. For example, ρ could represent the maximum precision (i.e. the

reciprocal of the variance)3 to which some player j can infer the private signal xi of player i after

observing his action and given her information set Ij and knowledge of the equilibrium strategies.

Here, we consider both this precision measure of privacy as well as an entropy measure, where ρ(θ̃i)

is the (information-theoretic) entropy of this inference, rather than the variance.

It is clear that any equilibrium which prescribes a deterministic mapping from the available

information to an action θ∗i cannot offer any measure of privacy to the players. To correct for this,

we enhance players’ utility functions to incorporate the value they gain from obscuring their signals

and extend the equilibrium concept to a noisy one, where players select not only a guess about the

state, but also a noise-generating distribution. Formally, we extend the utility function to

vi(θ̃i, θ̃−i) = (1− β)ui(θ̃i, θ̃−i) + βρ(θ̃i),

where ui is as before and β ∈ [0, 1] denotes the agents’ relative value for obfuscation.
3Taken as a worst-case over all j 6= i.
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We can observe that if β 6= 0, the equilibrium actions in the original game do not support an

equilibrium in this game, since upon observing θ∗i , any player j can exactly recover the private signal

xi, and player j’s ‘distribution’ over the possible values of xi is degenerate with variance or entropy

equal to zero. Concretely, in the precision setting, βρ(θ̃i) is −∞ and vi(θ∗i , θ̃−i) = −∞. Conversely,

if player i were to choose κ′ = 0 (and therefore θ̃i = y), her utility would be finite, a profitable

deviation.

Thus, any deterministic equilibrium cannot be supported if privacy is incorporated into the utility

function, and some degree of randomization is necessary; however, the next section will show that

the prediction of the deterministic optimum will serve as the core deterministic component to an

optimal randomized strategy.

We remark here that if agents do not care about others learning their signal at all (i.e. β = 0),

the utility function degenerates to that of the original game. If β = 1, then players only care about

protecting their private signal, and a dominant strategy is to take the action which maximizes the

obfuscation of the private signal.

4.3 The Extended Game

We now formalize this modified game and show that it still has a symmetric linear Nash equilibrium

when we consider randomized strategies. Here, optimal actions are of the form θ̃i = θi + ηi, where

θi is the same linear aggregation of the public and private signals as in the original game and

ηi is independent noise drawn from a distribution whose form depends on how we measure the

obfuscation component ρ(θ̃i). That is to say, there is a symmetric linear Nash equilibrium in which

players’ optimal action is a noisy modification of their optimal action in the original game. Note

that randomized strategies are not mixed strategies in the classical sense. Each player’s choice of a

noise-generating distribution can be thought of as committing to a collection of parameters which

describe that distribution. In this sense, our equilibrium concept is a ‘pure strategies’ one, since
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each player will commit to a single collection of parameters, not a distribution over such collections.

4.3.1 Defining the Extended Game

In the extended game, s, xi, σ2
x, y, σ2

y, and θ̄ are as before. Each player chooses an action θ̃i, and

receives utility

vi(θ̃i) = (1− β)ui(θ̃i) + βρ(θ̃i),

where β ∈ [0, 1], and ui(θ̃i, θ̃−i) = −(1− α)(θ̃i − ¯̃
θ)2 − α(θ̃i − s)2 as before. We write ¯̃

θ to represent

the average (noisy) action of the players. After each player announces θ̃i, players also learn the

function each player used to select θ̃i as a function of Ii. For example, if a player’s strategy is to

play xi plus some random noise, player j learns the distribution from which this noise was drawn,

though (crucially) not the realization of this draw. We denote the privacy loss of each player after

actions are revealed ρ(θ̃i). The two possibilities we consider for ρ are both functions of the belief

distribution that a Bayesian agent, given their information set, observation of θ̃i, and knowledge of

equilibrium strategies and the randomization mechanism used by player i, assigns to xi; one is the

precision of these beliefs, and the other is the entropy. Formally,

Definition 4.9 (Precision privacy loss in equilibrium). For a given equilibrium profile, Player i’s

precision privacy loss is the expected precision with which a Bayesian opponent, knowing the equilib-

rium profile and observing their own signal, the public signal, and Player i’s action θ̃i, can estimate

Player i’s signal xi. That is, if γ represents the belief distribution about xi, we define:

ρprec(θ̃i) =
1

Var γ(xi|s, θ̃i, Ij , H)

Definition 4.10 (Entropy privacy loss in equilibrium). For a given equilibrium profile, Player

i’s entropy privacy loss s the expected precision with which a Bayesian opponent, knowing the

equilibrium profile and observing their own signal, the public signal, and Player i’s action θ̃i, can

estimate Player i’s signal xi. That is, if γ represents the belief distribution about xi, we define:

ρent(θ̃i) = −
∫
γ(xi|s, θ̃i, Ij , H) log γ(xi|s, θ̃i, Ij , H)dθ̃i
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Before we move on, it is worth considering kinds of distributions these choices consider to be

‘private’. For example, considering the following two belief distributions:

γ1 : xj = U([−ε, ε]) γ2 :

{
M with probability δ
−ε otherwise

By choosing M large and ε small, the appropriate choice of δ can be made to force γ2 to

have arbitrarily large variance (small precision), but extremely low entropy. On the other hand, a

uniform distribution γ1 has relatively high entropy as compared to its variance. If agents measure

their privacy by precision, they will be indifferent between adding noise from a fairly narrow uniform

distribution and a discrete distribution which almost always adds a very small amount of noise but

rarely adds an enormous amount. However, if they measure their privacy with respect to entropy, the

uniform option offers a much greater amount of privacy, and since (as we will show in Corollary 4.16)

agents pay a price in their utility equal to the variance of the noise-generating distribution, for a

fixed variance the higher entropy uniform distribution will be strictly preferred to the discrete one.

We aim to show the following theorem:

Theorem 4.11. Consider the modified game as defined above. Suppose players’ actions θ̃i and the

(possibly randomized) mapping (y, xi) 7→ θ̃i are revealed at the end of the game, and players’ loss of

privacy ρ(θ̃i) is measured as either the reciprocal of the variance or the entropy of a representative

player j’s posterior belief about xi at the end of the game. Then, this game has a symmetric linear

Nash equilibrium where each player chooses θ̃i = κxi+(1−κ)y+ηi where κ is as it is in the original

game and ηi is a random variable drawn from a distribution whose form depends on whether we use

reciprocal variance or entropy to measure privacy.

Proof sketch. We prove this theorem over the course of several steps throughout the remainder of

this section, which contains the formal statements of the following:

1. First, we show (Claim 4.13) that if players do indeed choose their action by adding noise to

their privacy-unaware equilibrium action, then the distribution which generates the noise must
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have mean zero.

2. Using this, we prove (Lemma 4.15) that the utility function separates into the sum of three

parts: the utility in the original game, a penalty paid in the variance of the noise distribution,

and the privacy component.

3. Then, since the utility function separates additively, we can use the first-order conditions

(Lemma 4.2) to solve for the optimal choice of distribution from which to draw the noise

(Corollary 4.19), which depends on whether the loss of privacy is measured by reciprocal

variance or negative entropy.

4. Finally, we demonstrate that this strategy profile supports a Nash equilibrium by arguing that

there is no profitable deviation for any player in the game (Lemmas 4.22 and 4.23). We call

this a symmetric noisy linear Nash equilibrium.

We first define a Noisy Strategy:

Definition 4.12 ((Linear) H-noisy strategy). An H-noisy strategy has the form

θ̃(x, y, ν) = θi(x, y) + ηi

where ηi is a random variable drawn from a distribution H and θi(x, y) is a deterministic function

of signals x and y. We say that θ̃ is a normal noisy strategy if H is a Gaussian distribution. If,

moreover, θi(x, y) is linear and can be written as θi(x, y) = κx+ (1− κ)y, we say that θ̃ is a linear

noisy strategy.

Note that any randomized strategy that can be decomposed into a deterministic component and

a random component can be described as a noisy strategy. This means that Corollary 4.16 applies

whether or not the underlying deterministic component is linear.
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Claim 4.13. If there exists an equilibrium in noisy strategies, where player i chooses θ̃i = θi+ηi and

each player’s ηi is drawn independently from a distribution Hi, then there exists such an equilibrium

strategy profile in which the mean of each Hi is zero.

Proof. Since the distributions which generate the ηi are revealed after each player announces θ̃i,

choosing to draw noise from a distribution with non-zero mean cannot improve the privacy that

player i achieves, since a representative player j can simply subtract this mean when constructing

her posterior distribution over xi. Additionally, choosing a mean other than zero makes the utility

from the guessing component strictly worse. Finally, if we assume that all players other than i

choose to add noise drawn from a distribution with the same mean, then in the coordination portion

of the utility function, player i choosing a noise distribution mean other than the common one is

dominated by choosing the common one. In particular, if everyone else chooses mean-zero noise,

player i should as well.

If the parameter α is greater than 1
2 , then every such equilibrium requires players to choose a

mean-zero noise-generating distribution. To see this, suppose all players j 6= i choose a mean µ > 0.

Then for a small enough value of ε, player i choosing a noise-generating distribution with mean µ−ε

is a profitable deviation, since α > 1
2 means that her gain from moving θ̃i closer to s more than

offsets the loss from moving further from ¯̃
θ. Going forward, we assume without loss of generality

that any noisy equilibrium is one in which the added noise comes from a mean-zero distribution.

We now define our equilibrium concept, which is analogous to that of the original game.

Definition 4.14 (Symmetric noisy linear Nash equilibrium). A symmetric noisy linear Nash equi-

librium of this game is a strategy profile θ̃ where each player i chooses

θ̃i = θi + ηi

and θi = κxi+(1−κ)y, κ is the same for all agents, and each player’s noise ηi is drawn independently

from the same distribution H.
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One important point is that ρ(θ̃i) is a function of the optimal Bayesian posterior distribution of

xi given θ̃i and y, so an agent must consider his choice of action both in relation to the change in

coordination in addition to others’ beliefs about him; however, these beliefs are only what an optimal

Bayes estimator, knowing the equilibrium profile, could infer. In particular, agents are concerned

only by the knowledge of agents that are correct. It is conceivable that agents could worry about

opponents incorrectly inferring their signals, but that falls outside the scope of this model.

4.3.2 Solving the Extended Game

Having defined the privacy-extended game, we can solve for the parameter values which support

a symmetric noisy linear Nash equilibrium. Much of the analysis follows either directly from or

along similar arguments as in the original game. We proceed as follows. First, we demonstrate in

Corollary 4.16 that the utility function separates additively into three components: the utility in

the original game, a penalty in this utility due to the added noise, and the privacy term. We then

derive the first order condition of a representative agent in Proposition 4.18 and use this to find the

optimal parameter values in Corollary 4.20, depending on whether we consider the precision-based

or entropy-based measure of obfuscation. Finally, in Lemmas 4.22 and 4.23, we show that these

values support an equilibrium. This completes the proof of Theorem 4.11.

We begin with the separability of the utility function.

Lemma 4.15 (Separability). In the game with finitely many players, the players’ utility functions

in the privacy-aware game separate additively into the utility in the privacy unaware game, a penalty

in νi, and a privacy term as

vi(θ̃i, θ̃−i) = (1− β)
(
−α(θ̃i − s)2 − (1− α)(θ̃i − ¯̃

θ)2
)

+ βρ(θ̃i)

= (1− β)ui(θi, θ̃−i) + (1− β)

(
α+

(
1− 1

n

)2

(1− α)

)
νi + βρ(θ̃i),

where νi denotes the variance of the noise-generating distribution Hi of player i and ui is the utility

function in the privacy-unaware game.
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Proof. The proof is nearly identical to that of Corollary 4.16. Writing θ̃i as θi+ηi, i.e. a deterministic

component plus random noise, we can decompose the various pieces of the utility function as follows.

The first part is

−αE
i
[(θi + ηi − s)2] = −αE

i

[
(θi − s)2 + ηi(θi − s) + η2

i

]
= −αE

i
[(θi − s)2]− ανi,

where we have again used the independence of ηi to conclude that Ei[ηi(θi − s)] = 0.

The second term is

−(1− α)E
i


θi − ηi − 1

n

n∑
j=1

θ̃j

2
 ,

which can be rewritten as

−(1− α)E
i


θi(1− 1

n

)
+ ηi

(
1− 1

n

)
− 1

n

∑
j 6=i

θ̃j

2
 .

This can then be simplified to

(1− α)E
i

ηi(1− 1

n

)2
1

n
θi
∑
j 6=i

θ̃j

 ,
this term is equal to zero because ηi is independent of all the other parameters of the game as well

as the other ηj .

Corollary 4.16. Suppose that all agents play a noisy strategy θ̃i = θi + ηi, with ηi being a random

variable and E(ηi) = 0. Then an agent’s utility can be decomposed into

E
i
[vi(θ̃, θ̃−i)] = (1− β)E

i
[u(θi, θ̃−i)] + (1− β)νi + βρ(θ̃i)

where νi denotes the variance of the noise-generating distribution Hi of player i and ui is the utility

function in the privacy-unaware game.

Proof. By definition,

E
i
[vi(θ̃, θ̃−i)] = (1− β)E

i
[ui(θ̃i, θ̃−i)] + βρ(θ̃i),

so if we show that ui(θ̃i, θ̃−i) = ui(θi, θ̃−i)− νi we will be done. We can write
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E
i
[ui(θ̃i, θ̃−i)] = −αE

i
[(θ̃i − s)2]− (1− α)E

i
[(θ̃i − ¯̃

θ)2]

= −αE
i
[(θi + ηi − s)2]− (1− α)E

i
[(θi + ηi − ¯̃

θ)2]

= −αE
i
[(θi − s+ ηi)

2]− (1− α)E
i
[(θi − ¯̃

θ + ηi)
2]

Expanding these terms, we have

E
i
[ui(θ̃i, θ̃−i)] = −α

(
E
i
[(θi − s)2] + 2E

i
[ηi(θi − s)] + E

i
[(η2

i )]

)
− (1− α)

(
E
i
[(θi − ¯̃

θ)2] + 2E
i
[(ηi)(θi − ¯̃

θ)] + E
i
[η2
i ]

)
Now the first terms of each line sum to exactly ui(θi, θ̃−i). On the other hand, the sum of the

last two terms is −Ei[η2
i ] = −νi. To complete the proof, we show that these middle to terms are, in

fact, zero. To see this, notice that at Ii, ηi is yet unrealized with Ei[ηi] = 0, but is independent of

s and θi and thus of θ̄. Hence,

E
i
[ηi(θi − s)] = E

i
[ηi]E

i
[θi − s] = 0,

Moreover, ηi is independent of each θ̃−i, and agent i’s action cannot unilaterally change ¯̃
θ, so

E
i
[ηi(θi − ¯̃

θ)] = E
i
[ηi(θi − ¯̃

θ−i)] = E
i
[ηi]E

i
[θi − ¯̃

θ−i] = 0

This shows that agents can evaluate what their optimal action would be in the original game

and then decide the optimal amount of noise to add, choosing their action as the realized value of

the noise plus their optimal action.

We next derive the first order conditions for the privacy-extended game. By Lemma 4.15 and

Corollary 4.16, the first order conditions can be disentangled into a first order condition on the

deterministic component, which must be as in Proposition 4.3 and Lemma 4.2, and a separate first

order condition on the variance of the random component. Because the added noise is mean-zero,

expectations about average action and state are as before, and the κ in the optimal deterministic

action is the same as before.

Lemma 4.17 (Privacy-aware first order conditions). In an equilibrium of the game with finitely

many players where the optimal action is θ̃∗i = θ∗i + ηi, the optimal choice of θ∗i and the variance ν∗
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for the noise-generating distribution Hi from which ηi is drawn must satisfy

θ∗i =
αn2 Ei[s]

α(2n− 1) + (n− 1)2
+

(1− α)(n− 1)Ei

[∑
j 6=i

θj

]
α(2n− 1) + (n− 1)2

,

∂ρ

∂ν∗
= −
−(1− β)

(
α+

(
1− 1

n

)2
(1− α)

)
β

.

Proof. Using Lemma 4.15, we can decompose the expected utility of agent i as

E
i
[vi(θ̃i, θ̃−i] = (1− β)E

i
[ui(θi, θ̃−i)]− (1− β)

(
α+

(
1− 1

n

)2

(1− α)

)
νi + βρ(θ̃i),

which is the sum of a piece that depends on θi and a piece that depends on νi.

The agent can therefore optimize each piece separately with her choice of θi and νi. Lemma 4.2

gives the first order condition on θ∗i .

To find the first order condition on ν∗, we can write

0 =
∂vi
∂ν∗

= −(1− β)

(
α+

(
1− 1

n

)2

(1− α)

)
+ β

∂ρ

∂ν∗

and solve for ∂ρ
∂ν∗ to get the result.

Proposition 4.18. In the game with infinitely many players, in an equilibrium where the opti-

mal action is θ̃∗i = θ∗i + ηi, the optimal choice of θ∗i and the variance ν∗ for the noise-generating

distribution Hi from which ηi is drawn must satisfy

θ∗i = αE
i
[s] + (1− α)E

i
[
¯̃
θ]

∂ρ

∂ν∗
= −1− β

β
.

Proof. Using Corollary 4.16, we can decompose the utility of agent i as

E
i
[vi(θ̃, θ̃−i)] = (1− β)E

i
[u(θi, θ̃−i)]− (1− β)νi − βρ(θ̃i),

which is the sum of a piece that depends on θi and a piece that depends on νi.

The agent can therefore optimize each piece separately with her choice of θi and νi. Proposi-

tion 4.3 gives the first order condition on θ∗i .

To find the first order condition on ν∗, we can write
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0 =
∂vi
∂ν∗

= −(1− β)− β ∂ρ

∂ν∗

and solve for ∂ρ
∂ν∗ to get the result.

Corollary 4.19 (Finite game privacy parameters). The optimal deterministic component θi is, as

before,

θ∗i = κxi + (1− κ)y

and the optimal choice of variance for the noise distribution is

ν∗i,prec =

√√√√ β

1− β

(
α+ (1− α)

(
1− 1

n

)2
)−1

, or

ν∗i,ent =
β

1− β

(
α+ (1− α)

(
1− 1

n

)2
)−1

where ν∗i,prec and ν∗i,ent are the optimal variances under ρ being the precision and entropy privacy

measures, respectively.

Corollary 4.20 (Infinite game privacy parameters). The optimal deterministic θi is, as before,

θ∗i = κxi + (1− κ)y

and the optimal choice of variance for the noise distribution is

ν∗i,prec =

√
β

1− β ν∗i,ent =
β

1− β

where ν∗i,prec and ν∗i,ent are the optimal choices of variance when ρ is the precision-based or entropy-

based privacy measure, respectively.

Before proving this, we state a fact about the entropy of Gaussian distributions.

Fact 4.21. Among all distributions supported on the entire real line with a fixed mean µ and variance

σ2, the Gaussian N (µ, σ2) achieves the maximum entropy, and its entropy is given by 1
2 log (2πeσ2).

Since agents pay a penalty in the variance of their noise distribution, agents who measure their

privacy loss with entropy pay the same penalty for any distribution with a fixed variance, and their
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gain from privacy is maximized by picking the distribution with maximum entropy. Therefore, the

choice of a mean-zero Gaussian with appropriate variance is the dominant strategy for such agents.

A proof of this fact can be found in Chapter 9 of Cover and Thomas (2012).

Proof of Corollaries 4.19 and 4.20. The fact that the first order condition on θ∗i is the same as that

of θ∗i in the original game, and that agents add mean-zero noise (implying Ei[ ¯̃θ] = Ei[θ̄]) implies

the optimal choice of θ∗i . To find the optimal ν∗, we note that the reciprocal variance and entropy

penalties (respectively) are

ρprec(ν) =
−1

ν
ρent(ν) =

1

2
log (2eπν).

Differentiating these with respect to ν and rearranging gives the results.

We can observe that the optimal choice of ν∗i is similar for both of these functions, even if their

constructions are not. Each is increasing at a decreasing rate as ν grows, since their derivatives are

of the form 1
νc for c ≥ 1. Since players gain a diminishing marginal benefit for adding additional

noise as they increase ν but pay a penalty linear in ν, we should expect this trade-off to point to an

equilibrium. This will hold for any penalty function whose derivative is of this type, although the

interpretation of such a function may not be as natural of a property of a distribution as precision

or entropy.

Using these, a symmetric linear noisy Nash equilibrium of this game follows:

Lemma 4.22 (Equilibrium – precision loss). There exists a symmetric linear noisy Nash equilibrium

in which all agents use κ as defined in Lemma 4.4 and draw independent noise from a distribution

Hi with variance ν∗, where Hi can be any distribution with mean zero and variance ν∗i,prec =
√

β
1−β .

Here, agents may choose any distribution with these properties.

Lemma 4.23 (Equilibrium – entropy loss). There exists a symmetric linear noisy Nash equilibrium

in which all agents use κ as defined in Lemma 4.4 and draw independent noise from the Gaussian

distribution N(0, ν∗ent).
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Since the Gaussian is the maximum entropy distribution with fixed variance ν∗, all agents draw

noise (independently) from the same distribution.

This completes the proof of Theorem 4.11, since we have found a symmetric linear noisy action

for each player which satisfies the first order conditions of the privacy aware game. We next analyze

and discuss the price of privacy in the new game.

4.4 Price of Privacy

Informally, the price of privacy describes the loss in quality of some measure as a result of introducing

privacy-awareness into the game. We describe two different, but related, quantities which represent

this effect and discuss some settings where one may be interested in each.

4.4.1 The Agents’ Cost

Our first notion of the price of privacy can be viewed as the utility the agents pay in the original game

in order to express their value for obfuscation. Formally, recall that ui(θi, θ−i) = −(1−α)(θi− θ̄)2−

α(θi− s)2 is the utility function in the unmodified game. In the symmetric linear Nash equilibrium,

each player chooses the prescribed optimal action θ∗i and earns utility ui(θ∗i , θ∗−i). Similarly, in the

modified game, in the symmetric linear Nash equilibrium chooses the optimal noisy action θ̃∗i . We

can now ask how much worse-off playing the actions θ̃∗ in the original game makes a representative

player as compared to playing the actions θ∗. Formally, we can quantify the price of privacy by

taking the ratio of these utilities.

Definition 4.24 (Agents’ price of privacy). The price of privacy given an information structure is

PoP(τx, τy, β) =
Ei[ui(θ̃∗i , θ̃∗−i)]
Ei[ui(θ∗i , θ∗−i)]

where the expected utility is with respect to the game with signal variances σ2
x and σ2

y.

Lemma 4.25 (Agents’ price of privacy – form). The price of privacy in the game where agents play

a linear strategy has the form
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PoP(τx, τy, β) = 1 +
ν∗i

Ei[ui(θ∗i , θ∗−i)]

where the expected utility is with respect to the game with signal variances σ2
x and σ2

y.

Proof. First note that

E
i
[ui(θi, θ̃−i)] = E

i
[ui(θi, θ−i)]

because the noise added to θi has a mean of zero. Now, Corollary 4.16 lets us write

PoP(τx, τy, β) =
Ei[ui(θ̃∗i , θ̃∗−i)]
Ei[ui(θ∗i , θ∗−i)]

=
Ei[ui(θ̃∗i , θ̃∗−i)] + ν∗i
Ei[ui(θ∗i , θ∗−i)]

where we have factored out all of the negative signs. Combining with the previous part, we have

that

PoP(τx, τy, β) =
Ei[ui(θ̃∗i , θ̃∗−i)] + ν∗i
Ei[ui(θ∗i , θ∗−i)]

=
Ei[ui(θ̃∗i , θ−i∗)] + ν∗i
Ei[ui(θ∗i , θ∗−i)]

= 1 +
ν∗i

Ei[ui(θ∗i , θ∗−i)]
,

as desired.

Theorem 4.26 (Price of privacy – value). In the game with finitely many agents, the price of

privacy is:

PoP(τx, τy, β) = 1 +
ν∗i

α(κ2σ2
x + (1− κ)2σ2

y) + (1−α)κ2(n−1)
n σ2

x

,

for

ν∗i,prec =

√√√√ β

1− β

(
α+ (1− α)

(
1− 1

n

)2
)−1

, or

ν∗i,ent =
β

1− β

(
α+ (1− α)

(
1− 1

n

)2
)−1

if we measure the privacy loss using precision or entropy, respectively, and

κ =
αn2τx

αn2τx + ((n− 1)2 + α(2n− 1)) τy
.

Proposition 4.27. In the game with infinitely many agents, the price of privacy is:

PoP(τx, τy, β) = 1 +
ν∗i

(α(1− κ)2σ2
y + κ2σ2

x)
,

where ν∗i is
√

β
1−β if privacy is measured by precision and β

1−β if privacy is measured by entropy

and recalling that κ = τxα
τxα+τy

.
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Proof. This follows directly from the expected utility computation in Proposition 4.7 and the func-

tional form of the price of privacy in Lemma 4.25.

We can observe several features of the price of privacy. First, it can be arbitrarily large, depending

on the value of the parameters. If β is close to 1, then agents have a relatively high value for

obfuscation and will add large amounts of noise to their actions in order to protect their private

signals. As β becomes closer to zero, agents do not care too much about privacy and their actions

become more and more similar to those in the original game, so the price of privacy is minimized

when β = 0. Second, if we fix a value of β, then the price of privacy decreases as the variance of

the public and private signals increase. This is because the value of β determines the noise that

players will add to their signals, and therefore fixes the numerator of the fractional part of the price

of privacy. The price of privacy is decreasing in any factor that improves the expected utility, such

as decreasing the signal variances or n (as in Corollary 4.8). The effect is ambiguous when changing

σ2
y, due to the over-weighting phenomenon.

This ratio measures the degree to which agents are worse-off in the coordination and guessing

components by playing the privacy-aware equilibrium noisy actions as compared to the privacy-

unaware equilibrium actions for a fixed α, σ2
x, and σ2

y and the realizations of xi and y. This can be

thought of as describing the increased risk of making the ‘wrong’ decision in an opinion-aggregation

setting or of misvaluing an asset in a financial markets setting as a result of agents adding noise to

their actions.

4.4.2 The Aggregator’s Cost

Suppose instead we are viewing this game from the position of a data aggregator. The aggregator can

observe the actions of some finite number of agents n and takes the average of these to estimate the

true state of the world s by taking a simple average. The aggregator does not know the realizations

of any of the xi or y, but they do know the signal variances and the value of κ; they also know that

E[θi] = E[θ̃i] = s for all agents i, so the sample average will provide an unbiased estimate of s. If
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we define the aggregator’s ‘utility’ to be the variance of its sample about s, then we can make the

following observation:

Lemma 4.28 (Aggregator’s utility). Consider an instance of the privacy-aware game where an

aggregator observes the actions of n agents (either all all of the agents in the finite case or some

uniformly random sample in the finite or infinite case), the signal variances are σ2
x and σ2

y, and

players choose to add mean-zero noise with variance ν∗i . Then the utility of the aggregator, as

measured by the variance of the sample average about the true state s is given by

Uagg(σ2
x, σ

2, ν∗i , n) = E

( 1

n

n∑
i=1

θ̃i

)
− s
)2
∣∣∣∣∣∣ s


=
κ2

n
σ2
x +

ν∗i
n

+ (1− κ)2σ2
y.

We can find the aggregator’s utility in the privacy-unaware game by letting ν∗i = 0, which recovers

a result in Morris and Shin (2002).

Proof. By definition,

Uagg(σ2
x, ν
∗
i , σ

2, n) = E

( 1

n

n∑
i=1

θ̃i

)
− s
)2
∣∣∣∣∣∣ s


= E

( 1

n

n∑
i=1

κxi + (1− κ)y + ηi

)
− s
)2
∣∣∣∣∣∣ s


= E

( 1

n

n∑
i=1

κxi + ηi

)
+ (1− κ)y − s

)2
∣∣∣∣∣∣ s


= E

( 1

n

n∑
i=1

κ(s+ εxi) + ηi

)
+ (1− κ)(s+ εy)− s

)2
∣∣∣∣∣∣ s


= E

( 1

n

n∑
i=1

κεxi + ηi

)
+ (1− κ)εy

)2
∣∣∣∣∣∣ s


= E

(κ
n

n∑
i=1

εxi +
1

n

n∑
i=1

ηi + (1− κ)ε)

)2


=
κ2

n
σ2
x +

ν∗i
n

+ (1− κ)2σ2
y

where we have decomposed xi and y into s plus mean-zero Gaussian noise εxi and εy.
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We can again take the ratio of the aggregator’s utility in the privacy-aware game to that in the

privacy-unaware game to quantify the extent to which privacy-awareness degrades the quality of the

aggregator’s sample mean as an estimate of s.

Lemma 4.29 (The Aggregator’s price of privacy). The price of privacy for the aggregator in equi-

librium is given by

PoPagg(σ
2
x, σ

2
y, n) =

E[Uagg(σ2
x, σ

2
y, ν
∗
i , n)]

E[Uagg(σ2
x, σ

2
y, 0, n)]

= 1 +
ν∗i

κ2σ2
x + n(1− κ)2σ2

y

where ν∗i is
√

β
1−β if privacy is measured by precision and β

1−β if privacy is measured by entropy and

recalling that κ = τxα
τxα+τy

in the game with infinitely many agents and κ = αn2τx
αn2τx+((n−1)2+α(2n−1))τy

in the game with finitely many agents.

Proof. The result follows from plugging in the forms for the expected utilities from Lemma 4.28 and

simplifying.

We can again observe that, for the same reason as the agents’ price of privacy, that this quantity

can be arbitrarily large as β approaches one and that it is decreasing as the signal variances grow.

We can also observe that this price decreases towards one as n grows, all else fixed. This is consistent

with the intuition that an aggregator can offset the cost of agents adding more noise to their actions

by making more observations.

The agents’ and aggregator’s prices of privacy are somewhat similar both in functional form and

in interpretation and this results from their values almost aligning. The agents’ cost is measured by

a weighted deviation from both the true state and the average while the aggregator’s is measured

by a deviation from the true state alone. Any configuration of the game parameters which cause

κ = 1 (i.e. agents ignore the public signal) causes them to be exactly equal. This again highlights

the problem of over-weighting the public signal, and this issue is exacerbated for the aggregator,

who, in effect, observes n ‘copies’ of y rolled into the actions θi and θ̃i. If the aggregator knows the

realization of y, they can, similarly to the agents, use that information to find (an estimate of) the

private signals xi from the observations of θi or θ̃i. This motivates the same privacy concern as in
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the case where other agents were trying to infer agent i’s private signal, this time in the context of

a distrusted central aggregator.

4.5 Discussion and Future Directions

In this work, we used a game-theoretic model to examine a game with agents acting to obscure their

private information. We began with the Keynesian Beauty Contest and modified the agents’ utility

functions so as to endogenize a notion of privacy. Using this, we can quantify the social costs of

this ‘selfish’ privacy protection as a ‘price of privacy’, both with respect to the agents as well as an

(untrusted) central aggregator.

A clear next-step would be to repeat this analysis for other stylized models of strategic interac-

tion, such as bargaining games or resource allocation problems, where individuals seek to balance

expressing their preferences well enough to achieve a high payoff but choose to deviate slightly from

this in order to obscure their true valuations.

Finally, the high-level motivation in this work is to examine how strategic agents behave when

they are concerned with privacy, so another interesting direction would be to integrate this approach

with existing formal notions of privacy. For example, examining what agents’ utility functions and

action spaces must look like in order for there to exist an equilibrium which implements a locally

differentially private mechanism could be a fruitful avenue of research.
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Chapter 5

Algorithms and Redistricting

5.1 Introduction to district compactness

Striving for the geographic compactness of electoral districts is a traditional principle of redistricting

Altman (1998), and, to that end, many jurisdictions have included the criterion of compactness

in their legal code for drawing districts. Some of these include Iowa’s measuring the perimeter of

districts Iowa Code §42.4(4), Maine’s minimizing travel time within a district Maine Statute §1206-

A, and Idaho’s avoiding drawing districts which are ‘oddly shaped’ Idaho Statute 72-1506(4). Such

measures can vary widely in their precision, both mathematical and otherwise. Computing the

perimeter of districts is a very clear definition, minimizing travel time is less so, and what makes a

district oddly shaped or not seems rather challenging to consider from a rigorous standpoint.

While a strict definition of when a district is or is not ‘compact’ is quite elusive, the purpose of

such a criterion is much easier to articulate. Simply put, a district which is bizarrely shaped, such

as one with small tendrils grabbing many distant chunks of territory, probably wasn’t drawn like

that by accident. Such a shape need not be drawn for nefarious purposes, but its unusual nature

should trigger closer scrutiny. Measures to compute the geographic compactness of districts are

intended to formalize this quality of ‘bizarreness’ mathematically. We briefly note here that the

121



term compactness is somewhat overloaded, and that we exclusively use the term to refer to the

shape of geographic regions and not to the topological definition of the word.

People have formally studied geographic compactness for nearly two hundred years, and, over

that period, scientists and legal scholars have developed many formulas to assign a numerical mea-

sure of ‘compactness’ to a region such as an electoral district Young (1988). Three of the most

commonly discussed formulations are the Polsby-Popper score, which measures the normalized ratio

of a district’s area to the square of its perimeter, the convex hull score, which measures the ratio

of the area of a district to the smallest convex region containing it, and the Reock score, which

measures the ratio of the area of a district to the area of the smallest circular disc containing it.

Each of these measures is appealing at an intuitive level, since they assign to a district a single scalar

value between zero and one, which presents a simple method to compare the relative compactness

of two or more districts. Additionally, the mathematics underpinning each is widely understandable

by the relevant parties, including lawmakers, judges, advocacy groups, and the general public.

However, none of these measures truly discerns which districts are ‘compact’ and which are not.

For each score, we can construct a mathematical counterexample for which a human’s intuition and

the score’s evaluation of a shape’s compactness differ. A region which is roughly circular but has a

jagged boundary may appear compact to a human’s eye, but such a shape has a very poor Polsby-

Popper score. Similarly, a very long, thin rectangle appears non-compact to a person, but has a

perfect convex hull score. Additionally, these scores often do not agree. The long, thin rectangle has

a very poor Polsby-Popper score, and the ragged circle has an excellent convex hull score. These

issues are well-studied by political scientists and mathematicians alike Polsby and Popper (1991);

Frolov (1975); Maceachren (1985); Barnes and Solomon (Forthcoming).

In this paper, we propose a further critique of these measures, namely sensitivity under the

choice of map projection. Each of the compactness scores named above is defined as a tool to

evaluate geometric shapes in the plane, but in reality we are interested in analyzing shapes which

sit on the surface of the planet Earth, which is (roughly) spherical. When we analyze the geometric
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properties of a geographic region, we work with a projection of the Earth onto a flat plane, such as

a piece of paper or the screen of a computer. Therefore, when a shape is assigned a compactness

score, it is implicitly done with respect to some choice of map projection. We prove that this

may have serious consequences for the comparison of districts by these scores. Because there is

no projection from the sphere to the plane which preserves ‘too many’ metric properties and most

compactness scores synthesize several of these properties, it is unreasonable to expect any projection

to preserve the numerical values of these scores for all regions. However, since there are projections

which preserve some geometric properties, such as those which preserve the area of all regions or

conformal projections which preserve the angle of intersection of all line segments, we might ask a

weaker question and consider whether there is a projection which can preserve the induced ordering

of a compactness score over all regions.

In particular, we consider the Polsby-Popper, convex hull, and Reock scores on the sphere, and

demonstrate that for any choice of map projection, there are two regions, A and B, such that A is

more compact than B on the sphere but B is more compact than A when projected to the plane. We

prove our results in a theoretical context before evaluating the extent of this phenomenon empirically.

We find that with real-world examples of Congressional districts, the effect of the commonly-used

Plate carée projection, which treats latitude-longitude coordinates as Cartesian coordinate pairs,

on the convex hull and Polsby-Popper scores is relatively minor, but the impact on Reock scores is

quite dramatic, which may have serious implications for the use of this measure as a tool to evaluate

geographic compactness.

5.1.1 Organization

For each of the compactness scores we analyze, our proof that no map projection can preserve their

order follows a similar recipe. We first use the fact that any map projection which preserves an

ordering must preserve the maximizers in that ordering. In other words, if there is some shape

which a score says is “the most compact” on the sphere but the projection sends this to a shape in
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the plane which is “not the most compact”, then whatever shape does get sent to the most compact

shape in the plane leapfrogs the first shape in the induced ordering. For all three of the scores we

study, such a maximizer exists.

Using this observation, we can restrict our attention to those map projections which preserve

the maximizers in the induced ordering, then argue that any projection in this restricted set must

permute the order of scores of some pair of regions.

Preliminaries We first introduce some definitions and results which we will use to prove our

three main theorems. Since spherical geometry differs from the more familiar planar geometry, we

carefully describe a few properties of spherical lines and triangles to build some intuition in this

domain.

Convex Hull For the convex hull score, we first show that any projection which preserves the

maximizers of the convex hull score ordering must maintain certain geometric properties of shapes

and line segments between the sphere and the plane. Using this, we demonstrate that no map

projection from the sphere to the plane can preserve these properties, and therefore no such convex

hull score order preserving projection exists.

Reock For the Reock score, we follow a similar tack, first showing that any order-preserving map

projection must also preserve some geometric properties and then demonstrating that such a map

projection cannot exist.

Polsby-Popper To demonstrate that there is no projection which maintains the score ordering

induced by the Polsby-Popper score, we leverage the difference between the isoperimetric inequalities

on the sphere and in the plane, in that the inequality for the plane is scale invariant in that setting

but not on the sphere, in order to find a pair of regions in the sphere, one more compact than the

other, such that the less compact one is sent to a circle under the map projection.
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Empirical Results We finally examine the impact of the Cartesian latitude-longitude map pro-

jection on the convex hull, Reock, and Polsby-Popper scores and the ordering of regions under these

scores. While the impacts of the projection on the convex hull and Polsby-Popper scores and their

orderings are not severe, the Reock score and the Reock score ordering both change dramatically

under the map projection.

5.2 Preliminaries

We begin by introducing some necessary observations, definitions, and terminology which will be of

use later.

5.2.1 Spherical Geometry

In this section, we present some basic results about spherical geometry with the goal of proving

Girard’s Theorem, which states that the area of a triangle on the unit sphere is the sum of its

interior angles minus π. Readers familiar with this result should feel free to skip ahead.

We use R2 to denote the Euclidean plane with the usual way of measuring distances,

d(x, y) =
√

(x− y)2;

similarly, R3 denotes Euclidean 3-space. We use S2 to denote the unit 2-sphere, which can be thought

of as the set of points in R3 at Euclidean distance one from the origin.

In this paper, we only consider the sphere and the plane, and leave the consideration of other

surfaces, measures, and metrics to future work.

Definition 5.1. On the sphere, a great circle is the intersection of the sphere with a plane passing

through the origin. These are the circles on the sphere with radius equal to that of the sphere. See

Figure 5.1 for an illustration.
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Definition 5.2. Lines in the plane and great circles on the sphere are called geodesics. A geodesic

segment is a line segment in the plane and an arc of a great circle on the sphere.

The idea of geodesics generalizes the notion of ‘straight lines’ in the plane to other settings. One

critical difference is that in the plane, there is a unique line passing through any two distinct points

and a unique line segment joining them. On the sphere, there will typically be a unique great circle

and two geodesic segments through a pair of points, with the exception of one case.

Definition 5.3. A triangle in the plane or the sphere is defined by three distinct points and the

shortest geodesics connecting each pair of points.

Figure 5.1: A great circle on the sphere with its identifying plane.

Observation 5.4. Given any two points p and q on the sphere which are not antipodal, there is a

unique great circle through p and q and therefore two geodesic segments joining them.

If p and q are antipodal, then any great circle containing one must contain the other as well, so

there are infinitely many such great circles. For any two non-antipodal points on the sphere, one of

the geodesic segments will be shorter than the other. This shorter geodesic segment is the shortest

path between the points and its length is the metric distance between p and q.

We now have enough terminology to show a very important fact about spherical geometry.
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Figure 5.2: Two great circles meet at antipodal points.

This observation is one of the salient features which distinguishes it from the more familiar planar

geometry.

Observation 5.5. Any pair of distinct great circles on the sphere intersect exactly twice, and the

points of intersection are antipodes.

In the plane, it is always the case that any pair of distinct lines intersects exactly once or never,

in which case we call them parallel. Since distinct great circles on the sphere intersect exactly

twice, there is no such thing as ‘parallel lines’ on the sphere, and we have to be careful about

discussing ‘the’ intersection of two great circles since they do not meet at a unique point. Another

difference between spherical and planar geometry appears when computing the angles of triangles.

In the planar setting, the sum of the interior angles of a triangle is always π, regardless of its area.

However, in the spherical case we can construct a triangle with three right angles. The north pole

and two points on the equator, one a quarter of the way around the sphere from the other, form

such a triangle. Its area is one eighth of the whole sphere, or π
2 , which is, not coincidentally, equal

to π
2 + π

2 + π
2 −π. Girard’s theorem, which we will prove below, connects the total angle to the area

of a spherical triangle.

In order to show Girard’s Theorem, we need some way to translate between angles and area. To
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do that, we’ll use a shape which doesn’t even exist in the plane: the diangle or lune. We know that

two great circles intersect at two antipodal points, and we can also see that they cut the surface of

the sphere into four regions. Consider one of these regions. Its boundary is a pair of great circle

segments which connect antipodal points and meet at some angle θ ≤ π at both of these points.

Figure 5.3: A lune corresponding to an angle θ.

Using that the surface area of a unit sphere is 4π, computing the area of a lune with angle θ is

straightforward.

Claim 5.6. Consider a lune whose boundary segments meet at angle θ. Then the area of this lune

is 2θ.

Now that we have a tool that lets us relate angles and areas, we can prove Girard’s Theorem.

Lemma 5.7. (Girard’s Theorem)

The sum of the interior angles of a spherical triangle is strictly greater than π. More specifically,

the sum of the interior angles is equal to π plus the area of the triangle.

Proof. Consider a triangle T on the sphere with angles θ1, θ2, and θ3. Let area(T ) denote the area
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of this triangle. If we extend the sides of the triangle to their entire great circles, each pair intersects

at the vertices of T as well as the three points antipodal to the vertices of T , and at the same angles

at antipodal points. This second triangle is congruent to T , so its area is also area(T ). Each pair of

great circles cuts the sphere into four lunes, one which contains T , one which contains the antipodal

triangle, and two which do not contain either triangle. We are interested in the three pairs of lunes

which do contain the triangles. We will label these lunes by their angles, so we have a lune L(θ1)

and its antipodal lune L′(θ1), and we can similarly define L(θ2), L′(θ2), L(θ3), and L′(θ3).

We have six lunes. In total, they cover the sphere, but share some overlap. If we remove T from

two of the three which contain it and the antipodal triangle from two of the three which contain it,

then we have six non-overlapping regions which cover the sphere, so the area of the sphere must be

equal to the sum of the areas of these six regions.

By the earlier claim, we know that the areas of the lunes are twice their angles, so we can write

this as

4π = 2θ1 + 2θ1 + (2θ2 − area(T )) + (2θ2 − area(T )) + (2θ3 − area(T )) + (2θ3 − area(T ))

and rearrange to get

θ1 + θ2 + θ3 = π + area(T ),

which is exactly the statement we wanted to show.

We will need one more fact about spherical triangles before we conclude this section.

Fact 5.8. An equilateral triangle is equiangular, and vice versa, where equilateral means that the

three sides have equal length and equiangular means that the three angles all have the same measure.

This result is also true of planar triangles, and the planar version follows from Propositions I.6

and I.8 in Euclid’s Elements (Byrne, 1847; Crowell, 2016). Since Euclid’s proof doesn’t rely on the

existence of parallel lines, this fact can be shown using his argument.
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Figure 5.4: A spherical triangle and the antipodal triangle define six lunes.

5.2.2 Some Definitions

Now that we have the necessary tools of spherical geometry, we will wrap up this section with a

battery of definitions. We carefully lay these out so as to align with an intuitive understanding of

the concepts and to appease the astute reader who may be concerned with edge cases, geometric

weirdness, and nonmeasurability. Throughout, we implicitly consider all figures on the sphere to be

strictly contained in a hemisphere.

Definition 5.9. A region is a non-empty, open subset Ω of S2 or R2 such that Ω is bounded and

its boundary is piecewise smooth.

We choose this definition to ensure that the area and perimeter of the region are well-defined

concepts. This eliminates pathological examples of open sets whose boundaries have non-zero area

or edge cases like considering the whole plane a ‘region’.

Definition 5.10. A compactness score function C is a function from the set of all regions to

the non-negative real numbers or infinity. We can compare the scores of any two regions, and we
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adopt the convention that more compact regions have higher scores. That is, region A is at least as

compact as region B if and only if C(A) ≥ C(B).

The final major definition we need is that of a map projection. In reality, the regions we are

interested in comparing sit on the surface of the Earth (i.e. a sphere), but these regions are often

examined after being projected onto a flat sheet of paper or computer screen, and so have been

subject to such a projection.

Definition 5.11. A map projection ϕ is a diffeomorphism from a region on the sphere to a region

of the plane.

We choose this definition, and particularly the term diffeomorphism, to ensure that ϕ is smooth,

its inverse ϕ−1 exists and is smooth, and both ϕ and ϕ−1 send regions in their domain to regions

in their codomain. Throughout, we use ϕ to denote such a function from a region of the sphere to

a region of the plane and ϕ−1, to denote the inverse which is a function from a region of the plane

back to a region of the sphere.

Since the image of a region under a map projection ϕ is also a region, we can examine the

compactness score of that region both before and after applying ϕ, and this is the heart of the

problem we address in this paper. We demonstrate, for several examples of compactness scores C,

that the order induced by C is different than the order induced by C ◦ ϕ for any choice of map

projection ϕ.

Definition 5.12. We say that a map projection ϕ preserves the compactness score ordering of

a score C if for any regions Ω,Ω′ in the domain of ϕ, C(Ω) ≥ C(Ω′) if and only if C(ϕ(Ω)) ≥ C(ϕ(Ω′))

in the plane.

This is a weaker condition than simply preserving the raw compactness scores. If there is some

map projection which results in adding .1 to the score of each region, the raw scores are certainly

not preserved, but the ordering of regions by their scores is. Additionally, ϕ preserves a compactness

score ordering if and only if ϕ−1 does.
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Definition 5.13. A cap on the sphere S2 is a region on the sphere which can be described as all

of the points on the sphere to one side of some plane in R3. A cap has a height, which is the largest

distance between this cutting plane and the cap, and a radius, which is the radius of the circle

formed by the intersection of the plane and the sphere. See Figure 5.5 for an illustration.

h

r

Figure 5.5: The height h and radius r of a spherical cap.

5.3 Convex Hull

We first consider the convex hull score. We briefly recall the definition of a convex set and then

define this score function.

Definition 5.14. A set in R2 or S2 is convex if every shortest geodesic segment between any two

points in the set is entirely contained within that set.

Definition 5.15. Let conv(Ω) denote the convex hull of a region Ω in either the sphere or the plane,

which is the smallest convex region containing Ω. Then we define the convex hull score of Ω as

CH(Ω) =
area(Ω)

area(conv(Ω)).

Since the intersection of convex sets is a convex set, there is a unique smallest (by containment)

convex hull for any region Ω.

Suppose that our map projection ϕ does preserve the ordering of regions induced by the convex

hull score. We begin by observing that such a projection must preserve certain geometric properties
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Ω

CH(Ω)

Figure 5.6: A region Ω and its convex hull.

of regions within its domain.

Lemma 5.16. Let ϕ be a map projection from some region of the sphere to a region of the plane.

If ϕ preserves the convex hull compactness score ordering, then the following must hold:

1. ϕ and ϕ−1 send convex regions in their domains to convex regions in their codomains.

2. ϕ sends every segment of a great circle in its domain to a line segment in its codomain. That

is, it preserves geodesics.1

3. There exists a region U in the domain of ϕ such that for any regions A,B ⊂ U , if A and B

have equal area on the sphere, then ϕ(A) and ϕ(B) have equal area in the plane. The same

holds for ϕ−1 for all pairs of regions inside of ϕ(U).

A

B

U

X Y

Figure 5.7: Two equal area regions A and B removed from U to form the regions X and Y .

1Such a projection is sometimes called a geodesic map.
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Proof. The proof of (1) follows from the idea that any projection which preserves the convex hull

score ordering of regions must preserve the maximizers in that ordering. Here, the maximizers are

convex sets.

To show (2) we suppose, for the sake of contradiction, that there is some geodesic segment s in

U such that ϕ(s) is not a line segment. Construct two convex spherical polygons L and M inside of

U which both have s as a side.

ϕ(L)

ϕ(s)

ϕ(M)

Figure 5.8: If ϕ(s) is not a line segment, then one of ϕ(M) or ϕ(L) is not convex.

By (1), ϕmust send both of these polygons to convex regions in the plane, but this is not the case.

All of the points along ϕ(s) belong to both ϕ(L) and ϕ(M), but since ϕ(s) is not a line segment,

we can find two points along it which are joined by some line segment which contains points which

only belong to ϕ(L) or ϕ(M), which means that at least one of these convex spherical polygons is

sent to something non-convex in the plane, which contradicts our assumption. See Figure 5.8 for an

illustration.

That ϕ−1 sends line segments in the plane to great circle segments on the sphere is shown

analogously. This completes the proof of (2).

To show (3), let U be some convex region in the domain of ϕ. Take A,B to be regions of equal

area such that A and B are properly contained in the interior of U , as in Figure 5.7. Define two

new regions X = U \ A and Y = U \ B, i.e. these regions are equal to U with A or B deleted,
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respectively.

The cap U is itself the convex hull of both X and Y , and since A and B have equal area, we

have that CH(X) = CH(Y ). Since U is a cap, it is convex, so by (1), ϕ(U) is also convex. Since ϕ

preserves the ordering of convex hull scores and X and Y had equal scores on the sphere, ϕ must

send X and Y to regions in the plane which also have the same convex hull score as each other.

Furthermore, the convex hulls of ϕ(X) and ϕ(Y ) are ϕ(U).

By definition, we have CH(X) = CH(Y ) and by the construction of X and Y , we have

area(ϕ(U))− area(ϕ(A))

area(ϕ(U))
=

area(ϕ(U))− area(ϕ(B))

area(ϕ(U))

and so

area(ϕ(A)) = area(ϕ(B)),

which is what we wanted to show. The proof that ϕ−1 also has this property is analogous.

We can now show that no map projection can preserve the convex hull score ordering of regions

by demonstrating that there is no projection from a patch on the sphere to the plane which has all

three of the properties described in Lemma 5.16.

Theorem 5.17. There does not exist a map projection with the three properties in Lemma 5.16

Proof. Assume that such a map, ϕ, exists, and restrict it to U as above. Let T ⊂ U be a small

equilateral spherical triangle centered at the center of U . Let T1 and T2 be two congruent triangles

meeting at a point and each sharing a face with T , as in Figure 5.9.

We first argue that the images of T ∪ T1 and T ∪ T2 are parallelograms.

Without loss of generality, consider T ∪T1. By construction, it is a convex spherical quadrilateral.

By symmetry, its geodesic diagonals on the sphere divide it into four triangles of equal area. To see

this, consider the geodesic segment which passes through the vertex of T opposite the side shared

with T1 which divides T into two smaller triangles of equal area. Since T is equilateral, this segment

meets the shared side at a right angle at the midpoint, and the same is true for the area bisector
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T

T1

T2

Figure 5.9: The spherical regions T, T1, T2.

of T1. Since both of these bisectors meet the shared side at a right angle and at the same point,

together they form a single geodesic segment, the diagonal of the quadrilateral. Since the diagonal

cuts each of T and T1 in half, and T and T1 have the same area, the four triangles formed in this

construction have the same area.

Since ϕ sends spherical geodesics to line segments in the plane, it must send T ∪T1 to a Euclidean

quadrilateral Q whose diagonals are the images of the diagonals of the spherical quadrilateral T ∪T1.

Since ϕ sends equal area regions to equal area regions, it follows that the diagonals of Q split it

into four equal area triangles.

We now argue that this implies that Q is a Euclidean parallelogram by showing that its diagonals

bisect each other. Since the four triangles formed by the diagonals of Q are all the same area, we

can pick two of these triangles which share a side and consider the larger triangle formed by their

union. One side of this triangle is a diagonal d1 of Q and its area is bisected by the other diagonal d2,

which passes through d1 and its opposite vertex. The area bisector from a vertex, called the median,

passes through the midpoint of the side d1, meaning that the diagonal d2 bisects the diagonal d1.

Since this holds for any choice of two adjacent triangles in Q, the diagonals must bisect each other,

so Q is a parallelogram.
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ϕ(T1) m1

ϕ(T2) m2

ϕ(T )
`

Figure 5.10: The image under ϕ of T, T1, T2 which form the quadrilateral in the plane.

Since T ∪T1 and T ∪T2 are both spherical quadrilaterals which overlap on the spherical triangle

T , the images of T ∪ T1 and T ∪ T2 are Euclidean parallelograms of equal area which overlap on a

shared triangle ϕ(T ). See Figure 5.10 for an illustration.

Because the segment ` is parallel to m1 and m2, m1 and m2 are parallel to each other, and

because they meet at the point shared by all three triangles, m1 and m2 together form a single

segment parallel to `. Therefore, the image of the three triangles forms a quadrilateral in the plane.

Therefore, the image of T ∪ T1 ∪ T2 has a boundary consisting of four line segments.

To find the contradiction, consider the point on the sphere shared by T , T1, and T2. Since these

triangles are all equilateral spherical triangles, the three angles at this point are each strictly greater

than π
3 radians, because the sum of interior angles on a triangle is strictly greater than π. so, the

total measure of the three angles at this point is greater than π, Therefore, the two geodesic segments

which are part of the boundaries of T1 and T2 meet at this point at an angle of measure strictly

greater than π. Therefore, together they do not form a single geodesic. On the sphere, the region

T ∪ T1 ∪ T2 has a boundary consisting of five geodesic segments whereas its image has a boundary

consisting of four, which contradicts the assumption that ϕ and ϕ−1 preserve geodesics.

This implies that no map projection can preserve the ordering of regions by their convex hull

scores, which is what we aimed to show.
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5.4 Reock

Let circ(Ω) denote the smallest bounding circle (smallest bounding cap on the sphere) of a region

Ω. Then the Reock score of Ω is

Reock(Ω) =
area(Ω)

area(circ(Ω))
.

We again consider what properties a map projection ϕmust have in order to preserve the ordering

of regions by their Reock scores.

Lemma 5.18. If ϕ preserves the ordering of regions induced by their Reock scores, then the following

must hold:

1. ϕ sends spherical caps in its domain to Euclidean circles in the plane, and ϕ−1 does the

opposite.

2. There exists a region U in the domain of ϕ such that for any regions A,B ⊂ U , if A and B

have equal area on the sphere, then ϕ(A) and ϕ(B) have equal area in the plane. The same

holds for ϕ−1 for all pairs of regions inside of ϕ(U).

Proof. Similarly to the convex hull setting, the proof of (1) follows from the requirement that ϕ

preserves the maximizers in the compactness score ordering. In the case of the Reock score, the

maximizers are caps in the sphere and circles in the plane.

To show (2), let κ be a cap in the domain of ϕ, and let A,B ⊂ κ be two regions of equal area

properly contained in the interior of κ. Then, define two new regions X = κ \ A and Y = κ \ B,

which can be thought of as κ with A and B deleted, respectively.

Since κ is the smallest bounding cap ofX and Y and since A and B have equal areas, Reock(X) =

Reock(Y ). Furthermore, by (1), ϕ must send κ to some circle in the plane, which is the smallest

bounding circle of ϕ(X) and ϕ(Y ). Since ϕ preserves the ordering of Reock scores, it must be that

ϕ(X) and ϕ(Y ) have identical Reock scores in the plane.
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By definition, we can write

Reock(X) = Reock(Y )

and so

area(ϕ(X))

area(ϕ(κ))
=

area(ϕ(Y ))

area(ϕ(κ))
,

and by the construction of X and Y , we have

area(ϕ(κ))− area(ϕ(A))

area(ϕ(κ))
=

area(ϕ(κ))− area(ϕ(B))

area(ϕ(κ))

meaning that area(ϕ(A)) = area(ϕ(B)). Thus, for all pairs of regions of the same area inside of κ,

the images under ϕ of those regions will have the same area as well.

The same construction works in reverse, which demonstrates that ϕ−1 also sends regions of equal

area in some circle in the plane to regions of equal area in the sphere.

We can now show that no such ϕ exists. Rather than constructing a figure on the sphere and

examining its image under ϕ, it will be more convenient to construct a figure in the plane and reason

about ϕ−1.

Theorem 5.19. There does not exist a map projection with the two properties in Lemma 5.18.

Proof. Assume that such a ϕ does exist and restrict its domain to a cap κ as above. This corresponds

to a restriction of the domain of ϕ−1 to a circle in the plane. Inside of this circle, draw seven smaller

circles of equal area tangent to each other as in Figure 5.11.

Under ϕ−1, they must be sent to a similar configuration of equal-area caps on the sphere .

However, the radius of a of a spherical cap is determined by its area, so since the areas of these

caps are all the same, their radii must be as well. Thus, the midpoints of these caps form six

equilateral triangles on the sphere which meet at a point. However, this is impossible, as the three

angles of an equilateral triangle on the sphere must all be greater than π
3 , but the total measure

of all the angles at a point must be equal to 2π, which contradicts the assumption that such a ϕ

exists.
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Figure 5.11: Seven circles arranged as in the construction for Theorem 5.19.

This shows that no map projection exists which preserves the ordering of regions by their Reock

scores.

5.5 Polsby-Popper

The final compactness score we analyze is the Polsby-Popper score, which takes the form of an

isoperimetric quotient, meaning it measures how much area a region’s perimeter encloses, relative

to all other regions with the same perimeter.

Definition 5.20. The Polsby-Popper score of a region Ω is defined to be

PP(Ω) =
4π · area(Ω)

perim(Ω)2

in either the sphere or the plane, and area and perim are the area and perimeter of Ω, respectively.

The ancient Greeks were first to observe that if Ω is a region in the plane, then 4π · area(Ω) ≤

perim(Ω)2, with equality if and only if Ω is a circle. This became known as the isoperimetric

inequality in the plane. The Polsby-Popper score measures the normalized ratio of a district’s area

to the square of its perimeter and takes the form of an an isoperimetric quotient. With respect to
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this measure, a circle is the most compact shape with a Polsby-Popper score of one, and deviations

from this ideal decrease the score towards zero. In other words, in the plane, 0 ≤ PP(Ω) ≤ 1, and the

Polsby-Popper score is equal to 1 only in the case of a circle. We can observe that the Polsby-Popper

score is scale-invariant in the plane.

An isoperimetric inequality for the sphere exists, and we state it as the following fact. For a

more detailed treatment of isoperimetry in general, see Osserman (1979), and for a proof of this

inequality for the sphere, see Rado (1935). For a modern perspective on isoperimetry in the context

of redistricting, see DeFord et al. (2019b).

Fact 5.21. If Ω is a region on the sphere with area A and perimeter P , then P 2 ≥ 4πA− A2 with

equality if and only if Ω is a spherical cap.

A consequence of this is that among all regions on the sphere with a fixed area A, a spherical

cap with area A has the shortest perimeter. However, the key difference between the Polsby-Popper

score in the plane and on the sphere is that on the sphere, there is no scale invariance; two spherical

caps of different sizes will have different scores.

Lemma 5.22. Let S be the unit sphere, and let κ(h) be a cap of height h. Then PP(κ(h)) is a

monotonically increasing function of h.

Proof. Let r(h) be the radius of the circle bounding κ(h). We compute:

1 = r(h)2 + (1− h)2, by right triangle trigonometry

= r(h)2 + 1− 2h+ h2

Rearranging, we get that r(h)2 = 2h−h2, which we can plug in to the standard formula for perimeter:

perimS(κ(h)) = 2πr(h) = 2π
√

2h− h2

We can now use the Archimedian equal-area projection defined by

(x, y, z)→
(

x√
x2 + y2

,
y√

x2 + y2
, z

)

to compute areaS(κ(h)) = 2πh and plug it in to get:
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PPS(κ(h)) =
4π(2πh)

4π2(2h− h2)
=

2

2− h

Which is a monotonically increasing function of h.

Corollary 5.23. On the sphere, Polsby-Popper scores of caps are monotonically increasing with

area.

Using this, we can show the main theorem of this section, that no map projection from a region

on the sphere to the plane can preserve the ordering of Polsby-Popper scores for all regions.

Theorem 5.24. If ϕ : U → V is a map projection from the sphere to the plane, then there exist

two regions A,B ⊂ U such that the Polsby-Popper score of B is greater than that of A in the sphere,

but the Polsby-Popper score of ϕ(A) is greater than that of ϕ(B) in the plane.

ϕ

ϕ−1

B

ϕ(B)

Σ

A = ϕ−1(Σ)

Figure 5.12: The construction of regions A and B in the proof of Theorem 5.24.

Proof. Let ϕ be a map projection, and let κ ⊂ U be some cap. We will take our regions A and B to

lie in κ. Set B to be a cap contained in κ. Let Σ be a circle in the plane such that Σ ( ϕ(B) and

let A = ϕ−1(Σ). See Figure 5.12 for an illustration.

We now use the isoperimetric inequality for the sphere and Corollary 5.23 to claim that A does

not maximize the Polsby-Popper score in the sphere.

To see this, take Â to be a cap in the sphere with area equal to that of A. Note that since the

area of Â is less than the area of the cap B, it follows that we can choose Â ⊂ B.
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By the isoperimetric inequality of the sphere, PPS(Â) ≥ PPS(A). Since map projections preserve

containment, Σ ( ϕ(B) implies that A ( B, meaning that area(Â) = area(A) � area(B). By

Corollary 5.23, we know that PPS(Â) < PPS(B), and combining this with the earlier inequality, we

get

PPS(A) ≤ PPS(Â) < PPS(B)

Since Σ = ϕ(A) maximizes the Polsby-Popper score in the plane, but A does not do so in the

sphere, we have shown that ϕ does not preserve the maximal elements in the score ordering, and

therefore it cannot preserve the ordering itself.

The reason why every map projection fails to preserve the ordering of Polsby-Popper scores is

because the score itself is constructed from the planar notion of isoperimetry, and there is no reason

to expect this formula to move nicely back and forth between the sphere and the plane. This proof

crucially exploits a scale invariance present in the plane but not the sphere. If we consider any circle

in the plane, its Polsby-Popper score is equal to one, but that is not true of every cap in the sphere.

5.6 Empirical Evaluation

In the previous sections we showed that no projection from the sphere to the plane can preserve

various compactness orderings. These theorems suggest that in general maps that distort shape

cannot preserve compactness orderings. In this section we investigate empirically the consequences

of calculating compactness in different map projections, demonstrating the practical relevance of our

investigation and providing evidence for possible generalizations.

5.6.1 Commonly-Used Projections

We briefly identify four commonly-used projections in the redistricting domain, which we will use in

the next section to compare the empirical effects of the choice of map projection on the compactness

orderings.
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Plate Carrée The plate carrée projection, sometimes called an equirectangular projection inter-

prets latitude-longitude coordinates on the Earth as planar x-y coordinates. This map projection

does not accurately reflect most geographic figures and is therefore inappropriate for most applica-

tions. The U.S. Census Bureau distributes its shapefiles in this format, trusting the user to reproject

the data into a format suited for the relevant application. However, because the data is distributed

in this format, redistricting analysts and stakeholders (e.g. Chikina et al. (2017); League of Women

Voters of Pennsylvania, et al. (2018); Chen (2017)) often do not perform this reprojection step, and

this has led to the plate carrée projection becoming a de facto standard in this domain.

Mercator The Web Mercator projection is a cylindrical projection which is popular in Web map-

ping applications. As a result, this is the projection used in several online redistricting software

tools available to the public, including DistrictBuilder (Public Mapping Project, 2018), Dave’s Re-

districting App (Bradlee et al., 2019), and Districtr (Metric Geometry and Gerrymandering Group,

2019a).

Lambert The Lambert conic projection is a conformal projection, which means that it preserves

the angles of intersection of all segments. This is colloquially interpreted as ‘preserving shape at a

small scale’. This projection is used in some portions of the U.S. State Plate Coordinate System,

and is therefore used in an official capacity for some states.

Albers The Albers projection is an equal area conic projection, meaning it preserves the areas

of all figures. The U.S. Atlas projection for the conterminous 48 states is an Albers projection

and is the default in the Maptitude for Redistricting software, which is widely used by redistricting

professionals, including legislators, consultants, and advocacy groups.
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5.6.2 Results

While we have shown mathematically that the ordering of compactness scores is necessarily permuted

by any map projection, we now consider the possibility of this effect occurring in reality. If it is the

case that congressional districts all have scores far enough apart that the distortion introduced by

the choice of projection is not sufficient to swap the ordering of this score, then the results above are

merely mathematical curiosities. Precisely stated, we ask whether reprojection affects compactness

score rankings of real districts in the context of commonly-used map projections. In previous both

the scientific literature and the legal landscape, this question was either unaddressed, or asserted

to be answered in the negative (c.f. Chen (2017); League of Women Voters of Pennsylvania, et al.

(2018); Chikina et al. (2017)).

In this section, we demonstrate that for the commonly-used map projections listed above and the

three compactness scores we examine in the previous sections, that this permutation effect does occur

in practice, using the congressional districts from the 115th Congress.2 We extract the boundaries

of the districts from a U.S. Census Bureau shapefile, using the highest resolution available, drawn

at a scale of 1:500,000. We then compute the convex hull, Reock, and Polsby-Popper scores with

respect to common map projections3 and examine the ordering of the districts with respect to both.

While this is slightly different from the mathematical framework where we compare an abstract map

projection to the computation on the surface of the sphere, computing the spherical values of these

scores is not a simple task, even in modern geographic information systems (GIS) software.4 Rather,

we can observe that the numerical values of all three scores on all districts are very similar with

respect to the Lambert and Albers projections. These projections preserve local shape and area,

respectively, and so we can imagine the ground-truth spherical value to also be concordant with
2Used for the 2016 congressional elections.
3The code to compute the various compactness scores is based on Lee Hachadoorian’s compactr project (Hachadoo-

rian, 2018).
4Provided that the region is contained in an open hemisphere, and that the earth is assumed to be a perfect sphere

sitting in R3, a simple algorithm to calculate a minimum bounding cap is as follows: find the minimum bounding
3-ball of the region and intersect that ball with the Earth. Efficient algorithms exist for computing the minimum
bounding ball of a collection of points (Ritter, 1990). However, since computing the minimum bounding sphere of a
region is not a typical problem in GIS, the data necessary to run the algorithm is not readily available.
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these measures.

With four different map projections and three different compactness scores, we explore several

instances in which the choice of map projection distorts the compactness score ranking of districts.

We first consider the 36 congressional districts in Texas. In Section 5.6.2, we plot the Polsby-

Popper score ordering of these districts, comparing several pairs of projections. A perfect preserva-

tion of the order would result in these points all falling on the diagonal. However, what we see in

practice is that most points do lie on the diagonal but several are not, indicating a disagreement

between the ordering between the two projections, although the score orders totally agree in the

Mercator and Albers projections. The distortion is clearly present, although fairly mild, with the

only swaps occurring being between pairs nearby in the orderings.
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Figure 5.13: Permutation of districts’ Polsby-Popper scores under different projections.
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We observe a similarly mild, though still present, perturbation in the convex hull score orderings,

shown in Figure 5.14. In this setting, however, the score ordering is identical between the Lambert

and Albers projections. A similar observation holds at the national level, considering all 433 districts

in the coterminous United States. Thus, we empirically observe that the Polsby-Popper and convex

hull score orders are fairly robust to the choice of projection, although not entirely.
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Figure 5.14: Permutation of districts’ convex hull scores under different projections.

However, some compactness score orderings are more sensitive than others. In Figure 5.15, we

examine the Reock score ordering for the same pairs of projections. While the permutation between

the Albers and the Lambert or Mercator projections is still relatively mild, although more complex

than for the Polsby-Popper score, the distortion between Plate Carrée and these two projections is
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Figure 5.15: Permutation of districts’ Reock scores under different projections.

quite dramatic. The districts at the extreme ends of the ordering are relatively undisturbed, but the

districts in the middle portion get shuffled around significantly. We observe that this effect is not a

result of some idiosyncracy of Texas’ districts, since a similar effect persists when we consider all of

the districts in the coterminous United States, shown in Figure 5.16.

The Polsby-Popper score is calculated by considering a portion of the map that contains only the

district itself. Since some of the projections we consider are locally very similar, and the districts

themselves are very small, this gives an explanation for the robustness of the compactness orderings

for that score. On the other hand, the more extreme reprojection order reversal we see in Reock

scores results from the fact that its computation depends on the potentially large smallest bounding
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Figure 5.16: Permutation of all U.S. Congressional districts’ Reock scores between the Plate Carrée
and Lambert projections.

circle around the district. This circle will always be larger than the region relevant for the calculation

of the convex hull score, since the convex hull of a district is always contained in any bounding circle,

and all the map projections we consider distort larger shapes more severely than smaller ones. Thus,

we should expect the distortion from reprojections to affect the Reock score more significantly than

the convex hull score.

While the results outlined here are by no means comprehensive, they are a representative sample

of the prevalence of the order-reversal phenomenon in practice. In all cases, extreme shapes remain

extreme under reprojection, but the rankings of the middle-ranked districts are distorted. While

the actual numerical discrepancies between the scores computed under the different projections is

small, that this permutation can even occur when using ‘nice’ projections like Albers and Lambert

muddies the water in discussing compactness. If value of using mathematics to describe the shape

of districts is to provide a small objective frame of reference in a setting where subjective political

factors play a large role, then the inconsistency even in the ordering of the districts under the scores
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works counter to this purpose.

Furthermore, compactness scores are used directly and indirectly in the rapidly growing area of

statistical analysis of gerrymandering using ensembles of districting plans (Herschlag et al., 2018;

Chikina et al., 2017; Chen and Rodden, 2015; Liu et al., 2015), where many possible maps are

generated by a computer and used to contextualize properties of a proposed plan. In that context,

compactness scores are often aggregated into a score for a districting plan, which is then used to

constrain the universe of plans the algorithm generates. For example, we might insist that the

average Polsby-Popper score of the generated plans not be larger than our plan of interest or assert

a lower threshold for the scores of the districts individually. One underexplored question is the

extent to which the dependence on the map projection affects the resulting statistical analysis of

these ensembles. We emphasize that it is possible that changes to the compactness scores of the

“middle of the pack” districting plans can affect the distribution from which the algorithm draws

samples; for instance, under the cut-off approach the universe of allowable plans itself could change

significantly if the choice of map projection shuffles which kinds of shapes have scores above and

below the threshold. Najt et al. (2019) refer to this line of questioning as ‘the extreme outlier

hypothesis’ and discuss the implications of it in greater detail.

5.7 Weaknesses of compactness scores

We have identified a major mathematical weakness in the commonly discussed compactness scores

in that no map projection can preserve the ordering over regions induced by these scores. This leads

to several important considerations in the mathematical and popular examinations of the detection

of gerrymandering.

From the mathematical perspective, rigorous definitions of compactness require more nuance

than the simple score functions which assign a single real-number value to each district. Multiscale

methods, such as those proposed by DeFord et al. (2019b), assign a vector of numbers or a function
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to a region, rather than a single number. The richer information contained in such constructions

is less susceptible to perturbations of map projections. Alternatively, we can look to capturing the

geometric information of a district without having to work with respect to a particular spherical or

planar representation. So-called discrete compactness methods, such as those proposed in Duchin

and Tenner (2018), extract a graph structure from the geography and are therefore unaffected by

the choice of map projection, and our results suggest that this is an important advantage of these

kinds of scores over traditional ones. Finally, recent work has used lab experiments to discern

what qualities of a region humans use to determine whether they believe a region is compact or

not (Kaufman et al., 2019). Incorporating more qualitative techniques is important, especially in

this setting where the social impacts of a particular districting plan may be hard to quantify. To

further complicate matters, as highlighted by Barnes and Solomon (Forthcoming), the resolution of

the shapefile influence the computation of compactness scores, particularly the Polsby-Popper score

where the detail of features like coastlines can have a massive impact on the measured perimeter of

a region. For this reason, repeating the experiment in Section 5.6.2 for different choices of resolution

results in quantitiatively different (although qualitatively similar) results.

We proved our non-preservation results for three particular compactness scores which appear

frequently in the context of electoral redistricting. There are countless other scores offered in legal

codes and academic writing, such as definitions analogous to the Reock and convex hull scores which

use different kinds of bounding regions, scores which measure the ratio of the area of the largest

inscribed shape of some kind to the area of the district, and versions of these scores which replace

the notion of ‘area’ with the population of that landmass. Many of these and others suffer from

similar flaws as the three scores we examined in this work.

While compactness scores are not used critically in a legal context, they appear frequently in the

popular discourse about redistricting issues and frame the perception of the ‘fairness’ of a plan. An

Internet search for a term like ‘most gerrymandered districts’ will invariably return results naming-

and-shaming the districts with the most convoluted shapes rather than highlighting where more
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pleasant looking shapes resulted in unfair electoral outcomes.

Similarly, a sizable amount of work towards remedying such abuses focuses primarily on the

geometry rather than the politics of the problem. Popular press pieces (e.g. Ingraham (2014)) and

academic research alike (e.g. Cohen-Addad et al. (2017); Svec et al. (2007); Levin and Friedler

(2019)) describe algorithmic approaches to redistricting which use geometric methods to generate

districts with appealing shapes. However, these approaches ignore all of the social and political

information which are critical to the analysis of whether a districting plan treats some group of people

unfairly in some way. A purely geometric approach to drawing districts implicitly supposes that the

mathematics used to evaluate the geometric features of districts are unbiased and unmanipulable

and therefore can provide true insight into the fairness of electoral districts. We proved here that

the use of geographic compactness as a proxy for fairness is much less clear and rigid than some

might expect.

In the next part of the chapter, we dive into this issue of fairness more deeply and show that

attempting to remedy a perceived unfairness withy respect to a particular definition and framework

might exacerbate the perceived unfairness with respect to a different one.

Future Work

This work opens several promising avenues for further investigation. We prove strong results for the

most common compactness scores, but the question remains what the most general mathematical

results in this domain might be, such as giving a set of necessary and sufficient conditions for a

map projection to preserve the compactness ordering with respect to a particular score, and which

kinds of surfaces do and do not admit such an order-preserving diffeomorphism or describing the

permutation of scores as a function of the change in curvature between the two spaces of interest.

Our work demonstrates a potential issue arising from the lack of standardization in the use of map

projections in redistricting applications, for instance in the statistical analysis of gerrymandering,

as discussed at the end of Section 5.6. Gaining a better understanding of these effects is crucial as
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these statistical methods gain both academic and legal traction. From a cartographic standpoint,

understanding other redistricting-related topics beyond compactness scores where the choice of map

projection might have a significant effect on the outcome is important, particularly as access to

mapmaking tools and data become more widely available to the general public.

5.8 Introduction to Fair Redistricting

Gerrymandering, the careful crafting of electoral districts to favor or disfavor a particular outcome, is

a hot topic in contemporary political discourse. In advance of the 2020 U.S. Census and subsequent

redistricting processes, several high-profile court cases, reform initiatives, and new lines of academic

research have ignited discussions about what kinds of processes and outcomes lead to the ‘fairest’

districts. However, fairness in this setting is loosely defined. Since the early days of the republic,

politicians have used the power of the pen to draw districts which help their political allies and

harm their rivals. The term gerrymander itself comes from a portmanteau used in an 1812 political

cartoon lampooning Massachusetts governor Elbridge Gerry and a salamander -shaped state senate

district which was part of a plan advantaging the governor’s Democratic-Republican party. Since

then, districts and districting plans have been identified as unfair for various reasons, but a singular

framework for determining when a districting plan is fair remains elusive.

Since the early 1960s, advocates for fair districts and districting procedures have proposed using

algorithmic techniques to remove the human element, and therefore potential for human bias, from

the system. In a letter, economist William Vickrey proposed an algorithmic framework with a large

amount of randomness to even further separate human decisions from the eventual output Vickrey

(1961). Over the last sixty years, the growth in computational power and availability of data brings

us to a point where Vickrey’s dream of an autonomous redistricting machine could be realized Altman

and McDonald (2010). However, the use of an algorithm does not imply that the internal process of

drawing the lines or the districting plan it outputs is unbiased or fair. Given the renewed interest in

153



the redistricting problem, the emergence of computational districting methods in legal settings, and

the availability of the necessary data resources to properly implement an algorithmic redistricter, it

is important to understand how differing views of fairness may or may not be compatible with each

other in such a system.

Our Work We begin by highlighting some recent algorithmic approaches to drawing districts.

We then discuss two conceptualizations of fairness in this domain: drawing districts by a neutral

process and drawing districts to achieve a particular outcome which aligns with certain values. We

consider these two approaches in an empirical domain using computer-generated districting plans for

North Carolina and Pennsylvania and construct Pareto frontiers to examine the trade-off between

optimizing for the compactness of the districts and the partisan symmetry of the contests in those

districts. Finally, we discuss some future directions for inquiry and research in the domain of

automated and algorithmic redistricting.

5.8.1 Automated Redistricting

Several works have proposed purely algorithmic approaches to constructing electoral districts, and

the prototypical formulation is to minimize a functional evaluating a geometric property of the dis-

tricting plan, subject to a few standard constraints including population balance and connectedness.

Vickrey’s proposal as well as the algorithms of Levin and Friedler (2019), Chen and Rodden (2013,

2015), Hess et al. (1965), and Cohen-Addad et al. (2018) involve selecting a random location as a

‘seed’ for each district and then assigning territory to each of those seeds based on proximity in

a particular way, such as with Voronoi diagrams or an iterative flood fill procedure. The shortest

splitline algorithm Kalcsics et al. (2005); Smith (2011) and the diminishing halves algorithm Spann

et al. (2007) choose to iteratively cut the state along the shortest line meeting a particular criterion.

Another family of computational redistricting proposals include the Markov chain Monte Carlo ap-

proach as in Bangia et al. (2017); Chikina et al. (2017); DeFord and Duchin (2019); DeFord et al.
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(2019a); Carter et al. (2019), simulated annealing Browdy (1990), and genetic algorithms Liu et al.

(2015), which are all algorithms which involve making random perturbations to a districting plan

or a collection of districting plans to improve its score according to some measure. These can be

used to search for a maximally compact plan as the other algorithmic approaches do, but can also

be instantiated with other objective functions, and so have a more versatile functionality but are

less clear in how they arrive at a particular ‘final’ plan.

Another family of algorithmic redistricting methods is the game-theoretic ones, which involve

framing the process of drawing districts as a game between two opposing players (usually viewed as

representatives of the two major political parties) and then designing rules for this game such that

when the players act in an optimal way, induces a ‘fair’ outcome. For example, the framework of

Mixon and Villar (2018) promises that if the two parties have similar numbers of voters, they will

win in a similar number of districts. The game of Pegden et al. (2017) similarly makes guarantees

about the ability of one player to arbitrarily limit the number of seats their opponent can win.

5.9 Procedural Neutrality

The first conceptualization of fairness we discuss is that of a neutral process; districts ought to be

drawn without considering of any of the potentially sensitive attributes of the underlying population

such as racial or partisan information. The most common proposal under this framework is to

draw districts which maximize a particular notion of compactness subject to the basic constraints

of connectedness and equal population; indeed this is the underlying objective of several of the

algorithms outlined in the previous section. From the legal side, many jurisdictions specify that

districts should split political subunits, such as counties or municipalities, as little as possible. The

degree to which the preservation of political subunits binds the process in practice varies widely. It

is treated very seriously, for example, in Iowa and West Virginia where the congressional districts

enacted after the 2010 Census do not split any counties. In other states, it is treated more as a
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guiding principle.

Taking neutrality as a definition of fairness has several advantages. First, many of the redistrict-

ing principles Altman (1998); National Conference of State Legislatures (2019), including contiguity,

compactness, avoidance of partisan data, and preserving political subunits, fall under the framework

of neutrality. Additionally, these neutral criteria are typically easy to operationalize and quantify.

For example, we can count the number of municipalities two districting plans split and objectively

observe that one splits fewer than the other. Such an analysis is not as straightforward for the

outcome-centered criteria described in the next section. Stern (1974) argues that by rigorously ad-

hering to a standard of compactness, districts may contain fragments of many different communities,

encouraging the formation of coalitions, which then has a positive impact on the democratic process.

For these reasons, a clear set of neutral criteria for drawing districts has been a common approach

for redistricting reform since the 1960s Dixon (1981).

On the other hand, districts being composed of fragmented communities can impede the ability

of minority groups to achieve representation in the legislative body. The 1982 amendments to the

Voting Rights Act and subsequent court opinions specifically prohibit this kind of fragmentation,

colloquially referred to as the ‘cracking’ of voters. Through the history of the United States, political

mechanisms including the drawing of district lines have been used to intentionally limit the political

power and access of minority groups. Arguments along these lines admit that adhering solely to

neutral criteria can perpetuate these kinds of inequities, and this undermines the use of neutrality

as the standard of fairness in this context.

5.10 Fairness of Outcome

At the other end of the spectrum is that we should only consider the outcomes of the elections in

the districts, irrespective of the procedure used to actually generate those districts. Arguments with

respect to this viewpoint underpinned several high-profile court cases in recent years, including cases
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where Democrats earned over half of the statewide vote but a minority of seats. Roughly half of the

vote translated into winning 36 of 99 seats in Wisconsin’s General Assembly and three of thirteen

of North Carolina’s congressional districts, for example. In Maryland, the Democratic legislature

redrew the state’s congressional districts to tilt the partisan balance in one district so as to force a

long-time Republican incumbent to narrowly lose to a Democratic challenger.

If we demand that districts lead to a fair outcome, the question which must be addressed is how

to define a fair outcome? Even restricting to a solely partisan perspective, where we simply ask for

the outcomes to be fair with respect to the voters’ partisan identities, this question is very hard to

answer. The idea of proportionality, that each party should win a fraction of the districts (roughly)

equal to its statewide vote share, seems appealing for its simplicity, but it is often not possible

to achieve. In Massachusetts, for example, Republicans typically win approximately 35 percent of

the statewide vote share in Senatorial and Presidential elections, and a demand for proportionality

would demand they win approximately three of the nine congressional seats in the state. However,

because Republican voters are distributed roughly evenly around the state, it is very difficult to

draw even a single district with a reliable Republican majority, let alone three districts Duchin et al.

(2018).

A similar issue of geographic concentration appears when designing districts which satisfy a notion

of proportionality with respect to providing minority groups the ability to elect a candidate of choice.

This is further complicated by the observation that, while electing a Republican candidate requires

a majority (or at least a plurality) of voters in a district to favor the Republican, electing a minority

group’s candidate of choice does not require drawing a district in which that group constitutes a

majority if there are other voters who will reliably support that group’s favored candidate.

Using outcomes as the baseline for fairness is sensible for many reasons. First, if the purpose

of representative government is to represent the populace, then any evaluation of fairness should

be with respect to the groups and viewpoints elected from the districts to the legislature rather

than the process by which the districts themselves come about. Providing communities-of-interest
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and historically marginalized groups access to representation requires drawing the districts in a way

that facilitates these desired outcomes because a neutral process risks fragmenting these communi-

ties. Additionally, there are other redistricting principles which require considering the outcomes

of potential elections, such as avoiding pitting two incumbents against one another. On the other

hand, many seemingly desirable ‘fair’ outcomes are mutually exclusive. Even narrowly focusing on

partisan measures, one person may believe that districts ought to facilitate as near a proportional

outcome as is possible while another may believe that they should be drawn such that the individual

district-level elections are as competitive as possible. These are, of course, largely incompatible

ideas, since if the elections are competitive, then a small surge in support for one party will tip

several of the seats, resulting in a highly disproportionate outcome.

5.11 Empirical Evaluation

To empirically evaluate a quantitative trade-off between adhering to different conceptualizations

of fairness, we need to first pin down a metric by which to evaluate a districting plan along each

of these dimensions. Here, we select two measures from the literature and use them to evaluate

a computer-generated sample of districting plans. We demonstrate that this setting has a clear

trade-off between using the two different notions of fairness described previously.

For procedural neutrality, we take the maxim that ‘districts ought to be drawn to be as compact

as possible’. We measure the compactness of the districts with the Polsby-Popper score, discussed

more precisely earlier in this chapter. This is the most common such measure in the literature and

discourse. Recall that the score of a region Ω is computed as

PP(Ω) =
4π ·Area(Ω)

Perim(Ω)2
,

a region attains a Polsby-Popper score of 1 if and only if it is a circle, the measure is scale-invariant,

and it degrades toward zero as the boundary becomes more and more contorted.
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PP = 1 PP = π
4 ≈ 0.79 PP = 0.07

PP = 0.07

Figure 5.17: Polsby-Popper scores for various figures.
Polsby-Popper scores of four example regions: a perfect circle, a square, a circle with a ragged

boundary, and a district from the Pennsylvania plan shown in Figure 5.27.

This score is not without its flaws, in particular it is highly sensitive to minor perturbations of the

boundary, which may penalize features like coastlines in an undesireable way. We discussed another

major weakness, the potential sensitivity to the choice of map projection, earlier in the chapter. We

compute a few basic examples of this score in Figure 5.17.

As our measure of fairness-of-outcome, we use a measure of partisan symmetry, evaluating the

extent to which Democratic and Republican voters are treated equally under a districting plan. To

make this more concrete, we briefly introduce the seats-votes curve, which uses the results of an

election to extrapolate the necessary statewide vote share for a party to win a particular number

of seats. We describe a simple example here, illustrated in Figure 5.18. Suppose in our fictional

election, the Republican party earned 45 percent of the statewide vote share across five individual

district contests. In these races, they won 20 percent, 25 percent, 55 percent, 60 percent, and 65

percent of the vote, respectively, and therefore winning three of the five seats. The point (45,3)

is therefore on the seats-votes curve for this election. We can also see that if the Republican vote

share increased or decreased a little bit, the number of resulting seats would not change, so points

such as (48,3) and (42,3) are also on our seats-votes curve. However, if the Republicans’ statewide

vote share dropped by seven percent or increased by 27 percent, the number of seats they win would

change, so points like (38,2) and (72,4) are also on the seats-votes curve. Performing this exercise for

all potential vote shares yields the final curve. The modelling assumption that the percentage point

change in vote share is equal across all districts is called the uniform partisan swing assumption and
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Figure 5.18: An example of a seats-votes curve.

is discussed thoroughly by Katz et al. (Forthcoming).

The seats-votes curve is a simple but powerful picture which captures many standard notions of

partisan asymmetry including the mean-median score, which measures how far a party’s statewide

vote share is from its vote share in the median district, and the efficiency gap which measures

how many votes one party wastes relative to the other. Here, we choose a measure designed to

capture asymmetry at all points in the picture: we compute the area between the seats-votes curve

as described above and its inversion about the midpoint of the figure Nagle (2015). This synthesizes,

over all vote shares x, how different the number of seats the Democrats would win with x percent

of the vote versus the number of seats the Republicans would win with x percent of the vote. In

other words, there is an asymmetry if Republicans win y seats with 50 + x percent of the vote but

do not lose y seats with 50− x percent of the vote. The area between the seats-votes curve and its

inversion about the midpoint is the sum over all possible vote shares of the amount of asymmetry

for all of the 50 + x and 50 − x percent pairs. By dividing this area by the total number of seats

and subtracting from one, we obtain a score between zero and one, where a score of one means that
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Figure 5.19: The partisan symmetry score from the example seats-votes curve in Figure 5.18, drawn
with a solid red line and its inversion about the midpoint, (50, 2.5), drawn with a dashed blue line.
The shaded area corresponds to the amount of asymmetry, and this plan achieves a score of 0.92.

the plan is perfectly symmetric with respect to both parties, and the score declines towards zero as

one party is better able to translate votes to seats, relative to the other.

5.11.1 Generating Plans

We use the GerryChain Python package Metric Geometry and Gerrymandering Group (2019b) to

examine hypothetical districting plans for two states: North Carolina’s 13 congressional districts

and Pennsylvania’s 18 congressional districts. Both of these states are reasonably close to having an

equal number of Democrats and Republicans and both have had high-profile court cases challenging

their congressional districts in recent years. The data for both states comes from the mggg-states

repository on GitHub Metric Geometry and Gerrymandering Group and Buck (2019). We evaluate

the partisan symmetry score using a statewide U.S. senatorial race for both states, the 2014 election

in North Carolina and the 2016 election in Pennsylvania. In both contests, the Republican candidate

narrowly won the election.
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We are interested in finding plans at the Pareto frontier of compactness and partisan symmetry;

districting plans for which there is no other plan which is both more compact and has a higher

degree of partisan symmetry. We call a plan on the Pareto frontier Pareto-optimal and one that is

not we call Pareto-dominated. Because the collection of all districting plans which meet the basic

criteria of connectedness and population equality is unfathomably large, directly constructing plans

of interest is extremely challenging. Instead, GerryChain allows us to use a Markov chain Monte

Carlo procedure to generate a large number of plans and extract the Pareto-optimal subset as an

approximation to the true Pareto frontier. In brief, our algorithm first generates a random plan then

attempts to make small random modifications which improve either its compactness, its partisan

symmetry, or both, thereby performing a guided random walk through the space of districting plans.

After repeating this for a large number of random seeds and a large number of steps for each walk,

we can extract all of the Pareto-optimal plans and use these to draw the empirical Pareto frontier.

The data is in the form of a graph with a vertex for each voting tabulation district (VTD), which

is the smallest geographic units at which election results are aggregated. Two vertices are joined

by an edge if their corresponding VTDs are geographically adjacent. All modifications to plans

are made at this level, that is, our problem can be viewed as a graph partitioning problem where

each VTD must be assigned to exactly one district. For this reason, the universe of possible plans

this procedure can generate is more restricted than when working with smaller units such as U.S.

Census blocks or drawing free-hand contours through the state. The only constraints we use are

connectedness and population equality, which for the sake of tractability is taken to mean that a

districting plan is valid if the deviation from the ideal of the population of any district is no more

than 2.5 percent.

5.11.2 Results

In Figures 5.20 and 5.21, we plot the compactness and partisan symmetry of our samples of plans,

highlighting the empirical Pareto frontier. We can observe several similarities and differences between
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NC Partisan Symmetry vs. Compactness

Figure 5.20: Comparison of partisan symmetry and compactness for North Carolina. Each point
corresponds to one plan in the sample. Green points are Pareto-optimal, grey points are Pareto-
dominated.

these two figures. First, the general shapes of the observed Pareto frontiers are the same. For large

values of the partisan symmetry score, one can dramatically increase the achieveable compactness

score by relaxing the demand for a high partisan symmetry score a little bit. We do not see a similar

effect for large values of the compactness score, where the trade-off between compactness and partisan

symmetry appears roughly linear everywhere except at the extreme end of the partisan symmetry

score. In both states, we see that it is possible to find plans with nearly perfect partisan symmetry

scores. We show the plan with the highest compactness score and highest partisan symmetry score

in Figures 5.24 to 5.27 and the full set of Pareto-optimal plans are available online, along with

replication code.5

While the shapes of the plots are similar, the numerical values of the scores associated to points

at the Pareto frontier are very different in the two figures, which we highlight in Figure 5.22. In
5https://zachschutzman.com/tradeoffs-fair-dist
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Figure 5.21: Comparison of partisan symmetry and compactness for Pennsylvania. Each point
corresponds to one plan in the sample. Purple points are Pareto-optimal, grey points are Pareto-
dominated.
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Figure 5.22: The Pareto-optimal points from Figures 5.20 and 5.21.

Figure 5.23: The approximate locations of urban areas in North Carolina and Pennsylvania

North Carolina, the most compact plans we found have a partisan symmetry of roughly 0.99, whereas

in Pennsylvania, the most compact plans have a partisan symmetry score around 0.92. As a point

of reference, the congressional districts enacted in North Carolina in 2016 and those enacted in

Pennsylvania in 2011 were found in court to be egregious Republican-favoring gerrymanders and

have partisan symmetry scores around 0.9 with respect to the election data used here, so a score of

0.92 suggests that this plan does indeed have a significant partisan tilt.

One explanation for this is the differing political geography of the two states Chen and Rodden

(2013). Pennsylvania has high concentrations of Democrats in the densely populated corners of the

state: the Philadelphia, Pittsburgh, and Scranton–Wilkes-Barre areas. On the other hand, the vast
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middle of the state has a much more sparse population and is largely Republican-favoring, although

the Democratic lean of the cities is somewhat stronger than the Republican tilt of the rest of the

state. This means that, even though the balance of Democrats and Republicans is roughly equal,

the urban districts will ‘use up’ more of the Democratic vote than the rural districts do of the

Republican vote. Because the Democratic centers are geographically distant from each other, it is

difficult to draw districts to balance this effect while remaining highly compact. On the other hand,

North Carolina’s population is much less concentrated. The largest county in North Carolina has

about two-thirds the population of the largest county in Pennsylvania. Furthermore, there are a

number of metropolitan regions with high concentrations of Democrats in the middle of the state,

including the Raleigh–Durham and the Greensboro areas. The city of Charlotte is also somewhat

centrally located in the state. For this reason, districts can remain highly compact and also include

portions of these urban regions and rural regions, which helps to balance the asymmetry that arises

from large numbers of Democrats living in more dense areas, as in Pennsylvania. The difference in

achievable compactness scores may be attributable to the shapes of the precincts themselves, rather

than any deeper political reason.

Figure 5.24: The most compact Pareto-optimal plan for North Carolina.

This analysis demonstrates that the ‘cost’ of partisan symmetry in terms of compactness (and

vice versa) is different in the two states. In North Carolina, adhering to a neutral criterion of

compactness gives us a high degree of partisan symmetry almost for free. We can see in Figure 5.25

that, with the exception of the two in the eastern portion of the state, the districts are relatively

nicely shaped with much of the noncompactness coming from the jagged boundary, in contrast with
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Figure 5.25: The Pareto-optimal plan with the highest degree of partisan symmetry for North
Carolina.

the contorted shapes in Figure 5.27. This suggests that the converse is true as well: in North

Carolina, aiming for districts which treat the two parties symmetrically doesn’t require a severe

deviation from nicely shaped districts.

On the other hand, in Pennsylvania, seeking a high degree of partisan symmetry comes at a high

cost in terms of compactness. In Figure 5.27, we can see that in order to achieve partisan symmetry,

the districts must contort around the Democratic strongholds to properly distribute votes among

the less dense, Republican-leaning rural areas. In the southeast, we see five districts extending little

tendrils into the Philadelphia area, in the southwest we see the Pittsburgh area divided among four

districts. A closer look at the districts in the southeast is shown in Section 5.11.2. The large purple

district across the northern part of the state balances a chunk of the Scranton–Wilkes-Barre area

with a massive swath of low population rural regions along the New York border. Where there is

a strongly Democratic district in the Raleigh–Durham area and a strongly Republican district in

the northwestern part of the state and the remaining 11 districts balance mostly rural Republican

populations with urban Democratic ones, but splitting up these urban areas does not require drawing

the same kinds of contorted shapes as are necessary in Pennsylvania. In contrast, the districts in

Figure 5.26 are much more regularly shaped, but achieve a very low degree of partisan symmetry.

The four districts nestled in the southeast portion of the state as well as the teardrop shaped one

in the southwest encompassing much of Pittsburgh are very strongly Democratic while most of the

others have a solid, but relatively weaker, Republican tilt.
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Figure 5.26: The most compact Pareto-optimal plan for Pennsylvania.

Figure 5.27: The Pareto-optimal plan with the highest degree of partisan symmetry for Pennsylvania.

5.12 Discussion and Future Work

This work points toward several avenues for future research, and we highlight a few here. First, we

only considered two instantiations of two particular notions of fairness in this domain. Repeating

this analysis for other partisan measures, such as the competitiveness of districts, or other neutral

procedures, such as avoiding the splitting of municipalities or counties, would shed more light on

what the space of possible districting plans looks like. Additionally, we demonstrate our analysis on

Pennsylvania and North Carolina, and the results are considerably different. We posit that this is

due to the political geographies of the two states, and examining this effect is an important thread

for understanding what kinds of reforms might or might not be effective in various jurisdictions.
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Figure 5.28: A closer look at southeastern Pennsylvania in the plan shown in Figure 5.27.

Future work could use more sophisticated mathematical and statistical techniques to describe a

relationship between political geography and the trade-offs we consider here. Our analysis suggests

that a one-size-fits-all approach to drawing ‘fair’ districts is inappropriate and that individual states

and localities should carefully consider the relevant trade-offs when redistricting or implementing

redistricting reform initiatives. One factor ignored in this analysis, which is critical to the process of

drawing districts, is respecting communities-of-interest. Even defining and locating geographically

such communities is a very difficult problem, let alone the determination of whether or not to preserve

that group in a single district. We therefore propose our analysis as a framework for discussion about

trade-offs in redistricting rather than as a policy recommendation.

In this work, we have demonstrated with a simple model that demanding districts be drawn
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to be as compact as possible and demanding that they satisfy a notion of partisan symmetry are

incompatible, but to different degrees depending on the particular features of the geographic region

in question. Since existing proposals and methodologies for automated and algorithmic redistricting

involve finding an approximate solution to an optimization problem, it is important to understand

how changing the objective function of these procedures can affect the outcome. As more jurisdictions

consider redistricting reforms, they should be cautious about abdicating the line drawing process to

algorithms which encode values different from those of the voters who use the districts to elect their

representatives.
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Chapter 6

Conclusion

Endless societal concerns and research questions arise when the algorithmic principles of compu-

tational efficiency and optimization come into conflict with human values like fairness, equity, and

privacy. We have touched on a few in this dissertation, highlighting a broad range of applications,

algorithmic techniques, and social harms.

Each chapter contains specific discussion points and ideas for future research extending that

work. More broadly, the problems and solutions described point towards a need for a better un-

derstanding of existing systems which are not strictly ‘computerized’, ‘automated’, or ‘mechanical’

as algorithms. For example, interpreting an individual allocating resources as a ‘black box’ algo-

rithm or understanding government data-sharing processes and legal institutions like redlining and

segregation as rule-based algorithmic procedures. By taking this viewpoint, we can potentially gain

new insights into how they impact our world today, both from a socioeconomic perspective as well

as how they color our observations and data collection in developing modern algorithmic solutions

to societal problems. Furthermore, by understanding these existing and historical systems as algo-

rithms, we can more directly work on developing new systems and algorithms which aren’t subject

to the same flaws or inflict the same harms.

The work here makes some steps towards this mode of thinking. By reasoning about allocation
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problems as learning algorithms, portfolio advising as an optimization problem, privacy-aware in-

dividuals as strategic agents, and redistricting as a composite of many algorithmic techniques from

computational geometry and graph partitioning, we can begin to understand how modern compu-

tational tools can play a role in these crucial social settings and, just as importantly, articulate the

limitations of these algorithmic methodologies.

177


	Algorithmic Processes And Social Values
	Recommended Citation

	Algorithmic Processes And Social Values
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Acknowledgment
	Abstract
	List of Figures
	Introduction
	Fair Portfolios
	Introduction
	Related Work
	Our Results and Techniques

	Model and Preliminaries
	Bespoke Problem
	A Regret Notion
	Group Fairness: ex post and ex ante

	Regret Minimization Absent Fairness
	Regret Minimization with Group Fairness
	Separation Between Randomized and Deterministic Solutions
	An Algorithm to Optimize for ex ante Fairness
	An ex post Minmax Fair Strategy for Few Groups
	Optimizing for Population vs. Least Well-Off Group: An Example

	Approximate Population Regret Minimization via Greedy Algorithm
	A More General Regret Notion
	Experiments
	Data
	Algorithms and Benchmarks
	Experimental Design and Results

	Conclusion
	Future Directions
	Broader Impacts


	Fair Allocations
	Introduction
	Our Results
	Further Related Work

	Setting
	Allocative Fairness

	The Precision Discovery Model
	Optimal Allocation
	Optimal Fair Allocation
	Learning May Require Brute-Force Exploration
	Poisson Distributions and Convergence of the MLE
	Closeness of the Estimated Parameters
	Fairness of the Allocation
	Utility of the Allocation

	The Random Discovery Model
	Optimal Allocation
	Properties of Fair Allocations
	Price of Fairness
	Relaxing the Assumption of Vmi.

	Conclusion and Future Directions

	The Price of Privacy in the Keynesian Beauty Contest
	Introduction
	Our results
	Related Work

	Framework and Model
	The Keynesian Beauty Contest
	Information Structure
	Privacy-Awareness

	The Extended Game
	Defining the Extended Game
	Solving the Extended Game

	Price of Privacy
	The Agents' Cost
	The Aggregator's Cost

	Discussion and Future Directions

	Algorithms and Redistricting
	Introduction to district compactness
	Organization

	Preliminaries
	Spherical Geometry
	Some Definitions

	Convex Hull
	Reock
	Polsby-Popper
	Empirical Evaluation
	Commonly-Used Projections
	Results

	Weaknesses of compactness scores
	Introduction to Fair Redistricting
	Automated Redistricting

	Procedural Neutrality
	Fairness of Outcome
	Empirical Evaluation
	Generating Plans
	Results

	Discussion and Future Work

	Conclusion

