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ABSTRACT

Subnational map of poverty generated from remote-sensing data

in Africa: Using machine learning models and advanced

regression methods for poverty estimation

Lionel N. Hanke

According to the 2020 poverty estimates from the World Bank, it is estimated

that 9.1% - 9.4% of the global population lived on less than $1.90 per day. It is

estimated that the Covid-19 pandemic further aggravated the issue by pushing

more than 1% of the global population below the international poverty line of

$1.90 per day (WorldBank, 2020). To provide help and formulate effective

measures, poverty needs to be located as exact as possible. For this purpose, it

was investigated whether regression methods with aggregated remote-sensing

data could be used to estimate poverty in Africa. Therefore, five distinct

regression frameworks were compared regarding their R2 value and the mean

absolute relative percentage error when estimating poverty from aggregated

remote-sensing data in continental Africa. A total of 12 regression models

were developed at the three poverty rates at the $1.90, $3.20, and $5.50 income

level per day and can be divided into direct models, two-step models, and

ensemble models. It was found that ensemble methods perform better than

simpler models, with an R2 value of 0.74 for the ensemble neural net and 0.80

for the ensemble xgboost model. The best performing one step model is the

kernel ridge regression with an R2 of 0.72, while the remaining frameworks of

this type all perform worse. Bayesian ridge regression models consistently

performed the worst compared to the other frameworks under investigation. It

was found that it the model estimations were most stable at the daily income

level of $1.90 and $3.20, which can be explained by the increasingly skewed

distribution of target values for higher poverty thresholds. Overall, it was found

that xgboost, kernel ridge regression and artificial neural networks perform

better than the other models.
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Introduction

Background

The World Bank is a global partnership of 189 member countries. It was

initially founded to help rebuild European countries which have been partially

ruined in World War II. Soon after, other entities took over financing and

organization of the rebuilding process so the World Bank shifted its attention to

funding infrastructure projects in Latin America (World Bank, 2020a).

Since the 1970s, World Bank’s primary focus lays on poverty eradication and

over time expanded to social development in general. Thus, the organization

has a lot of experience of generating solution strategies that have a meaningful

impact for the people affected by a problem. Nonetheless, help can only be

provided if the problem can be located.

This is the underlying issue in this work, as poverty data is still scarce in

coverage and expensive to obtain in the field. However, it is fundamental to

understand the spatial distribution of poverty for poverty reduction programs.

Only if the spatial resolution is high enough can poverty maps be efficiently

employed by policy makers. Thus, the aim of this work is to build a model that

predicts poverty within reasonable accuracy limits in existing countries, and

where data is only scarce or not available at all. This would allow not only

World Bank’s poverty economists to formulate better solutions for affected

regions in the world, but also aid national statistical offices, the international

development research community, and policy makers. Ideally the solution

produced in this work produces results that are consistent over time and will be

used again whenever updated data becomes available.

Research Significance

The World Bank would like to generate detailed accurate spatial poverty maps

consistent over time using a novel and robust system based on machine or deep

learning. For this purpose, the World Bank suggests the use of the following
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data:

• Subnational Poverty Estimates

• Small Area Estimations

• Household Survey Data

• Freely available remote-sensing

data

Furthermore, the World Bank aims to improve and simplify existing poverty

mapping approaches by offering an easily transferable service for map

generation that can be employed by policy makers. Historically, poverty data

has been sourced locally. For that reason, poverty data is often scarce, labor

intensive to obtain and overall expensive (Xie, Jean, Burke, Lobell, & Ermon,

2015). However, disaster relief, food security and sustainable development can

only really be achieved with precise, well available data for all regions of

interest. The lack of reliable data mainly affects developing countries, which in

turn prevents formulation of effective measures in those areas. There is an

urgent need for a solution that can estimate poverty by analysis of readily

available data. Nowadays, remote-sensing data such as high resolution satellite

imagery can be easily obtained for little to no money, and machine learning

models have shown that they can be used to extract features from seemingly

unstructured input data. Additionally, there is an increasing number of

preprocessed data sets which are readily available online. For the purpose of

this work we want to capitalize on these new possibilities and explore

regression approaches to estimate poverty on different administrative levels.

Research Questions

1. Which regression models are most promising to estimate poverty on

sub-national administrative levels?

2. What data sets are best used in those models?

3. Which Features contribute most to the model’s output?

2



Problem Description

The World Bank has been able to increase the frequency of reporting global

poverty estimates in the past 20 years. Until 2008, estimates were presented

every three years. Since then, implementation of new surveys, updates on

existing surveys and additional data sources made a more frequent estimation

of poverty possible (World Bank, 2018). Spatial poverty maps are primarily

generated by small area estimation methods. This technique relies heavily on

household survey data, where thousands of people are interviewed. This

involves a lot of work and effort, however the sparsity of data coverage

typically does not allow high levels of resolution when used without additional

data sources (Bedi, Coudouel, & Simler, 2007). Only when detailed household

survey data is combined with comprehensive data like from a national census

or survey can the small area estimation method provide sufficiently accurate

poverty estimates for policy makers.

Figure 1. Visualization of Small Area Estimation Approach

Figure 1 visualizes the small area estimation models. Detailed surveys are

combined with more general information from census allowing the model to

make reasonably good estimations of poverty that can be visualized in poverty

maps. Although at least two sources of data are considered, the power,

flexibility and adaptability of these estimation models are limited. First, an

3



analyst uses multiple regression to build a model for household consumption

from the survey data. However, that model can only use variables that are

present in both datasources. This allows using the model’s parameters on the

census data to get a biggger picture for consumption in all households.

Nonetheless, these estimations are not very accurate and simulation methods

must be applied to account for the inaccuracy of the prediction model. The

estimates are then presented in a GIS, where additional data can be overlayed

for correlation analysis (Bedi et al., 2007). By 2018, data-sources and

methodology have improved, however the core process of poverty mapping is

still the same (World Bank, 2018).

(a) National Poverty Map (b) Sub-National Poverty Map

Figure 2. Comparison of National and Sub-national Poverty Map.

In figure 2a and figure 2b poverty estimates from World Bank (2020b) for the

year 2018 are visually presented in poverty maps. While national maps are

easier to create, they are not very valuable for policy makers and economists

because the resolution is not high enough. sub-national maps on the other

hand, are very valuable for targeted interventions and poverty reduction

programs, as they localize poverty more accurately. However, this requires

more data, additional analysis and more sophisticated models.

The lack of frequently updated data is still one of the major problems for

generation of poverty maps (World Bank, 2020b). This is exemplified by India,

4



which could not release updated poverty estimates in 2017/2018. This left a big

gap in understanding poverty in India but also affected broader areas due to the

immense population and the geographical location in asia. This is worrisome,

as poverty is still a big concern in that geographical area.

5



Literature Review

Conventional Poverty Estimation Methods

Disaster relief, food security and sustainable development can only really be

achieved with precise, well available data in all countries of interest. The lack

of reliable data complicates providing humanitarian aid, which unfortunately

mainly effects developing countries. Poverty data is especially scarce because

it is labor intensive and expensive to obtain and usually limited in coverage

(Xie et al., 2015).

Historically, survey data has been combined with census data to generate

spatial poverty maps (Hentschel, 2000). This allows calculation of poverty

estimates on a sub-national level, however the lack of high-quality data leads to

errors of high magnitude in the predictions. Olivia, Gibson, Smith, Rozelle,

and Deng (2009) show how regression models for poverty estimation based on

survey data can be negatively affected by spatial information. This could

explain the large prediction errors. Such spatial error structures could introduce

bias and could cause inference problems. In order to overcome this, Hentschel

(2000) suggests overlaying other regional patterns such as road access with

poverty maps to better understand correlations between such factors.

Henninger and Snel (2002) identified data availability and access as a major

issue for map producers. This challenge is even more prominent when

applying small area estimation techniques, where census data is combined with

household surveys to generate high resolution poverty maps for areas of

interest. Many governments hesitate providing independent agencies with

sensitive data, and that for a good reason. Even when data is accessible, its

quality is another frequent problem. Data sources can be unreliable or outdated

to produce useful prediction models. Henninger and Snel (2002) came to the

conclusion that there is a need for more sophisticated spatial analysis in the

field of poverty mapping. Although techniques were not as advanced as today,

poverty maps have been successfully used for developmental programs and by

6



policy makers in general. There is still need for more accurate maps and better

tools and methods which is exemplified by the fact that of the 2015 millennium

development goals, only 3.5 out of 18 targets were reached by the deadline

(Ritchie & Roser, 2018).

Figure 3. The 18 targets for the millennium development goals (MDG,

2000-2015).

Figure 3 summarizes the circumstances after the deadline has been reached.

Without putting any blame, it is evident that most of the millennium

development goals have not been achieved by the deadline. It is especially

concerning that for some targets the development went against the desired

trend, for example MDG 1.B.

Technological Advancement in Poverty Mapping

The biggest issue is the lack of reliable and diverse data which is required to

plan and execute effective development strategies aiming to ease poverty. In

many countries, poverty and welfare indicator maps are used on a regional or

national level for policy makers (Akinyemi, 2010). Current maps are often a

7



result of census data, household surveys and information from geographical

information systems (GIS) (Bedi et al., 2007). Including GIS data like land

use, water access, geographical isolation and other factors help not only

localizing poverty more accurately but also understand important relationships

between those factors. The capture and maintenance of geospatial data is still a

manual process at most mapping agencies. Therefore, a lot of them currently

pursue integration of AI in order automate workflow and enhance their value

proposition (Murray et al., 2020). Using AI for image analysis can not only

speed up the workflow for new images, but it can also be employed to identify

previously overlooked features from older data and include those in current

products.

Remote-Sensing Data

It has been shown that remote-sensing data can be used as an additional data

source for poverty maps (Xie et al., 2015). In recent years, this data has

become more available for little to no money. However, according to Xie et al.

(2015), those data sets are unstructured and therefore extracting useful insights

is a task that hasn’t been automated yet. It has been shown that such data sets

can be analyzed by various models and methods to obtain useful information

on various aspects of interest (Ma et al., 2019). Applying machine learning

(ML) methods to analyze remote-sensing data has been routine for a couple of

years; however, the data sets and the purpose of its analysis have substantially

evolved. In earlier applications, one usually analyzed multi-spectral data in a

simple, restricted ML model to estimate various features, such as land

coverage, water access, etc. In those restricted ML models, it is common to

split up the selection of features important for solving the problem, then

applying an algorithm to those features, followed by post-processing to

produce its final output.

8



Splitting up these tasks make the models more predictable, simple, and easier

to understand and implement (Quinn et al., 2018).

Machine Learning Algorithms

Machine learning is a type of algorithm that is capable of learning by analyzing

important features in data. A well-trained algorithm can then be used to make

decisions and thereby solve real world problems (Goodfellow, Bengio, &

Courville, 2016). The identification, selection and extraction of the features for

the model are imperative as the quality of the features is the determining factor

for accuracy and performance of the resulting model (Lussier, Thibault,

Charron, Wallace, & Masson, 2020). If the previously mentioned steps of

feature identification, selection and extraction are controlled by the

programmer, the algorithm is known as a supervised ML algorithm (Lussier et

al., 2020). Supervised learning is useful whenever the inputs and outputs of the

model are well-known and controlled. Deep learning models are a solution to

the mentioned limitations, as DL models are capable of extracting the relevant

features autonomously. Generally speaking, DL is a learning algorithm based

on artificial neural networks (ANNs) (Schmidhuber, 2015). Those algorithms

transform input data in one or more layer to output data while learning

higher-level features. Layers between input and output are known as "hidden"

layers. When the algorithm is characterized by multiple hidden layers, the

network is considered a "deep" neural network, hence "deep learning" (Litjens

et al., 2017). These algorithms can identify complex relationships and

causalities from inputs in nodes in those hidden layers. The increased

performance and complexity of DL algorithms allow analysis of images

(Krizhevsky, Sutskever, & Hinton, 2017) and other more complicated inputs.

This evolution introduced DL to many fields of sciences and thus helps solve

real world problems (Lussier et al., 2020).

Prior to DL, remote-sensing relied first on ANNs but then shifted its attention
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to support vector machine (SVM), random forest (RF) and decision trees (Ma

et al., 2019). Since 2014, DL algorithms are implemented more frequently in

order to analyze various variables such as land use, land cover, land

classification and others. Various DL algorithms have been implemented for

remote-sensing. The most well-known is the convolutional neural network

(CNN) which is well-suited for image analysis when pixels are arranged

regularly. Additionally, to CNNs, stacked autoencoders and decoders (AE,

AD), restricted Boltzmann machine (RBM) and deep belief networks (DBNs)

and generative adversarial networks (GANs) are commonly used for analysis

of remote-sensing data. It has been shown that such models are generally more

powerful and accurate for analysis of remote-sensing data compared to

supervised ML algorithms, however they also require a substantial amount of

training data and computational power (Ma et al., 2019).

Machine Learning and Poverty Estimation

Jean et al. (2016), Xie et al. (2015) and Tingzon et al. (2019) have shown how

effective combining machine learning and satellite imagery can be for wealth

estimation. Additionally, Tingzon et al. (2019) found that their models

performed similarly when comparing open-source data against proprietary data

from other sources. Ayush, Uzkent, Burke, Lobell, and Ermon (2020) finds that

using cheaper low resolution satellite imagery in order to find regions to use

high resolution satellite images is overall a better approach for poverty

mapping when using policy networks as ML models. This information is

useful because using high resolution imagery for everything is very expensive

and because of the variability in the data sets a lot of computational power is

required to train such a model.

The availability of poverty data depends heavily on the financial power of a

region or country (Xie et al., 2015). For example, there are certain countries

that haven’t taken a census in over 10 years. The problem that follows from
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that is that high profile initiatives from the United Nations often rely on poverty

rates, infant mortality rates and other statistics to assess the effectiveness of

their actions. Poverty measures are often collected in small scale field surveys

which can never catch the full extent of the problem. These circumstances

cause the issue that training data for regions where the results have the largest

impact is very scarce. remote-sensing data has become so accurate that the

temporal and spatial resolution can provide an incredible amount of data useful

for sustainable development. Xie et al. (2015) states that CNNs and or deep

learning models have been used to extract those data directly from

remote-sensing imagery; however, this is not possible due to the lack of

poverty data.

Transfer Learning in Poverty Estimation

Noe (2019) suggests using parameters from pre-trained models as initial

guesses when training data is scarce. The technique is known as transfer

learning and requires a model that uses the same input data and predicts

something at least correlated to the target variable, in this case poverty.

However, this does not work all the time and resulting models can be prone to

over-fitting or biased predictions, characteristics that complicate finding a

solution for the final model. If it works, less computational time is required for

training and transfer learning can also decrease the risk of over-fitting and

therefore the resulting model could react less sensitive to unseen data Murray

et al. (2020).

Xie et al. (2015) have shown that nighttime light intensity correlates well with

poverty. Thus, the lack of training data can be overcome by implementing

transfer learning. In order to do so, one first needs to train a model that predicts

nightlight intensities based on the remote-sensing data used for poverty

mapping. The features in the first model could include structures, buildings,

and farmland, and are generally important factors for nighttime light intensity.
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Xie et al. (2015) demonstrates that those features are very useful for poverty

mapping as well and can be used like survey data collected in the field.

The use of Aggregated Data and Regression for Poverty Estimation

Zhao et al. (2019) have taken a step back and use aggregated data on a 10 km x

10 km grid in a random forest regression model to estimate poverty in those

grid cells. As independent variables nighttime light data, satellite images to

extract terrain features, land cover data, road maps as well as geographic

information regarding the distance to division headquarters were used.
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Methods

Recently, a large amount of high-quality remote-sensing data has become

available on platforms like google earth engine (GEE) and open street maps

(OSM). Previous work from Xie et al. (2015) has shown that pre-trained deep

learning algorithms like VGG-16, ResNet 50, Inceptionv3 or EfficientNet can

be used for image classification and ultimately for poverty estimation at the

local level using satellite images. In this study, a different approach is

investigated, namely using readily available geospatial data, and using

regression approaches to find relationships to better explain poverty at different

administrative levels. Thus, the approach is similar to Zhao et al. (2019)’s

approach, but instead of pre-defined grids the goal is to aggregate statistics to

geopolitical boundaries at the admin 1 (state / province) and admin 2 (county /

district) level. In this work, all data was extracted from GEE and subsequently

analyzed with python. Additionally, an increased set of features and a much

larger area was analyzed in this work compared to the previous approach.

Data Set Description

In this work, the possibility of building a general framework that is capable of

estimating poverty on a global scale but at sub-national resolution is explored.

For that reason, it was important to verify that most data sets had data available

for most countries of the world with a high enough resolution. Additionally,

the poverty data used for training was available for 2015 and 2018, therefore

requiring matching data from GEE to train the models for past estimates.

Finally, the data should be recent so the model can be used for poverty

estimation. Table 1 lists all data sets used in this work and their availability in

time. For a detailed explanation of every variable please refer to appendix 1.
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Table 1. Overview of used data sets in this work.

ID Name Availability

VIIRS Visible Infrared Imaging Radiometer Suite (VIIRS)

Day/Night Band (DNB)

Since 2014

POP WorldPop Global Project Population Data: Estimated

Residential Population per 100x100m Grid Square

Since 2000

POL Sentinel-5P NRTI NO2: Near Real-Time Nitrogen

Dioxide: As an estimate for Air Pollution

Since 2018

LCT Copernicus Global Land Cover Layers: CGLS-

LC100 collection 3 Tree

2015 - 2019

LCU Copernicus Global Land Cover Layers: CGLS-

LC100 collection 4 Urban

2015 - 2019

LCG Copernicus Global Land Cover Layers: CGLS-

LC100 collection 5 Grass

2015 - 2019

LCS Copernicus Global Land Cover Layers: CGLS-

LC100 collection 6 Shrubs

2015 - 2019

LCC Copernicus Global Land Cover Layers: CGLS-

LC100 collection 7 Crops

2015 - 2019

LCB Copernicus Global Land Cover Layers: CGLS-

LC100 collection 8 Bare

2015 - 2019

GHM CSP gHM: Global Human Modification: As an Esti-

mate for the Level of Development

2016

FEW FLDAS: Famine Early Warning Systems Network

(FEWS NET) Land Data Assimilation System

Since 1982

SMD TerraClimate: Monthly Climate and Climatic Water

Balance for Global Terrestrial Surfaces, University of

Idaho

Since 1958

GFS Global Friction Surface 2019: Travel Speed 2019
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As can be observed in table 1, the data sets from GEE stem from various

different data sources, meaning that the units and measurements were not

uniform and had different scales, meanings, and dimensions. The data is

generally made available as image collections, with the information stored in

grids, which can be made visible in pixels. In addition to everything else, the

resolution of the base data can also vary, e.g. 100 m grid vs 1 km grid. For the

purpose of this work this does not pose an issue, because the pixel data is

collected and aggregated to the size of the administrative regions during the

exporting step. During export, the aggregated mean, maximum, minimum, and

standard deviation of the data in the area is stored in a csv file. Those four

sub-features for every variable were then used as possible model inputs.

The three poverty rates describing the percentage value of people living with

less than $1.90, $3.20, or $5.50 per day in the area in question were used as

target values. Therefore, the target values were limited between 0 and 1. To

increase the amount of training data, poverty rates were aggregated from admin

level 2 to admin level 1 using the population data from the feature export

whenever possible. The same logic was later employed to evaluate the

predictions on admin level 2 data, where little to no training data was available.
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Model Evaluation and Data Structure

To build models that produce stable outputs there are usually multiple

evaluation steps involved. In this case, two dedicated training sets with

historical poverty data from 2015 and 2018 were available. Each of these

training tables were further expanded to build training sets on administrative

level 1 and 2 respectively, resulting in three tables per year. Additionally, there

are three tables in the same format for 2019 which can be used for testing,

while one assumption must hold. Namely, it is assumed that the poverty rate

from 2018 to 2019 has not changed dramatically in the observed areas.

Therefore, we can assume that the model evaluation can be made with

historical poverty data from 2018, combined with data from 2019, where

available. These tables for the year 2019 are exclusively used to test and

evaluate the models. To identify over-fitting and bias it was necessary to split

Table 2. Overview of Tables used for Training and Testing.

Use Year Level

Training

2015

Mixed

Admin 1

Admin 2

2018

Mixed

Admin 1

Admin 2

Testing 2019

Mixed

Admin 1

Admin 2

the training tables into a separate training and testing set to allow model

evaluation at every step of the process. This is useful to identify problems but

is not a solution. However, it is possible to generate one or multiple validation
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sets as another subset of data which allows optimization of model

hyperparameters and being able to identify models with high bias at the same

time.

Figure 4. Visualization of the Model Building Procedure. The Models are

trained using cross validated scores, which decreases the likelihood of

over-fitting. Parts of this figure were adapted from: Scikit Learn -

Cross-validation: evaluating estimator performance (n.d.)
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Figure 4 shows the experimental design used for model training. The

hyperparameters were only optimized once, namely in the initial training step.

Cross-validated scores were used for training. This set of parameters is not

necessarily the best set of parameters to fit the training set, but it performs best

on the internal test sets, which is a good indicator that it will also performs well

in the final test set.

The model specialization is a step of transfer learning because the parameters

and hyperparameters from the optimized initial model are used as initial

guesses for the specialized models. It was found that this not only produces

more stable outputs, but also decreases the time required for parameter

optimization during specialization.

Model Overview

The following chapters introduce the models used for poverty estimation in this

analysis.

XGB Classifier

XGBoost is a scalable, end to end tree boosting system. It was developed by

Chen and Guestrin (2016) and now widely used and adapted thanks to its

state-of-the-art results on many machine learning challenges. The framework

allows both, classification, and regression. The XGB classifier was used in this

work to differentiate a priori whether an area is thought to be below or above

the median poverty rate at $1.90 per day in Africa. For that, no optimization

was performed, since the default parameters resulted in an accuracy of over

90% in the testing set.

Kernel Ridge Regression

Kernel ridge regression combines linear regression and l2 regularization with

the kernel method. L2 regularization means that the regression function

receives an additional penalty equal to the sum of squares of the magnitude of
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coefficients. This would be the cost function for a linear ridge regression (l2

regularization) without the kernel method:

Cost =
N

∑
i=0

(yi −
M

∑
j=0

xi jWj)
2 +λ

M

∑
j=0

W 2
j (1)

With N being the sample size, M the number of features, W the weights and

lambda the regularization parameter. The additional cost function with the sum

of squares of model weights forces the overall size of coefficients to shrink and

large coefficients are penalized more than smaller ones (Pedregosa et al., 2011).

In addition to ridge regression, this model also utilizes the kernel trick, which

allows solving problems in a high-dimensional space by the use of kernel

functions. The combination of the above techniques can produce very powerful

and accurate models, but the chance of over-fitting is high if the regularization

strength or the kernel function is not chosen appropriately (Theodoridis,

2020a). Therefore, the regularization strength λ as well as the possible kernel

functions are optimized during a grid search for hyperparameter optimization.

The following table summarizes the parameters optimized during the search:

Table 3. Parameter Grid for Kernel Ridge Regression

Parameter Grid

Kernel Linear Polynomial Radial Basis Fxn (RBF) Sigmoid

Regularization Logspace: 10−3, . . . (N=14) . . . , 103

Gamma* Logspace: 10−3, . . . (N=14) . . . , 103

Gamma Definition None Regularization param. for the Kernel Function

The regularization strength λ defines how much the parameter size affects the

cost function. This means that with λ = 0 the problem would be an ordinary

least squares regression with the kernel method. A model like that would be

prone to over-fit and the resulting output function is less smooth than with a

higher λ . However, very high values for the regularization strength might just
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lead to a model that predicts an average value instead of accurate estimates.

The gamma value is ignored for a linear kernel. For the other kernels the value

defaults to the inverse of the feature size. However, the exact definition varies

depending on the chosen kernel function. In general, a high value of gamma

usually leads to over-fitted models, because the increased model complexity

allows more paths to error minimization, while very small values of gamma in

turn generalize too much, meaning that those models are not very useful for

accurate predictions either.

Bayesian Ridge Regression

Bayesian ridge regression assumes probabilistic distributions instead of point

estimates as target values in the regression problem and employs l2

regularization at the same time. The L2 regularization has been explained in

equation 1 and is equal to a regularization constant (λ ) times the square of the

magnitude of the coefficients. This is unfavorable for large coefficients and the

coefficient size to shrink.

Figure 5. Two examples of a Bayesian regression model output depending on

chosen hyperparameters (Curve Fitting with Bayesian Ridge Regression, n.d.).

Therefore, there is a trade-off between accuracy and generalization, with no

regularization resulting in the same as a Bayesian regression model, and high

regularization to a model that will tend to predict average values. In addition to

the regularization, Bayesian ridge regression models assume a normal

distribution of target values, thus they are more stable in regard to outliers and
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ill posed problems (Theodoridis, 2020b).

Table 4. Parameter Grid for Bayesian Ridge Regression

Parameter Grid

Tolerance Logspace: 10−10, . . . (N=5) . . . , 10−1

Alpha 1 Logspace: 10−10, . . . (N=5) . . . , 103

Alpha 2 Logspace: 10−10, . . . (N=5) . . . , 103

Lambda 1 Logspace: 10−10, . . . (N=5) . . . , 103

Lambda 2 Logspace: 10−10, . . . (N=5) . . . , 103

As seen in figure 5, the selection of hyperparameters has a great effect on

model performance, accuracy, and its ability to generalize. To avoid

over-generalization while ensuring the ability to generalize, the optimal values

for the hyperparameters are determined in the grid presented in table 4.

The tolerance defines the stopping criterion; thus the algorithm will stop if the

error is smaller than the tolerance. The remaining four values are defaulted to

10−6 if none are provided. Alpha 1 and Lambda 1 are shape parameters for the

Gamma distribution, while alpha 2 and lambda 2 are rate parameters.

Support Vector Regression

Support vector regression (SVR) is based on support vector machines (SVM).

SVMs use the kernel trick, similar to kernel ridge regression, so highly

nonlinear classification problems can be solved in a higher dimension than the

original problem. The same principle can also be used for regression, but

instead of fitting a separation curve between two classes, the SVR fits a curve

to target values (Pisner & Schnyer, 2020).
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Figure 6. Three examples of a support vector regression model output

depending on chosen kernel functions. (Support Vector Regression (SVR)

using linear and non-linear kernels, n.d.)

As seen in figure 6, the correct choice of the kernel function and other

hyperparameters has a significant effect on model performance, especially if

the chosen model is incompatible with our data. To limit bias and the

possibility of over-fits, all major parameters for the SVR model were optimized

in a grid search using cross validated scores. The parameter grid is summarized

below:

Table 5. Parameter Grid for Support Vector Regression

Parameter Grid

Kernel Linear Polynomial Radial Basis Function (RBF) Sigmoid

Gamma Scale Auto Logspace: 10−3, . . . (N=5) . . . , 103

Regularization Logspace: 10−2, . . . (N=12) . . . , 104

The four kernel functions are identical to those that were tested for the kernel

ridge regression, gamma is an important parameter for the kernel function and

the regularization strength reduces the parameter size.
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XGB Regression

The XGB-regressor was optimized in a grid search to produce stable outputs

and avoid bias. The following parameters were adjusted:

Table 6. Parameter Grid for the XGB Regressor.

Parameter Grid

Eta 0.01 0.05 0.1 0.5

Gamma 0 Logspace: 10−3, . . . (N=6) . . . , 103

Child Weight (min) 1, 3, 5, 7, 10

Max Depth (Tree) 2 3 4 5

The eta parameter is a step size shrinkage operator that shrinks the feature

weights after every boosting step. An ideal value of eta limits over-fits and

leads to more stable estimations. Gamma is the minimum loss reduction

required to add another leaf to the tree. This means that with large gamma, the

algorithm is more conservative. The minimum child weight determines sum of

(hessian) instance weights needed to partition the tree. Thus, with a high child

weight, the algorithm is more conservative. The parameters gamma and

minimum child weight both have the purpose to limit over-fitting by increasing

generalization. The last parameter, the max depth, determines the depth of a

tree. With increasing depth, the model can learn more and more detail but

becomes very complicated quickly, which also increases the likelihood of

over-fitting.

Artificial Neural Net Regression

In deep learning, artificial neural nets (ANN) are commonly used to tackle a

wide variety of problems. Artificial neural nets are just that, they mimic our

biological way of learning and connecting information to draw conclusions.

They belong in the field of deep learning, because the extracted features and
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relationships are not defined by the scientist, but developed by the algorithm

itself.

Figure 7. Visualization of a generic Artificial Neural Net (ANN). The

algorithm learns how to manipulate the information in the input layer by

adjusting weights and activation functions until a stable output is produced.

(Sairamya, Susmitha, Thomas George, & Subathra, 2019)

Neural nets have obvious advantages since they can find features in the hidden

layers that the scientist does not even know about. Nonetheless, this is also the

algorithms biggest weakness, because it is difficult to follow a neural net’s

logic and calculate important parameters like feature importance or

contribution to an output. ANNs are often described as black box models,

where only the input and output are well-known but it is not easy explain why a

neural net produces certain outputs. However, nowadays there are advanced

analytical tools that use different techniques to estimate feature contribution

and importance in neural nets (Lundberg & Lee, 2017). With the additional

liberties in regard to model structure there is also an increased risk of bias and

over-fitting. For that reason, a model building function was written which was

able to adjust model hyperparameters without human input. The parameters

were again optimized in a grid search, while conditional parameters were only

assigned when necessary.
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Table 7. Possible Inputs for ANN building function

Parameter Grid

Number of Layers 2 3 4 5 6

Regularize Layer Yes No

Regularization Type L1 L2 L1_L2

Add Dropout Yes No

Dropout Rate 0.01 0.02 . . . 0.19 0.2

Activation Function Relu , Selu , Sigmoid , Tanh

As presented in table 7, some parameters, like the dropout rate and the

regularization type are only used conditionally. This makes a grid search more

complicated, which is why a model building function was developed with the

kerastuner package from (O’Malley et al., 2019). This allows a similar

procedure to a grid search, where the best combination of model

hyper-parameters can be identified by using cross validated scores, but

conditional parameters and other more advanced functionalities are made

possible.

Ensemble Methods

Ensemble methods describe models that use multiple independent sources of

information to produce a final output. XGBoost is an example, as the algorithm

relies on decision trees and regression methods and averages multiple sources

of information to produce the final output. There are many other algorithms

that are readily available which are based on ensemble methods. It has been

shown that they generally produce more accurate results than a single model

would, which is why there is so much effort going into improvement,

development, and integration into well-known frameworks like Scikit-Learn

from Pedregosa et al. (2011) and XGB from Chen and Guestrin (2016). For

that reason, it was decided to not only include ensemble methods in the
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analysis, but also see if it is possible to build a stacked ensemble model using

the outputs from the other models used in this analysis. As inputs, the estimated

poverty rates from the 5 models that were previously introduced were used.

Model Evaluation

The models were evaluated based on two scores, namely the R2 value of

prediction and the mean normalized absolute relative percentage error

(mabsRPD). The R2 value provides information on how well the model follows

the trend in the target data, whereas the mabsRPD provides information about

the error to the target value. The combination of the two metrics allows us to

draw well founded conclusions about the models and their accuracy. In

sociological models it is common to see lower R2 values compared to scientific

applications. Similar applications for poverty mapping from Zhao et al. (2019)

on a 10 x 10 km grid in Bangladesh and Nepal resulted in R2 0.70 and 0.61

respectively. To avoid over-fitting, which ultimately leads to sensitive model

parameters that generally don’t perform well when used to predict data that the

model has not previously been trained with (Twin, 2021), all training steps

were immediately followed by testing and analysis to ensure a similar

performance for training and prediction. Furthermore, validation scores were

the basis for model training whenever applicable.

Data Preprocessing

Since the feature data is composed of values from varying sources with

different meanings and units, it was evident that a thorough analysis was

necessary before any good model could be built. As can observed in the table

2, there are three tables with different data structures for every year. The mixed

tables have been obtained through World Bank and contain a mixture of data at

the country (admin 0), state (admin 1) as well as at the county or provincial

level (admin 2). The other two tables for each year were obtained through

google earth engine (GEE) and were produced by the Food and Agriculture
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Organization of the United Nations (FAO). Because of the hierarchical nature

of administrative regions, it is clear that with a higher administrative level the

areas become smaller. Therefore, it was important to analyze the dependence

of the features on the administrative level but also depending on time. The

complete analysis can be found in appendix 2 and appendix 3.

By analysis of those tables, it became evident that the data varies only a little in

time, but much in regard to the administrative level used for data export. This

makes sense because of the previous stated fact regarding the average size of

the areas used to aggregate the statistics. Nonetheless, this complicates

preprocessing because the high variance in the data made normalization and

most other non-linear transformations unfeasible, because the learned

parameters in the training set would not produce the desired output in the

testing set. For that reason, it was decided to limit the transformations to

exclusively linear operations in preprocessing, which ultimately produced

stable and reproducible outputs useful for machine learning models. For

scaling, a minimum-maximum-scaler was chosen, which limits the range of all

feature values between 0 and 1, based on the minimum and maximum values
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Figure 8. Distribution of Target

Values depending on Poverty Level.

for every feature. These values

are fairly constant year over year,

so the learned parameters for scaling

don’t need to be updated frequently,

which allowed training the parameters

on the training set and using them

without any adjustments in the test

set. Another factor that was taken into

consideration was the distribution of

target values in the data. As presented

in figure 8, the poverty rate at the

daily income level of $1.90 is almost
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uniform in Africa, while the rate at the daily income level of $3.20 is already

slightly skewed to the left, and the distribution of poverty rates at $5.50 per day

is skewed heavily. These circumstances mean that it is simple for a model to

produce results with small errors at the $5.50 daily income level, but the

accuracy of these estimations must be questioned since the possibility of an

over-fit is greater compared to poverty estimations at the lower income levels.

In fact, if accurate estimates at the $5.50 level are desired, it would be best to

explore whether box cox transformed, or possibly logarithmic target values are

better suited for poverty estimation at that respective income level. For the

purpose of this study, this has not been further investigated.

After scaling, correlated features were identified using the Spearman rank

correlation method. While the Pearson correlation method requires; the data to

be continuous, the presence of related pairs, the absence of outliers, normality

of variables, linearity, and homoscedasticity, the Spearman correlation only

requires the data to not be nominal and measures the monotonic correlation

instead of the linear one.

Feature Selection

To increase model efficiency and performance and decrease the likelihood of

over-fitting and high bias, a lot of effort was put into the selection of features

for the estimation models. Initially, the plan was to use the first N principle

components explaining 95% of the variance in the data.

Principle Component Analysis

It was found that the PCA transformation is quite sensitive to changes in data

year over year. Additionally, the PCA changes depending on administrative

level, which again makes this approach unfeasible. Nonetheless, the PCA was

still utilized to estimate the quantity of features required to explain majority of

the variance in the data. This value ranges from 20 to 25, depending on the

administrative level of the data as well as the current year of observance.
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(b) 2018
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(c) 2019
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(d) Admin 1
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Figure 9. PCA analysis for a selection of used data sets in this work. a) and b)

correspond to training tables obtained from World Bank. c) is the same

transformation for the test set. d) shows the PCA for the Admin 1 level, with a

steeper shape compared to the other three examples.

In the figures above, the cumulative explained variance depending on the

number of principle components used in the analysis is presented. It was found

that there is no need to include all 52 independent variables, half of them

explain most of the variability in the test set, if they were all linearly

independent.

Although the PCA is a useful tool to identify the amount of necessary features

to explain the data, in this case it can’t be used for feature selection because the

transformation reacts sensitive to changes in administrative levels, meaning a

learned PCA won’t perform well on the test set. Nonetheless, the main

takeaway from this analysis was still useful, namely that most of the data could

be described by about 25 linearly independent variables. Therefore, a select

few variables were removed from the data set because they showed little to no
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variation across all the data. Those variables were land-cover minima and

maxima values in the areas of interest, which were almost always equal to 0

and 1 respectively. This information is not useful to any model, which is why it

is important to remove such data prior to training of machine learning models

to reduce the number of parameters.

Recursive and Parallel Feature Selection

The removal of the land-cover maxima and minima values leaves us with 41

possible features as input values for the machine learning models. Ideally, the

feature selection is run in parallel with model training and hyperparameter

tuning. This is very troublesome to code, difficult to generalize and requires a

lot of computational power and or time. The fact that the model frameworks

have been obtained by three different sources meant that it was not feasible to

write a function that performs recursive or parallel feature reduction while

training. Instead, two sources of information were combined to perform the

feature selection. First, a Spearman rank correlation analysis was used to

identify strongly correlated features. The Spearman rank method was chosen

because it does not require the data to be normal, as it uses bins to determine

the level of correlation between two variables.

Correlation Analysis

The analysis for all data sets shown below are nearly identical. Notably, there

is a strong correlation between the last three variables on the bottom right of

the plot, which are the poverty rates used for training, therefore a strong

correlation was expected and observed in figure 8.
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(b) 2018
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(c) 2019
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(d) Training Set Combined
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(e) Admin 1

VIIR
S_m

in

VIIR
S_m

ax

VIIR
S_m

ea
n

VIIR
S_S

D

Pop
_m

in

Pop
_m

ax

Pop
_m

ea
n

Pop
_S

D

Pop
_s

um

POL_
min

POL_
max

POL_
mea

n

POL_
SD

LC
T_m

ea
n

LC
T_S

D

LC
U_m

ea
n

LC
U_S

D

LC
G_m

ea
n

LC
G_S

D

LC
S_m

ea
n

LC
S_S

D

LC
C_m

ea
n

LC
C_S

D

LC
B_m

ea
n

LC
B_S

D

GHM_m
in

GHM_m
ax

GHM_m
ea

n

GHM_S
D

FEW_m
in

FEW_m
ax

FEW_m
ea

n

FEW_S
D

SMD_m
in

SMD_m
ax

SMD_m
ea

n

SMD_S
D

GFS_m
in

GFS_m
ax

GFS_m
ea

n

Poo
r19

0

Poo
r32

0

Poo
r55

0

VIIRS_min
VIIRS_max

VIIRS_mean
VIIRS_SD

Pop_min
Pop_max

Pop_mean
Pop_SD

Pop_sum
POL_min

POL_max
POL_mean

POL_SD
LCT_mean

LCT_SD
LCU_mean

LCU_SD
LCG_mean

LCG_SD
LCS_mean

LCS_SD
LCC_mean

LCC_SD
LCB_mean

LCB_SD
GHM_min

GHM_max
GHM_mean

GHM_SD
FEW_min

FEW_max
FEW_mean

FEW_SD
SMD_min

SMD_max
SMD_mean

SMD_SD
GFS_min

GFS_max
GFS_mean

Poor190
Poor320
Poor550 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(f) Admin 2

VIIR
S_m

in

VIIR
S_m

ax

VIIR
S_m

ea
n

VIIR
S_S

D

Pop
_m

in

Pop
_m

ax

Pop
_m

ea
n

Pop
_S

D

Pop
_s

um

POL_
min

POL_
max

POL_
mea

n

POL_
SD

LC
T_m

ea
n

LC
T_S

D

LC
U_m

ea
n

LC
U_S

D

LC
G_m

ea
n

LC
G_S

D

LC
S_m

ea
n

LC
S_S

D

LC
C_m

ea
n

LC
C_S

D

LC
B_m

ea
n

LC
B_S

D

GHM_m
in

GHM_m
ax

GHM_m
ea

n

GHM_S
D

FEW_m
in

FEW_m
ax

FEW_m
ea

n

FEW_S
D

SMD_m
in

SMD_m
ax

SMD_m
ea

n

SMD_S
D

GFS_m
in

GFS_m
ax

GFS_m
ea

n

Poo
r19

0

Poo
r32

0

Poo
r55

0

VIIRS_min
VIIRS_max

VIIRS_mean
VIIRS_SD

Pop_min
Pop_max

Pop_mean
Pop_SD

Pop_sum
POL_min

POL_max
POL_mean

POL_SD
LCT_mean

LCT_SD
LCU_mean

LCU_SD
LCG_mean

LCG_SD
LCS_mean

LCS_SD
LCC_mean

LCC_SD
LCB_mean

LCB_SD
GHM_min

GHM_max
GHM_mean

GHM_SD
FEW_min

FEW_max
FEW_mean

FEW_SD
SMD_min

SMD_max
SMD_mean

SMD_SD
GFS_min

GFS_max
GFS_mean

Poor190
Poor320
Poor550 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 10. As we can see in the figures above, the correlation does not depend

on the administrative level.

Other strong interactions have been identified between the urban land cover and

the population, and between the brush and tree landcover. While these stronger

interactions seem intuitive, there are some interactions that are difficult to

explain, like a positive correlation between the tree cover and the famine early

warning system. The complete discussion of this analysis can be found in

31



appendix 4, where full size images of the figures above are also presented.

The second information used for feature selection was an initial model using

all 41 possible features as model inputs. It was found that the most important

features in that model correlate well with a suggested subset of features based

on the Spearman rank method. Therefore, the correlation analysis was used to

select a subset of not strongly correlated features, with the limitation that all

mean values are included in the set. This procedure resulted in 29 features

which were later used as model inputs and are summarized in the table below.

Table 8. Summary of all Features used as possible model inputs.

Selected Features

VIIRS av. VIIRS minimum LC Crops av. LC Barren std. dev.

Human mod. av. Human mod. min. LC Barren av. Famine std. dev.

Polution av. Polution min. Population av. Soil Moisture std. dev.

LC Tree av. Famine min. Famine av. VIIRS max.

LC Urban av. Soil Moisture min. Soil Moisture av. Polution max.

LC Grass av. VIIRS std. dev. Travel Speed av. Famine max.

LC Shrubs av. LC Tree std. dev. Travel Speed min. Soil Moisture max.

Classification

After some initial model testing, it was found that it is difficult to build a model

that accurately identifies and estimates poverty in "poor" areas and "rich" areas

at the same time. Therefore, it was decided to include a classification algorithm

in the preprocessing, which simply estimates whether the location is thought to

be in either of the two areas. As a threshold, the median poverty rate in the

training set at the poverty rate of $1.90 a day was chosen, which is about 0.3.

As a classification algorithm, the powerful XGBoost classifier from Chen and

Guestrin (2016) was selected for its great versatility and stability. The
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algorithm is based on an ensemble model of boosted trees. The information

from this preprocessing step is later used to build specialized models receiving

either areas that are thought to show high poverty rates or low poverty rates

respectively. This is similar to using a discrete input in a regression model, but

allows more flexibility, if there are issues with just a subset of models. In the

following chapter the results from this procedure are summarized.
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Solution Evaluation

Metrics

Twelve different models were developed in the course of this work. To allow a

meaningful comparison, multiple metrics of evaluation where chosen. It was

important to consider the relative range of the poverty rate depending on the

level under investigation as well as the distribution of the poverty rates. Since

the Area under investigation is continental Africa, a majority of Areas suffer

from high poverty rates. This is especially true if the threshold for poverty is

set high (like for the $5.50 per day poverty level). It follows that the likelihood

of over-fitting depends heavily on the poverty level under investigation.

R2-Value

The first metric used to compare the models and their accuracy was the

coefficient of determination, or the R2 value. Contrary to multiple misleading

definitions, R2 is not restricted between 0 and 1, but instead has a theoretical

range from negative ∞ to its upper limit 1. Looking at the formula for the

coefficient of determination it becomes evident that it is in fact not restricted by

zero:

R2 = 1− SSE
SST

(2)

The term on the right in equation 2 is always positive, and only limited by SSE,

since SST is given from the data. Therefore, for bad models R2 can indeed be

smaller than zero.

Mean Absolute Percentage Difference

As previously mentioned, the second evaluation metric was the mean

normalized absolute relative percentage difference (mapsRPD). It was found

that the relative score metric was better suited for comparison of model
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performance at the three income thresholds because of their different

distribution in the area of interest.

Distribution of Residuals

The last factor taken into consideration for model evaluation was the

distribution of residuals. In most classical regression models, residuals must

follow a normal distribution and follow an equal trend of variance

(homoscedasticity) for mathematical reasons. This allows quite accurate

estimation of the prediction error in the range of model training. However,

these assumptions pose serious limitations for a lot of applications today. For a

large sample size, even slight deviations from a Gaussian distribution means

that there is a statistically significant deviation which will result in a failed

normality test. Contrary to classic regression models, the frameworks used in

this analysis do not rely on the assumption that the residuals are normally

distributed for the calculation of their parameters. Nonetheless, residual

analysis allows us to draw further conclusions about the accuracy, performance,

and reliability of the models. Therefore, a normal distribution of residuals is

still desirable and an indicator for a well-suited model for the problem at hand.

Training Results

The following sections summarize the results obtained during model training.

First, the classifier is analyzed, followed by the initial base training results.

Finally, the transfer learning results as well as the final testing data is presented.

Poor - Not Poor Classifier

The XGB classifier used as part of the preprocessing was not optimized in a

grid search. Therefore, it is possible that more accurate classification results

could be obtained by optimizing the hyperparameters of this model. However,

the accuracy in the testing and training set were satisfactory for the purpose of

this study. Additionally, the regions of interest in Africa remain the same, thus
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one could always use historical poverty estimates instead of a classifier for this

step. However, the purpose of this work was to estimate poverty without any

historical poverty data, which is why this framework was used. The XGB

model was trained on 80% of the data from 2015 and 2018 and tested on the

remaining 20%. The average accuracy score during training was 92% (1%),

and during testing the model predictions resulted in accuracy scores of 87%

(1%). The results were obtained by using 5-fold cross validated testing scores

which allows the additional calculation of an approximated standard deviation

of the accuracy metric.

The small drop in prediction accuracy of the classifier in the testing set

compared to the training set indicates a minor overfit. However, in this case

this is not further concerning, since the accuracy in the testing set at 87% with

1% standard deviation indicates a good model fit, nonetheless. Additionally,

the feature importance was analyzed, which can be seen in figure 11a.

(a) Feature Importance
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Figure 11. Feature importance and contribution for the XGB Classifier used in

preprocessing.

The figure shows that the importance for the nighttime lights (VIIRS mean and

minimum) are quite high compared to the other variables. This was expected,

since Xie et al. (2015) has found that nighttime lights correlate well with
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poverty. For further analysis, shapley values were used to analyze feature

contribution in further detail (Lundberg & Lee, 2017).

Figure 11b shows the impact on model output depending on the value of the

most important features. This so called beeswarm plot helps us better

understand the estimated poverty rates, since the contribution of the most

important features are visualized. Figure 11b shows that the feature values for

the nighttime lights mean, and minima contribute to the model output in a

similar way. For small feature values, the model usually produces high poverty

estimates. This seems intuitive, since we have seen in figure 10 that the

nighttime lights and poverty are negatively correlated. However, there are

additional conclusions that we can draw from the analysis of the feature

contribution. The first conclusion is that the relative size of the feature doesn’t

always correlate with the model output. A good example for this is the

minimum value for the global friction surface (GFSmin), for which high and

low feature values can have both, a positive and negative impact on the model

output.

Initial Training

The test set results after initial base model training are presented in this section.

This means, that these models are estimating poverty on various admin levels

and are not meant for final poverty estimation. Instead, these models form the

basis for the later models, where the model parameters are optimized in order

produce stable and reasonable results on a certain administrative level. First,

the R2 values and mean normalized absolute relative percentage difference

(mabsRPD) were calculated. The following figure shows the resulting values

for all models built in this step. The numeric results used to produce figure 12

can also be found in appendix 5, table 16.

Three different types of models were built for this study. First, a set of "direct"

models, which do not use the information from the classification in the

preprocessing. This means that those models have the largest training set size,
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Initial Training Results
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Figure 12. Summary of Test Set Results after Initial Training. Top: Bar Graph

of all R2 Values. Bottom: Bar Graph of Corresponding mean absolute relative

percentage Error.

but it was found that they don’t perform well for data in other years. The

second type of model uses the information from the classifier and therefore the

training set is about 50% compared to the first model type. The last models

built were stacked ensemble models.

They use the estimated poverty values from the 5 distinct models of the second

type as input and don’t rely on the features as inputs, which means they have

again about 50% of the training samples compared to the first model type, but

they have less input features as well. It was found that those stacked models

perform quite well for unseen data. From figure 12 we can conclude that

Bayesian Ridge Regression (BRR) performs worse compared to all other

models under investigation. Additionally, it was observed that the other models

KRR, SVR, XGR and the ANN perform similar in their respective category,

meaning that the performance of the models is similar for the same data.

Looking at the mean absolute relative percentage error (mabsRPD) a trend

following to the poverty level under investigation was found. This makes sense

because of the distribution of poverty rates depending on the level which is
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shown in figure 8. Those distributions have the effect that the relative error for

a poverty rate at a lower income is bigger than the relative error for a poverty

rate at a higher income for the same distribution of absolute errors. Therefore,

the observed trend in the mean absolute relative percentage difference is not

further concerning. Another trend is observed regarding the R2 values. While

R2 for direct model increases with a higher income threshold for poverty

classification, there is no clear trend like that for the remaining model

frameworks. Although direct models seem to have an overall higher R2 value

compared to the other model types, the mabsRPD is not significantly smaller

than for the other models. The main takeaway from figure 12 are that direct

models with the largest training set size perform better compared to ensemble

methods on a test set for the same year and that BRR is performing worse

compared to the other models.

Admin 1 Specialization and Transfer Learning

The resulting models from the initial training were not ultimately used to

estimate poverty for future years of interest. Instead, they were used as an

initial guess to build specialized models which are only compatible with data

from a certain administrative level. This makes the training data more uniform

and ideally allows the model to find a better set of parameters for poverty

estimation on that income and administrative level. In this chapter, we are

analyzing the results for the admin level 1 specialization, which is optimized to

estimate poverty at the first level of local administration.

Looking at figure 13 different trends compared to figure 12 are observed.

Contrary to before, the direct models do not clearly outperform the other

models, although they have the largest training set available. The stacked and

direct ANN, the XGB Regression and the Kernel Ridge regression show

comparably high R2 values and comparably low mapsRPD which indicates a

good model performance and reliability. Interestingly, the direct models for the

admin level 1 estimations have lower average R2 values and higher average
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Admin 1 Specialization Results
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Figure 13. Summary of Test Set Results after Transfer Learning from Initial

Training to Admin Level 1. Top: Bar Graph of all R2 Values. Bottom: Bar

Graph of corresponding mean absolute relative percentage error.

mabsPRD values compared to the results on the mixed data. Similar to before,

the BRR model does not seem to be adequate for this type of data. On the other

hand, the kernel ridge regression using classification information as well as the

XGB model and the stacked models performed quite well.

Admin 2 Specialization and Transfer Learning

After building models for poverty estimation at the admin 1 level it was

decided to try a similar procedure for the admin 2 level. It was expected that

these models would have lower accuracy and higher errors compared to before,

which is mainly due to the lack of available training data and the fact that the

average size of a region is now much smaller compared to the initial training

data.

In figure 14 a similar situation to the one in figure 12 was observed. The direct

models apart from the BRR algorithm outperform all others, but the trends in

R2 values indicate a lot of bias for poverty estimates at high income levels.

This means that future estimations with these models could be unstable or even

unusable. To test that, we look at the resulting poverty rates for data obtained
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Admin 2 Specialization Results
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Figure 14. Summary of Test Set Results after Transfer Learning from Initial

Training to Admin Level 2. Top: Bar Graph of all R2 Values. Bottom: Bar

Graph of corresponding mean absolute relative percentage error.

from 2019, while it was assumed that the poverty rate has not changed from

2018 to 2019. This allows analysis evaluation of the models identical to the

training steps.

Testing Results

The previous chapter summarized testing set results during training, this

chapter summarizes results for the year 2019. This data is used exclusively to

estimate poverty for testing. The evaluation was done assuming that poverty

rates have not changed from 2018 to 2019.

World Bank Format 2019

The first testing set has an identical format to the table obtained by World Bank

for the year 2018 which was used in training. However, the feature values in

this set correspond to the year 2019, meaning the models have not yet been

exposed to this data.

As seen in figure 15, the overall model performance is quite high for all models

except for algorithms using Bayesian ridge regression. Interestingly, the R2
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Testing Results for Mixed Format in 2019
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Figure 15. Results for table in mixed format using initially trained model with

data from 2019. Top: Bar Graph of all R2 Values. Bottom: Bar Graph of

corresponding mean absolute relative percentage error.

values for the direct models are similar to figure 12, while the other models

actually perform better than in the testing set used during training. This can be

explained by the similar data structure in this feature set, since it uses the exact

format to 2018. For some models, like neural networks and boosted trees,

eliminating over-fitting is basically impossible. Instead, the cross validation

finds a model that is usually generalizing well but fits the training data still

better than the testing set. This can explain the unexpectedly high performance

of all models on this data set.

Admin 1 Format 2019

This set of data contains feature values corresponding to all administrative

regions on the first admin level in Africa for the year 2019. The data was

evaluated by comparing it to values from 2018, where data was aggregated

when necessary. The aggregation was done according to the following formula,

AggregatedRate =
N

∑
i=0

Ratei ∗PopulationSumi

∑
N
i=0 PopulationSumi

, (3)
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where N is the amount of subregions for which a poverty rate is available, i is a

running index, the Ratei is the estimated poverty rate from the model, and the

PopulationSumi is the sum of population obtained from GEE, which relies on

estimated population densities in a 100 x 100m square grid. The use of these

population sums is not optimal, as it was found that the accuracy of the data

does not correspond 100% with population data from census data. This adds

another possible source of error and should definitely be considered in future

work.

For these models a similar performance compared to the mixed models was

expected. The World Bank has put in a lot of effort to provide high resolution

poverty maps, which is why there is an increasing amount of admin level 1 and

2 poverty estimates in every new publication. Considering the input data

analysis from appendix 2, 3, and 4, we can observe that the data for

administrative level 1 only differs a little bit from the mixed data used for initial

model training. This indicates that the "average sample" is not much different

to before, which should allow quite accurate poverty estimations for this data.

Testing Result for Admin 1 Format in 2019
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Figure 16. Results for admin level 1 specialized models for 2019 data. Top:

Bar Graph of all R2 Values. Bottom: Bar Graph of corresponding mean

absolute relative percentage error.
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As seen in figure 16, the situation is a little different compared to figure 15.

The direct models are not as accurate as for the mixed data, whereas the

models using the information from the classifier perform better, as well as the

stacked models which use poverty estimates from the latter models to build

their final prediction. Similar to all previous cases, the Bayesian ridge model

does not perform as well as the other models, indicating that linear models are

simply not able to capture the complex relationships required for poverty

estimation without any poverty data. Another detail to point out is the R2 value

for the stacked models. Similar to figure 15, the stacked models have higher R2

values than any of the models it relies upon for its predictions. This is a

testament to the approach of ensemble models, since these stacked models are

very basic examples thereof. There are well developed ensemble methods

available that are much more stable, better integrated, and more sophisticated

than the two examples used in this study. The fact that developed ensemble

methods outperformed the other models anyway underlines the power and

versatility of these approaches.

Admin 2 Format 2019

This testing set contains exclusively data for regions on the second

administrative level. Most of the training data was available for the first

administrative level, with some data only available on the national level. This

means that there was little to no training data for data on the admin 2 available.

Additionally, considering the information from the input data analysis in

appendix 3, it becomes evident that the administrative level has a significant

impact on the average value of a feature.

Figure 17 shows that the overall accuracy is not as high compared the previous

two cases. For the direct Bayesian ridge model, the R2 values were negative.

This means that predicting the average poverty rate would be a more accurate

estimation model and underlines earlier conclusions that Bayesian ridge

regression is not suited for this kind of regression problem. On the other hand,
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Testing Results for Admin 2 Format in 2019
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Figure 17. Results for admin level 2 specialized models for 2019 data. Top:

Bar Graph of all R2 Values. Bottom: Bar Graph of corresponding mean

absolute relative percentage error.

the ensemble methods as well as the kernel ridge regression still have quite

high R2 values, but their mabsRPD are also large. Contrary to the previous

cases, the errors now follow an opposed trend, with the largest errors for the

poverty rate at a daily income of $5.50, which could be caused by the skewed

distribution of those target values which was shown in figure 8.

Optimized Parameters and Feature Importance

This chapter summarizes the optimized model parameters and structures which

were obtained in an automated grid search in the training step. Additionally,

the individual feature importance as well as the contribution to the output value

are visualized using the python module shap. The feature importance in shap is

calculated by analyzing the change of model output if a feature input is missing

and are presented as shapley values (Lundberg & Lee, 2017).

45



Kernel Ridge Regression

The first model under investigation is the kernel ridge regression. As observed

in figure 18 in the right column, the kernel functions allow this regression

model to develop nonlinear interactions to produce the final estimation value.

(a) Feature Importance at $1.90
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(c) Feature Importance at $3.20
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(e) Feature Importance at $5.50
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Figure 18. Feature Contribution and Importance for the KRR Models

The most important features are the famine early warning system, the barren

land cover and the global human modification index. These are different

observations made compared to the XGB classifier analysis regarding figure

11, where the most important features were the nighttime lights (VIIRS)

followed by the crops land cover and the famine early warning system.

Although the features contribute to the final estimation value in a different way

compared to the XGB classifier, the important features are still reasonable and

it is expected that the model is able to estimate poverty well and produce stable

estimations for data from a different year.

The found parameters in the grid search are summarized in table 9 below.

Table 9. The optimized parameters found in the grid search specified in table

3.

Kernel Ridge Regression

Poverty Level Kernel Regularization Gamma

$1.90 rbf 0.024 4.92

$3.20 rbf 0.024 4.92

$5.50 rbf 0.0028 1.70
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As can be seen in table 9, all models have chosen the radial basis function (rbf)

as a kernel function. The rbf kernel requires the parameter gamma to be

specified, which resulted in quite high values compared to the default value

which would be the inverse of the feature size.

The first two poverty levels lead to an identical model structure, while the

model for the poverty level at $5.50 per day has a lower regularization and a

lower gamma value compared to the previous two. The lower regularization

can also be observed in 18e. Compared to the other feature importance plots,

the most important feature carries more weight compared to the following

features. This could indicate an over-fit for this model, most likely caused by

the skewed distribution of target values. This is further supported in the

appendix 6 (figure 32), where the residual plots are presented, and a cone shape

can be observed.

Bayesian Ridge Regression

Next, the BRR model was analyzed. The previous results have shown that the

Bayesian ridge regression is not able to produce accurate poverty estimates

from the chosen features. Since BRR is essentially a linear regression with

some additional tweaks, it can be concurred that a linear model is not

well-suited for this problem. Although the models with this algorithm don’t

perform particularly well, the individual feature importance correlates well

compared to other models. This is another indicator that linear models are not

able to capture the full complexity of the relationships between inputs and

target values.
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(a) Feature Importance at $1.90
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(c) Feature Importance at $3.20
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(e) Feature Importance at $5.50
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(f) Feature Contribution at $5.50

0.2 0.1 0.0 0.1 0.2
SHAP value (impact on model output)

SMD_mean

POL_max

VIIRS_mean

GFS_min

FEW_min

Pop_mean

SMD_max

LCB_SD

LCB_mean

SMD_min

GFS_mean

LCT_SD

LCG_mean

GHM_min

FEW_mean

LCC_mean

POL_mean

LCU_mean

GHM_mean

FEW_max

Low

High

Fe
at

ur
e 

va
lu

e

Figure 19. Feature Contribution and Importance for the BRR Models

As seen in figure 19, the Bayesian ridge regression only allows linear

correlations between target values and features. This can be easily observed in

the feature contribution plots on the previous page, where the feature value

49



always correlates either positively or negatively with the shapley value, which

is used as an estimate for the impact on the model output.

Table 10 below summarizes the optimized parameters found in the grid search.

Table 10. The optimized parameters found in the grid search specified in table

4.

Bayesian Ridge Regression

Poverty Level Alpha 1 Alpha 2 Lambda 1 Lambda 2

$1.90 1.00E-10 1000 1000 1000

$3.20 1000 1000 1.00E-10 0.56

$5.50 1000 1000 1.00E-10 0.56

XGB Regression

The third model under investigation is the regressor built with the XGBoost

framework. It is the only model using gradient boosting trees for its poverty

estimation, and as for the classifier used in preprocessing the nighttime light

intensity is the most important feature for this model. For no other framework

was the VIIRS data of such great importance. Additionally, the global friction

surface (GFS), which is used as an estimate for land travel speed, is of higher

importance compared to other models. Although the important features seem

reasonable, the high importance of the average VIIRS value is concerning,

especially in figure 20a. In general, like all other models except BRR, nonlinear

feature contributions are observed in the right column in the following figure.
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(a) Feature Importance at $1.90
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(c) Feature Importance at $3.20
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(e) Feature Importance at $5.50
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Figure 20. Feature Contribution and Importance for the XGR Models

In figure 20 we observe similar trends as for the classifier. As observed

previously in figure11a, the nighttime lights data is a very important feature for

the XGBoost models. Like other models, the famine early warning data as well
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as the land cover information also show a comparably large feature importance.

The most important parameters found in the grid search for the XGBoost

Table 11. The optimized parameters found in the grid search specified in table

6.

XGB Regression

Poverty Level Eta Gamma Child Weight Max Depth

$1.90 0.5 0 10 5

$3.20 0.1 0 5 5

$5.50 0.1 0.001 5 5

regressor are summarized in table 11. Surprisingly, the optimized parameter do

not restrict the model much. Only the child weight hyper parameter stands out

as a regularizing force.

Support Vector Regression

The support vector regression is similar to the kernel ridge regression, as they

both rely on kernel functions that allow them to solve problems in higher

dimensions. Like all models except XGB, the VIIRS data is important, but not

found at the top of the list. Instead, other environmental data, especially the

land cover values (barren, tree, crops, and grass) and the famine early warning

data is again of high importance. Interestingly, this is the only model where the

three most important features are consistent along the three poverty rates which

the models were evaluated upon.

52



(a) Feature Importance at $1.90
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(c) Feature Importance at $3.20
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(e) Feature Importance at $5.50
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Figure 21. Feature Contribution and Importance for the SVR Models

Figure 21 shows how the first model has a wider distribution of the feature

importance compared to the other two. However, contrary to the example for

KRR in figure 18e, this is not caused by the different selection of
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hyperparameters in the grid search. As we can see in the following table, the

grid search resulted in equal parameters for all three models.

Table 12. The optimized parameters found in the grid search specified in table

5.

SVM Regression

Poverty Level Kernel Gamma Regularization Strength

$1.90 rbf scale 65

$3.20 rbf scale 65

$5.50 rbf scale 65

Artificial Neural Net Regression

The last model under investigation is inherently different from all previous

ones. For artificial neural networks, the calculation of feature importance and

contribution is something that can usually only be done numerically. Since

solutions that offer this have only become available recently, this is something

quite new. However, the shap package which was also used for the previous

models supports TensorFlow as well, which makes the analysis consistent

along all frameworks.

In figure 22 on the following page, the nighttime lights, the land cover features

as well as the famine early warning system are the dominant features for the

neural networks used for poverty estimations at the three distinct levels

analyzed in this work. It is good to see that the no single feature dominates the

estimated value alone and that the important features are somewhat consistent

to ones found in earlier models.
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(a) Feature Importance at $1.90
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(c) Feature Importance at $3.20
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(e) Feature Importance at $5.50
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Figure 22. Feature Contribution and Importance for the ANN Models

The following table summarizes the neural networks developed with the model

building function in a grid search like setting.
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Table 13. The optimized parameters found in the grid search from table 7.

Artificial Neural Net Regression

Poverty Level Layers Regularization Dropouts Activation Function

$1.90 2 yes 1,2 sigmoid

$3.20 2 yes 2 sigmoid

$5.50 2 yes None sigmoid

The optimization lead to models that all use some regularization in at least one

of their layers. This limits over-fitting and allows ANNs to make accurate

predictions although the parameter size is similar and sometimes even larger

than the amount of training samples. An additional feature that the grid search

is taking advantage of is dropout layers. Like weight regularization, they limit

over-fitting. However, they do so by blending out a part of inputs within the

neural network during training, which limits over-fitting by forcing a level of

generalization. The value in the column for dropouts stands for those layers

which use a dropout function during training. All neural networks have a

sigmoid activation function in their last layer, which is intrinsically limited

between 0 and 1, which is the same range as the poverty rates. In appendix 6,

figure 42, this has an effect on the shape of the residuals. For more information

about the model structure, please refer to appendix 7, where a complete model

summary is presented.
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Conclusions

Summary

In this research, five different classes of algorithms have been tested in hope to

find an adequate model framework that is able to accurately estimate poverty

on a large area of interest to contribute to future poverty mapping approaches.

For this purpose, a vast amount of data was extracted from different sources

through the Google earth engine (GEE). The data was extracted in tables where

each row contained distinct region of interest. This region can be a country

(admin 0), a state or province (admin 1) or a county (admin 2). In the columns,

the input variables were collected, which were aggregated using GEE’s built-in

functions for this purpose. Since this data contained information from different

sources and corresponds to different sized regions a lot of effort was put into

finding an adequate method of preprocessing. It was found that normalization

and other nonlinear transformations react sensitive to changes caused by the

investigation of different administrative levels. Therefore, it was decided to

implement minimum - maximum scaling to limit all data between 0 and 1. The

poverty rates were already limited within this range, which is why they were

excluded from any preprocessing. However, especially the distribution of

poverty rates at the income level of $5.50 a day is heavily skewed to the left in

Africa. This issue was left unaddressed in this study, since the other two

poverty rates which models were developed for showed nearly uniform

distributions across the whole training data and finding a way to generalize the

transformation of poverty rates across the different levels of administration was

found to be difficult.

After some initial testing it was found that the likelihood of over-fits is high.

Therefore, an extensive grid search using 5-fold cross validation was

performed during training to find a good set of model hyper parameters. An

additional factor for over-fitting in the first few tests was the high number of

input features, which lead to complicated models with a lot of parameters. This
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allowed the models to over-fit although they were trained using cross validated

scores. Therefore, the feature size was reduced. Unfortunately, no solution was

found to perform and generalize recursive or parallel feature selection for all

models.

Initially, the idea was to use the first N principle components found during

training as input features. However, it was found that the parameters required

for the transformation which are determined during training react sensitive to

changes in levels of administration and time. This meant that the information

from this analysis was only used to estimate the required number of features

for this study. The resulting value depends on the poverty level under

investigation, generally speaking about 25 principle components explain

around 99% of the variance in the data.

Therefore, a correlation analysis was performed to determine the level of

correlation in the input features. Some interesting patterns were found, and an

algorithm was chosen to select a set of relatively uncorrelated features from the

possible feature set. This resulted in 29 features, which were used as input

variables for the finally developed models. After initial testing it was found

that linear and stepwise regression is not suited for this method of poverty

estimation. It was concluded that more advanced frameworks are necessary to

provide accurate estimations.

Therefore, the model selection was based on commonly implemented advanced

regression methods which were thought to be better suited for this problem.

Kernel ridge regression, Bayesian ridge regression and support vector

regression frameworks for python have been obtained by sklearn (Pedregosa et

al., 2011). Additionally, the TensorFlow environment and keras was used to

build artificial neural networks (Abadi et al., 2015) and (Chollet et al., 2015).

Finally, the xgboost framework provided gradient boosted decision tree

ensembles which were used to build a classifier used in preprocessing and

different regression models at the three poverty levels (Chen & Guestrin,
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2016). The models were initially trained on data containing different levels of

administration, followed by a transfer learning step in hopes to make the

models more accurate for predictions with more uniform input data.

Discussion

In general, Bayesian ridge regression is not suited for poverty estimation with

this kind of data. Although a lot of effort was put into finding unbiased

parameters, the model tended to under-fit and simply predicted around the

average poverty rate in the data. Additionally, it was the only model to produce

negative R2 values in the testing set, meaning that predicting the average value

would be a better method. This indicates that linear models are simply not

suited for poverty estimation at pre-defined administrative levels with this type

of data.

The remaining frameworks, namely the kernel ridge regression, the support

vector regression, the xgboost regressor and the neural net produced much

more accurate results with smaller errors and were overall comparable to each

other. Surprisingly, the developed ensemble models did not perform well in the

training set but after transfer learning exceeded the scores of the remaining

models during testing. Intuitively this makes sense, since one can imagine that

many estimations will balance each other out and reduce the error, however the

ensemble methods sometimes exceeded accuracy of the models they use as

inputs, which is truly fascinating.

Another interesting pattern was observed regarding the use of classifiers in the

preprocessing. While models that use classification in their preprocessing

performed worse in the training set compared to models that did not, they

performed better on average in the testing set. The classification was used to

separate the "poor" areas from the "not poor" areas, which apparently reduced

over-fitting since the accuracy increased during testing, but was lower during

training.
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Overall, no single model exceeded the performance of all others. However, the

xgboost framework and kernel ridge regression performed very well with very

little modification. Developing a neural network is more challenging and

complicated compared to the previous models, and analysis is usually

troublesome. Nowadays there are solutions to these limitations and adequate

models can be developed fast and subsequently analyzed. Except for the

ensemble method based on a neural network, the other ANNs performed

similar to the support vector regression implemented in this study. Those two

types of models produced lower R2 values compared to XGB and KRR, but

still adequate results which support further investigation.

In conclusion, it was found that ensemble methods perform better on average

than simple model frameworks when using regression approaches for poverty

estimation with aggregated values at the level of interest. Furthermore, models

with R2 values of 0.7 and higher were obtained in the testing set for the first

level of administration for all models except BRR. This means that those

models can be used to estimate poverty without any poverty data as inputs with

quite high accuracy considering that this is not a scientific problem.

Nonetheless, for accurate poverty maps more sophisticated models and

approaches are required.

Poverty Maps

Generated poverty maps can be easily compared visually to maps generated

with historical values. This allows a visual analysis of the poverty estimates

which can be calculated with any of the models developed in this study. For

comparison, only the stacked neural network is analyzed and compared to

literature values from the year 2018:
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(a) Poverty Map with Literature Values

from 2018

Poverty Rate at $1.90 per Day (%)
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Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright)., CartoDB

(b) Poverty Map with Estimated Values for

2019

Poverty Rate at $1.90 per Day (%)

0.0 0.2 0.3 0.4 0.6 0.7 0.8

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright)., CartoDB

Figure 23. Comparison of poverty maps with historical values (23a) and

estimated values (23b).

The two figures above do not appear much different from each other. The

overall distribution of poverty seems similar, which is a good indicator for the

model performance. A similar performance was observed for a data set

containing exclusively admin 1 regions:
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Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright)., CartoDB

Figure 24. Estimated poverty rates at the $1.90 level for the year 2019 for

regions of the first administrative level.

Fortunately, the distribution of poverty rates still appears similar to the

literature data. Compared to before, the amount of samples has increased from

556 to 746. Nonetheless, the model performance is very similar.

The analysis for results at the second administrative level is not so

straightforward:
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Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright)., CartoDB

Figure 25. Estimated poverty rates at the $1.90 level for the year 2019 for

regions of the second administrative level.

It was observed that the size of the administrative regions at the second level is

more heterogeneous compared to the first administrative level. For example,

Tunisia, located in northern Africa, is characterized by very small areas at this

resolution, especially when compared to regions that are comparably large, like

those found in Libya. The overall smaller area of each sample increased the

sample size dramatically from 556 to 6364. Nonetheless, the poverty estimates

still follow a similar distribution compared to the example from literature. This

indicates that at least for the stacked neural network, the found parameters are

useful for poverty estimation where there is a lack of data. Nonetheless, there
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are also multiple limitations to this approach.

Limitations

The approach of using aggregated values of remote-sensing data in this work is

much less data intensive compared to most current poverty mapping

approaches which focus mainly on machine learning assisted small area

estimation techniques. The lack of standardization regarding the extracted

feature values also poses a serious limitation. The areas for which features

were extracted are not the same size, which obviously has an effect on the

aggregated feature values. This lack of standardization limited the possibilities

for data preparation and preprocessing in this study. Instead, extraction and

model development should ideally be based on aggregated values for a

pre-defined grid of equal area size.

Another limitation is the range of availability in time for some features. If all

features were available for each year, a model could be developed taking the

year into consideration as an additional input. In this case this could not be

done, and those features were instead used as a regularizing force, however this

also increases risks of over-fitting and sensitive model parameters.

Furthermore, this analysis focused on Africa and was never tested in other

regions of the world. I suspect that certain features, like the famine early

warning system, have a significant importance in Africa, but might not carry as

much weight in models developed for regions where poverty and famine are

less of an issue.

Another limitation was the lack of training data for data at the second level of

local administration. Detailed poverty information is still difficult to obtain,

especially if the area of interest is large. This meant that the models which

were exposed to the largest testing set had the smallest training size.

Finally, the inaccuracy of the population data used to calculate poverty rates for

regions where data was available added another source of error. Although
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implemented consistently, it would be better to work with population data from

a different source.

Global Justice and Ethical Considerations

Global poverty is a significant challenge in maintaining global justice. Poverty

rates have mainly decreased in the past, however there are indications that the

consequences of Covid-19 have reversed some of the progress. Additionally,

the effectiveness of poverty reducing efforts have been uneven. For these

reasons, it is estimated that about 10% of the world’s population lives in

extreme poverty on less than $1.90 a day. This work aims to explore additional

approaches to locate affected areas to formulate effective measures with

today’s possibilities. The data used in this work is freely available and does not

contain any sensitive information. The model results should be treated as such,

and not be mistaken as poverty estimates. The objective of this study was to

contribute to future approaches of poverty estimation and to assist locating

affected areas, so the people can be helped effectively.

Recommendations and Future Work

As suggested in the previous chapter, I strongly suggest development of a

similar model framework for predefined grids of a much smaller size than the

resolution of the poverty map itself. This allows a bottom-up approach, which

is much less data intensive than most current machine learning assisted small

area estimation techniques, but more data intensive compared to the larger

aggregations and top-down approach implemented in this study.

I suggest labeling the areas in the grid with the corresponding identifiers for

later aggregation to an administrative region of which a reliable poverty rate is

available. This simplifies later aggregation steps and will make model

evaluation much easier.

Relying on smaller grids of equal size also allows more sophisticated

techniques during preprocessing. Increasing the level of standardization
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simplifies transformations and other operations with the data which ultimately

makes development of reliable models much easier. Additionally, this should

decrease the risk of sensitive model parameters. Cleaner data and a high level

of standardization is possibly the first step to a generally applicable poverty

mapping solution that can be easily implemented and distributed.

For this purpose, some training data at the grid level would be helpful. This

data can then be used to either train the model initially and use transfer learning

approaches to build a model that is generally applicable, or the estimations at

the grid level can be used to benchmark and test the developed models.

For a generally applicable small area estimation method, I suggest investigating

whether convolutional neural networks similar to the ones used by Xie et al.

(2015) and Jean et al. (2016) could be expanded to account for additional

inputs that aren’t available at the pixel level. This approach has been described

by Rosebrock (2021) and seems very promising to improve current poverty

mapping processes in general, but especially small area estimation methods,

since they rely heavily on convolutional neural networks to analyze satellite

image data. The increased amount of computational power should not pose a

significant limitation, since the image analysis itself is very costly already. The

additional high-quality data could be useful to develop a model framework that

is not limited to a small geographical area but can be used on a global scale.
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Appendices

Appendix 1: Variable Description

The following pages summarize the variables in tabular format with links to the

respective providers. For all variables, the minima, maxima, mean, and the sum

was extracted. Only the population sum was used, and the landcover minima

and maxima values were also removed from the data. This left 41 possible

input features for the models.

The variable extraction process was repeated for each year and resolution

(admin level) of interest. One extraction from GEE results in a csv file for

every variable, which contains the aggregated statistics previously mentioned.

This means that 12 csv files were obtained for every year, which were then

combined to a single table for simpler handling.

The limited availability of high quality data sets for the whole region and

time-frame of interest was a serious limitation. Nonetheless, the developed

models showed an acceptable accuracy even with those limitations.
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Abb. Full Name Provider EE Name Date Start Date End comment 

VIIRS Visible 
Infrared 
Imaging 
Radiometer 
Suite (VIIRS) 
Day/Night 
Band (DNB) 

Earth Observation 
Group, Payne Institute 
for Public Policy, 
Colorado School of 
Mines  

ee.ImageCollection("NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG") 2014-01-
01T00:00:00 

2020-12-
01T00:00:00 

 

Pop WorldPop 
Global 
Project 
Population 
Data: 
Estimated 
Residential 
Population 
per 
100x100m 
Grid Square 

WorldPop  ee.ImageCollection("WorldPop/GP/100m/pop") 2000-01-
01T00:00:00 

2021-01-
01T00:00:00 

 

POL Sentinel-5P 
NRTI NO2: 
Near Real-
Time 
Nitrogen 
Dioxide 

European 
Union/ESA/Copernicus  

ee.ImageCollection("COPERNICUS/S5P/NRTI/L3_NO2") 2018-07-
10T10:05:44 

2021-04-
21T00:00:00 

Since 
2018 

LCT Copernicus 
Global Land 
Cover Layers: 
CGLS-LC100 
collection 3 
Tree 

Copernicus  ee.ImageCollection("COPERNICUS/Landcover/100m/Proba-V-
C3/Global") 

2015-01-
01T00:00:00 

2019-12-
31T00:00:00 

 



LCU Copernicus 
Global Land 
Cover Layers: 
CGLS-LC100 
collection 4 
Urban 

Copernicus  ee.ImageCollection("COPERNICUS/Landcover/100m/Proba-V-
C3/Global") 

2015-01-
01T00:00:01 

2019-12-
31T00:00:01 

 

LCG Copernicus 
Global Land 
Cover Layers: 
CGLS-LC100 
collection 5 
Grass 

Copernicus  ee.ImageCollection("COPERNICUS/Landcover/100m/Proba-V-
C3/Global") 

2015-01-
01T00:00:02 

2019-12-
31T00:00:02 

 

LCS Copernicus 
Global Land 
Cover Layers: 
CGLS-LC100 
collection 6 
Shrubs 

Copernicus  ee.ImageCollection("COPERNICUS/Landcover/100m/Proba-V-
C3/Global") 

2015-01-
01T00:00:03 

2019-12-
31T00:00:03 

 

LCC Copernicus 
Global Land 
Cover Layers: 
CGLS-LC100 
collection 7 
Crops 

Copernicus  ee.ImageCollection("COPERNICUS/Landcover/100m/Proba-V-
C3/Global") 

2015-01-
01T00:00:04 

2019-12-
31T00:00:04 

 

LCB Copernicus 
Global Land 
Cover Layers: 
CGLS-LC100 
collection 8 
Bare 

Copernicus  ee.ImageCollection("COPERNICUS/Landcover/100m/Proba-V-
C3/Global") 

2015-01-
01T00:00:05 

2019-12-
31T00:00:05 

 

GHM CSP gHM: 
Global 

Conservation Science 
Partners  

ee.ImageCollection("CSP/HM/GlobalHumanModification") 2016-01-
01T00:00:00 

2016-12-
31T00:00:00 

single 
image 



Human 
Modification 

FEW FLDAS: 
Famine Early 
Warning 
Systems 
Network 
(FEWS NET) 
Land Data 
Assimilation 
System 

NASA GES DISC at 
NASA Goddard Space 
Flight Center  

ee.ImageCollection("NASA/FLDAS/NOAH01/C/GL/M/V001") 1982-01-
01T00:00:00 

2021-03-
01T00:00:00 

 

SMD TerraClimate: 
Monthly 
Climate and 
Climatic 
Water 
Balance for 
Global 
Terrestrial 
Surfaces, 
University of 
Idaho 

University of California 
Merced  

ee.ImageCollection("IDAHO_EPSCOR/TERRACLIMATE") 1958-01-
01T00:00:00 

2020-12-
01T00:00:00 

 

GFS Global 
Friction 
Surface 2019 

Malaria Atlas ee.Image("Oxford/MAP/friction_surface_2019") 2019-01-
01T00:00:00 
-  

2020-01-
01T00:00:00 

 

 



Appendix 2: Feature Dependence on Admin Level

The following table shows the change of feature values depending on the

administrative level averaged over all years.

Feature Admin Level Mean Median St. Dev St. Dev (%)

Poor190

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -15.8% -23.1% 4.4% 24.0%

Admin 2 -30.2% -39.9% 10.3% 58.0%

Poor320

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -12.2% -11.4% 19.1% 35.7%

Admin 2 -28.3% -25.7% 39.9% 95.2%

Poor550

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -7.8% -3.2% 39.0% 50.7%

Admin 2 -20.6% -10.5% 74.5% 119.9%

VIIRS_min

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 195.6% 948.9% -53.4% -84.2%

Admin 2 1453.1% 1797.7% 756.6% -44.8%

VIIRS_max

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 39.6% 29.4% 25.1% -10.4%

Admin 2 -68.2% -59.7% -54.5% 43.3%

VIIRS_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 30.9% 94.3% 10.1% -15.9%

Admin 2 147.1% 127.3% 141.4% -2.3%

VIIRS_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 60.1% 13.2% 89.8% 18.6%

Admin 2 37.0% 5.6% 144.0% 78.2%

Pop_min

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -32.0% 31.3% -20.2% 17.3%

Admin 2 197.3% 703.1% 205.4% 2.7%
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Pop_max

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -5.6% 24.9% -16.5% -11.5%

Admin 2 -67.7% -58.4% -71.6% -12.0%

Pop_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -8.5% -7.1% -0.7% 8.5%

Admin 2 42.4% 47.2% 115.0% 51.0%

Pop_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 1.5% -3.3% 4.6% 3.1%

Admin 2 -21.0% -18.2% -16.4% 5.9%

Pop_sum

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 2.0% 22.8% -18.9% -20.5%

Admin 2 -90.7% -92.2% -88.9% 19.5%

GHM_min

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 1.5% 16.7% -6.1% -7.5%

Admin 2 168.5% 337.7% 61.0% -40.1%

GHM_max

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 2.1% 2.3% -11.7% -13.5%

Admin 2 -11.7% -11.5% 34.7% 52.5%

GHM_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 1.5% -0.1% 5.5% 3.9%

Admin 2 30.0% 49.2% 15.2% -11.4%

GHM_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -0.8% -0.5% 0.8% 1.6%

Admin 2 -27.1% -31.5% -5.1% 30.2%

GFS_min

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -2.9% -11.1% -15.5% -13.0%

Admin 2 18.6% 33.3% 116.8% 82.7%

GFS_max

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -0.8% 1.9% -6.7% -6.0%
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Admin 2 -40.7% -24.6% -42.8% -3.4%

GFS_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 5.3% 2.4% -3.0% -7.8%

Admin 2 -9.7% -7.8% 3.4% 14.5%

GFS_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -3.1% -1.4% -11.2% -8.4%

Admin 2 -7.1% -2.3% -0.6% 6.9%

FEW_min

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -11.4% -24.8% -4.4% 7.9%

Admin 2 42.3% 127.0% -4.2% -32.7%

FEW_max

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -2.3% -3.5% 0.6% 3.0%

Admin 2 -18.6% -25.4% -1.9% 20.6%

FEW_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -2.4% -5.7% -0.2% 2.2%

Admin 2 -6.9% -15.2% -4.5% 2.5%

FEW_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 0.6% 4.2% -2.8% -3.4%

Admin 2 -49.0% -66.2% -7.2% 81.8%

POL_min

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 4.6% 2.3% 9.5% 4.7%

Admin 2 58.9% 34.4% 123.0% 40.3%

POL_max

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 8.3% 6.5% 2.1% -5.8%

Admin 2 -9.7% -9.0% -30.6% -23.1%

POL_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 6.8% 3.5% 24.7% 16.7%

Admin 2 27.1% 17.6% 77.0% 39.3%

POL_SD

Mixed 0.0% 0.0% 0.0% 0.0%
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Admin 1 17.6% 18.8% 12.9% -4.0%

Admin 2 -34.7% -36.6% -42.2% -11.6%

SMD_min

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 14.7% 21.2% 23.5% -44.9%

Admin 2 50.1% 48.1% -1.4% -97.6%

SMD_max

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 1017.9% 160.5% 31.1% 114.3%

Admin 2 -692.3% -72.8% -3.3% 87.8%

SMD_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 31.1% 41.9% 22.9% -78.3%

Admin 2 35.7% 38.2% 9.9% -70.9%

SMD_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 2.3% 2.6% 9.2% 6.7%

Admin 2 -63.9% -70.3% -43.4% 56.8%

LCB_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 19.2% 22.1% 8.9% -8.6%

Admin 2 3.6% 116.4% -1.3% -4.7%

LCB_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 10.2% 27.8% 2.5% -7.0%

Admin 2 -17.8% 39.9% -27.2% -11.4%

LCC_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 2.1% 2.2% 1.9% -0.2%

Admin 2 34.6% 42.3% 29.1% -4.0%

LCC_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 6.1% 11.4% 4.2% -1.8%

Admin 2 3.8% 8.0% 1.8% -2.0%

LCS_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -3.4% -5.1% -3.1% 0.3%

Admin 2 -8.2% -9.3% -4.7% 3.8%
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LCS_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 0.9% 2.4% 1.5% 0.7%

Admin 2 -7.3% -7.1% 0.9% 8.9%

LCG_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -2.1% -1.6% -1.7% 0.4%

Admin 2 -3.3% -3.2% 2.5% 5.9%

LCG_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -1.1% -0.9% -1.5% -0.4%

Admin 2 -19.3% -17.5% -19.0% 0.4%

LCT_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 0.9% 8.6% 2.7% 1.8%

Admin 2 -13.7% -16.9% -4.3% 10.8%

LCT_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -0.4% -1.5% 1.0% 1.4%

Admin 2 -18.1% -22.9% -11.4% 8.1%

LCU_mean

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -13.6% -9.6% -16.2% -2.9%

Admin 2 31.0% 34.9% 19.0% -9.2%

LCU_SD

Mixed 0.0% 0.0% 0.0% 0.0%

Admin 1 -2.1% -4.8% -2.0% 0.1%

Admin 2 11.7% 13.2% 2.5% -8.3%

Table 14. Table summarizing the change of feature values depending on the

administrative level of the table.
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Appendix 3: Feature Dependence on Time

The following table shows the change of feature values depending on the time

used for feature extraction. As one can see, not all features were available for

all years.

Feature Year Mean Median St. Dev St. Dev (%)

Poor190

2015 0.0% 0.0% 0.0% 0.0%

2018 -5.8% -5.5% 0.2% 410.1%

2019 -5.8% -5.5% 0.2% 410.1%

Poor320

2015 0.0% 0.0% 0.0% 0.0%

2018 -2.7% -3.4% 0.8% 233.8%

2019 -2.7% -3.4% 0.8% 233.8%

Poor550

2015 0.0% 0.0% 0.0% 0.0%

2018 -1.1% -0.5% 2.3% 298.8%

2019 -1.1% -0.5% 2.3% 298.8%

VIIRS_min

2015 0.0% 0.0% 0.0% 0.0%

2018 375.9% 13.9% -26.4% -119694.8%

2019 207.9% 8.5% -25.8% -114150.3%

VIIRS_max

2015 0.0% 0.0% 0.0% 0.0%

2018 -6.4% -271.3% -4825.5% 911.4%

2019 -20.4% -421.0% -16071.9% 2988.3%

VIIRS_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 17.9% 14.1% -29.1% -9671.9%

2019 14.7% 7.9% -25.5% -8338.1%

VIIRS_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 0.7% -5.8% 85.6% 4060.6%

2019 -4.5% -5.7% -24.3% 128.1%

Pop_min

2015 0.0% 0.0% 0.0% 0.0%

2018 -17.6% -0.1% -33.2% -6629.4%
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2019 -13.8% -0.1% -22.6% -2986.0%

Pop_max

2015 0.0% 0.0% 0.0% 0.0%

2018 7.2% 919.0% 2535.6% -946.1%

2019 12.0% 1295.0% 4457.3% -1347.0%

Pop_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 13.2% 11.0% 110.3% -836.5%

2019 16.8% 13.0% 149.1% -818.6%

Pop_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 12.7% 11.3% 264.3% 1758.8%

2019 16.9% 17.2% 323.7% 1791.5%

Pop_sum

2015 0.0% 0.0% 0.0% 0.0%

2018 0.9% 7521945.4% 13185766.0% 546.3%

2019 4.2% 10054172.4% 24913292.5% 554.3%

GHM_min

2015 0.0% 0.0% 0.0% 0.0%

2018 -1.2% 0.0% -0.3% -200.1%

2019 -1.2% 0.0% -0.3% -200.1%

GHM_max

2015 0.0% 0.0% 0.0% 0.0%

2018 -0.3% -1.1% -0.4% -39.7%

2019 -0.3% -1.1% -0.4% -39.7%

GHM_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 1.6% 1.4% 0.1% -55.3%

2019 1.6% 1.4% 0.1% -55.3%

GHM_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 0.3% 0.0% 0.1% 38.0%

2019 0.3% 0.0% 0.1% 38.0%

GFS_min

2015 0.0% 0.0% 0.0% 0.0%

2018 1.0% 0.0% 0.0% 54.2%

2019 1.0% 0.0% 0.0% 54.2%

GFS_max

2015 0.0% 0.0% 0.0% 0.0%
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2018 1.2% 0.1% 0.0% -35.6%

2019 1.2% 0.1% 0.0% -35.6%

GFS_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 -1.8% 0.0% 0.0% 74.4%

2019 -1.8% 0.0% 0.0% 74.4%

GFS_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 -0.1% 0.0% 0.0% -43.3%

2019 -0.1% 0.0% 0.0% -43.3%

FEW_min

2015 0.0% 0.0% 0.0% 0.0%

2018 10.9% 0.0% 0.0% -595.1%

2019 11.9% 0.0% 0.0% -437.7%

FEW_max

2015 0.0% 0.0% 0.0% 0.0%

2018 6.6% 0.0% 0.0% -372.0%

2019 7.5% 0.0% 0.0% -242.5%

FEW_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 7.9% 0.0% 0.0% -369.7%

2019 8.6% 0.0% 0.0% -194.0%

FEW_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 5.7% 0.0% 0.0% -208.5%

2019 7.1% 0.0% 0.0% -102.9%

POL_min

2015 0.0% 0.0% 0.0% 0.0%

2018 -3.8% 0.0% 0.0% 236.8%

2019 -9.3% 0.0% 0.0% 365.9%

POL_max

2015 0.0% 0.0% 0.0% 0.0%

2018 -4.3% 0.0% 0.0% 87.2%

2019 -17.6% 0.0% 0.0% 1470.5%

POL_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 -3.2% 0.0% 0.0% 25.2%

2019 -13.0% 0.0% 0.0% 297.0%
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POL_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 -4.4% 0.0% 0.0% -16.5%

2019 -22.1% 0.0% 0.0% 1873.2%

SMD_min

2015 0.0% 0.0% 0.0% 0.0%

2018 27.3% 104.5% 143.9% -8130.8%

2019 -1.0% 14.1% 148.4% -4077.8%

SMD_max

2015 0.0% 0.0% 0.0% 0.0%

2018 1449.3% 108.8% 159.9% 407725.8%

2019 1044.7% 103.0% 198.6% 431954.1%

SMD_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 50.6% 118.2% 140.6% -27102.7%

2019 9.8% 42.4% 175.2% -11798.8%

SMD_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 -4.7% -0.5% -1.7% 218.6%

2019 12.3% 19.3% -10.0% -2170.2%

LCB_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 -3.4% 4.2% -39.7% 430.3%

2019 -3.9% -5.3% -57.7% 338.5%

LCB_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 -6.8% 3.7% -61.8% 81.4%

2019 -8.5% -4.5% -87.5% -102.0%

LCC_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 6.7% 164.1% -2.7% -629.2%

2019 17.2% 442.3% -8.9% -1489.1%

LCC_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 -0.3% 11.4% -31.7% -214.4%

2019 -2.5% 13.0% -100.1% -589.5%

LCS_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 -4.1% -95.7% -101.2% -373.3%
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2019 -5.7% -105.1% -139.8% -527.9%

LCS_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 -6.4% -39.9% -36.5% -192.4%

2019 -9.0% -78.6% -43.6% -181.6%

LCG_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 -4.4% -104.7% -111.6% -138.9%

2019 -7.6% -146.4% -233.8% -389.8%

LCG_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 -5.0% -61.6% -48.7% -110.4%

2019 -9.7% -118.4% -103.2% -287.3%

LCT_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 5.0% 282.9% -6.1% -487.7%

2019 4.3% 245.3% -5.8% -420.7%

LCT_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 2.6% 42.3% -31.1% -397.1%

2019 2.3% 42.3% -32.7% -391.1%

LCU_mean

2015 0.0% 0.0% 0.0% 0.0%

2018 -2.6% 0.5% -89.5% -1475.1%

2019 -2.4% 2.3% -89.1% -1514.5%

LCU_SD

2015 0.0% 0.0% 0.0% 0.0%

2018 0.0% -13.3% 26.2% 262.7%

2019 0.1% -11.7% 25.8% 251.5%

Table 15. Table summarizing the change of feature values depending on the

year for which the data was extracted.
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Appendix 4: Correlation Analysis of Independent Variables

The following figures show the full size output shown in the feature selection

chapter. In general, the correlation plots look very similar and only change

little year over year. However, changing the administrative level does have a

noticeable effect on the correlation analysis. A similar situation was

encountered doing the principle component analysis (PCA). Those findings

support the use of smaller grids and more standardization, since it would

eliminate those issues and facilitate preprocessing and feature selection.
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Figure 26. Correlation Heatmap for the Data in 2015 in the mixed table

obtained from World Bank.
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Figure 27. Correlation Heatmap for the Data in 2018 in the mixed table

obtained from World Bank.
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Figure 28. Correlation Heatmap for the combined Data from 2015 and 2018

in the mixed tables obtained from World Bank.
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Figure 29. Correlation Heatmap for the Data in 2019 in the mixed table

obtained from World Bank.
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Figure 30. Correlation Heatmap for the Admin 1 Data used in the Analysis.
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Figure 31. Correlation Heatmap for the Admin 2 Data used in the Analysis.
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Appendix 5: Numeric Results

The following sections provide numerical results corresponding to the figures

presented in the chapter solution evaluation.

Initial Results

The following table shows the testing results for the models after base model

training and grid search.

Table 16. Numeric Results in Testing Set after Initial Model Training

Poverty Level $1.90 Poverty Level $3.20 Poverty Level $5.50

Model R2 MABS RPD R2 MABS RPD R2 MABS RPD

Kernel Ridge 0.42 0.23 0.42 0.25 0.45 0.15

Bayesian Ridge 0.16 0.27 0.17 0.33 0.16 0.23

XGB Regression 0.45 0.23 0.41 0.22 0.38 0.15

SV Regression 0.23 0.24 0.37 0.28 0.37 0.17

ANN Regression 0.52 0.22 0.49 0.29 0.35 0.16

Direct KRR 0.83 0.21 0.91 0.18 0.94 0.07

Direct BRR 0.52 0.27 0.62 0.32 0.65 0.18

Direct XGR 0.83 0.21 0.91 0.12 0.95 0.05

Direct SVR 0.77 0.23 0.88 0.23 0.92 0.09

Direct ANN 0.39 0.22 0.31 0.26 0.29 0.19

Stacked ANN 0.48 0.23 0.43 0.23 0.38 0.18
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Transfer Learning to administrative level 1

The following table shows the numeric results for the testing set after transfer

learning to improve poverty estimation at the first administrative level.

Table 17. Numeric Results in Testing Set after Transfer Learning from Initially

trained Models to Administrative Level 1 Predictions.

Poverty Level $1.90 Poverty Level $3.20 Poverty Level $5.50

Model R2 MABS RPD R2 MABS RPD R2 MABS RPD

Kernel Ridge 0.87 0.09 0.88 0.08 0.82 0.07

Bayesian Ridge 0.36 0.19 0.40 0.20 0.43 0.20

XGB Regression 0.89 0.08 0.74 0.10 0.75 0.08

SV Regression 0.81 0.15 0.82 0.15 0.65 0.16

ANN Regression 0.61 0.15 0.61 0.17 0.71 0.11

Direct KRR 0.75 0.16 0.79 0.17 0.84 0.15

Direct BRR 0.49 0.20 0.61 0.20 0.62 0.20

Direct XGR 0.71 0.18 0.82 0.12 0.85 0.10

Direct SVR 0.69 0.17 0.77 0.16 0.75 0.16

Direct ANN 0.76 0.15 0.86 0.14 0.94 0.07

Stacked XGB 0.68 0.13 0.70 0.12 0.63 0.13

Stacked ANN 0.88 0.12 0.85 0.10 0.74 0.10
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Transfer Learning to administrative level 2

The following table shows the numeric results for the testing set after transfer

learning to improve poverty estimation at the second level of administration.

Table 18. Numeric Results in Testing Set after Transfer Learning from Initially

trained Models to Administrative Level 2 Predictions.

Poverty Level $1.90 Poverty Level $3.20 Poverty Level $5.50

Model R^2 MABS RPD R^2 MABS RPD R^2 MABS RPD

Kernel Ridge 0.48 0.23 0.43 0.25 0.46 0.15

Bayesian Ridge 0.22 0.29 0.21 0.35 0.18 0.23

XGB Regression 0.48 0.25 0.39 0.22 0.40 0.15

SV Regression 0.42 0.26 0.43 0.30 0.39 0.17

ANN Regression 0.59 0.22 0.47 0.31 0.49 0.15

Direct KRR 0.87 0.21 0.93 0.16 0.95 0.06

Direct BRR 0.51 0.28 0.63 0.33 0.65 0.18

Direct XGR 0.86 0.22 0.93 0.12 0.95 0.05

Direct SVR 0.81 0.25 0.90 0.24 0.92 0.09

Direct ANN 0.83 0.21 0.90 0.27 0.94 0.06

Stacked XGB 0.41 0.23 0.30 0.27 0.29 0.19

Stacked ANN 0.52 0.24 0.43 0.22 0.43 0.19
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Testing Result on Mixed Table

This table shows testing results for 2019 assuming identical poverty rates to

2018.

Table 19. Numeric Results in Testing Set of mixed format for the year 2019.

Poverty Level $1.90 Poverty Level $3.20 Poverty Level $5.50

Model R^2 MABS RPD R^2 MABS RPD R^2 MABS RPD

Kernel Ridge 0.72 0.12 0.81 0.09 0.79 0.06

Bayesian Ridge 0.40 0.17 0.50 0.14 0.47 0.09

XGB Regression 0.73 0.12 0.83 0.09 0.84 0.06

SV Regression 0.62 0.15 0.71 0.12 0.73 0.08

ANN Regression 0.61 0.13 0.65 0.13 0.78 0.06

Direct KRR 0.72 0.11 0.78 0.10 0.78 0.06

Direct BRR 0.36 0.17 0.45 0.15 0.42 0.10

Direct XGR 0.72 0.12 0.82 0.09 0.83 0.06

Direct SVR 0.61 0.15 0.70 0.13 0.71 0.08

Direct ANN 0.63 0.14 0.74 0.11 0.77 0.07

Stacked XGB 0.70 0.12 0.78 0.10 0.81 0.06

Stacked ANN 0.76 0.11 0.83 0.09 0.85 0.06
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Testing Result on Admin 1 Table

This table shows the testing results for 2019 assuming identical poverty rates to

2018. Additionally, some data was aggregated to produce these results,

meaning there are additional sources of errors.

Table 20. Numeric Results in Testing Set of administrative level 1 format for

the year 2019.

Poverty Level $1.90 Poverty Level $3.20 Poverty Level $5.50

Model R^2 MABS RPD R^2 MABS RPD R^2 MABS RPD

Kernel Ridge 0.74 0.10 0.80 0.08 0.82 0.05

Bayesian Ridge 0.47 0.15 0.54 0.12 0.50 0.08

XGB Regression 0.74 0.10 0.84 0.07 0.88 0.04

SV Regression 0.61 0.13 0.72 0.10 0.74 0.07

ANN Regression 0.62 0.12 0.64 0.11 0.78 0.05

Direct KRR 0.72 0.11 0.73 0.09 0.75 0.06

Direct BRR 0.42 0.15 0.42 0.14 0.32 0.10

Direct XGR 0.67 0.12 0.80 0.08 0.83 0.05

Direct SVR 0.63 0.13 0.67 0.11 0.68 0.07

Direct ANN 0.63 0.12 0.71 0.09 0.75 0.06

Stacked XGB 0.74 0.10 0.86 0.07 0.86 0.05

Stacked ANN 0.80 0.09 0.85 0.06 0.87 0.05
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Testing Result on Admin 2 Table

This table shows the testing results for 2019 assuming identical poverty rates to

2018. Basically no training data was available for this kind of data. Most

values are heavily aggregated, meaning there are additional sources of errors.

Table 21. Numeric Results in Testing Set of administrative level 2 format for

the year 2019.

Poverty Level $1.90 Poverty Level $3.20 Poverty Level $5.50

Model R^2 MABS RPD R^2 MABS RPD R^2 MABS RPD

Kernel Ridge 0.47 0.20 0.28 0.24 0.21 0.28

Bayesian Ridge 0.03 0.23 0.02 0.28 0.02 0.31

XGB Regression 0.37 0.20 0.28 0.24 0.20 0.28

SV Regression 0.33 0.21 0.25 0.24 0.18 0.29

ANN Regression 0.33 0.20 0.22 0.25 0.18 0.28

Direct KRR 0.47 0.20 0.35 0.24 0.20 0.28

Direct BRR -0.03 0.24 -0.15 0.30 -0.07 0.34

Direct XGR 0.38 0.20 0.27 0.24 0.19 0.28

Direct SVR 0.25 0.21 0.19 0.25 0.17 0.29

Direct ANN 0.29 0.22 0.23 0.25 0.20 0.29

Stacked XGB 0.46 0.20 0.32 0.24 0.20 0.27

Stacked ANN 0.53 0.19 0.32 0.23 0.23 0.28
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Appendix 6: Residual Analysis for all Testing sets

In this chapter residual plots for all developed models are presented. In

general, the analysis of residuals depends on the poverty level. At the $1.90

level the assumption of approximately normally distributed residuals holds for

some models. This is a good sign and allows us to give an estimate for the

average prediction error. However, the higher the poverty level (higher

income), the more likely it is to observe a cone shape in the residuals vs fits

plot. This is caused by over-fitting and poorly distributed target values.

Kernel Ridge Regression

First, the KRR models using no additional information from the classifier are

analyzed. As we can see in the figure 32, the KRR models for the original

format and the administrative regions on the first level performed quite well.

The Residuals at $1.90 and $3.20 are approximately normal distributed.

However, for estimations at the second administrative level the assumption of

homoscedasticity is clearly violated. There could be multiple reasons for this,

most likely a combination of over-fitting, estimation outside of the calibration

range and model sensitivity all play a part in the effects observed. Overall,

KRR performed well. The estimation errors are among the smallest observed

among all frameworks investigated and except for predictions at the second

administrative level the approximately normal distribution of residuals and

homoscedasticity support further investigation in this framework. Additionally,

if the poverty estimates should be available at the $5.50 level, a transformation

of target values might increase prediction accuracy and decrease the errors. At

the least, it should help making the errors independent from the predicted value.
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Figure 32. Residual Analysis for the direct KRR Models

Next, the model frameworks using the classifier information from

preprocessing are analyzed. Compared to the previous analysis, the residuals

show a little better homoscedasticity, however this again only holds for data at

first administrative level and the format used for training. The level 2

predictions all have a clear cone shape, which surprisingly has a very particular

line. This could be caused by numerical errors during the aggregation or an

inadequate model, but the clear line shape indicates that it is not necessarily a

trend that holds for all samples in the training set, but instead for a group of

possible outliers.
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Figure 33. Residual Analysis for the KRR Models

Bayesian Ridge Regression

During analysis of the Bayesian ridge regression models in the main body of

the text it became evident that it is the least suited framework for poverty

estimation with the tabular data investigated in this study. Still, in figure 34 the

residuals for the testing sets in 2019 are presented. Contrary to the previous

analysis, one can not assume approximately normal distribution of residuals or

homoscedasticity for the examples presented below. This further underlines

previous conclusions that BRR does not perform well and is ultimately not

useful for this kind of problem.
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Figure 34. Residual Analysis for the direct BRR Models

Below, the identical analysis for models using information from the classifier is

presented. We observe that the overall accuracy increases but the performance

is not as good compared to any of the other models.

(a) Original Format $1.90

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Predicted

0.6

0.4

0.2

0.0

0.2

0.4

R
es

id
ua

l

Residual Plot at Poor190 for Bayesian_Ridge_RegWB

3 2 1 0 1 2 3
Theoretical quantiles

0.50

0.25

0.00

0.25

0.50

O
rd

er
ed

 V
al

ue
s

Probability Plot

(b) Original Format $3.20

0.2 0.4 0.6 0.8 1.0
Predicted

0.50

0.25

0.00

0.25

R
es

id
ua

l

Residual Plot at Poor320 for Bayesian_Ridge_RegWB

3 2 1 0 1 2 3
Theoretical quantiles

0.50

0.25

0.00

0.25

O
rd

er
ed

 V
al

ue
s

Probability Plot

(c) Original Format $5.50

0.5 0.6 0.7 0.8 0.9 1.0
Predicted

0.6

0.4

0.2

0.0

0.2

R
es

id
ua

l

Residual Plot at Poor550 for Bayesian_Ridge_RegWB

3 2 1 0 1 2 3
Theoretical quantiles

0.6

0.4

0.2

0.0

0.2

O
rd

er
ed

 V
al

ue
s

Probability Plot

101



(d) Admin 1 Format $1.90

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Predicted

0.4

0.2

0.0

0.2

0.4
R

es
id

ua
l

Residual Plot at Poor190 for Bayesian_Ridge_RegS1

3 2 1 0 1 2 3
Theoretical quantiles

0.6

0.4

0.2

0.0

0.2

0.4

O
rd

er
ed

 V
al

ue
s

Probability Plot

(e) Admin 1 Format $3.20

0.0 0.2 0.4 0.6 0.8
Predicted

0.6

0.4

0.2

0.0

0.2

0.4

R
es

id
ua

l

Residual Plot at Poor320 for Bayesian_Ridge_RegS1

3 2 1 0 1 2 3
Theoretical quantiles

0.6

0.4

0.2

0.0

0.2

0.4

O
rd

er
ed

 V
al

ue
s

Probability Plot

(f) Admin 1 Format $5.50

0.0 0.2 0.4 0.6 0.8 1.0
Predicted

0.6

0.4

0.2

0.0

0.2

0.4

R
es

id
ua

l

Residual Plot at Poor550 for Bayesian_Ridge_RegS1

3 2 1 0 1 2 3
Theoretical quantiles

0.6

0.4

0.2

0.0

0.2

0.4

O
rd

er
ed

 V
al

ue
s

Probability Plot

(g) Admin 2 Format $1.90

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Predicted

0.75

0.50

0.25

0.00

0.25

0.50

R
es

id
ua

l

Residual Plot at Poor190 for Bayesian_Ridge_RegS2

3 2 1 0 1 2 3
Theoretical quantiles

0.5

0.0

0.5

O
rd

er
ed

 V
al

ue
s

Probability Plot

(h) Admin 2 Format $3.20

0.0 0.2 0.4 0.6 0.8 1.0
Predicted

1.0

0.5

0.0

0.5

R
es

id
ua

l

Residual Plot at Poor320 for Bayesian_Ridge_RegS2

3 2 1 0 1 2 3
Theoretical quantiles

1.0

0.5

0.0

0.5

O
rd

er
ed

 V
al

ue
s

Probability Plot

(i) Admin 2 Format $5.50

0.0 0.2 0.4 0.6 0.8 1.0
Predicted

1.0

0.5

0.0

0.5

1.0

R
es

id
ua

l

Residual Plot at Poor550 for Bayesian_Ridge_RegS2

3 2 1 0 1 2 3
Theoretical quantiles

1.0

0.5

0.0

0.5

1.0

O
rd

er
ed

 V
al

ue
s

Probability Plot

Figure 35. Residual Analysis for the BRR Models

XGBoost Regression

The XGBoost framework was used for multiple steps in this study. First, the

analysis of residuals for the model using all samples in its set is presented in

figure 38:
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Figure 36. Residual Analysis for the direct XGB Models

Similar to previous conclusions, the XGB regressor using no information from

the classifier performs okay on the first administrative level but the accuracy is

quite low for the second administrative level. Again, there seems to be a group

of samples that the model can not explain.

Below, the identical analysis for models using information from the classifier is

presented. We observe that contrary to previous examples the XGB framework

does not perform better when using information from the classifier.
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Figure 37. Residual Analysis for the XGB Models

Additionally to the previous models, the XGB framework was also used to

build a stacked ensemble model. Below, the residuals for that analysis are

presented.
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Figure 38. Residual Analysis for the ensemble XGB Models

As we can see above, the ensemble model has overall smaller errors compared

to the previous models. However, for the second administrative level we again

observe the previously discussed trends, possibly caused by numerical errors
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during aggregation or inadequate predictions. Additionally, there can a clear

cone shape be observed, which makes error estimation and model fitting less

accurate. For the other two models, there can be certain patterns observed,

however there are only serious limitations for the estimations at the $5.50 level

for the first administrative level.

Support Vector Regression

Below, the residual analysis for all developped support vector regression

models are presesented. The takeaways are the same as for KRR.
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Figure 39. Residual Analysis for the direct SVR Models

Below, the analysis for the models relying on information from the classifier

are presented. The errors are a little smaller compared to the direct models.
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Figure 40. Residual Analysis for the SVR Models

Neural Network Regression

Lastly, we go through the residual analysis for the developed neural networks.

Their method of estimation works completely different from the other

examples, which has an effect on the residuals. All models use a sigmoid

activation function in their output layer. This intrinsically limits the range of

estimated poverty rates between 0 and 1. Therefore, at high values of ypred the

residuals can not be positive, and at small values they can not be negative. This

limits the error but inherently makes normal distribution and homoscedasticity

impossible. It was observed that the generalization for estimations at the

second administrative level seems comparably high. Compared to other models

there are less samples for which there is a distinct trend of error. Nonetheless,

if those estimations are to be used for poverty maps there is still more work to

be done. I suspect the main issue with the inaccuracies at the second level is a
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lack of reliable way to clean the input data and identify samples that match

with the training set. One could use deep learning frameworks like classifiers

to improve upon these issues.
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Figure 41. Residual Analysis for the direct ANN Models

Contrary to other examples, the direct neural network did not produce very

accurate estimations at the first administrative level at the poverty rate $5.50.

There is a clear cone shape and the models seems to have over-fit and usually

generates estimates around the mean value. This is further supported by the

fact that the models for this poverty level do not use any dropout layers during

training, which is a powerful regularization technique.

However, this situation changes for the models using the classifier from the

preprocessing.
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Figure 42. Residual Analysis for the ANN Models

As we can see above, the accuracy has increased dramatically for estimations

at the first administrative layer. Compared to before, there are also less outliers

in the residuals. This does not hold for estimations at the second administrative

level, however the estimations at the $1.90 level are better than for any other

model.

Like the XGB framework, there was also an ensemble model developed which

is analyzed below.
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(d) Admin 1 Format $1.90
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Figure 43. Residual Analysis for the ensemble ANN Models

The developed ensemble method produces quite accurate results. Compared to

previously analyzed frameworks the estimations at the second administrative

level are more accurate and there are fewer large and grouped residuals. This

means that neural networks are possibly suited for a top-down poverty

estimation method with a lack of training data.

However, I suggest looking into bottom-up approaches with aggregated data on

grids, as further specified in future directions.

109



Appendix 7: ANN Model Information

This chapter contains the complete summary of all 15 neural network

algorithms developed in the process of this study. All algorithms have one

additional layer that is not mentioned in the tables. This layer contains only

one node and uses a sigmoid activation to produce the final poverty estimate.

This activation function is limited between 0 and 1, which is the same range as

the poverty rates. First, the three direct models are analyzed.

Table 22. Summary of the optimized hyperparameters for the direct neural

networks.

Direct at $1.90 Direct at $3.20 Direct at $5.50

Layer0 24 24 28

Dropout 2% - -

Regularization - - -

Activation relu relu relu

Layer1 14 8 16

Dropout 18% 8% -

Regularization - - l1

reg_value1 - - 0.001

Activation1 selu selu selu

All models above use some type of regularization. The model at $1.90 uses

two dropout layers after both hidden layers. The model at the next higher

income threshold has its dropout layer before the final node which generates

the poverty estimation, and the model at the highest income level uses l1

regularization. Interestingly, the regularization strength decreases with higher

income thresholds for the poverty level. This goes hand in hand with previous

observations that the models at the higher income level have a much higher

tendency towards biased results at the $5.50 level because of high poverty rates.
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Next, the tables for the two-step models is presented. Contrary to the direct

models, most two-step models use little to no regularization. This explains

their worse performance compared to the direct models previously analyzed.

Table 23. Summary of the optimized hyperparameters for the two-step neural

network models in poor areas.

Poor at $1.90 Poor at $3.20 Poor at $5.50

Layer0 26 28 26

Dropout - - -

Regularization - - -

Activation relu relu relu

Layer1 6 2 8

Dropout - - -

Regularization - - -

reg_value1 - - -

Activation1 selu tanh tanh

None of the models estimating poverty in poor areas use any type of

regularization. Since the model structure is similar to the direct models, this

indicates a possibility for sensitive model parameters and could explain the

lower accuracy of predictions obtained with these models. Contrary to the

models developed for the poor areas, the ones for non-poor areas all take

advantage of some kind of regularization to limit over-fitting:

111



Table 24. Summary of the optimized hyperparameters for the two-step neural

network models in non-poor areas.

non-Poor at $1.90 non-Poor at $3.20 non-Poor at $5.50

Layer0 28 28 28

Dropout 9% - 6%

Regularization - - -

Activation relu relu relu

Layer1 6 24 6

Dropout - 15% -

Regularization - l1_l2 l1_l2

reg_value1 - 0.1 0.1

Activation1 selu sigmoid selu

As we can see above, all models for non-poor areas use regularization. Since

those algorithms were trained using the same optimization framework as

before, this indicates that there was more variability in the non-poor areas.

Therefore, the optimization framework developed models that are better at

generalization for non-poor areas, while the models specialized for poor areas

are given more freedom at the cost of a higher risk of sensitive model

parameters. In any case, these models do not perform as well as others

developed in the course of this work.
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Ultimately, the stacked neural networks are analyzed. They take inputs from all

two-step models and generate a final poverty estimate and are therefore an

example of an ensemble method. The following table shows the stacked model

parameters found during optimization which takes the estimates of areas that

were classified as poor during preprocessing. Compared to the previous neural

Table 25. Summary of the optimized hyperparameters for the stacked neural

network models in poor areas.

st-Poor at $1.90 st-Poor at $3.20 st-Poor at $5.50

Layer0 9 12 12

Dropout - - -

Regularization - - -

Activation selu selu selu

Layer1 3 10 -

Dropout 15% 15% -

Regularization l2 - l1

reg_value1 1 - 1

Activation1 tanh sigmoid tanh

networks, these models are much smaller with less nodes and sometimes just a

single layer. This makes sense, since only five input values are given to these

models. Nonetheless, they all use regularization for better generalization

ability.
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The last models under investigation are the stacked neural networks for

non-poor areas. Like before, smaller model architectures compared to the

direct and two-step models are observed. Except for the model at the income

level of $3.20 the models use regularization methods.

Table 26. Summary of the optimized hyperparameters for the stacked neural

network models in non-poor areas.

st-non-Poor at $1.90 st-non-Poor at $3.20 st-non-Poor at $5.50

Layer0 10 12 11

Dropout - - -

Regularization - - -

Activation selu selu selu

Layer1 - 9 7

Dropout - - 14%

Regularization l1_l1 - -

reg_value1 0.01 - -

Activation1 selu sigmoid relu
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