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ABSTRACT

Leveraging Intermediate Artifacts to Improve Automated Trace Link Retrieval

Alberto Daniel Rodriguez

Software traceability establishes a network of connections between diverse artifacts

such as requirements, design, and code. However, given the cost and effort of cre-

ating and maintaining trace links manually, researchers have proposed automated

approaches using information retrieval techniques. Current approaches focus almost

entirely upon generating links between pairs of artifacts and have not leveraged the

broader network of interconnected artifacts. In this paper we investigate the use of

intermediate artifacts to enhance the accuracy of the generated trace links – focus-

ing on paths consisting of source, target, and intermediate artifacts. We propose

and evaluate combinations of techniques for computing semantic similarity, scaling

scores across multiple paths, and aggregating results from multiple paths. We report

results from five projects, including one large industrial project. We find that leverag-

ing intermediate artifacts improves the accuracy of end-to-end trace retrieval across

all datasets and accuracy metrics. After further analysis, we discover that leverag-

ing intermediate artifacts is only helpful when a project’s artifacts share a common

vocabulary, which tends to occur in refinement and decomposition hierarchies of ar-

tifacts. Given our hybrid approach that integrates both direct and transitive links,

we observed little to no loss of accuracy when intermediate artifacts lacked a shared

vocabulary with source or target artifacts.
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Chapter 1

INTRODUCTION

Software traceability links capture associations between diverse artifacts such as re-

quirements, design, code, and test cases [21, 13], and provide support for many dif-

ferent development activities, such as safety-assurance, impact analysis, and software

reuse. However, manually creating and maintaining trace links requires non-trivial

effort, and often does not provide immediate benefits to the team members who need

to create the links [21]. As a result, developers and other project stakeholders, often

postpone the task of creating or maintaining links, resulting in incomplete, inaccu-

rate, and even conflicting trace links [21, 12, 44, 42]. Researchers have addressed

this problem through the use of automated tracing techniques based on informa-

tion retrieval, machine learning, repository mining [3, 15, 33], and more recently

deep-learning approaches [22, 29] which have increased the accuracy achievable by

automated approaches.

Project artifacts are organized according to an artifact schema, often referred to as

a Traceability Information Model (TIM). The trace links created between individual

artifacts form an artifact network, and individual trace queries often include multiple

artifacts, creating the notion of a transitive trace in which multiple atomic traces are

connected in a sequence, where the target artifact for one atomic trace becomes the

source artifact for the next trace [14, 37]. For example, given the TIM of the Train-

Controller TC dataset depicted in Fig. 1.1, we can trace from System Requirements

(SR) to SubSystem Requirements (SSR) directly or intermediately through System

Designs (SD). The network of artifacts introduces the opportunity to leverage in-

termediate artifacts in order to improve the accuracy of an automatically generated

1



Figure 1.1: TrainController’s traceability information model (TIM) show-
ing artifacts and traceability paths.

System 
Requirement (SR): 
The Highway 
Wayside Segment
shall monitor signal, 
road work directive, 
and hazard detector
information from 
field devices and 
the related system 
design artifact
that states

WIU is an acronym 
for the Highway 

Wayside Interface 
Unit 

Current state of the 
highway signal is 

represented as 
information

WIUs are connected to 
field devices

Monitoring field 
devices requires 

them to send data

System Design 
(SD):
During lamp-out 
conditions the WIU 
shall send the 
current state of 
the highway 
signal. 

SubSystem
Requirement (SSR):
The WCP’s high-
speed (1.2Mb/s) 
client LAN port 
directly connects to 
other Mobility I/O 
modules to 
transmit state  
messages.

Messages are sent over 
connections

Transmit is a synonym of 
send

WCP is a component of 
the WIU

WCP is an acronym for 
Wayside Communication 

Package

Target Artifact
Source Artifact

Intermediate Artifact

❶ Direct Trace

❷ Transitive Trace

Figure 1.2: An illustrative example inspired by our Train Controller sys-
tem illustrates the concept of a direct versus a transitive trace. The
implicit semantic connections between the artifacts are depicted in the
dashed nodes.

end-to-end trace link. In this thesis we explore the benefits of leveraging intermediate

artifacts whilst generating trace links.

Consider the example provided in Figure 1.2 which includes a system requirement

(SR), a system design (SD), and a subsystem (SSR) requirement artifact taken from

the TC System, and shows two possible traceability paths. The direct trace path goes

from SSR → SR, while the indirect path goes from SSR → SD → SR. The dashed

boxes provide semantic explanations for these associations. For example, the SR

includes the term “Highway Wayside Segment” while the SD includes the associated

acronym ‘WIU’. Tracing techniques that include project glossaries are easily able

to leverage this information to help establish a link between SD and SR. On the

other hand, the semantic distance from SSR to SR is much greater with fewer direct

connections. By leveraging the intermediate SD component, we see that ‘WCP’ is a

2



component of the ‘WIU’ which, as previously stated, represents the Highway Wayside

Segment described in the SR.

The question we explore in this work is whether leveraging intermediate artifacts can

improve the accuracy of trace links generated using different automated techniques.

Nishiwaka et al., [37] previously explored this question and proposed a technique

which they referred to as “Connecting Links Method” (CLM). They compared the

results from a transitive trace from A→ B → C, against a direct trace from A→ C

and reported improvements for only a small subset of the trace links. However, they

evaluated their approach using only one dataset based on only one technique. We

therefore replicate their experiment on multiple datasets, and expand it to include

diverse techniques for generating links and aggregating results. We address the fol-

lowing research question:

Can we improve the accuracy of trace links generated between end-to-

end artifacts by incorporating intermediate artifacts in the trace path,

and under what conditions do intermediate artifacts improve accuracy of

end-to-end links?

Results from our experiments show that effectiveness of using intermediate artifacts to

generate trace links is primarily impacted by the terminology used across the artifacts

and the presence of a strong hierarchical relationship between the artifacts.

The remainder of the paper is laid out as follows. Section 2 gives a background to

traceability and motivation for Section 2.1 which presents the techniques we used to

incorporate intermediate artifacts in end-to-end trace retrieval. Section 3 describes

the series of experiments that we conducted, while Sections 4 and 4.1 report and

analyze the results. Finally in Sections 5 to 7 we describe threats to validity, related

work, and present conclusions and ideas for future work.

3



Chapter 2

BACKGROUND

Traceability began with requirements traceability which was first defined as the ability

to describe and follow the life of a requirement, in both a forwards and backwards

direction [21, 42]. Traceability extends this definition to include all other artifacts in

a system (e.g. design documents, use cases). In order to follow an artifact through

its life cycle, trace links are established between artifacts to indicate a relationship

[14]. Trace links are particularly useful in change impact analysis (CIA), the study

of how change moves throughout a system [9, 7, 4]. The introduction of a change,

either through the construction or modification of an artifact, propagates a series

of related changes that can be difficult to track accurately. For example, upon the

introduction of a new requirement, the design of the system must adapt along with the

subsequent the code modules implementing it. The verification that new or changed

requirements has been fully implemented and tested is of particular importance in

safety-critical software systems [13]. Further, being able to accurately model the

relationships between artifacts in a software system allows for tools that help aid new

developers navigate through large systems.

Manually establishing trace links is a tedious and error prone process due to the

growth rate of potential trace links that must be maintained. Upon the introduction

of a new artifact, there exist potential links, referred to as candidate links, to every

artifact in the system. For example, TrainController is an industrial project explored

in this study which upon the introduction of a new artifact would require 1,320

relationships to be considered in order to accurately trace it. It is clear that the
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manual recovery of these trace links is unsustainable which consequently has led to a

search for an automated approach.

This first success in automated approaches began by using the textual similarities

between artifacts to represent the likelihood that they were linked [3]. What followed

was an exploration of many different textual comparisons techniques [18] of which

we borrow two of the most popular, vector-space model (VSM) and latent semantic

indexing (LSI) which are further explained in 2.1. Other research efforts also looked

at incorporating other system information into the retrieval process as a way to im-

prove initial efforts [15]. In this exploration of utilizing additional information to help

retrieve trace links was the idea of using the textual similarities with an intermediate

set of artifacts to find trace links to the target set of documents [37]. Our idea fur-

ther this exploration of intermediate artifacts by combining the approach defined by

Nishikawa et. al. with the classic recovery approach of computing textual similarity

directly between source and target artifacts.

2.1 Automated Retrieval Techniques

There are three technique families in our study. The first, Direct, uses one of two

algebraic models to compute textual similarities between source and target artifacts,

subsequently, this family does not leverage intermediate artifacts. The second fam-

ily, Transitive, was first proposed by Nishiwaka et al. [37] as the ‘Connecting Links

Method’ (CLM) and only uses intermediate artifacts. We evaluate 12 transitive tech-

niques using combinations of two algebraic models, two scaling methods, and three

path aggregation functions. We refer to this approach as transitive traceability. Fi-

nally, the third family, Hybrid, aggregates results from a Direct and Transitive tech-

5



Figure 2.1: Artifact relations used by each technique to calculate similarity
scores between a source and target artifact pair.

nique using one of three aggregation functions. Figure 2.1 illustrates the differences

between these three techniques.

2.2 Computing Artifact Similarity

Several different information retrieval techniques have been proposed and evaluated

for generating links between two artifacts. Of these, the Vector Space Model (VSM)

has consistently performed well in previous studies even though it fails to take seman-

tic similarity into consideration. We also include the Latent Semantic Indexing (LSI)

approach for comparison purposes, as this considers underlying semantic concepts.

• VSM computes term similarity between two artifacts and has been applied to many

traceability tasks [34, 24, 31, 18]. Despite its simplicity it has been shown to con-

sistently outperform other information retrieval techniques [30, 29]. In VSM, terms

are represented as an indexed linear vector, while individual artifacts are depicted

6



as weighted vectors, with weights commonly assigned using term frequency-inverse

document frequency (tf-idf). In tf-idf, the importance of each term is based on its

occurrence and distribution across the text corpus. More precisely, let AS and AT

represent the collection of source and target artifacts respectively, then each artifact

ai ∈ AS ∪ AT is represented by the terms {t1...tn} it contains, and transformed into

a numeric format ai = {w1, w2, . . . , wn} where wn indicates the tf idf score for ti.

Artifact similarity is then measured by computing the distance between vector rep-

resentations, often using cosine similarity between the source and target vectors as

follows:

Similarity(ai, aj) =
aTi · aj√

aTi · ai
√

aTj · aj
(2.1)

• Topic modeling approaches have also been used for trace link generation [5, 30,

38, 18] as they are capable of discovering hidden semantic structures as abstract

concepts and representing each artifact as a distribution over these concepts. The

most common techniques are Latent Dirichlet Allocation (LDA), Latent Seman-

tic Indexing (LSI), and Probabilistic Latent Semantic Indexing (PLSI). LSI repre-

sents each artifact ai as a vector of word counts cn such that each word is repre-

sented as ai = {c1, c2, ..., cn} and the artifact corpus A is represented as a matrix

A = {a1, a2, ..., am} where m refers to the total number of all artifacts in A. LSI

applies matrix decomposition, e.g Singular Value Decomposition (SVD) in order to

learn the latent topics [31, 17, 2]. In a probabilistic variant of LSI, known as [26], SVD

is replaced by a probabilistic model of latent topics. Finally, LDA is a Bayesian ver-

sion of PLSI in which dirichlet priors are introduced for the topic distribution. Given

a topic distribution vector of both source and target artifacts, the similarity, or affin-

ity between two artifacts is estimated by using either Cosine similarity or Hellinger

distance [27] to quantify the similarity between two probability distributions. In this

study, we have selected LSI as a representative topic modeling approach.

7



Both VSM and LSI produce a similarity score for each pair of artifacts. Scores range

from 0 to 1, with higher numbers representing greater likelihood of a link. Scores

are stored in a similarity matrix where a score at indices (i,j) stores the similarity

between ai ∈ AS and aj ∈ AT .

2.3 Aggregating Results across Trace Paths

The vast majority of research in trace link generation has focused on generating links

directly between two artifacts without considering alternate paths, even though case

studies of industrial projects have shown that multiple, potentially redundant paths

often exist between artifacts [44, 32]. In this work we focus on trace queries involving

three different artifact types (e.g., requirements → design → code). We define a

direct link as a link between a source artifact and a target artifact, and an indirect

link (otherwise referred to as a transitive trace link) as a link comprising multiple

atomic trace links strung in sequence, such that a target artifact for one atomic trace

link becomes the source artifact for the next atomic trace link [14, 37]. For the

remainder of this discussion we assume three artifact types AS (source), AT (target),

and AI (intermediate).

All direct links are generated from AS to AT using a tracing algorithm (e.g., VSM and

LSI) to compute artifact similarity and to produce a traceability matrix as previously

described.

The goal of using a transitive approach is to generate links from AS to AT by leverag-

ing an intermediate artifact type AI . We first generate a trace matrix of direct links

between AS and AI and refer to this as TMSI , and then a second matrix of direct

links from AI to AT , referred to as TMIT . To generate transitive links, we need to

perform two additional tasks to normalize and aggregate TMSI and TMIT in order

8



to produce a trace matrix between AS and AT . There are several possible approaches

for normalization and aggregation of links.

• Link Score normalization: Tracing algorithms, such as VSM and LSI, are sensitive

to the characteristics of the artifacts – typically impacted by attributes such as docu-

ment length and vocabulary size [46]. In practice, they often produce higher scores on

more textually rich documents than on sparser ones, which creates a problem when

aggregating results from two or more trace matrices (e.g. TMSI and TMIT ) where the

matrices with higher scores could overly influence the final trace results. We therefore

evaluated the following scaling approaches as summarized in Figure 2.2:

- Independent Scaling: Each matrix is scaled separately, normalizing its scores to

span the range [0,1]. The scope of each score is noted in Figure 2.2 by the orange

and red rectangles.

- Global Scaling: Matrices are scaled conjointly, such that each score is scaled

within the global minimum and maximum score of all matrices, and so the global

range spans [0,1]. Figure 2.2 illustrates this with the encompassing green rectangle

highlighting that the range of all scores in considered when scaling.

• Link Aggregation: Given two matrices TMSI and TMIT we could imagine multi-

ple paths from source artifact aj ∈ AS to target tk ∈ AT via different intermediate

artifacts (see red paths in Figure 2.1). Each of these individual, intermediate paths

includes two distinct links from aj to il and from il to tk, each with their own similarity

score (or probability score). We compute the product of these two scores to produce

the final strength of a single intermediate path. Furthermore, given N intermediate

artifacts, our approach generates N intermediate paths from aj to tk each associated

with its own similarity score. In Figure 2.3 we see an example with three intermedi-

ate artifacts between a source and target artifact pair. In the first intermediate path

9



Figure 2.2: The groups of similarity scores scaled to the range [0, 1] within
the Independent and Global scaling approaches

Figure 2.3: The process of creating single transitive relation score from
textual similarities.

we see that the similarity score between the source and intermediate artifact is 0.5 ;

similarly, the score between the intermediate and target artifact is 0.75. Therefore,

the source and target artifacts have a similarity score of 0.375 through the first inter-

mediate artifact as depicted in the second step of Figure 2.3. Finally, the final score

describing the similarity between source and target artifacts will be the aggregate of

the scores for each intermediate path (e.g. 0.375, 0, 0.125 ).

We aggregate the relation scores using the following functions in order to produce a

single score representing the likelihood of a link from aj → tk:

- Max: The maximum relation score is used with the rationale that a single strong

connection is sufficient to establish a trace link.

- Sum: The sum of all transitive relation scores with the rationale that a set of related

intermediate nodes provides evidence for a link. While there is a risk that a large

number of intermediate artifacts with low similarities could incorrectly inflate the

10



score, we include this method for replication purposes as it was the original method

used by Nishikawa et al., [37].

- PCA: A weighted sum of intermediate similarity scores is used. The weights repre-

sent the percentage of variance explained by relation scores through some interme-

diate artifact calculated using principal component analysis (PCA). The underlying

assumption here is that intermediate artifacts whose relations scores explain the

variance among all transitive relation scores deserves more weight because they are

more able to discern relatedness between artifact pairs. This method has previously

been used to integrate orthogonal information in retrieval techniques [38].

2.4 Exploring a Hybrid Approach

We also evaluate a hybrid approach in which results from the direct and transitive

approaches are aggregated. The idea behind this approach is to augment benefits of

the direct links with supporting data provided by the transitive links. This is also

illustrated in Figure 2.1. We evaluated three different ways of aggregating direct and

transitive results as follows:

- Max: The maximum value between the direct and multi-hop similarity scores.

- Sum: Direct and transitive scores are summed and scaled.

- PCA: A weighted sum of the direct and transitive relation scores. The weights

represent the proportion of variance explained by each technique in the aggregate

of all relation scores calculated using PCA. The underlying assumption being that

techniques that better discern between link and non-links deserve a greater weight.

[20].
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Chapter 3

EXPERIMENTAL DESIGN

We evaluated our approach using five different datasets. Our experiments require

datasets with at least three different types of artifacts and trace links provided along

at least two distinct trace paths. Many publicly available traceability datasets include

two artifact types or are extremely small. We favored the use of larger datasets (e.g.,

TrainController and Dronology) as these are more representative of targeted industrial

projects, but due to lack of available datasets we also used three smaller ones available

at COEST.org. We established the additional criterion that intermediate artifacts

must represent at least 5% of the total artifacts. We did not use OSS as in prior

traceability experiments (e.g., reported by Rath et al., [43]) because of their lack of

sufficient intermediate traces. For example, SEAM2, had 27 source artifacts, 63,207

intermediate artifacts, 21,069 target artifacts; but, did not include any intermediate

trace links. Similarly, PIG included three artifact types, but one of the paths only

included actual links for about 0.01% of the artifact pairs.

The selected datasets are shown in Table 3.1. Four of these datasets are available

as community resources, while one (TrainController) was provided by our industrial

collaborators under a non-disclosure agreement. Table 3.1 provides a brief description

of each dataset while Table 3.2 describes the three artifact types used in our study

for each dataset, the trace link paths, the number of actual links, candidate links,

and subsequent percent of true links out of all candidate links for that path.

12



Dataset Description Refs
Dronology A system for managing and coordinating

multiple semi-autonomous Unmanned
Aerial Vehicles for emergency response
missions.

[48][16]

TrainControl An industrial system for the Onboard Unit
of a positive train control (PTC) system.

Hidden for
DBR

EasyClinic A small, student-created dataset in both
English and Italian. The English version
was used for this project.

[1]

EBT Small dataset created to support
event-based traceability using a
publish-subscribe model.

[1]

WARC A tool suite for handling files in the WARC
format including command line tools, server
plug-ins, and documentation for file
handling.

[1]

Table 3.1: Dataset descriptions.

Table 3.2: Dataset artifacts and defined trace links.

Legend: FR=Functional Requirement, NFR=Non-Functional Requirement,
SR=Software level requirement, ID=Interaction Diagrams.

Trace paths provided by dataset: �=Direct, N=Higher Level, H = Lower Level.
Inferred paths are unfilled (e.g., ♦, M, O)

13



3.0.1 Dataset Preparation

All artifacts were processed as follows. Method names such as receiverManager.log()

were split into their constituent parts, non-alpha numeric characters were removed,

and CamelCase or Snake case phrases were split apart. Finally, all characters were

converted to lower case, stop words were removed, and remaining words were stemmed

to their morphological roots using the Porter Stemmer (e.g. receiv manag log).

In most datasets links were only provided between a subset of artifact types. We

therefore used transitive inferencing, to establish ground truth for the end-to-end

tracing path or its missing segment – depending upon which subset of links were

provided. For example, as shown in Table 3.2, Dronology provided transitive links

from FRs → Design, and from Design → to Java Classes. By using the Connecting

Links Method (CLM) described by Nishikawa et al. [37], we were able to establish

ground truth for the direct links from FRs → Java Classes. Table 3.2 differentiates

between manually created links (bolded diamonds and triangles), and inferred ones

(hollowed diamonds and triangles). Diamonds represent the direct trace path, while

triangles represent either the path from source to intermediate artifact (i.e., TMSI N)

or from the intermediate artifact to the target (i.e., TMIT H).

3.0.2 Trace Link Generation

To construct the trace matrices needed for our evaluation, we first used VSM to gen-

erate trace links for trace paths with artifact indices 0→ 1, 1→ 2, and 0→ 2 for each

dataset and stored the subsequent results in a trace matrix. This produced three ini-

tial trace matrices for each of our five projects in which the 0→ 2 matrix represented

the direct links, while the other two matrices comprised the building blocks needed

to generate the transitive links. We then applied each combination of previously de-
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scribed techniques for normalizing link scores and aggregating links. This produced

six additional trace matrices for each project, representing the transitive matrix for

each combination of scaling scores (independent, global) and link aggregation meth-

ods (Max, Sum, PCA) applied to trace matrices for trace paths 0 → 1 and 1 →

2. Finally, each unique combination of direct and transitive matrices was combined

using the link aggregation methods (Max, Sum, and PCA) to produce a total of 72

hybrid matrices. Regardless of whether direct, transitive, or hybrid techniques had

been used, the final result was the end-to-end trace matrix (TMST ), representing the

0 → 2 path depicted by a black diamond for each dataset in Table 3.2. The entire

process was then repeated using LSI in place of VSM.

3.0.3 Accuracy Metrics

Accuracy was evaluated by comparing the generated TMST against its corresponding

answer set. Candidate links within TMST were ranked in descending order, and the

following metrics, in alignment with standard benchmarking guidelines for traceability

experiments [47], were computed.

- MAP: the mean average precision (AP) assigns a non-proportional higher weight

to correct links ranked at the top of the result list rather than the bottom [47].

- AUC: area under ROC Curve, measures how well a technique distinguishes between

linked and non-linked artifacts. It assigns the same weight to each correct link [47].

- LAG: the number of non-links that a human analyst would have to review in

a ranked list of candidate traces before finding all actual links. It assigns a non-

proportionally higher negative weight to a correct link ranked at the bottom of the

result list [47][49]. Note, a higher LAG score means a lower performing technique.

It is convenient to adjust LAG so that greater scores mean better performances
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as well as having it fit within the range between 0 and 1, like the other metrics.

For this reason we apply a transformation to LAG to be able to visualize and

compare metrics. This transformation scales scores to fit between 0 and 1 and

inverts (1−score) so that higher scores mean more accurate techniques. LAG was

normalized across each project, using all generated scores to establish the scaling

factor. We refer to this metric as LagNormInverted through the remainder of this

study.

Finally, we tested whether a technique could be considered more accurate than an-

other technique by using the non-parametric Wilcoxon test applied to our three ac-

curacy metrics. We selected this test because our trace query data does not follow

a normal distribution, as noted when performing Shapiro–Wilk tests [45]. Therefore,

our approach is compliant to the suggestion to avoid using ScottKnottESD in case of

non normal distributions [25]. We set alpha at 0.01; we have chosen this conservative

value due to the high number of performed tests.
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Chapter 4

RESULTS

For all direct, transitive, and hybrid techniques Table A.1 assigns a unique ID to

each technique, then, the accuracy scores are reported in Tables A.2, A.3, A.4, A.5,

and A.6 per dataset. The direct family includes two techniques, the transitive family

12, and the hybrid family 72. Given so many combinations of hybrid techniques, we

report only the best and worst cases. The best techniques vary by dataset and are

reported in Table 4.2.

As reported in Figure 4.1, the best transitive technique outperformed the best di-

rect techniques in all dataset’s except WARC’s MAP. The best hybrid technique

outperformed the best direct technique in all datasets across all metrics.

Interestingly, the best transitive technique outperformed the best hybrid technique in

Drone across all metrics as well as for EasyClinic and EBT on MAP. These results are

summarized in Figure 4.1 which shows the best results obtained for direct, transitive,

and hybrid techniques. In three cases (Drone, TC, and EC) the hybrid approach

performed best, followed by the transitive approach, and then the direct one.

In addition, Table 4.1 displays the relative gain in accuracy of the best performing

hybrid technique over the best performing direct technique for each dataset-metric

combination. Relative gain is calculated for a target (T) and baseline (B) score where

the gain is of the target over the base calculated by:

RelativeGain = T−B
B
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Table 4.1: The relative gain in accuracy achieved by Transitive and Hy-
brid approaches in comparison to Direct, and for Hybrid compared to
Transitive.

Dataset Metric Transitive
over

Direct

Hybrid
over

Direct

Hybrid over
Transitive

Dronology
MAP 24.4% 17.0% -6%
AUC 11.3% 11.0% -0.3%
LAG 17.6% 17.1% -0.6%

TrainController

MAP 2.2% 11.9% 9.5%
AUC 21.5% 16.3% -4.2%
LAG 24.4% 18.1% -8.3%

EasyClinic
MAP 10.8% 9.2% -1.5%
AUC 4.2% 5.1% 0.8%
LAG 13.3% 15.8% 2.9%

EBT

MAP 13.0% 11.0% -1.8%
AUC 6.9% 7.8% 0.8%
LAG 15.8% 17.7% 2.2%

WARC

MAP -8.5% 11.1% 21.5%
AUC 6.4% 7.0% 0.6%
LAG 30.8% 34.1% 4.8%

Table 4.2: Top performing hybrid techniques of each dataset.

Dataset Direct
Algebraic

Model

Transitive
Algebraic

Model

Scaling
Method

Path
Aggreg.

Direct-
Transitive

Aggregation
Drone VSM LSI GLB SUM SUM

TC VSM LSI GLB SUM SUM
EC VSM VSM IND MAX SUM

EBT VSM VSM Tie(GLB,IND) SUM SUM
WARC VSM VSM Tie(GLB,IND) MAX SUM

TC = TrainController, EC = EasyClinic
GLB = Global Scaling, IND = Independent Scaling
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Figure 4.1: The accuracy metric scores for the best technique(s) of each
direct, transitive, and hybrid family. Note, due to normalization of
LagNormInverted, a score of 1 represents the best lag score and not per-
fect achievement.

Our analysis so far has focused on top performing techniques for each dataset; however

to understand when and where the transitive approach works, we now investigate its

performance across individual trace queries. Figure 4.2 reports results for individual

queries and Table 4.3 reports the significance levels of the non-parametric Wilcoxon

method for identifying differences in distributions of rankings.

Figure 4.2 shows a large variance in accuracy scores across all techniques meaning

that there are some queries that are difficult for all techniques to perform well on.

Further, there are some individual trace queries for which the best transitive technique
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Table 4.3: Significance values of non-parametric Wilcoxon Method com-
paring differences in accuracy scores on individual trace queries for the
best direct, transitive, and hybrid techniques.

Dataset Metric Transitive
over

Direct

Hybrid
over

Direct

Hybrid over
Transitive

Dronology
MAP 0.001 0.001 0.003
AUC 0.001 0.001 0.001
LAG 0.001 0.001 0.004

TrainController
MAP 0.001 0.001 0.127
AUC 0.001 0.001 0.053
LAG 0.001 0.001 0.03

EasyClinic
MAP 0.058 0.07 0.62
AUC 0.043 0.112 0.511
LAG 0.036 0.081 0.506

EBT
MAP 0.001 0.001 0.074
AUC 0.001 0.001 0.338
LAG 0.001 0.001 0.399

WARC
MAP 0.562 0.637 0.293
AUC 0.494 0.793 0.674
LAG 0.494 0.8334 0.6

performs significantly worse than the direct one. This is illustrated in the MAP scores

for the EBT and TrainController datasets. We also notice that the best hybrid and

transitive techniques were significantly more accurate than the best direct technique

across 3 datasets. Interestingly, our analysis showed that the best transitive technique

was only significantly better than the hybrid transitive technique in the case of AUC

in Dronology.

Although the best technique leveraging intermediate artifacts perform well, Tables

A.2, A.3, A.4, A.5, and A.6 remind us that the worst hybrid technique performs

worst than the worst direct technique in metrics for TC, EC, EBT, WARC. This

implies that the use of the wrong technique would make the use of intermediate

artifacts counterproductive. This is likely the reason why Nishiwaka’s CLM approach

did not achieve more positive results [37]. For example, their CLM method resulted
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in a precision of 0.75 at a recall of 0.161 on the EasyClinic dataset; however, the

best transitive technique we found in EasyClinic reaches a precision of 0.970 at a

recall level of 0.165 resulting in a 29.3% relative gain. Therefore, it is important to

investigate which hybrid technique is more useful and under which conditions.

From Table 4.2 we observe that no single technique performed best across all datasets,

which implies that the selection of an optimal technique will need to be tuned for each

project and possibly for different trace paths within the project. On the other hand,

we can observe trends that suggest a good baseline technique. For example, VSM

outperforms LSI in all projects for the direct algebraic model and in 3/5 projects

for the transitive algebraic model. Within the transitive technique, global scaling

slightly outperforms independent as it provides best results in 4/5 datasets. Finally

for link aggregation, sum performs best in 3/5 projects. For aggregating direct and

transitive results in the hybrid approach, sum wins across all projects. In conclusion,

VSM is favored over LSI, the choice of scaling method has little to no effect on the

actual performance of a technique, and the sum of transitive paths performs best for

aggregating direct and transitive techniques.

We refer to the aggregate of the most popular variants as the best performing overall

technique as it returned generally good results across all projects. Note, however,

that the best performing overall technique is only the top performer in EBT. Figure

4.3 presents the distribution of accuracy scores for the best direct technique and best

overall technique across individual trace queries. Although this technique may not

return top results for each individual project, it can be used without project-specific

fine-tuning, and we still observe an increase to the median accuracy for the best

overall technique over the best direct technique.
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4.1 Analysis of Results

Now that we have identified the best performing techniques we can examine where

they work and where they do not.

4.1.1 Where does leveraging intermediate artifacts help?

To understand where leveraging intermediate artifacts works, we examined where

the transitive technique component of each best performing hybrid technique (see

Table 4.2) performed better than its direct counterpart. This revealed that transitive

techniques help the most on queries where the source and target artifacts share little

to no words in common, as illustrated by Figure 4.4. This figure is constructed by

generating trace links using direct and transitive techniques, categorizing each traced

artifact pair by the number of shared terms, and then computing the relative gain in

ranking achieved using the transitive over direct technique.

We observe that the median gain is highest when the source and target artifacts share

little or no words (e.g. 0 or 1). Consequently, a transitive technique is sometimes able

to help a direct technique transcend the term mismatch problem between source and

target artifacts. However, these term-matching problems [23] can only be alleviated

when the intermediate artifacts include a common vocabulary used by both source

and target artifacts as shown next.

4.1.2 Where do intermediate artifacts not help?

To examine where intermediate artifacts did not help end-to-end retrieval we again

examine the performance of the best direct, transitive, and hybrid for each dataset.
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Previously, Figure 4.2 had shown us the distribution of accuracy scores across indi-

vidual trace queries for the best performing techniques in each family per dataset.

In Section 4 we observed that there are some queries where the best transitive tech-

nique performs significantly worse than the direct one (e.g. MAP in EBT). In general,

we observe that transitive techniques also suffer from the term-mismatch problem.

This is due to the fact that the algebraic models evaluated in this thesis are bag-of-

word models (or derivatives) and rely on the assumption that two traced artifacts must

share a set of words (or similarly topic distributions in the case of LSI). Conversely,

there is also an assumption that artifacts that share words should be connected via a

trace link. These assumptions begin to break down as we introduce transitive traces

and more distant links are introduced.

In order to test our theory we calculated the performance of the best performing hy-

brid techniques across different trace queries paths in each dataset and report results

in Figure 4.5. For example, for the WARC dataset we have only examined the trace

query path between non-functional requirements (0) and functional requirements (2)

through system requirements (1). The other query paths explored for WARC would

be: non-functional requirements→ functional requirements→ software requirements

(0-2-1) and system requirements → non-functional requirements → functional re-

quirements (1-0-2). Note, although there are technically 6 permutations of different

query paths with three artifact types the results are identical when the source and

target artifact types are swapped. This is due to our preprocessing step described in

Section 3.0.1 in which all transitive traces are implied, so we expect to observe this

symmetry in accuracy. This means that we can examine the performance of the best

technique across all query paths (e.g. 0-1-2, 0-2-1, 1-0-2).

Examining Figure 4.5 we observe that some paths clearly benefit from the transitive

approach while others do not. These results can be explained by dissecting the re-
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lationships between the artifacts and examining how they were created. Typically,

projects begin by first specifying system features. Then, these features are refined

by artifacts implicitly or explicitly teasing out the design and architecture of a sys-

tem. Finally, once enough is known about how a system should look and behave the

final refinement is made and the code is written. Note, that both agile and water-

fall methodologies follow this progressive refinement with the difference being that

in agile a smaller scope of features is followed through to the end per iteration. The

interdependence between artifacts, as each level introduces more granularity, creates

a hierarchy where each artifact is rooted to a less granular parent, ultimately creating

a shared vocabulary across all child artifacts.

Transitive techniques leverage this common vocabulary to retrieve end-to-end trace

links. There are three systems whose artifacts follow a clear hierarchy, namely, Dronol-

ogy, TrainController, and EasyClinic. Notably, the query path following this hierar-

chical order (0-1-2) is the most improved path for each of these datasets across almost

all metrics. WARC included non-functional requirements which are difficult to place

into a hierarchy; however, we followed the path established by the developers of the

dataset and observe that its use leads to the greatest accuracy across all metrics.

Queries experiencing less than 5% improvement (e.g. 1-0-2 in TrainController, 0-2-1

in EasyClinic) break the established hierarchy of the project. It is expected that

differences in vocabularies between artifacts in a query path affect the performance

of transitive techniques; namely, if there is a vocabulary mismatch between either

source → intermediate artifacts or intermediate → target artifacts, and just one of

their correspond similarity matrices is not able to compute enough similarity between

artifacts (like when vocabularies mismatch) then the result is a near zero-valued

matrix which wipes out any upstream or downstream relation scores.
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EBT’s artifacts also follow a hierarchy except it contains test cases instead of design

documents. The path 0-2-1 is interesting in EBT (but also for Drone and TrainCon-

troller) because we observe a significant improvement (>5%) in AUC and LAG, but

not on MAP. Upon closer inspection the best hybrid technique raises the rankings

of low-scoring trace links in the best direct technique, which is synonymous to our

observations in Section 4.1.1) as low scores are a sign of lacking common terms; how-

ever, it also reduces the direct technique scores of non-links, specifically high scoring

ones.
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Chapter 5

THREATS TO VALIDITY

Our experiments are subject to several threats to validity. Internal validity is con-

cerned with the influences that can affect the independent variables with respect to

causality [53]. A possible threat is that different tracing techniques might influence

our findings. To minimize this threat we adopted diverse, commonly adopted tech-

niques that have performed well in past studies [19, 40, 20, 36, 3, 34]. However, we

defer experimentation with deep learning solutions to future work as discussed in

Section 7.

External validity is concerned with the extent to which the research elements (sub-

jects, artifacts, etc.) are representative of actual elements [53]. The main limitation

to the generalizability of our results is that we experimented with only five datasets

due to the lack of publicly available datasets containing sufficient artifacts. However,

as suggested by current literature [35], we attempted to test a diverse set of datasets,

spanning small, medium, and large projects, and contained different types of artifacts.

Results indicate clear patterns of improvement across all datasets when artifacts are

arranged in a hierarchical fashion, suggesting that our results extend beyond a spe-

cific type of artifacts. We also plan to share a replication package on github upon

publication of this work.

Construct validity is concerned with the appropriateness of our methods of measure-

ment in the context of our research question [41]. The major threat to construct

validity is the accuracy and completeness of the five used datasets. As described

in Section 3.0.1, we used the CLM method to infer missing trace links in datasets.
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Generally, there is a valid motivation for establishing transitive traces, especially

for hierarchically structured datasets where trace links are routinely defined using

transitivity (e.g. Dronology, TrainController, EasyClinic).

Conclusion validity is concerned with determining that the relationship observed in

our study is reasonable and reliable. As explored in Sections 4 and 4.1 techniques

leveraging intermediate artifacts improve the accuracy in circumstances where arti-

facts have clear relations (e.g. hierarchy of artifacts). This improvement disappears

for datasets whose artifacts are not hierarchical. Given the analysis of Figure 4.5

there is reasonable evidence that our result holds under these circumstances.
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Chapter 6

RELATED WORK

Several areas of prior work on traceability are related to our research. A long stand-

ing approach to recovering end-to-end traces has been to use textual similarity as a

measure of how probable it is that they are traced [3, 24]. Much work has focused

on exploring different methods for calculating textual similarity scores leading to the

emergence of many IR techniques that created a similarity score between artifacts

using textual information [56, 6, 10, 23].

Additional work has leveraged supporting information to improve trace accuracy [15].

Recently researchers have proposed augmenting textual information from individual

artifacts with diverse information from the project’s environment [55, 52, 34, 28]. We

have followed this line of research by combining transitive relation scores and textual

similarities between artifacts to recover traceability links.

As we set out to combine direct textual similarities with transitive similarity scores it

is unclear whether these methods are complementary; therefore, we include Gethers

et al.’s recommended method of combining orthogonal IR methods in two places

where this uncertainty may be true [20]. His work stemmed from the observation

by Oliveto et al that some IR techniques are statistically equivalent while others

seemed to provide orthogonal information [38]. Gethers et al. study explored an

integration of these complementary or orthogonal methods by treating each method

as an expert and using a weighted sum of the expert’s opinion as the final opinion.

Gethers recommends weighting each expert based on the ratio of explained variance
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given by principal component analysis; therefore, we refer to Gether’s et al. method

as PCA.

In the most closely related work, Nishikawa et al. first explored an automated method

for calculating probabilities between source and target artifacts using intermediate

artifacts named Connecting Links Methods (CLM) [37]. In this method, the similarity

score between a source and target artifact is calculated by multiplying the textual

similarities between source and intermediate artifact with that of the intermediate and

target artifact. This method proved to be effective to cross language barriers, but in

some cases would be outperformed by the direct textual similarity of the source and

target artifacts. It was thus our motivation to investigate the benefits and methods of

integrating both transitive relation scores and direct textual similarities. Nishikawa

et al utilized EasyClinic, a dataset we included in our analysis too. They reported

a precision of 0.75 while at a recall of 0.161. At similar or higher recall levels our

technique reached a precision of 0.98. A later study by Tsuchiya et al took another

look at the original methodology (connect the links) [50] and found a technique that

reached 0.45 precision at a recall level of 0.72. Again, we were able to achieve a

precision score of 0.59 at equal or greater recall levels.

A recent paper tackled trace recovery by leveraging transitive traces in a proba-

bilistic model named HierarChical PrObabilistic Model for SoftwarE Traceability

(COMET) [34]. Moran et al. utilized transitive relationships as one of a few inputs

to tune their probabilistic model. Their paper intersects with ours on the integra-

tion of textual similarities from multiple information retrieval (IR) techniques as

well as modeling transitive links in a hierarchy; however, we differ on the method

in which we integrate IR techniques and transitive links in our trace predictions.

First, COMET utilizes its various IR techniques to inform the parameter estimations

of a beta-distribution representing all textual similarities in a project. We, in con-
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trast, combine multiple IR techniques into a single technique that serves as the final

technique determining the ranks of artifact pairs. Both COMET and our approach

allow the integration of orthogonal techniques, supporting information, and relation-

ships between the same types of artifacts which has been shown to improve accuracy

when recovering trace links [33, 20, 15, 19]. Second, COMET models transitive re-

lationships between artifacts by examining the execution trace of code to establish

transitive trace links. We are not limited to transitive relationships that must include

code artifacts since our model also predicts using the textual similarities between the

artifacts in a transitive relationship. For example, recently Roll et al. observed bene-

fits in using textual similarities between source artifact to improve trace retrieval [19].

Finally, other work has begun to incorporate multiple artifact types into IR models

[8, 54, 51, 50] and to consider using the structural information about a project to

help aid trace recovery [39, 11, 33].
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Chapter 7

CONCLUSION

Our study empirically evaluated several different techniques for leveraging interme-

diate artifacts to improve the accuracy of end-to-end trace retrieval. Our evaluation

included two direct techniques, 12 transitive, and 72 hybrid. Our results showed that

the best technique leveraging intermediate artifacts outperformed the best direct tech-

nique. We also evaluated a hybrid technique composed of the overall best performing

transitive and direct techniques. The hybrid approach returned better median accu-

racy across all metrics on individual trace queries than the best direct technique. Our

subsequent analysis of the top performing hybrid techniques discovered that transitive

techniques help support direct techniques when few words exist between source and

target artifacts, initially helping alleviate term-matching problems. However, transi-

tive techniques suffer from their own term-matching issues, as evidenced by little to

negative performance gain on trace queries containing semantically distant artifacts.

In future work we plan to explore two open research questions. First, whilst the

experiments in this work focused on IR-based tracing techniques, we expect that

the findings will apply to the emergent set of deep-learning tracing algorithms too

[29, 22, 23]. Even though DL approaches are able to link artifacts based on their se-

mantics instead of relying upon shared terms and synonyms, we have made the initial

observation that both the terminology mismatch and the semantic difference increases

as artifacts are further apart in the development hierarchy. If this observation holds

true, then the use of transitive trace links will also be useful with DL tracing solu-

tions. Second, we plan to explore the benefits of leveraging transitive artifacts across
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broader graph-based networks of traceability links including the exploration of partial

networks in which trace links are missing.
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[32] P. Mäder, P. L. Jones, Y. Zhang, and J. Cleland-Huang. Strategic traceability

for safety-critical projects. IEEE Softw., 30(3):58–66, 2013.

[33] C. McMillan, D. Poshyvanyk, and M. Revelle. Combining textual and

structural analysis of software artifacts for traceability link recovery. In

2009 ICSE Workshop on Traceability in Emerging Forms of Software

Engineering, pages 41–48, Vancouver, BC, Canada, May 2009. IEEE.

[34] K. Moran, D. N. Palacio, C. Bernal-Cárdenas, D. McCrystal, D. Poshyvanyk,

C. Shenefiel, and J. Johnson. Improving the Effectiveness of Traceability

Link Recovery using Hierarchical Bayesian Networks. Proceedings of the

ACM/IEEE 42nd International Conference on Software Engineering, pages

873–885, June 2020. arXiv: 2005.09046.

[35] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in software engineering

research. In Proceedings of the 2013 9th Joint Meeting on Foundations of

41



Software Engineering - ESEC/FSE 2013, page 466, Saint Petersburg,

Russia, 2013. ACM Press.

[36] D. Nir, S. Tyszberowicz, and A. Yehudai. Locating regression bugs. In

K. Yorav, editor, Hardware and Software: Verification and Testing, pages

218–234, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[37] K. Nishikawa, H. Washizaki, Y. Fukazawa, K. Oshima, and R. Mibe.

Recovering transitive traceability links among software artifacts. In 2015

IEEE International Conference on Software Maintenance and Evolution

(ICSME), pages 576–580, Bremen, Germany, Sept. 2015. IEEE.

[38] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. On the Equivalence

of Information Retrieval Methods for Automated Traceability Link

Recovery. In 2010 IEEE 18th International Conference on Program

Comprehension, pages 68–71, Braga, Portugal, June 2010. IEEE.

[39] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto, D. Poshyvanyk,

and A. De Lucia. When and How Using Structural Information to Improve

IR-Based Traceability Recovery. In 2013 17th European Conference on

Software Maintenance and Reengineering, pages 199–208, Genova, Mar.

2013. IEEE.

[40] M. Rahimi, W. Goss, and J. Cleland-Huang. Evolving Requirements-to-Code

Trace Links across Versions of a Software System. In 2016 IEEE

International Conference on Software Maintenance and Evolution

(ICSME), pages 99–109, Raleigh, NC, USA, Oct. 2016. IEEE.

[41] P. Ralph and E. Tempero. Construct Validity in Software Engineering Research

and Software Metrics. In Proceedings of the 22nd International Conference

42



on Evaluation and Assessment in Software Engineering 2018 - EASE’18,

pages 13–23, Christchurch, New Zealand, 2018. ACM Press.

[42] B. Ramesh and M. Jarke. Toward reference models of requirements traceability.

IEEE Trans. Software Eng., 27(1):58–93, 2001.

[43] M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and P. Mäder.
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APPENDICES

Appendix A

RESULT TABLES

In the following tables the performance of all direct (2), transitive (12), and hybrid

(72) retrieval techniques (defined in Section 2.1) are detailed. Due to size constraints,

each technique is given an identifier in Table A.1. Then, Tables A.2, A.3, A.4, A.5, A.6

store the accuracy metric scores for each dataset (5) in this study. These M represents

the MAP score, A the AUC score, and L the Lag scores after its transformation

described in Section 3.0.3.

Table A.1: Direct, Transitive, and Hybrid technique identifiers.

ID Approach
Direct Transitive Hybrid

Model Model Scaling Aggregation Aggregation

D1 Direct VSM

D2 Direct LSI

T1 Transitive VSM IND SUM

T2 Transitive VSM IND PCA

T3 Transitive VSM IND MAX

T4 Transitive VSM GLB SUM

T5 Transitive VSM GLB PCA

T6 Transitive VSM GLB MAX

T7 Transitive LSI IND SUM

T8 Transitive LSI IND PCA

T9 Transitive LSI IND MAX
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T10 Transitive LSI GLB SUM

T11 Transitive LSI GLB PCA

T12 Transitive LSI GLB MAX

H1 Hybrid VSM VSM IND SUM SUM

H2 Hybrid VSM VSM IND SUM PCA

H3 Hybrid VSM VSM IND SUM MAX

H4 Hybrid VSM VSM IND PCA SUM

H5 Hybrid VSM VSM IND PCA PCA

H6 Hybrid VSM VSM IND PCA MAX

H7 Hybrid VSM VSM IND MAX SUM

H8 Hybrid VSM VSM IND MAX PCA

H9 Hybrid VSM VSM IND MAX MAX

H10 Hybrid VSM VSM GLB SUM SUM

H11 Hybrid VSM VSM GLB SUM PCA

H12 Hybrid VSM VSM GLB SUM MAX

H13 Hybrid VSM VSM GLB PCA SUM

H14 Hybrid VSM VSM GLB PCA PCA

H15 Hybrid VSM VSM GLB PCA MAX

H16 Hybrid VSM VSM GLB MAX SUM

H17 Hybrid VSM VSM GLB MAX PCA

H18 Hybrid VSM VSM GLB MAX MAX

H19 Hybrid VSM LSI IND SUM SUM

H20 Hybrid VSM LSI IND SUM PCA

H21 Hybrid VSM LSI IND SUM MAX

H22 Hybrid VSM LSI IND PCA SUM

H23 Hybrid VSM LSI IND PCA PCA
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H24 Hybrid VSM LSI IND PCA MAX

H25 Hybrid VSM LSI IND MAX SUM

H26 Hybrid VSM LSI IND MAX PCA

H27 Hybrid VSM LSI IND MAX MAX

H28 Hybrid VSM LSI GLB SUM SUM

H29 Hybrid VSM LSI GLB SUM PCA

H30 Hybrid VSM LSI GLB SUM MAX

H31 Hybrid VSM LSI GLB PCA SUM

H32 Hybrid VSM LSI GLB PCA PCA

H33 Hybrid VSM LSI GLB PCA MAX

H34 Hybrid VSM LSI GLB MAX SUM

H35 Hybrid VSM LSI GLB MAX PCA

H36 Hybrid VSM LSI GLB MAX MAX

H37 Hybrid LSI VSM IND SUM SUM

H38 Hybrid LSI VSM IND SUM PCA

H39 Hybrid LSI VSM IND SUM MAX

H40 Hybrid LSI VSM IND PCA SUM

H41 Hybrid LSI VSM IND PCA PCA

H42 Hybrid LSI VSM IND PCA MAX

H43 Hybrid LSI VSM IND MAX SUM

H44 Hybrid LSI VSM IND MAX PCA

H45 Hybrid LSI VSM IND MAX MAX

H46 Hybrid LSI VSM GLB SUM SUM

H47 Hybrid LSI VSM GLB SUM PCA

H48 Hybrid LSI VSM GLB SUM MAX

H49 Hybrid LSI VSM GLB PCA SUM
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H50 Hybrid LSI VSM GLB PCA PCA

H51 Hybrid LSI VSM GLB PCA MAX

H52 Hybrid LSI VSM GLB MAX SUM

H53 Hybrid LSI VSM GLB MAX PCA

H54 Hybrid LSI VSM GLB MAX MAX

H55 Hybrid LSI LSI IND SUM SUM

H56 Hybrid LSI LSI IND SUM PCA

H57 Hybrid LSI LSI IND SUM MAX

H58 Hybrid LSI LSI IND PCA SUM

H59 Hybrid LSI LSI IND PCA PCA

H60 Hybrid LSI LSI IND PCA MAX

H61 Hybrid LSI LSI IND MAX SUM

H62 Hybrid LSI LSI IND MAX PCA

H63 Hybrid LSI LSI IND MAX MAX

H64 Hybrid LSI LSI GLB SUM SUM

H65 Hybrid LSI LSI GLB SUM PCA

H66 Hybrid LSI LSI GLB SUM MAX

H67 Hybrid LSI LSI GLB PCA SUM

H68 Hybrid LSI LSI GLB PCA PCA

H69 Hybrid LSI LSI GLB PCA MAX

H70 Hybrid LSI LSI GLB MAX SUM

H71 Hybrid LSI LSI GLB MAX PCA

H72 Hybrid LSI LSI GLB MAX MAX
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Table A.2: Technique accuracy metric scores on Drone dataset. LAG scores are

represented by LagNormInverted metrics defined in Section 3.0.3. A score of 0 means

it performed the worst among all techniques and 1 the best.

ID
Drone

M A L

D1 0.341 0.613 0.237

D2 0.334 0.594 0.0

T1 0.384 0.677 0.94

T2 0.362 0.652 0.653

T3 0.376 0.671 0.876

T4 0.384 0.677 0.94

T5 0.362 0.652 0.653

T6 0.376 0.671 0.876

T7 0.42 0.67 0.86

T8 0.357 0.608 0.166

T9 0.362 0.662 0.772

T10 0.424 0.682 1.0

T11 0.355 0.615 0.244

T12 0.365 0.663 0.781

H1 0.375 0.662 0.77

H2 0.358 0.638 0.501

H3 0.373 0.659 0.755

H4 0.362 0.644 0.563

H5 0.355 0.632 0.438

H6 0.356 0.639 0.528

H7 0.375 0.663 0.786
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H8 0.36 0.641 0.533

H9 0.371 0.654 0.698

H10 0.375 0.662 0.77

H11 0.358 0.638 0.501

H12 0.373 0.659 0.755

H13 0.362 0.644 0.563

H14 0.355 0.632 0.438

H15 0.356 0.639 0.528

H16 0.375 0.663 0.786

H17 0.36 0.641 0.533

H18 0.371 0.654 0.698

H19 0.394 0.672 0.885

H20 0.37 0.655 0.687

H21 0.387 0.663 0.779

H22 0.369 0.63 0.412

H23 0.363 0.631 0.426

H24 0.359 0.619 0.287

H25 0.369 0.659 0.741

H26 0.357 0.641 0.53

H27 0.363 0.648 0.646

H28 0.399 0.681 0.98

H29 0.372 0.66 0.745

H30 0.393 0.673 0.888

H31 0.371 0.635 0.468

H32 0.364 0.635 0.463

H33 0.363 0.625 0.359
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H34 0.37 0.66 0.746

H35 0.357 0.641 0.535

H36 0.364 0.647 0.633

H37 0.364 0.645 0.575

H38 0.345 0.61 0.183

H39 0.362 0.643 0.559

H40 0.352 0.626 0.369

H41 0.342 0.605 0.134

H42 0.349 0.623 0.327

H43 0.369 0.652 0.653

H44 0.348 0.616 0.255

H45 0.361 0.644 0.57

H46 0.364 0.645 0.575

H47 0.345 0.61 0.183

H48 0.362 0.643 0.559

H49 0.352 0.626 0.369

H50 0.342 0.605 0.134

H51 0.349 0.623 0.327

H52 0.369 0.652 0.653

H53 0.348 0.616 0.255

H54 0.361 0.644 0.57

H55 0.384 0.664 0.789

H56 0.357 0.634 0.461

H57 0.378 0.654 0.682

H58 0.359 0.624 0.343

H59 0.351 0.616 0.256
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H60 0.351 0.608 0.158

H61 0.362 0.649 0.627

H62 0.344 0.615 0.241

H63 0.354 0.639 0.509

H64 0.389 0.672 0.879

H65 0.361 0.639 0.513

H66 0.383 0.663 0.785

H67 0.362 0.629 0.398

H68 0.353 0.619 0.292

H69 0.355 0.614 0.229

H70 0.363 0.65 0.632

H71 0.345 0.615 0.244

H72 0.355 0.637 0.49

Table A.3: Technique accuracy metric scores on TrainController dataset. LAG scores

are represented by LagNormInverted metrics defined in Section 3.0.3. A score of 0

means it performed the worst among all techniques and 1 the best.

ID
TrainController

M A L

D1 0.503 0.545 0.358

D2 0.503 0.536 0.264

T1 0.514 0.662 1.0

T2 0.448 0.597 0.621

T3 0.536 0.615 0.723

T4 0.514 0.662 1.0

T5 0.448 0.597 0.621
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T6 0.536 0.615 0.723

T7 0.484 0.65 0.932

T8 0.342 0.501 0.056

T9 0.497 0.575 0.489

T10 0.48 0.655 0.961

T11 0.34 0.492 0.0

T12 0.509 0.586 0.557

H1 0.553 0.632 0.828

H2 0.535 0.614 0.722

H3 0.544 0.623 0.767

H4 0.529 0.588 0.568

H5 0.521 0.583 0.534

H6 0.522 0.578 0.519

H7 0.538 0.6 0.637

H8 0.532 0.588 0.569

H9 0.531 0.592 0.603

H10 0.553 0.632 0.828

H11 0.535 0.614 0.722

H12 0.544 0.623 0.767

H13 0.529 0.588 0.568

H14 0.521 0.583 0.534

H15 0.522 0.578 0.519

H16 0.538 0.6 0.637

H17 0.532 0.588 0.569

H18 0.531 0.592 0.603

H19 0.558 0.63 0.811
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H20 0.542 0.617 0.738

H21 0.547 0.618 0.757

H22 0.496 0.531 0.233

H23 0.497 0.534 0.251

H24 0.497 0.527 0.189

H25 0.523 0.573 0.477

H26 0.521 0.57 0.459

H27 0.525 0.568 0.477

H28 0.563 0.634 0.836

H29 0.549 0.621 0.761

H30 0.551 0.623 0.788

H31 0.492 0.524 0.192

H32 0.495 0.528 0.213

H33 0.494 0.521 0.187

H34 0.532 0.581 0.526

H35 0.527 0.576 0.494

H36 0.532 0.574 0.47

H37 0.55 0.622 0.767

H38 0.53 0.584 0.544

H39 0.542 0.612 0.71

H40 0.527 0.582 0.53

H41 0.517 0.565 0.433

H42 0.52 0.57 0.461

H43 0.534 0.591 0.582

H44 0.519 0.563 0.42

H45 0.524 0.583 0.537
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H46 0.55 0.622 0.767

H47 0.53 0.584 0.544

H48 0.542 0.612 0.71

H49 0.527 0.582 0.53

H50 0.517 0.565 0.433

H51 0.52 0.57 0.461

H52 0.534 0.591 0.582

H53 0.519 0.563 0.42

H54 0.524 0.583 0.537

H55 0.555 0.624 0.78

H56 0.543 0.606 0.67

H57 0.544 0.611 0.701

H58 0.493 0.528 0.216

H59 0.497 0.531 0.233

H60 0.49 0.52 0.168

H61 0.52 0.568 0.447

H62 0.512 0.553 0.363

H63 0.518 0.56 0.402

H64 0.56 0.629 0.805

H65 0.549 0.61 0.698

H66 0.549 0.616 0.73

H67 0.486 0.522 0.178

H68 0.494 0.526 0.2

H69 0.488 0.516 0.144

H70 0.528 0.575 0.493

H71 0.516 0.556 0.381
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H72 0.522 0.566 0.438

Table A.4: Technique accuracy metric scores on EasyClinic dataset. LAG scores are

represented by LagNormInverted metrics defined in Section 3.0.3. A score of 0 means

it performed the worst among all techniques and 1 the best.

ID
EasyClinic

M A L

D1 0.705 0.758 0.737

D2 0.686 0.75 0.681

T1 0.642 0.731 0.556

T2 0.475 0.667 0.14

T3 0.781 0.79 0.947

T4 0.632 0.726 0.525

T5 0.464 0.662 0.11

T6 0.78 0.79 0.943

T7 0.578 0.7 0.355

T8 0.433 0.646 0.004

T9 0.767 0.778 0.868

T10 0.575 0.699 0.35

T11 0.432 0.645 0.0

T12 0.766 0.778 0.867

H1 0.723 0.771 0.817

H2 0.714 0.767 0.796

H3 0.698 0.772 0.827

H4 0.694 0.778 0.866

H5 0.712 0.778 0.868
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H6 0.72 0.791 0.948

H7 0.77 0.797 0.987

H8 0.72 0.769 0.807

H9 0.753 0.798 0.999

H10 0.72 0.769 0.805

H11 0.712 0.767 0.793

H12 0.7 0.771 0.818

H13 0.686 0.777 0.861

H14 0.712 0.778 0.867

H15 0.713 0.792 0.954

H16 0.77 0.796 0.986

H17 0.72 0.769 0.808

H18 0.753 0.799 1.0

H19 0.7 0.759 0.743

H20 0.71 0.765 0.782

H21 0.689 0.766 0.788

H22 0.674 0.774 0.842

H23 0.7 0.778 0.868

H24 0.71 0.795 0.975

H25 0.763 0.789 0.938

H26 0.717 0.767 0.791

H27 0.745 0.789 0.936

H28 0.7 0.759 0.742

H29 0.71 0.765 0.781

H30 0.689 0.766 0.787

H31 0.674 0.774 0.841
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H32 0.7 0.778 0.868

H33 0.71 0.795 0.975

H34 0.763 0.789 0.938

H35 0.718 0.767 0.791

H36 0.746 0.789 0.936

H37 0.71 0.767 0.796

H38 0.7 0.761 0.755

H39 0.691 0.769 0.806

H40 0.68 0.772 0.824

H41 0.692 0.772 0.826

H42 0.703 0.782 0.893

H43 0.762 0.795 0.977

H44 0.706 0.764 0.775

H45 0.749 0.796 0.981

H46 0.704 0.765 0.784

H47 0.699 0.761 0.753

H48 0.689 0.767 0.796

H49 0.676 0.771 0.818

H50 0.69 0.772 0.824

H51 0.703 0.783 0.899

H52 0.763 0.795 0.976

H53 0.706 0.764 0.776

H54 0.749 0.796 0.981

H55 0.687 0.755 0.714

H56 0.694 0.758 0.737

H57 0.677 0.761 0.753

59



H58 0.66 0.768 0.8

H59 0.684 0.772 0.824

H60 0.699 0.786 0.919

H61 0.755 0.787 0.924

H62 0.701 0.761 0.754

H63 0.742 0.786 0.917

H64 0.686 0.754 0.712

H65 0.693 0.758 0.736

H66 0.677 0.761 0.752

H67 0.66 0.768 0.799

H68 0.684 0.772 0.824

H69 0.699 0.786 0.919

H70 0.755 0.787 0.924

H71 0.701 0.761 0.754

H72 0.742 0.786 0.916

Table A.5: Technique accuracy metric scores on EBT dataset. LAG scores are rep-

resented by LagNormInverted metrics defined in Section 3.0.3. A score of 0 means it

performed the worst among all techniques and 1 the best.

ID
EBT

M A L

D1 0.755 0.685 0.706

D2 0.755 0.655 0.559

T1 0.853 0.733 0.969

T2 0.835 0.691 0.75

T3 0.81 0.707 0.833
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T4 0.853 0.733 0.969

T5 0.835 0.691 0.75

T6 0.81 0.707 0.833

T7 0.861 0.704 0.82

T8 0.828 0.582 0.177

T9 0.791 0.686 0.723

T10 0.861 0.675 0.664

T11 0.831 0.548 0.0

T12 0.791 0.667 0.621

H1 0.838 0.739 1.0

H2 0.816 0.735 0.982

H3 0.815 0.723 0.879

H4 0.815 0.716 0.88

H5 0.808 0.72 0.903

H6 0.805 0.704 0.817

H7 0.812 0.727 0.939

H8 0.804 0.73 0.952

H9 0.795 0.716 0.863

H10 0.838 0.739 1.0

H11 0.816 0.735 0.982

H12 0.815 0.723 0.879

H13 0.815 0.716 0.88

H14 0.808 0.72 0.903

H15 0.805 0.704 0.817

H16 0.812 0.727 0.939

H17 0.804 0.73 0.952
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H18 0.795 0.716 0.863

H19 0.848 0.723 0.916

H20 0.826 0.726 0.93

H21 0.823 0.711 0.849

H22 0.828 0.655 0.561

H23 0.823 0.666 0.618

H24 0.808 0.636 0.46

H25 0.806 0.712 0.861

H26 0.801 0.72 0.899

H27 0.783 0.706 0.814

H28 0.847 0.704 0.816

H29 0.826 0.712 0.861

H30 0.817 0.69 0.738

H31 0.825 0.633 0.446

H32 0.822 0.642 0.49

H33 0.805 0.616 0.358

H34 0.806 0.7 0.794

H35 0.801 0.711 0.852

H36 0.783 0.692 0.741

H37 0.823 0.718 0.89

H38 0.786 0.688 0.732

H39 0.804 0.705 0.821

H40 0.792 0.681 0.695

H41 0.78 0.673 0.655

H42 0.793 0.69 0.744

H43 0.804 0.711 0.852
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H44 0.779 0.687 0.726

H45 0.789 0.7 0.798

H46 0.823 0.718 0.89

H47 0.786 0.688 0.732

H48 0.804 0.705 0.821

H49 0.792 0.681 0.695

H50 0.78 0.673 0.655

H51 0.793 0.69 0.744

H52 0.804 0.711 0.852

H53 0.779 0.687 0.726

H54 0.789 0.7 0.798

H55 0.836 0.71 0.848

H56 0.8 0.693 0.758

H57 0.815 0.695 0.772

H58 0.808 0.637 0.467

H59 0.798 0.644 0.502

H60 0.796 0.621 0.383

H61 0.799 0.698 0.786

H62 0.78 0.683 0.708

H63 0.778 0.691 0.751

H64 0.835 0.692 0.756

H65 0.8 0.685 0.716

H66 0.81 0.677 0.675

H67 0.804 0.617 0.359

H68 0.796 0.623 0.393

H69 0.792 0.602 0.283
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H70 0.798 0.686 0.725

H71 0.78 0.678 0.679

H72 0.778 0.68 0.689

Table A.6: Technique accuracy metric scores on WARC dataset. LAG scores are

represented by LagNormInverted metrics defined in Section 3.0.3. A score of 0 means

it performed the worst among all techniques and 1 the best.

ID
WARC

M A L

D1 0.674 0.835 0.599

D2 0.634 0.8 0.314

T1 0.621 0.885 0.937

T2 0.563 0.852 0.697

T3 0.617 0.889 0.961

T4 0.621 0.885 0.937

T5 0.563 0.852 0.697

T6 0.617 0.889 0.961

T7 0.387 0.758 0.009

T8 0.585 0.787 0.22

T9 0.625 0.867 0.805

T10 0.387 0.757 0.0

T11 0.585 0.785 0.206

T12 0.625 0.869 0.815

H1 0.725 0.889 0.96

H2 0.696 0.87 0.822

H3 0.721 0.891 0.978
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H4 0.723 0.875 0.859

H5 0.709 0.863 0.771

H6 0.721 0.865 0.808

H7 0.749 0.894 1.0

H8 0.716 0.875 0.859

H9 0.729 0.891 0.979

H10 0.725 0.889 0.96

H11 0.696 0.87 0.822

H12 0.721 0.891 0.978

H13 0.723 0.875 0.859

H14 0.709 0.863 0.771

H15 0.721 0.865 0.808

H16 0.749 0.894 1.0

H17 0.716 0.875 0.859

H18 0.729 0.891 0.979

H19 0.665 0.845 0.643

H20 0.685 0.849 0.67

H21 0.66 0.833 0.566

H22 0.726 0.855 0.716

H23 0.729 0.865 0.789

H24 0.708 0.849 0.675

H25 0.723 0.883 0.922

H26 0.722 0.876 0.872

H27 0.716 0.877 0.879

H28 0.665 0.845 0.644

H29 0.685 0.849 0.674
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H30 0.66 0.834 0.57

H31 0.728 0.854 0.71

H32 0.729 0.864 0.784

H33 0.706 0.847 0.661

H34 0.722 0.884 0.927

H35 0.723 0.877 0.873

H36 0.716 0.878 0.885

H37 0.71 0.863 0.773

H38 0.662 0.828 0.518

H39 0.699 0.871 0.829

H40 0.707 0.854 0.712

H41 0.679 0.829 0.527

H42 0.696 0.854 0.711

H43 0.73 0.87 0.823

H44 0.685 0.834 0.559

H45 0.712 0.877 0.878

H46 0.71 0.863 0.773

H47 0.662 0.828 0.518

H48 0.699 0.871 0.829

H49 0.707 0.854 0.712

H50 0.679 0.829 0.527

H51 0.696 0.854 0.711

H52 0.73 0.87 0.823

H53 0.685 0.834 0.559

H54 0.712 0.877 0.878

H55 0.638 0.827 0.511
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H56 0.63 0.824 0.488

H57 0.603 0.808 0.376

H58 0.702 0.84 0.609

H59 0.678 0.833 0.553

H60 0.684 0.836 0.574

H61 0.717 0.865 0.786

H62 0.692 0.836 0.58

H63 0.699 0.869 0.817

H64 0.638 0.827 0.514

H65 0.631 0.824 0.492

H66 0.603 0.809 0.381

H67 0.701 0.84 0.603

H68 0.678 0.833 0.552

H69 0.684 0.834 0.562

H70 0.717 0.865 0.788

H71 0.692 0.836 0.581

H72 0.698 0.869 0.821
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