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ABSTRACT 

A Method for Monitoring Operating Equipment Effectiveness with the Internet of Things 

and Big Data 

Carl D Hays III 

 

The purpose of this paper was to use the Overall Equipment Effectiveness 

productivity formula in plant manufacturing and convert it to measure productivity for 

forklifts.  Productivity for a forklift was defined as being available and picking up and 

moving containers at port locations in Seattle and Alaska.  This research uses 

performance measures in plant manufacturing and applies them to mobile equipment in 

order to establish the most effective means of analyzing reliability and productivity. Using 

the Internet of Things to collect data on fifteen forklift trucks in three different locations, 

this data was then analyzed over a six-month period to rank the forklifts’ productivity 

from 1 – 15 using the Operating Equipment Effectiveness formula (OPEE).  This ranking 

was compared to the industry standard for utilization to demonstrate how this approach 

would yield a better performance analysis and provide a more accurate tool for 

operations managers to manage their fleets of equipment than current methods.  This 

analysis was shared with a fleet operations manager, and his feedback indicated there 

would be considerable value to analyzing his operations using this process.  The results 

of this research identified key areas for improvement in equipment reliability and the 

need for additional operator training on the proper use of machines and provided 

insights into equipment operations in remote locations to managers who had not visited 

or evaluated those locations on-site.      

Keywords: IoT, Big Data, OEE, Productivity, Fleet Operations, Fleet Management, 

Industry 4.0  
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Chapter 1: INTRODUCTION 

1.1 Statement of Problem 

 In mobile equipment, utilization is typically calculated using the standard inputs of 

Engine Hours and Idle Hours (when available).  Engine hours is a universal standard, 

because it is used on every manufactured engine.  Engine hours are communicated 

through an open-source standard, J1939, so that companies other than the engine 

manufacturer will have access to the current value.  Engine hours are typically displayed 

either mechanically through a dial, or digitally through a display on the machine.   Regular 

service and maintenance intervals are associated with engine hours.   Reliability analysis 

on useful life is quantified using engine hours.   

 Engines typically operate in two states, an idle state, and under load state.  Idle 

state status indicates that an engine is turned on and ready for load.  Load state indicates 

that an engine is performing work.  In an automobile, the idle state is most commonly 

associated with being “at rest,” for example when a car is at a red stop light.   Load, on 

the other hand, would be when a car is traveling at a speed greater than zero miles per 

hour.  With these two variables established, a utilization ratio may be calculated indicating 

the percentage of time an engine is at rest versus performing work. 

 These percentages are evaluated against a standard of performance often referred 

to as a key performance indicator, allowing managers to evaluate equipment performance.  

Key performance indicators are established using a variety of methodologies but are 

meant to provide a “bright line” for when equipment is performing above or below standard.   

While utilization is not a new concept within mobile equipment, establishing a generally 

accepted indicator to measure performance associated with utilization could be very 

valuable to organizations.  
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 Many companies are already providing utilization calculations based on engine 

hours and idle time.  However, there are a number of industries and machines that do not 

rely on idle time to determine when a machine is performing work.  By adding a few 

hardware items and connecting to the machines CAN system, we were able to establish 

custom data points to generate the utilization calculation we are looking for.   

Large machinery in ports and agriculture applications waste energy and fuel.  

Industrial Internet of Things, smart technology, and big data are methods that use sensors 

and data collection to identify inefficiencies from their sources.  Elevat is an IoT platform 

that identifies such inefficiencies using a standard array of sensors that provide an engine 

and additional sensors that provide performance data.  IoT applications have focused 

primarily on engineering and service applications collecting data that can assist with 

troubleshooting issues or provide a notification when there is an issue.  While engineering 

and service has benefitted from the widespread adoption of IoT and telematics, business 

owners were seeking data that focused on different aspects of the application such as 

productivity.   

To determine whether a machine was productive required data when it was 

working or idle.  Until the enhancement of sensors that could create a trigger for the work 

event and programmable software to manage and measure these sensors.  There is 

considerable economic value to companies that have access to and the ability to measure 

machine performance.  Without this data, most companies would rely on financials to 

determine how the company was performing without any specific variable to focus on.   

This lack of data prevented companies from identifying practices that lead to better or 

worse results.  In order to identify best practices, we create large data sets with IoT, 

generally referred to as “big data”, to identify and track equipment work and use practices 

such as engine hours, on and off, work and idle time, as well as fuel usage.   
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1.2 List of Terms 

Big Data- storage containers on the internet hosting large amounts of data typically used 

for historical purposes and analysis. 

Edge Technology – hardware used to connect machines in their operational 

environments (the edge)  to the internet of things via wifi or cellular networks.       

Engine Hours – the amount of accumulated time on an engine when the key is turned on 

and off over its useful life. 

Data Start Date - this is the date the truck was first transmitting data under an approved 

for production software release in the time period specified. 

Data Stop Date - this is the date the truck stopped reporting data to elevat in the time 

period specified. 

Digital Migration - companies and organizations adopting software and cloud technology 

to connect things and incorporating digital technology into their operations such as the 

internet of things.  See Industry 4.0. 

Idle Fuel used – the total amount of fuel consumed while under 900 revolutions per 

minute. 

Idle Time -  total accumulated time while the  engine RPM less than  900 revolutions per 

minute.   

IoT- Internet of Things – using cloud applications to connect hardware, machines and 

devices (things) to the internet typically accessed through applications or websites.  

Industry 4.0 – the application of technology to digitally transform how industrial 

companies operate. These technologies include the industrial IoT, automation and 

robotics, simulation, additive, manufacturing, and analytics.” (PTC, 2021) 

KPI - Key performance indicators are widely accepted as criteria for measuring progress 

and results.   
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KPI Lagging- is a result measurement to determine the effect of what was done over a 

specific period of time.  

KPI Leading - is a progress measurement and when taken over time provides a trend as 

to whether the likelihood of meeting the lagging KPI will be achieved in addition to the 

gap between the two.  

Pick Time – total accumulated time while truck is moving a container. 

Non-pick distance – the total distance traveled while empty 

Non-Pick Time – total accumulated time while truck is moving while empty. 

OEE – Overall Equipment Effectiveness a formula used in plant manufacturing to 

determine how close to perfect operation is achieved over a period of time using the 

formula Time * Speed * Quality and expressed as a percentage. 

 OPEE – Operating Equipment Effectiveness a formula based on OEE to determine   

equipment productivity using the formula Availability * Work Time * Productive Time and 

expressed as a percentage. 

Pick Distance – this is based on the distanced traveled while carrying a container 

PM – Productive Maintenance – “time-based maintenance featuring periodic servicing 

and overhaul.” (Nakajima, 1984) 

SAE – J1939 – “The SAE J1939 standards in this collection define high-speed CAN (ISO 

11898-1) communication network that supports real-time, close loop control units 

throughout the vehicle.” (SAE, 2021) 

Svetruck 1.0 - the first version of software which defines and connects the following data 

Svetruck 2.0 - the most current version of software which defines and connects the 

following data sources to elevat. 

TPM- Total Productive Maintenance – “is productive maintenance carried out by all 

employees through small group activities.” (Nakajima, 1984)  
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Utilization – a percentage calculation from 0 – 100 taking the amount of non-idle time 

and dividing it by total engine hours. 

Work Fuel used – the total amount of fuel consumed over 900 RPM 

Work Time – the total accumulated time while engine RPM is greater than 900 RPM. 

1.3 Purpose of Study 

Overall Equipment Effectiveness (OEE) has been applied in plant manufacturing 

to measure and manage performance since the 1960’s and has been deeply researched 

and validated in many industries and use case applications.  The OEE model calculates 

the percentage of time that a piece of manufacturing equipment is truly productive.  The 

primary concern of this thesis is both whether and how the OEE model can be applied 

outside of plant manufacturing – especially for mobile equipment, or machines with 

wheels and tracks. 

  Recent advances within the last 10 years in both software and sensors have 

made possible new methods for collecting data from mobile equipment.  This thesis 

identifies a three-step method that leverages the OEE model and uses capabilities of the 

Internet of Things (IoT) and big data collection in mobile equipment.  Companies are 

becoming increasingly interested in such a framework, because it helps them 

understand how their mobile equipment is being utilized.  From this information, they can 

optimize the performance of their equipment and make better economic decisions about 

the use and operations of the equipment.   This research project was focused on 

defining equipment effectiveness in such settings, and then acquiring and analyzing IoT 

data to determine the overall productivity of mobile equipment. The specific type of 

equipment tracked was Svetrucks that carry shipping containers shown in Figure 1.  
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  Figure 2 represents the data collected from these trucks.  The green arrow 

indicates when the truck has “picked” a container and moved it from the docked barge and 

stacked it at port.  The yellow arrow indicates when the truck is returning to the barge to  

Figure 1: Svetruck Picking a Shipping Container 

Source:http://www.lynden.com/aml/tools/gallery/SVE_truckw53-10k.jpg 

 

Figure 2: Map Layout and Visual Representation of Data 
 

Source: www.portal.elevat-iot.com 
 

http://www.lynden.com/aml/tools/gallery/SVE_truckw53-10k.jpg
http://www.portal.elevat-iot.com/
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pick another container.  The red dot indicates when the truck is parked and idling.  From 

this data collection effort, it was determined that several key considerations must be taken 

into account to design an effective OEE framework for mobile equipment.  First, a model 

must be designed around the nature of the equipment so that we can differentiate what 

we mean by “productive time” and “non-productive time.”  Second, we used a trigger 

sensor with a digital clock to establish productive time.  Third, the data is collected and 

available in a analyzable format and in this case we used Elevat-IoT Big Data platform.  

From there the data was cleaned and organized and then evaluated in a statistical model 

to establish Operating Equipment Effectiveness (OPEE) = Work Time x Productive Time 

x Availability. We used Elevat-IoT, a big data mobile equipment cloud platform, to 

accomplish this objective. 

By applying our three-step method and generating an OPEE score, companies 

with mobile equipment can better evaluate overall utilization and establish performance 

benchmarks to improve fleet performance over time.  This model could yield performance 

insights and provide managers with the ability to improve operations, reduce operating 

expenses, and improve productivity.  In modern applications, these data points use SAE 

standard J1939 signals for work time based on engine idling or not idling (SAE, 2021) but 

they do not yield meaningful performance data for these trucks. We added customized 

data points for “pick-time” and “non pick-time” that are more reflective of the equipment 

purpose and defined the Operating Equipment Effectiveness formula to produce the best 

indicator of overall performance.  
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Chapter 2: LITERATURE REVIEW  

The focus of this literature review is to cover the history of OEE and at the same 

time relate it to IoT mobile equipment applications.  This equipment was essentially treated 

as mobile factories.  Rather than reinvent the wheel and establish a completely different 

practice for measuring performance, it made more sense to adopt and modify a 

methodology that had been established, proven, and documented thoroughly.  Because 

the majority of the research papers covering OEE were on use cases in plant 

manufacturing applications, the heavy lift was in translating this work to the world of IoT in 

order to establish the foundation, methodology, data collection, and interpretation for this 

paper.  Primarily, the literature review covers a few key concepts and elements 

underpinning this thesis approach: IoT, Big Data, and OEE, to both explain and explore 

the existing research relevant to this topic.   IoT is still an emerging field and has complex 

requirements to be successful from the machine application, data transmission and 

collection, to analyzing the data in insightful ways.   

In sports like baseball, performance statistics are an ordinary and deeply 

integrated aspect of the game.  When evaluating individual players' offensive 

performance, the batting average has existed for more than 100 years.  The batting 

average does not necessarily answer performance related questions such as why one 

player performs better than another or even how to increase performance; it does provide 

a key performance indicator for managers to initiate the inquiry and work to develop 

players to increase this statistic, thereby benefiting the team as a whole.   

As baseball, and the application of statistical analysis matured, new insights into 

what actions provided the best indicator of overall performance determined that on base 

percentage, rather than batting average, was the best metric for predicting success.  On 

base percentage is also a ratio determined by the number of plate appearances versus 
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the number of times a player was able to get on base.  In order to score more runs, a 

player must first get on base whether they do that by getting a base hit (which shows up 

in a higher batting average) or by being walked with four total balls (non-strikes) being 

thrown.  In the latter case, a walk would actually lower the batting average.  A manager 

paying attention to only the batting average would potentially miss out on players who 

were really skilled at getting on base and pay a premium for players with the highest 

batting average rather than selecting players based on a stronger indicator of what helps 

score more points and win more games e.g., on base percentage.  

What exists in the mobile equipment world is the equivalent of a machine’s batting 

average.  What does not exist is something akin to an on-base percentage - or the best 

measure of overall productivity.  On base percentage equates closely to overall 

productivity because the goal of the offense is to score runs.  Scoring runs requires players 

to advance to base.  With respect to mobile equipment, each machine is designed to 

perform a function.  The more that the machine does the required function, the more 

productive it is.   This metric would better allow fleet managers to determine which assets, 

operators, and equipment were performing at the highest and lowest level.  It would have 

both tangible and intangible benefits.  The tangible benefits would be evidence of which 

machines were potentially more reliable, and which operators were the most skilled.  It 

would provide a basis to make operational changes and to explore and adopt best 

practices.  Additionally, equipment that is highly efficient will also be better for the 

environment for because it does not waste fuel on idle time.  By identifying top performers 

better training programs can be adopted for operators setting them up for success at their 

positions and even providing opportunities for performance rewards and benefits.  Last 

but not least, it impacts the company's bottom line making it more profitable, competitive, 

and better able to sustain operations over time.  In some industries which operate on razor 

thin margins it could mean the difference between solvency or insolvency. 
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  With the maturity of high-speed and low-cost cellular data plans, a new era of 

connecting to mobile machines and extracting data in remote locations has become 

possible.   The baseball batting average is based on player data, and without it the batting 

average cannot be achieved.  The same is true with mobile equipment in that we need 

equipment data in order to understand its performance with this thesis was both whether 

and how this performance approach could be applied to equipment applications outside 

of plant manufacturing, such as mobile equipment or machines using wheels and tracks. 

2.1 Background 

In the manufacturing industry, there is a long history of measuring performance 

and loss based on overall equipment utilization.  This methodology has been well 

researched and widely used.  The major variables used in Overall Equipment 

Effectiveness have been established in the past 20+ years focus on engine idle vs. non 

idle time.  For example, in the freight industry, tracking engine hours and engine idle time 

has a strong correlation with performing work, because the trucks are taking cargo from 

one point to another.  If the engine is on and in a non-idle state, it indicates the truck is 

traveling and moving cargo from point A to B, which is its function. 

Figure 3: Jarraff Mini  

Source: https://www.jarraff.com/products/mini-jarraff-tree-trimmer/ 

https://www.jarraff.com/products/mini
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Additionally, tracking engine idle time to identify potentially wasted fuel 

consumption is another typical IoT fleet application.  In industries where work is being 

performed by other mechanisms than moving cargo, the ability to capture performance 

data has been much more difficult.  For example, forestry equipment such as the Jarraff 

Mini in Figure 3 performs work when the saw blade is cutting branches near power lines.  

In Figure 4, the Barko log stacker performs work when it is picking and stacking 

logs.  These two functions, cutting trees and stacking logs, have very little to do with 

whether their engine is idling or not.  In order to determine asset utilization for this 

equipment requires another method to measure data and performance.    

In the last 70 years, organizations have been working towards measuring 

productivity, reliability, and working to improve the accuracy and utility of these 

measurements in both manufacturing and equipment usage.   While this approach started 

in plant manufacturing, the concepts, measurements and practices are transferable to 

other industries and applications.  With the advances made in sensor and IoT technology, 

we are able to measure equipment performance and properly apply the main variables in 

 

Figure 4: Barko Log Stacker 

Source: https://www.barko.com/products/rtc-loader-495b 
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Overall Equipment Effectiveness to create a new performance measurement with OPEE.  

There is a strong consensus in academic papers focused on OEE measuring performance 

and identifying 6 big losses in productivity, which are: 

• Availability Loss – equipment failure and setup adjustments 

• Performance Loss – idling and minor stops, reduced speed 

• Quality Loss – process defects and reduced yield (Vorne, 2019) 

The ultimate goal in both mobile and plant manufacturing is to have the most 

reliable machines and equipment working efficiently and effectively for the organization 

utilizing them.  In order to get to this ideal state, it is critical to understand the evolution 

tying together reliability, efficiency, and effective work time.  The first phase of this 

evolution involved preventative maintenance (PM).    

2.2 Preventative and Predictive Maintenance 

Preventative Maintenance was established in the 1950’s with the objective to 

develop maintenance functions for equipment to prevent failure and preserve the life of 

the machine. George Smith first introduced this practice to Japan in 1958, and by 1969, 

Nippoldensco Company was the first company to be awarded the Distinguished Plant 

Prize for its achievements in TPM (Nakajima, 1988).  The concept of preventative 

maintenance is plain and simple:  by taking care of machines, failure can be prevented.  

Preventative maintenance strategies are still in place today and include operator’s 

manuals with specific maintenance plans and protocols from changing fluids and filters to 

identifying wear-and-tear components that require replacement over time.   While it was 

clear that having a maintenance strategy improves plant and equipment performance, 

what was unclear is what kind of an impact following a maintenance plan will have on the 

equipment and how to measure this performance.  After having established itself as a 

world leader in maintenance practices, Japan brought their techniques back to the United 

States as Total Productive Maintenance. 
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The basic premise of TPM is to develop a maintenance culture that is trained at 

the lowest level to clean, repair, and maintain the equipment and the facility with the goal 

of creating an “immaculately” clean manufacturing environment by focusing on the 6 

categories - organization, tidiness, purity, cleanliness, discipline and trying hard  

(Nakajima, 1989).  The key to adopting a TPM strategy was having a reliable 

measurement for performance from which to evaluate how to improve it.  OEE has 

demonstrated its value in monitoring and identifying factors affecting performance with 

real results that provide benchmarks and increase efficiency through valuable insights 

(Schermann, 2014).  

OEE consists of metrics measuring Plant Scheduled Time, Plant Run Time, and 

Count of Quality Parts versus defects.  This measurement begins with the ideal 

manufacturing state, where the plant would be scheduled 365 days of the year to run and 

would actually run all of those days, 24 hours each day, and during that time every part 

made would be to specification without defect.  In the absence of a metric like this, the 

source for evaluating plant performance relied heavily on total production of good parts in 

addition to General Accounting indicators like revenue and cost.  Prior to the 

implementation of OEE, it would have been difficult for a manufacturing company to 

provide evidence of how they were doing outside of total production and financial 

indicators.   By factoring in the 6 categories of losses, plant managers were able to identify 

the sources and factors reducing the overall score and a lagging Key Performance 

Indicator. 

In order to establish a leading and lagging KPI, it is paramount to have a system 

or process in place, with inputs and outputs for both, that can be tracked and recorded.  

This data may then be aggregated on a time basis to produce both lagging and leading 

KPI.  With the data stream in place, the last part of the puzzle is to establish a benchmark, 

objective, or standard to evaluate the KPI against.  Without the benchmark, it would be 
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really difficult to determine where production was at any point of time.   The elegance of 

OEE is in its ability to establish the objective standards in addition to what needs to be 

measured to get there.  Because this metric was developed for plant operations where 

there were typically assembly lines operating on shifts and producing goods, we need to 

transition this to mobile factories which was referred to as “run time.”.  Mobile equipment 

does not typically have a scheduled “run time” which defines availability or whether the 

plant was able to make parts during the scheduled period of time.   

OEE is based on Availability (0 – 100%), Performance (0-100%), and Quality (0-

100%) and its formula is: OEE = A*P*Q.  In simple terms, Availability is whether the 

machine is operating or not, Performance is how fast the machine is running, and Quality 

is how many products are final and meeting all specs” (Latest Quality, 2018). Simplified, 

this formula is: Time * Speed * Quality.  To convert this to the mobile equipment formula 

OPEE, we had to determine how best to calculate Time.  In this formula, Time was 

calculated from a count of the  total Operating Days in a calendar year e.g. between 0 and 

365.  For Speed the variable “Work Time” was used or when the engine is not idling, and 

for Quality the variable “pick time,” or  when the machine is actually productive during the 

work time.  In general, OEE ratings provides a very useful benchmark to determine how 

to improve productivity.  Other research has identified that the average OEE was around 

51.5 percent with significant environmental and ecological impacts due to loss in both 

availability and operational efficiency (Zammori, 2011).    

Establishing benchmark data that provides KPI over time is critical to improving 

equipment operations.   Setting up OEE measurements for success requires good data.  

Getting good data is a process of calibration and checking whether the measurements 

can be verified by other analog sensors on the machine.  Oftentimes, many versions of 

software applications are deployed with small corrections to achieve the desired results.   

It is critically important that the data being used to analyze equipment performance is 
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accurate (Murray,2016).  In addition to continuous improvement with software versions, 

other research identified data collection as an issue (Lugmayr, 2017).  The majority of the 

research covered by Pembert, concluded that OEE was relevant to assessing productivity 

in operations and a useful tool for industry 4.0 and the digital migration (Peimbert, 2012).  

OEE has proven to be an effective approach to understanding and improving performance 

(Prasher, 2020).  Likewise, from the research conducted by Muchiri on Overall Equipment 

Effectiveness, the conclusion was OEE is a valuable tool for identifying losses in 

productivity and optimizing productivity (Muchiri, 2008).   

2.3 Internet of Things and Big Data 

IoT is an established concept and has been used through devices installed on 

equipment for more than 20 years.  The challenges to widespread adoption in the mobile 

equipment industry has been data collection and effective transmission, in addition to 

specific kinds of technologies in each application to make the IoT implementation 

successful (Pomorski, 1997) which is still an issue in IoT applications today.  Advances at 

the edge with devices and sensors have played a critical role in defining the data that 

needs to be collected on mobile applications, where engine idle time will not tell the full 

story about how productive a machine truly is.  The entire system of things, how they 

connect and communicate with each other and their relationship to an IoT database, 

requires very specific solutions on each application to recognize the value of the data and 

information acquired (Hwang, 2016) such as connecting to and monitoring the Svetrucks 

used in this thesis.  These applications can be complex and involved with many 

opportunities for improvement (Šajdlerová, 2020).  To be successful, IoT applications 

require the integration of a range of information and communication technologies in the 

form of specific hardware, software, and scalability (Ylipaa, 2016). The use of Elevat-IoT 

application and machine software programmed by an application engineer has been a 

critical component to success of this IoT deployment on the Svetrucks.   
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Software such as IQAN software used in this thesis application allows application 

engineers to program the machines to produce the kind of data Muchiri referred to which 

was used to analyze performance.  With the data acquisition and transmission handled by 

the hardware and software on each machine, the next step is incorporating Big Data, 

through the Elevat-IoT cloud platform,  provided the data storage and exporting tools 

which also organizes and time-stamps the data. This data set can be analyzed and 

valuable insights or “smart data'' can be obtained, which in turn leads to both productivity 

and financial gains (Almeanazel, 2010).  In addition to productivity gains, research 

demonstrated a higher likelihood of innovation leading to new products and services (Ng 

Corrales, 2020). 

The IoT platform Elevat-IoT provides access to the mobile equipment through edge 

devices, which transmit data through the cellular network to a Microsoft Azure database, 

which has services layered on top of it to generate the Excel reports used in this thesis.  

The “elevat” database architecture incorporates big data rather than discrete data. It is 

organized in a way to allow for larger dataset analysis.  Big Data, in short,  provides access 

to a larger number of forklifts over extended time periods rather than analyzing just one 

machine, in one location.  Having access to this larger dataset was critical to the success 

of this project.  These insights allow companies to resolve questions like “What is different 

between the machines?” “Why are there differences in performance?” and “How can we 

improve overall productivity”?  The entire IoT project from data collection to analytics 

required edge technology on the device side, successful transmission collection, and the 

ability to export large data sets in a format that can be cleaned and organized to establish 

operating productivity.  Furthermore, with sufficient quantity of machines, Key 

Performance Indicators and benchmarks may be established to determine how 

populations of machines are performing compared to each other in addition to calculating 

the average performance of each machine over a 6-month period. 
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Chapter 3: METHODOLOGY 

The methodology produced in this approach required a seven step process: 

1) Acquire the data from the Svetrucks- This involved using sensors and hardware 

installed on each truck. 

2) Transmit data from the trucks to the Elevat-Iot Platform.  This required the use of 

the AT&T cellular network.  

3) Translate the variables used to analyze the Overall Equipment Effectiveness in 

manufacturing plants such as run time versus work time in mobile equipment into 

an Operating Equipment Efficiency formula. 

4) Collect the data using Elevat-IoT to provide the input values required for applying 

the Operating Equipment Efficiency formula. 

5) Export the data to Excel for analysis. 

6) Transform the data to the 3 OPEE variables and a rollup into an overall score. 

7) Rank each truck based on its score as a key performance indicator. 

 

The basic methodology for this thesis was to define the data needed, acquire it on 

the Svetrucks using hardware and software installed on each truck, transmit via an 

AT&T cellular network to the Elevat- IoT cloud platform where it could be organized 

and exported for analysis. 
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3.1 Elevat-IoT Platform Architecture 

Figure 5: Elevat Cold Storage (Big Data) 

After the data is collected on the truck, it starts its path on Elevat-IoT as show in 

Figure 5 in the red box, the elevat shadow.  It is then organized by a unique asset 

identifier (gateway id) that associates the machine and maps to the signals being 

collected in a day, month, year format.  The elevat architecture provides a path for the 

data to be exported to a csv report that was used in organizing and analyzing the data.   

 3.2 Solution Design 

Using the Elevat-IoT platform, I was able to use On Demand Utilization reports to 

extract data on 14 machines in 5 locations over a 6-month period of time from September 

14th 2020 to March 5th 2021 and export them into an Excel file for analysis.  Each truck 

is assigned a number in a range of 38 to 51.  The locations within this data set are at three 

different ports.: 
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Figure 6: Asset Locations. 

             Source: portal.elevat-iot.com 

In Figure 6, the asset port locations are shown for each of the Svetrucks used in this 

data set. Each port has a different layout, which can affect the data collected.     

 

                                                 Figure 7: Port Layout Seattle  

                                                 Source: portal.elevat-iot.com 

Figure 7 is a digital representation of a truck moving from port to a barge to unload 

containers as an example of a port layout.  This was captured on Elevat-IoT using GPS 

path tracking of the truck. 
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3.3 Notations and Formulas 

i = Equipment index (i=33,34,35,36,37,38,39,41,45,46,47,49,50,51) 
 
Di = Experiment Period in days for Equipment i = Number of days equipment i was 
available for work.  
 
Hi = Hours for equipment i during the experiment period = Number of hours equipment i 
was available for work.  
 
Wi = Total work time, where engine RPM is greater than 900, of equipment i during 
period D 
 
Pi = Total picking time of equipment i carrying load, greater than 600 psi, during period D 
 
Ti = Total travel time of equipment i without load, less than 600 psi, during period D 
 
Ri = Total rest time (idle-engine), where engine RPM is less than 900, of equipment i 
during period D 
 
Ei = Engine hours during period D 
 
Ei = Pi + Ti +Ri = Wi + Ri 

3.4 Asset Overview 

          
        Table 1:  Asset Matrix Data Date Start and Stop with Software Version 
  

 
 

Table 1 identifies where each truck is located, the date that elevat started tracking the 

truck data, and the software version each truck was using.  The software version 

STATE CITY TRUCK
DATA START 

DATE
DATA STOP 

DATE TOTAL DAYS
SOFTWARE 

VERSION
Alaska Petersberg 33 9/14/2020 3/5/2021 172 SVETRUCK 2.0

Washington Seattle 34 9/14/2020 3/5/2021 172 SVETRUCK 2.0
Washington Seattle 35 9/14/2020 3/5/2021 172 SVETRUCK 2.0

Alaska Whittier 36 9/16/2020 2/26/2021 163 SVETRUCK 1.0
Alaska Anchorage 37 1/11/2021 2/19/2021 39 SVETRUCK 2.0
Alaska Juneau 38 9/14/2020 3/5/2021 172 SVETRUCK 2.0
Alaska Petersberg 39 9/14/2020 3/5/2021 172 SVETRUCK 1.0

Washington Seattle 41 9/24/2020 3/4/2021 161 SVETRUCK 1.0
Alaska Juneau 45 12/21/2020 3/5/2021 74 SVETRUCK 2.0
Alaska Anchorage 46 10/6/2020 3/5/2021 150 SVETRUCK 2.0
Alaska Anchorage 47 9/18/2020 3/5/2021 168 SVETRUCK 1.0
Alaska Anchorage 49 9/14/2020 3/5/2021 172 SVETRUCK 2.0
Alaska Whittier 50 9/14/2020 2/22/2021 161 SVETRUCK 2.0
Alaska Whittier 51 9/14/2020 3/5/2021 172 SVETRUCK 1.0
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determines what information was collected from the truck and how it was processed.  

This provides a basic framework for the data analysis of each truck. 

Based on these data definitions, an asset could be considered in a work time state 

as long as it is operating above an RPM threshold of 900 RPM.  In order to determine how 

much time was used moving and not moving containers, we evaluate pick time versus 

non-pick time.  This is an important distinction, because the asset moves from port to the 

cargo ship and back through the course of its work day unloading containers transported 

by the cargo ship.  Some of this time will involve work that is also non-pick time, because 

the asset must travel from the cargo ship to drop off a container and then back to the cargo 

ship to get another load. 

3.5 Data Overview by Asset 

Table 2:  Individual Truck Data Correlations 

 

The Table 2 asset matrix identifies the R² values for each asset to establish the 

data integrity by asset.  Each truck is assigned an identifying number.  The strength of 

the data correlation with other data depended on the logic used to define and extract the 

data.  This correlation was determined through  R² values and was critically important to 

demonstrating whether the logic used in the software, on each truck, has been tested to 

determine if it is producing a valid and reliable source of data.  For example, the 

STATE CITY TRUCK

 
Time 

(Hours)  
vs Total 

  
(Hours)  vs 

Total 
Distance 

 
Distance 
(Miles)  vs 
Total Fuel 

Total Distance 
(Miles)  vs Total 

Pick Time (Hours)
Alaska Petersberg 33 0.97 0.91 0.92 0.93

Washington Seattle 34 0.97 0.90 0.91 0.93
Washington Seattle 35 0.91 0.86 0.85 0.87

Alaska Whittier 36 0.96 0.93 0.97 0.97
Alaska Anchorage 37 0.91 0.92 0.97 0.97
Alaska Juneau 38 0.91 0.94 0.94 0.95
Alaska Petersberg 39 0.96 0.96 0.97 0.97

Washington Seattle 41 0.96 0.94 0.97 0.97
Alaska Juneau 45 0.95 0.95 0.95 0.96
Alaska Anchorage 46 0.95 0.88 0.9 0.92
Alaska Anchorage 47 0.9 0.72 0.87 0.89
Alaska Anchorage 49 0.95 0.88 0.9 0.92
Alaska Whittier 50 0.96 0.90 0.92 0.94
Alaska Whittier 51 0.93 0.89 0.95 0.96

R value correlations over time period between two data sets
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operating hours clock is based on a key on or key off trigger, whereas work time and 

non-work time are based on whether the engine is over or below its idle point. If these 

two data sets do not strongly correlate with each other, then a standard utilization 

calculation would be of little value.  Furthermore, the total pick time is based on a 

hydraulic pressure reading of greater than 600 lbs, which has no relationship to whether 

the engine is idling or not.  For this thesis to provide valid conclusions, the data validity 

must be tested through basic correlations with each data set analyzed, for example total 

engine hours, work time hours and idle time hours.  

3.6 Basic Correlations Data Integrity 

The following figures provide a regression analysis of the data as a whole.  The purpose 

of this analysis is to determine whether the data is reliable or unreliable. 

 

                      Figure 8: Total Engine Hours vs Work Time + Idle Time R²= .99    

Figure 8 validates that the majority of the work and idle time data collected on each 

machine was valid data.  Based on the data definitions, adding the work time hours plus 

idle time hours ought to strongly correlate with total engine hours.  It is possible that 

these datasets would not strongly correlate if there was an error in the logic used to 

define them.  As previously mentioned, the software logic is not based on a closed loop 

R² = 0.9977
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where the trigger used for Total Engine hours is the same trigger that is used for work 

and idle time.  Because they are different triggers, key on/off is the trigger for engine 

hours and engine RPM is the trigger for work time and idle time,  it is possible that they 

would not strongly correlate if there was a bug or error in the logic.  

 

Figure 9: Total Vehicle Distance vs Total Daily Pick and Non-Pick Distance R² = .99 

Figure 9 validates that the total vehicle distance calculation is strongly correlated with daily 

pick and non-pick distance.  Adding pick and non-pick distance together ought to equal 

daily total distance.  It is possible that they would not strongly correlate if there was a bug 

in the software or error in the logic defining this data collection.   

 

Figure 10: Total Vehicle Distance vs Fuel Used Gallons R²=.99 

R² = 0.9928
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Figure 10 validates that the total vehicle distance calculation is strongly correlated with 

total fuel used.   

3.6 Advanced Correlations Data Integrity 

  

Figure 11: Work Time % versus Idle Time % R² = .96 

Figure 11 validates that the work time percentage vs idle time percentage calculations.  A 

strong correlation indicates that the data set distribution adds up to 100% between the two 

values. 

  

Figure 12:  Work Time vs Total Pick Time   R²=.82 

Figure 12 indicates how closely correlated the assets’ work time was with total pick time.  

The remaining time would be idle time. 
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Figure 13: Work Time vs Total Distance R²= .87 

Figure 13 indicates how closely correlated the assets’ work time was with total distance 

travelled.  The remaining time would be idle time. 

 

      Figure 14:  Work Time vs Total Fuel Used    R²= .87 

Figure 14 indicates how closely correlated the assets work time was with total fuel used.  

The remaining fuel used would be during idle time.                 
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Chapter 4: RESULTS AND DISCUSSION 

4.1 Results  

After reviewing and analyzing individual data as well as aggregates, I found a 

number of strong correlations.  These correlations also yield benchmark formulas to 

determine whether or not an asset was underperforming the benchmark.  By doing a basic 

correlation test initially, I was able to determine that the data had a high enough degree of 

reliability to analyze performance, yielding a graph of KPI indicators.   

In order to analyze the data, I started with the standard “batting average” 

calculation, which is the average percentage of work time each truck did.  This is shown 

in Table 3.   In most industries, this is how performance is evaluated: 

Table 3: Ranking based on Daily Average Work Time % 

                                

Based on Table 3, or the industry equivalent of a batting average, we would conclude that 

the top performing trucks in table 3 are #39, 38, 46, 33 and 47. 

Next, I looked at the percent each asset performed based on carrying a load 

greater than 600 pounds, which typically indicated moving a container from barge to port.  

RANK LOCATION TRUCK
Average Daily 
Work Time %

1 Seattle 39 76%
2 Anchorage 38 72%
3 Seattle 46 70%
4 Petersberg 33 66%
5 Seattle 47 63%
6 Anchorage 50 63%
7 Petersberg 37 62%
8 Anchorage 34 60%
9 Whittier 49 58%
10 Anchorage 51 58%
11 Juneau 45 57%
12 Whittier 35 56%
13 Juneau 36 55%
14 Whittier 41 51%
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I kept the same ranking to determine where each asset would fall in comparison to the 

first ranking. 

                         Table 4: Ranking Based on Average Pick Time % 

 

After doing this, I found movement in ranking between the assets that performed 

at the top on Work Time percentage in Table 3 and did not necessarily perform at the 

top of the Pick Time percentage in Table 4.  For example, the top 5 trucks in this Table 4 

are #49, 33, 51, 36 and 37.  Focusing on time that was only spent moving containers 

creates a different ranking.  The issue with using “work time” as a key performance 

indicator is that a truck can be productive when it is both carrying a container and not 

carrying a container, because it has to deliver and drop the container and then go back 

to the barge to get another container.  When it is traveling to get a container, it is empty, 

so this would not show up as pick time.  It would also penalize trucks that had longer 

distances to travel in between picks.   By using both pick and work time, this allows for 

trucks that have shorter and longer distance between picks. 

 The next comparison I did was based on Work Time and Pick Time.  This provided 

an evaluation of the assets that were both working the highest percentage of time and 

picking the highest percentage of time.   This would indicate the assets that achieved the 

best of both when a machine was considered “productive,” because it was also doing its 

RANK LOCATION TRUCK
Average 

Pick Time %
9 Anchorage 49 59%
4 Petersberg 33 50%
10 Whittier 51 46%
13 Whittier 36 37%
7 Anchorage 37 27%
12 Seattle 35 25%
6 Whittier 50 23%
8 Seattle 34 21%
11 Juneau 45 20%
2 Juneau 38 20%
3 Anchorage 46 16%
5 Anchorage 47 15%
1 Petersberg 39 15%
14 Seattle 41 14%
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performed task of moving containers and cargo while getting credit for moving from point 

A to B while empty.   

                                  Table 5:  Average Work Time * Ave Pick Time 

 

When comparing Table 5 with Table 3, Based on this ranking, the top five trucks 

remained 49, 33, 51, 36, and 37. However, the next spots did change.  Truck #35 dropped 

in the ranks, while truck #38 rose in the ranks as did truck #39, but none of the rankings 

closely matched the original ranking based on work time. 

Finally, the last view of the data takes into account a truck’s availability.  This looks 

at the total operating days a truck is available to work.  A truck that is available more often 

to do the work would be more valuable than a truck that is not available to work.  This 

could be  due to breakdowns or having more trucks than needed to perform the work.  The 

data presented includes the start and stop dates for the data set, which could be when the 

truck first showed up on elevat, not necessarily when it started working, and a total for the 

days the truck operated. 

 

 

 

RANK LOCATION TRUCK

Ave Work 
Time * Ave 
Pick Time

9 Anchorage 49 34%
4 Petersberg 33 33%
10 Whittier 51 26%
13 Whittier 36 20%
7 Anchorage 37 16%
2 Juneau 38 15%
6 Whittier 50 14%
12 Seattle 35 14%
8 Seattle 34 13%
1 Petersberg 39 12%
11 Juneau 45 12%
3 Anchorage 46 11%
5 Anchorage 47 10%
14 Seattle 41 7%
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Table 6: Sorting based on Average Daily Work Time * Average Daily Pick Time * 

Availability with previous Ranking. 

 

Table 6 represents the OPEE formula which is the closest translation to the Overall 

Equipment Effectiveness formula through adding in an ‘availability’ variable which defines 

whether the asset is consistently doing the highest level or work and pick time in the given 

period of time analyzed.  The formula used to generate the OPEE score: OPEE=  Di/365 

*AVERAGE( Wi/Ei) *AVERAGE( Pi/Ei) 

Availability * Average Daily Pick Time % * Average Daily Work Time %.  Availability 

was generated from taking the Total Operating days and dividing it by 365.  By using the 

highest sum of operating days and then dividing the other operating days for each asset, 

in the case of truck 49, 127 days, and dividing it by a 365-calendar year, we are able to 

see an availability from 0-100%.  The Average Daily Work Time % was generated by 

taking the average Work Time % over all of the operating days.  The Average Daily Pick 

Time % was generated by taking the average of Pick Time % over all of the operating 

days.   

The daily Pick Time was generated by taking the daily hours the asset was moving 

containers and dividing it by the daily engine hours as a percentage from 0 -100% Pi/Ei: 

Daily Pick Time/Engine Hours 

RANK Location TRUCK
START DATE 
AVAILABILITY

STOP DATE 
AVAILABILITY

Total 
Operating 

Days
Average Daily 
Work Time %

Average Daily 
Pick Time %

Availability 
Days/365

Operating 
Equipment 
Efficiency

9 Anchorage 49 9/14/2020 3/5/2021 127 58% 59% 35% 11.9%
4 Petersberg 33 9/14/2020 3/5/2021 111 66% 50% 30% 9.9%
10 Whittier 51 9/14/2020 3/5/2021 92 58% 46% 25% 6.7%
2 Juneau 38 9/14/2020 3/5/2021 124 72% 20% 34% 4.9%
12 Seattle 35 9/14/2020 3/5/2021 111 56% 25% 30% 4.3%
6 Whittier 50 9/14/2020 2/22/2021 107 63% 23% 29% 4.2%
1 Petersberg 39 9/14/2020 3/5/2021 127 76% 15% 35% 4.1%
13 Whittier 36 9/16/2020 2/26/2021 74 55% 37% 20% 4.1%
8 Seattle 34 9/14/2020 3/5/2021 112 60% 21% 31% 3.9%
3 Anchorage 46 10/6/2020 3/5/2021 84 70% 16% 23% 2.5%
5 Anchorage 47 9/18/2020 3/5/2021 70 63% 15% 19% 1.9%
11 Juneau 45 12/21/2020 3/5/2021 53 57% 20% 15% 1.7%
14 Seattle 41 9/24/2020 3/4/2021 33 51% 14% 9% 0.6%
7 Anchorage 37 1/11/2021 2/19/2021 9 62% 27% 2% 0.4%
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The Work Time percentage was generated by taking the Daily Work Time and dividing it 

by the daily engine hours as a percentage from 0 – 100% Wi/Ei: Daily Work Time/ Engine 

Hours 

This OPEE percentage is then calculated by multiplying those three values and 

then sorted descending from largest to smallest, yielding a list of the most productive 

machine over the given period to the least productive machines.  The colors are added 

for emphasis but do not have any value other than to group the top, middle, and bottom 

performers. 

The color was added based on natural breaks but in the future could be used to 

establish Key Performance Indicators: top, middle top, middle low, and low.   Here we 

see that the ranking of the top 3 did not change from the last sort based on Average 

Daily Work Time percentage only - 49, 33, and 51, however, truck #36 and #37 dropped 

out of the top five to be replaced by truck #38 and #35.   This last distinction is very 

important to note, because a machine could be unavailable for the majority of the period, 

but when it was available, it achieved very high utilization ratings in work and pick time, 

which would not tell the complete story of its productivity and performance. 

This analysis could provide a model for future evaluations of this fleet of 

machines and work towards establishing a more consistent performance overall from 

each asset.  While the data do not tell us why each asset performed at the overall 

percentage identified, it does provide insight into which machines and operators need to 

be evaluated based on low, middle, and high performance to establish better operational 

and maintenance guidelines. 

4.2 Data Limitations and Exceptions 

The dataset used in this thesis had incomplete time frames where some trucks 

connected to Elevat-IoT in September and generated data until the end of the period in 

March.  Other trucks came online at various times between September and March 
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resulting in a smaller sample for those trucks.  On the trucks with smaller datasets, 

another option for the availability calculation was to take the number of Operating Days 

and divide it by the total days between the start and stop date.  I did this calculation to 

see the impact on the OPEE score and found that it did not alter the ranking of the trucks 

sufficiently enough to warrant adopting this formula for availability.  In addition, the logic 

required to implement this calculation for future companies could be overly burdensome 

and prevent the overall adoption of the OPEE score and therefore was rejected in this 

data analysis.  Some of the data available for this research was not used due to errors in 

collection or scaling.  Fuel data, for example, did not calculate correctly from liters to 

gallons and was not used.   

4.3. Solution Interview with Steve Hardin of Alaska Marine Line 

Steve Hardin is General Manager of Shore Side Equipment at Alaska Marine 

Line, a subsidiary of Lynden.  Lynden corporation began in the trucking industry moving 

cargo and expanded into multiple industries and types of cargo shipping.  Lynden is a 

data-intensive organization and uses that data to understand how to improve their 

organization and manage their resources more effectively.  Steve was chosen to provide 

feedback because he is the person who wanted to use Elevat-IoT to provide a better 

means of tracking engine hours to service his equipment.  In the process of gathering 

engine hours, the other data points, pick time, work time, idle time, pick distance, non-

pick distance, etc. were added by Lynden corporation.  Steve’s testimonial is important 

to establish the value of using this data on managing this fleet of trucks. 

In my meeting with Steve, I presented Table 6 to him and asked him questions 

related to table 6 to understand what the data meant to him.  Steve has an operations 

background as well and provided feedback from that perspective related to the 

Svetrucks and Lynden as a whole.  The following is a summary of our conversation 

which was recorded on Zoom on April 29th 2021.  The entire transcript can be read in 
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the Appendix.  Steve appreciated the different elements within this table and was able to 

explain why the trucks ranked the way that they did.  He mentioned that truck 51 in 

Whittier had been unavailable due to 30 days of maintenance. and this affected its 

overall score as compared to the other trucks with similar start and stop dates.  He said 

that having an overall score that he could use to determine how each truck was 

performing against each other would be valuable, because it could provide insight into 

whether there were too many trucks in a given location or if the truck operators were 

managing them differently.  For example, he had identified operators in both Alaska and 

Seattle who left their trucks idling during lunch break to either keep them cool when it 

was hot or warm when it was cold.  This practice impacted their idle time and idle fuel 

use and required a better practice to maintain the cabin temperature than leaving them 

running.  Steve stressed how important data was to both Lynden and Alaska Marine Line 

and believed that OPEE could be a useful tool in analyzing different types of equipment 

to better understand the company’s operations and would aid in making better 

economic, environmental, and operational decisions were this in place companywide.  
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Chapter 5: CONCLUSION 

The result of this research and thesis provided an in-depth analysis of the Overall 

Equipment Utilization journey over the last 50 years, its applicability to mobile factories 

using IoT and Big Data, with a focus on a use case that could yield valuable information, 

insights, and economic advantages to fleet and operational managers.  The individual 

performance of each machine on a number of parameters achieved high correlation 

values, suggesting the data extraction element of this project was successfully achieved, 

which was demonstrated through both basic and advanced correlations.  Through 

applying the variables to Time * Speed * Quality, a better productivity ranking with a higher 

degree of accuracy was created to help managers determine which assets and operators 

were performing at the top of their fleet.  This work could provide a basis for adoption of 

IoT and a justification for the use of Big Data to analyze fleet operations.  Furthermore, by 

applying a known and well documented KPI standard with OEE, the basic legwork of 

determining how to extract the data, what kind of data to extract, and what analysis would 

yield value has been explored here with the use of the OPEE formula in this thesis. 

With the in-depth interview of Alaska Marine Line’s General Manager Steve Hardin 

from the Seattle port, we were able to validate the real-world utility of this formula and its 

individual components to provide benchmarks and insights into truck, port, and operator 

performance as well as the operation as a whole because OPEE applicability to equipment 

applications other than just forklifts.  Steve was able to easily demonstrate equipment and 

operator insights by viewing availability, work, and productivity data including explaining 

individual differences between trucks, ports, and operators.  Furthermore, he was able to 

transfer the OPEE value to Lynden’s primary cargo moving business and apply its 

usefulness to selecting the best engines, tires, and overall economics through evaluating 

performance over time with the OEE value and individual components. Steve’s feedback 
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was instrumental in confirming both the purpose and direction of this research and work 

as a whole. 

5.1 Future Direction 

The result of this research indicated that a reliable data set, in most cases R² value 

equal to 0.80 or higher was achieved, with the majority at R² equal to 0.90 or higher.  

Because of this strong data correlation, it is both possible and practical to establish 

benchmarks and trends to assist operation manager with determining how their equipment 

is performing over time.   Ideally, the availability, work time, and pick time would be 

calculated in real-time with the use of machine learning and/or artificial intelligence which 

would provide fleet managers with at-a-glance performance metrics to manage their fleet.  

The goal of IoT and big data is ultimately to extract and load high integrity data.   With the 

use of AI, the  transformation and analysis step could be  automated  eliminating the need 

to export and analyze large data sets in Excel or other analytics tools.  The work required 

here to extract the data and load it into Excel, then do the work to establish the integrity of 

the data, and through using Excel formulas to provide a data set to analyze is very time 

consuming and could be automated with additional software in the future deployments.    
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APPENDICES 

Appendix A. Steve Hardin Interview Transcript 

Carl: “This truck (#49) is the same Total Operating Days as this truck (#51), but it does not 

tell me why this is 92 versus 127 operating days?” 

Steve: “Okay well that one in particular that is one of the two new ones that we put in 

Whittier because they are a specialized unit and they have a new engine in it, a 

Volvo. Mostly the rest of them are Cummins.  The last handful we got was SVE 

Volvo’s because the tier 4 (diesel engines) and the tier 4 in Whittier (#51) failed us 

horribly.  It was down for almost a month.”   

Carl: “And that is exactly what this data is intended to show so if I am not talking to you 

and I do not know anything about these trucks, the fact that it shows up with less 

availability (25%) is supposed to be an indicator of reliability or some other issues.” 

Carl: “What about this Anchorage truck (#49) versus this Petersburg truck (#39)?  They 

both operated 127 days.  What would have created such a difference between 

their non-idle time (Average Work Time - 76% vs 58%)? 

Steve: “The only thing that comes to mind for me is temperature.  Anchorage is going to 

be considerably colder in the winter.  And I have found here in Seattle experience 

that some of these operators even in the summer-time here, one thing we have 

caught them doing in the past is if the parking brake is set and there is no operator 

in the seat the truck will shut off after 5 minutes.  So, the mechanics have figured 

out to not apply the parking brake and leave a heavy shackle in the seat so it thinks 
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somebody’s in there, and it can run their air conditioner while they are at lunch and 

vice versa in Anchorage they can do the same and come back to a warm cab in 

the winter rather than shut them down for whatever their lunch is, 45 minutes.  That 

could be happening still.  We put a stop to it down here once we figured it out, but 

I do not know up there.  And I wouldn't frown on it in those conditions because 

shutting off a machine in below zero conditions and starting it back up probably 

causes more harm than letting it run idle.  But that could be the difference.  Location 

is always going to be a little bit different because it is not only the temperature 

going on but the cargo that they are doing.  For instance, Whittier does a lot of 

really long runs with their machines and I don't know how that would affect the pick 

time, but they are running a long ways empty sometimes that might be part of it 

too.” 

Carl: “So the work time is the one where it is not idling, and over RPM which suggests it 

is moving.  So the 76%, this Petersburg truck, would that indicate long runs?  When 

you have a pick time of 15% but 76% of its time is over engine idle? 

Steve: “Yeah that could very well indicate that.  I have not been to Petersburg so I am 

not familiar with their yard layout but that certainly could be a good reason.”  

Carl: “So if you are looking at this data set, what value does this bring to you, or what are 

your thoughts?” 

Steve: “Well it brings a lot of value at a bunch of different levels, my first thing is the ones 

that have the lower total operating days, how much of that was breakdowns and 

how much of that was not being used?  If they were not broken, if they were 

available but not being utilized, do we move those machines somewhere they 

could be better utilized, do we have too many machines at that port, that stuff is 

not really under my realm, I am not in operations, I don't deal with operations so 
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much I am more of the maintenance, but coming from the operations background, 

that is something I would be looking at.” 

Carl: “In terms of benchmarking, so that over time let's say looking at their Operating 

Equipment Efficiency score, does that provide any value to you or are you more 

interested in the specifics like operating days, work time, things like that?” 

Steve: “No I think the efficiency is good, any data you can get over a period of time, and 

start seeing some trends is always good.  The more you can dial into it and try to 

understand it the more meaningful it is. So the one thing is, if you are looking at 

the machine at 11.9% (#49) and it stays 11.9% all the time, but you see some 

other one’s moving around but start dialing into the other ones and figure out 

what is going on with the other ones.  Why is this one so consistent?  Is there 

only one operator driving it versus multiple operators in a machine that happens 

down here (Seattle)?  Is it an operator that is abusing a piece of equipment?  

Why does one have so much time on it than the others with the same amount of 

stuff?” 

Carl: “And then, my thinking too was, instead of just looking at a SVE Truck, that we could 

identify work time, versus productive time -  in a SVE it is easy because productive 

time pulling a container and moving it - but other pieces of equipment at Lynden 

may have a different definition of that productivity, but we could do this same 

formula fleetwide so that someone from a fleet perspective could look in and say 

okay, here's what my SVE trucks are doing, here's what my barges are doing, 

here’s what this is doing.  What are your thoughts in terms of an overall view with 

your operations knowledge?” 

Steve: “I think it would be very beneficial, you know Tractors, for instance Lynden started 

out as a trucking company and that is still a large part of what they do, you know 

tractors, knowing your tractors, which one’s in what lanes (driving a specific route 
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from point A to point B) are making you the money.  They are always constantly 

studying that, they get varying to specifics on things like tires, what kind of tires 

work better when you are on the Alcan highway all summer, versus what kind of 

tires work better on the other highways.  Which engine is more effective in that 

kind of a lane, you know Texas to Canada, what engine works more effective in 

that lane.  Is there a cheaper operating cost, better fuel economy kind of thing, so 

any of these kind of thing that we can get is very valuable.  Just knowing what 

piece of equipment to put where, not only that but what to buy in the future that is 

cheaper and better.” 

Carl: “So this kind of a data set because it is over a period of six months and it is looking 

at these values, you could, for example, if you had a truck with certain tires and a 

certain engine, you could compare their performance over time in this kind of 

equation to see how they rank.” 

Steve: “Yeah.” 

Carl: “And that would start to give you some at least insight to start asking those questions 

like you just did, like what's going on with the operator? What's going on with the 

reliability - the Whittier tier 4?” 

Steve: “Right.” 

Carl: “Good.  My hypothesis was that, I pulled this formula from overall equipment 

effectiveness used in plant manufacturing but it has never really been transferred 

to the mobile IoT world.” 

Steve: “Oh interesting.” 

Carl: “Overall Equipment Effectiveness is basically Time, Speed, and Quality in 

manufacturing.  So the time is based on plant run time versus actual run time.  The 

speed is based on how many widgets did I make?  And the quality is what was my 

defect rate.  That value gives a percent number and how they rate performance in 
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manufacturing.  What I tried to do was take that concept and apply it to the mobile 

world which does not really have that.” 

Steve: “Interesting, we kind of do that in a way. We have a meeting on Friday where 

everybody kind of goes over their numbers and I know the yard will do how many 

tons did we move, how many forklift hours did we have this week, that kind of thing 

and charts and graphs to go over and kind of see how we did compared to last 

year.  In the southeast we are doing how many UPS packages did we get each 

day of this week and versus how many we did last year….so this is right along 

those lines.” 

Carl: “Yeah so that is a key performance indicator that I talk a little about so there are 

lagging and leading KPI, lagging would be how many tons you did at the end of 

the quarter, but the leading would be when we look at these machines and see 

how we are trending, or is there something that is going on with a truck that is 

going to make us miss that performance, reliability for example, trucks down, you 

know you are going to miss that number.  So this could be a daily, weekly, monthly 

calculation that you can see over time but that is helpful to know.” 

Steve: “Yeah that would be really good.” 

Carl: “Anything else I haven't thought of or asked related to this? 

Steve: “Not at the moment I think you are probably headed in the right direction like I say 

we are a very data driven organization and the more I can get my hands on the 

productivity of my guys, tracking hours and productivity of my guys, how many 

orders did you close this week, how many touches did you have,  that kind of thing 

so how many labor hours do I have available to me and how many people came 

to work.   Any of this data is very valuable stuff.” 
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