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ABSTRACT 

Modeling Action Potential Propagation During Hypertrophic Cardiomyopathy Through a Three-

Dimensional Computational Model 

Julia Kelley 

 
 

Hypertrophic cardiomyopathy (HCM) is the most common monogenic disorder and the 

leading cause of sudden arrhythmic death in children and young adults. It is typically 

asymptomatic and first manifests itself during cardiac arrest, making it a challenge to diagnose in 

advance. Computational models can explore and reveal underlying molecular mechanisms in 

cardiac electrophysiology by allowing researchers to alter various parameters such as tissue size 

or ionic current amplitudes. The goal of this thesis is to develop a computational model in 

MATLAB and to determine if this model can accurately indicate cases of hypertrophic 

cardiomyopathy. This goal is achieved by combining a three-dimensional network of the bidomain 

model with the Beeler-Reuter model and then by manually varying the thickness of that tissue 

and recording the resulting membrane potential with respect to time. The results of this analysis 

demonstrated that the developed model is able to depict variations in tissue thickness through the 

difference in membrane potential recordings. A one-way ANOVA analysis confirmed that the 

membrane potential recordings of the different thicknesses were significantly different from one 

another. This study assumed continuum behavior, which may not be indicative of diseased tissue. 

In the future, such a model might be validated through in vitro experiments that measure electrical 

activity in hypertrophied cardiac tissue. This model may be useful in future applications to study 

the ionic mechanisms related to hypertrophic cardiomyopathy or other related cardiac diseases.  
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Chapter 1 

INTRODUCTION 

 
 

The human heart is the sole organ that maintains the proper function of all other organs 

within the body. As the heart pumps blood throughout the body, it enables us to breathe, think, 

move, and empowers us in several other ways that bring quality to our lives. This quality of life is 

impeded at the onset of a cardiac disease, such as hypertrophic cardiomyopathy (HCM). As the 

leading cause of sudden arrhythmic death for children and young adults, HCM is often 

asymptomatic and first presents itself during ventricular tachyarrhythmia, making it impossible to 

diagnose before it becomes fatal. The cardiac action potential, an electrical impulse that 

disperses throughout the heart via rapid changes in the membrane potential of cardiomyocytes, is 

known to showcase evidence of HCM in its prolonged repolarization period. Computational 

modeling allows us to model such electrical activity within the heart. The goal of this thesis is to 

determine whether a three-dimensional computational model of cardiac tissue can mimic 

hypertrophic cardiomyopathy by varying the tissue thickness to observe changes in the shape of 

the action potential as it propagates through the tissue.  

 

 
1.1 Motivation  

 
Hypertrophic cardiomyopathy (HCM) is a disease that affects ventricular functioning 

through the increase in thickness of the ventricular wall. It is the most common monogenic 

cardiac disorder and is the main cause of sudden cardiac death in children and young adults [1]. 

Its reported prevalence is 1 in 500 adults in the U.S. and typically those who are affected are 

asymptomatic. It can be characterized by the unexplained thickening of the left ventricle. 

Mechanical stretch, caused by volume or pressure overload, leads the heart to send out stress 

signals which activate a hypertrophic response to compensate for wall stress. This in turn leads to 

cardiac remodeling [2]. The hypertrophic remodeling of the heart has three stages: developing 

hypertrophy, compensatory hypertrophy, and overt heart failure. In developing hypertrophy, the 
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load placed on the heart begins to exceed its output. In compensatory hypertrophy, the workload-

to-mass ratio becomes normalized, and a resting cardiac output is maintained. Hypertrophy that 

occurs as a consequence of pressure overload is termed “compensatory” on the premise that it 

facilitates ejection performance by normalizing systolic wall stress [3]. In overt heart failure, 

ventricular dilation occurs and there are substantial declines in cardiac output, often leading to 

sudden cardiac death [3]. In fact, the first known manifestation of hypertrophic cardiomyopathy is 

arrhythmic sudden death caused by ventricular tachyarrhythmias [1]. HCM is challenging to 

diagnose since it presents as asymptomatic and doesn’t become apparent until those who are 

affected by it are in cardiac arrest.  

The underlying electrophysiological mechanisms that cause hypertrophic cardiomyopathy 

are still unclear. Previous studies have investigated the ionic mechanisms driving repolarization 

abnormalities in human HCM cardiomyocytes. One study used experimental ionic current, action 

potential, and calcium-transient recordings to construct populations of human non-diseased and 

HCM action potential (AP) models which were then run through simulations of several degrees of 

selective and combined current block [1]. Another study used human embryonic stem-cell derived 

cardiomyocytes (hESC-CMs) subjected to mechanical stretch to investigate whether this type of 

in vitro model could reveal molecular mechanisms of cardiac hypertrophy and identify potential 

targets in the process [2]. While this model was able to replicate all specific hypertrophic 

hallmarks, human in vitro models are limited by the amount of available patient-derived 

cardiomyocytes. Likewise, animal models do not always accurately represent the mechanisms 

responsible for hypertrophic cardiomyopathy in humans due to inter-species differences.  

Understanding the underlying electrophysiological mechanisms of hypertrophic 

cardiomyopathy is critical for advancing interventional therapeutics. Adequate research models 

are needed for the studies of root mechanisms of HCM at the molecular level. This thesis 

proposes combining the bidomain model with an ionic current model to create a piece of cardiac 

tissue for the purpose of analyzing the effects of HCM. Using a computational model to 

investigate how a cardiac action potential changes due to hypertrophic cardiomyopathy will be 

useful as it allows the researcher to vary the model parameters and observe their consequent 
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effects on the tissue. By taking control of the parameters that influence the cardiac action 

potential, one can gain insight into the root mechanisms that alter the shape of the action 

potential at the molecular level. Computational models may help to improve future interventional 

methods by providing a non-invasive, efficient method for observing changes in the action 

potential of cardiomyocytes that are seeded in cellular chemistry.  

 

 
1.2  Previous Work 

 
There is little information published on using in silico, or computational, models to 

observe the theoretical behavior of hypertrophic cardiomyopathy. A distinct divide exists in the 

published literature between studies that examine ionic mechanisms of hypertrophic 

cardiomyopathy through in vitro experiments and studies that investigate the general 

electrophysiological behavior of non-diseased cardiac tissue through in silico models. Previous 

studies [1, 2, 4] have demonstrated that ionic mechanisms significantly contribute to rhythm 

abnormalities. Repolarization abnormalities are particularly prominent in the case of hypertrophic 

cardiomyopathy [1]. Specifically, phases two and three of the action potential are prolonged. This 

consequence was found to be driven by L-type 𝐶𝑎2+current reactivation [1]. Molecular 

mechanisms of HCM have been revealed through in vitro experiments that were additionally able 

to uncover biomarkers that indicated the presence of HCM [2]. Such biomarkers have not been 

thoroughly researched but could be a key player in developing pharmacological treatments for 

HCM. There have been several studies [4, 5, 6, 7] that utilized in silico modeling to look at 

electrical activity of the heart through a coupling of the bidomain model with an ionic current 

model. Multiple ionic current models have been used in the literature due to their variations in 

complexity. However, these studies have noted that the combination of the bidomain model with a 

complex ionic current model makes the simulations computationally expensive and often require 

great computing power [4, 7]. Another limitation of in silico models is that they often assume 

continuum behavior, which may not be accurate when modeling diseased tissue.  Computational 
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modeling studies seek to characterize and predict the biophysical phenomena underlying 

electrical excitation and conduction [5].  

A study by Passini et al. [1] used experimental ionic current, action potential, and 

calcium-transient recordings to construct populations of human non-diseased and HCM AP 

models which were subjected to simulations of several degrees of selective and combined inward 

current block. Passini et al. found that the simulated HCM cardiomyocytes exhibited prolonged 

action potentials and calcium-transient currents, along with diastolic calcium overload and a 

decreased calcium-transient amplitude. HCM is characterized in part by repolarization 

abnormalities, and this study found that while it was driven by L-type  𝐶𝑎2+ current reactivation, 

multichannel block increased efficacy in normalizing the repolarization as well as action potential 

biomarkers. While there are only a few studies that delve into researching HCM biomarkers, the 

ones that have researched them serve as great potential for paving the way towards treatment. A 

study by Ovchinnikova et al. [2] used human embryonic stem-cell derived cardiomyocytes (hESC-

CMs) that were subjected to mechanical stretch to investigate whether this type of in vitro model 

could reveal molecular mechanisms of cardiac hypertrophy and identify potential biomarkers in 

the process. After subjected the hESC-CMs to cyclic mechanical stress, Ovchinnikova et al. used 

an RNA-sequence approach to determine the global gene expression changes involved in the 

hypertrophic response to stress. Genetic mutations are often a contributing factor when it comes 

to hypertrophic cardiomyopathy [8]. This study demonstrated the successful use of hESC-CMs in 

predicting molecular mechanisms of cardiac hypertrophy and identifying potential targets in the 

process. Ovchinnikova et al. intended to pave a way towards bridging the gap between in vitro 

and pharmacological approaches to understanding what causes cardiac hypertrophy. 

Previous computational-based studies have been used to analyze how an electrical 

impulse propagates through healthy cardiac tissue by varying ionic parameters. In a study by 

Ibrahim et al. [4], a model composed of a bidomain coupled with the Fitzhugh-Nagumo model 

was implemented to study the effects of varying ionic current model parameters on the 

propagation of electrical waves through cardiac tissue. The model was time-discretized using the 

explicit forward Euler’s method and space-discretized using a two-dimensional network to obtain 
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linearized equations. This study discovered that only a decrease in the excitation rate constants 

had an impact on the cardiac wave propagation. A key takeaway from Ibrahim’s study is that the 

simulation of bidomain equations may be more fruitful if one were to use a three-dimensional 

network with other ionic current models. A study by Bantle [7] took the three-dimensional 

bidomain network approach coupled with the Ten Tusscher model [36]. Bantle, however, was 

unable to recreate a full action potential of a ventricular myocyte. The limitation in this result was 

thought to have been seeded in the coupling of neighbor cells, although it is a less accurate 

model when the neighboring cells are decoupled. Akin to the study by Ibrahim et al., a study by 

Tanyous [6] used two-dimensional bidomain modeling coupled with the Fitzhugh-Nagumo model, 

but instead focused on mapping electrical propagation in the cardiac sinoatrial node. The 

computational model was used to validate experimental treatments within the same study. 

Tanyous discovered that there were preferred paths of wave propagation and an uneven 

distribution of the velocity of wave propagation, and therefore of tissue conductance, from the 

sinoatrial node to its periphery. A summary of the prior work discussed in Section 1.2 is described 

in Table 1.1.  

 

 
Table 1.1 Summary of Prior Work 

Passini et al. [1] Studied mechanisms of pro-arrhythmic abnormalities in ventricular 
repolarization in cases of hypertrophic cardiomyopathy 

Ovchinnikova et al. 
[2]  

Modeled cardiac hypertrophy by subjecting hESC-CMs to 
mechanical stretch to mimic molecular mechanisms and uncover 
biomarkers 

Chang [5] Used theoretical and experimental models to affect action potential 
propagation in cardiac tissue to better understand the electrogram 

Ibrahim et al. [4]  Modeled cardiac electrical activity using bidomain and Fitzhugh-
Nagumo models and varying ionic parameters 

Bantle [7]  Modeled the electrical activity of a wedge of ventricular heart tissue 
by coupling the bidomain and Ten Tusscher models 

Tanyous [6]  Mapped electrical propagation in the sinoatrial node using an in-
silico model to validate an experimental model 
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1.3  Outline 

 
It is important to bridge the gap between in vitro studies on ionic mechanisms of HCM 

and computational studies on general cardiac electrophysiology. Assessing cases of HCM 

through in silico studies will allow researchers to reach conclusions on the molecular activity of 

diseased cardiac tissue by altering various ionic mechanisms to pinpoint root causes and 

targeted areas of HCM. The objective of this thesis is to determine whether a three-dimensional 

computational model of cardiac tissue can mimic hypertrophic cardiomyopathy by varying the 

tissue thickness to observe changes in the shape of the action potential as it propagates through 

the tissue. Specifically, the analysis of the change in membrane potential in an action potential as 

it propagates through tissues of varying thickness will be useful to understand how a change in 

cardiac tissue thickness will impact the heart’s ability to transmit an electrical impulse and 

therefore how likely it is for the heart to experience HCM. A three-dimensional computational 

model is not limited in the way that a clinical, animal, or in vitro study would be since it allows for 

the flexibility of parameter alteration and can accurately represent the mechanisms responsible 

for HCM in humans.  

The organization of the paper is as follows: first, the background of the human 

cardiovascular system, the conduction of the electrical impulse of the heart, the cardiac action 

potential, membrane potential, hypertrophic cardiomyopathy, ventricular myocyte remodeling, and 

modeling cardiac tissue will be described; mathematical descriptions and the methods for the 

setup of the Beeler-Reuter and bidomain models in MATLAB will be outlined; the results of the 

analysis will be presented, validated, and statistically analyzed; and the results will be discussed 

as they pertain to the goal of this thesis. A statistical analysis will be performed in JMP, a suite of 

computer programs for statistical analysis that was developed by John Sall in the 1980’s (JMP 

stands for “John’s Macintosh Project”), to determine if a significant difference exists between the 

action potentials that stem from tissues with different thicknesses. The model will be validated by 

first visually comparing the output of the algorithm for membrane potential of a single ventricular 

myocyte, as described by the Beeler-Reuter model, to that which is found in the literature [9]. 

Once that algorithm has been validated, the active three-dimensional model will be compared to a 



 7 

passive three-dimensional model to determine if the injected stimulus current has a noticeable 

effect. The accuracy of the electrical components’ representation of the physiological components 

will be validated by describing the role of gap junctions, how they are affected during hypertrophic 

cardiomyopathy, and how their electrical equivalents predispose a prolonged action potential 

during cases of hypertrophy. Clinical data such as human cardiac action potential dynamics are 

scarce or limited in the literature by practical or ethical concerns [10]. Thus, such data was unable 

to be obtained for validation purposes in this paper.  

This study seeks to answer whether the presented three-dimensional computational 

model can depict changes in the shape of an action potential moving through cardiac tissue of 

varying thickness. The purpose of this investigation is to see if the resulting action potentials will 

mimic those seen in cases of hypertrophic cardiomyopathy. The shape of the action potential is 

hypothesized to elongate in phases two and three with an increase in tissue thickness.  
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Chapter 2 

BACKGROUND 

 

 
2.1 The Human Cardiovascular System 

 
The function of the heart is to pump oxygenated blood to all tissues within the body and 

to pump deoxygenated blood to the lungs. The heart consists of four chambers: the left and right 

atria and the left and right ventricles. The upper chambers, or the atria, receive blood coming 

from the systemic and pulmonary systems. They push blood into the lower chambers, or the 

ventricles, to be ejected to the lungs and the rest of the body. The atria are separated by the 

interatrial septum and the ventricles are separated by the interventricular septum. The septum 

between the atria and ventricles is known as the atrioventricular septum, marked by four valves 

that allow blood to flow from the atria to the ventricles [11]. Each of the major pumping chambers 

of the heart ejects approximately 70 mL of blood per contraction in a resting adult. The shape and 

size of the heart can be thought of as an inverted pear. It sits within the thoracic cavity and is 

medially located between the lungs. The superior and inferior vena cavae, the aorta, and the 

pulmonary trunk are located on the superior surface of the heart, known as the base. The inferior 

surface of the heart, known as the apex, lies to the left of the sternum. Figure 2.1 depicts the 

structural arrangement of the components described above within the heart.  
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Figure 2.1. The anatomical structure of the human heart [11].  

 
The size of the average adult’s heart can be compared to a clenched fist. However, the 

heart of a well-trained athlete can be considerably larger than normal. Similar to skeletal muscle, 

cardiac muscle increases in protein myofilaments as a result of exercise, increasing the size of 

individual cells.This is known as physiological hypertrophy. The heart remodels itself in response 

to an increase in exercise to pump blood more effectively throughout the body. In the average 

adult heart (whether they are physically active or not), the left ventricle is considerably larger than 

the right ventricle. It is thicker and more developed so that it can overcome high resistance and 

develop a large amount of pressure required to pump blood into the long systemic circuit. The 

right ventricle does not require as much pressure to overcome resistance because the pulmonary 

circuit is much shorter than the systemic circuit and therefore has much less resistance [11].  

 



 10 

 

Figure 2.2. Differences in ventricular muscle thickness of a healthy human heart [11].  

 
There are two distinct but linked circuits within the cardiovascular system: the pulmonary 

and systemic systems. The pulmonary circuit transports blood to and from the lungs, where it 

picks up oxygen from inhalation and delivers carbon dioxide for exhalation. The systemic circuit 

transports oxygenated blood to almost all tissues within the body (excluding the lungs) and 

returns deoxygenated blood and carbon dioxide to the heart to be sent to the lungs for the carbon 

dioxide to be exhaled and for the deoxygenated blood to be reoxygenated. Highly oxygenated 

blood returns to the heart through the pulmonary veins. They conduct blood into the left atrium, 

which pumps blood into the left ventricle, sending blood out to the systemic circuit. Deoxygenated 

blood flows into the superior and inferior vena cavae, returning blood to the right atrium. The right 

atrium then pumps blood into the right ventricle which sends blood into the pulmonary circuit to 

expel waste and to be reoxygenated [11].  
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Figure 2.3. The dual system of human blood circulation: the systemic and pulmonary circuits 

[11].  
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2.2 Conduction System 

 
The conduction system of the heart is arranged to allow for spontaneous firing and rapid 

transmission of an electrical impulse throughout the entire heart. It controls the timing of the 

electrical transfer between the atria and the ventricles, allowing for optimum hemodynamic 

performance [12]. Two key structural components of cardiac tissue that enable rapid, 

synchronous impulse transmission are intercalated disks and gap junctions. Intercalated disks 

mechanically connect adjacent cardiomyocytes while gap junctions electrically connect them. 

Gap junctions are structured as rings made up of proteins called connexons. They allow ions, 

nutrients, metabolites, and small proteins to pass. But most importantly, gap junctions allow the 

transfer of electrical impulses from one myocyte to the next.  

The primary electrical components of the conduction system include the sinoatrial (SA) 

node, the atrioventricular (AV) node, the bundle of His, the left and right bundle branches, and the 

Purkinje fibers. The sinoatrial node is found at the top of the right atrium (near the entrance to the 

superior vena cava); the atrioventricular node is found at the interatrial septum; the bundle of His 

extends down from the atrioventricular node into the septum; the bundle branches disperse into 

their respective ventricles; and the Purkinje fibers are extensions of each set of bundle branches 

into the ventricular walls [12].  

Pacemaker cells in the sinoatrial node spontaneously depolarize, dispersing an electrical 

impulse throughout both atria allowing them to contract simultaneously. The depolarization 

spreads from the right atrium to the left atrium through Bachmann’s bundle [13]. The impulse then 

travels from the sinoatrial node to the atrioventricular node through the internodal fibers. Once the 

electrical impulse reaches the atrioventricular node, there is a slight delay in transmission to allow 

the ventricles to fill. Cells in the AV node conduct slower than those in the SA node to allow this 

delay in the electrical impulse transmission from the atria to the ventricles [12].  

Once the ventricles are sufficiently filled, the electrical impulse rapidly travels down the 

bundle of His into the left and right bundle branches and finally to the Purkinje fibers located in 

the walls of the ventricles. The rapid conduction velocity of the latter half of the conduction system 

can be attributed to larger cell sizes, a unique distribution of gap junctions along the cell borders, 
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and an encapsulating fibrous sheath surrounding the conduction network [12]. Figure 2.4 portrays 

the conduction system embedded within the structure of the heart.  

 

 

Figure 2.4. Electrical conduction system of the human heart [14].  

 

 
2.3 Cardiac Action Potential 

 
An action potential is the transmission of an electrical impulse which is the result of a 

rapid sequence of changes in the membrane potential. In an adult mammalian heart, the cardiac 

action potential travels as an electrical impulse through the heart’s conduction system as a 
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means for maintaining the regular contractions of the heart to maintain perfusion to vital organs 

within the body [13]. During each heartbeat, the signal to contract reaches cardiac muscle cells in 

the form of an electrical impulse. At the cellular level, this electrical impulse causes a rapid 

release of calcium ions from intracellular stores to activate contraction in the sarcomere. This 

sequence of events from electrical excitation to force production is known as cardiac excitation-

contraction coupling. Ion channels and their accessory proteins at the cell membrane are 

responsible for detecting and propagating the transient changes in the membrane potential that 

initiate contraction. Electrical changes in the membrane potential open L-type 𝐶𝑎2+ channels, 

triggering 𝐶𝑎2+ release from the sarcoplasmic reticulum in a process known as 𝐶𝑎2+-induced 

release. Membrane-bound proteins in the sarcoplasmic reticulum are responsible for 𝐶𝑎2+ 

reuptake from the cytosol, which lowers 𝐶𝑎2+ and causes its contraction to end [15]. It could be 

perceived that the entire process of force generation by the myofilaments forms part of the 

excitation-contraction coupling. This sequence of events proves that an understanding of the 

relationship between excitation and the force produced by contraction depends critically on the 

properties of myofilaments.  

 

 

Figure 2.5. Excitation-contraction coupling in cardiac muscle [16].  
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The cardiac action potential differs from those that propagate through the nervous system 

for two main reasons: automaticity and a delayed plateau phase. Automaticity is only found in 

pacemaker cells within the heart because they have the intrinsic ability to depolarize rhythmically 

and initiate an action potential. The delayed plateau phase, while only found in the action 

potentials of cardiomyocytes, serves to allow enough time for muscle contraction during Phase 2 

of the action potential.  

There are a total of five types of cells that make up the adult mammalian heart: 

cardiomyocytes cells, pacemaker cells, fibroblasts, endothelial cells, and perivascular cells. 

Cardiomyocytes and pacemaker cells are the most abundant and the most crucial for propagating 

action potentials. Cardiomyocyte cells and pacemaker cells elicit different action potential 

waveforms. In this paper, the cardiomyocyte cell action potential is highlighted and discussed as 

it pertains to the Beeler-Reuter model of ventricular cardiomyocytes.  

There are five phases to the cardiomyocyte action potential. A depiction of these five 

phases can be seen in Figure 2.5. They are structured in the sequence as follows: 

• Phase 0: During this phase, rapid depolarization takes place. Voltage-gated sodium 

channels open causing an influx of sodium ions which brings the membrane potential to 

+50 mV. This accounts for the steep upstroke in the shape of the action potential 

• Phase 1: During this phase, there is a slight drop in the membrane electrochemical 

potential. The previously open sodium channels inactivate while potassium channels 

activate a transient outward potassium current 

• Phase 2: This is considered as the ‘plateau’ phase. There is a calcium ion influx, 

balancing the potassium ion efflux – this creates a plateau around +50 mV. 

Subsequently, the calcium ion influx stimulates the calcium release from the 

sarcoplasmic reticulum, initiating muscle contraction.  

• Phase 3: Repolarization takes place. Calcium ion channels close and there is a continued 

potassium ion efflux through the opening of rapid delayed rectifier potassium channels.  



 16 

• Phase 4: The repolarizing current from Phase 3 brings the membrane potential back to its 

initial resting value and is maintained by a potassium current.  

 

 

Figure 2.6. Phases of the cardiac action potential [15].  

 
 
2.4 Membrane Potential 

 
Membrane potential is a phenomenon that facilitates the propagation of an action 

potential in excitable tissues [16]. It will always remain in either a resting or active state. The 

resting membrane potential is maintained by the cells’ ion channels [16]. In the resting state, the 

cell membrane maintains an equilibrium potential (which can be determined by the Nernst 

equation). The resting state of the cell membrane is determined primarily by two factors: the 

differences in ion concentration of both the intracellular and extracellular fluids, and the relative 
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permeabilities of the plasma membrane to different ion species. The cell membrane is a 

lipoprotein complex (7-15 nm thick), and during the resting state is only slightly permeable to 

sodium ions and freely permeable to potassium ions. Essentially, the cell membrane can be 

described as a leaky capacitor. The potassium concentration difference between the inside and 

outside of the cell creates a diffusion gradient for potassium ions to flow outwards, making the cell 

interior more negative. However, the electric field supported by the membrane at rest tends to 

inhibit the outward flow of positively charged ions (e.g., K+) as well as the inward flow of negative 

ions (e.g., Cl-). This makes the diffusional and electrical forces acting across the membrane 

opposed to each other, creating an equilibrium potential [17]. The resting membrane potential 

becomes active when an adequate stimulus influences the ionic concentration in the cell, initiating 

a depolarization.   

Emerging evidence shows that a dynamic membrane potential is essential for many other 

processes including cell cycle, cell volume control, proliferation, and muscle contraction (even in 

the absence of an action potential). The maintenance of cell volume in particular is essential for 

cell survival, and membrane potential is a key regulator of this in cardiomyocytes. The membrane 

potential feeds into the cell volume control mechanism by changing the driving force for ionic 

current fluxes [16]. Since changes in cell volume are accompanied by ionic current fluxes, the 

change in cell volume may influence membrane excitability, contraction, and cellular homeostasis 

[18]. While it was formerly believed that cardiac tissue hypertrophy was the result of 

cardiomyocyte proliferation, recent studies have found that adult cardiomyocytes grow through 

hypertrophy (increase in cell size) instead of hyperplasia (increase in cell number). Cardiac cells 

proliferate as embryos, but that proliferation turns into cell hypertrophy as the cardiac cells mature 

[19]. Since it is known that membrane potential is a key regulator of cardiomyocyte cell volume, it 

is understandable why hypertrophic cardiomyopathy alters the shape of the action potential as it 

propagates through the cell membrane.  
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Figure 2.7. Fluctuation in membrane potential in cardiac cells during an action potential [11]. 

 

 
2.5 Hypertrophic Cardiomyopathy 

 
Unexplained hypertrophic cardiomyopathy (HCM) is present in one out of every 500 

adults in the United States [15]. HCM is the default diagnosis for patients presenting with left 

ventricular wall thickness, but without causative factors such as hypertension. It can be most 

simply defined as the increase in cardiac tissue size to compensate for a reduction in cardiac 

function. This compensation activates the sympathetic nervous system, the renin-angiotensin-

aldosterone systems, and other neurohormonal mechanisms. The activation alters signal 

transduction, leading to a change in gene expression that produces myocyte hypertrophy [20]. In 

the majority of cases, HCM can be traced to genetic factors. Genetic linkage studies, the first 

appearing two decades ago, have identified mutations to sarcomeres as the primary cause. The 

inherited form of the disease, familial hypertrophic cardiomyopathy (FHC), is associated with left 

ventricular wall thickness, myocardial fibrosis, myocyte disarray, and increased risk of sudden 

cardiac death. The implicit hypothesis in current FHC research is that hypertrophy, regardless of 

its advanced form, is the result of altered acute function at the level of the cardiac sarcomere [15]. 

HCM is often asymptomatic and first presents itself during instances of cardiac failure, particularly 
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ventricular tachyarrhythmias. It is the most common monogenic disorder and is the main source 

of sudden cardiac death in children and young adults [1]. The intrinsic cardiac and peripheral 

responses to myocardial failure adversely alter the electrophysiology of the heart, predisposing 

patients with heart failure to an increase in arrhythmic death [20]. No cure exists for the condition, 

and treatments to alleviate the symptoms are limited.  

 

 

Figure 2.8.  (A) A normal thin myocardial section stained with H&E. (B) A low magnification (×4) 

H&E-stained thin myocardial section from a patient heart with HCM [8].  

 

 
 There is evidence in the literature [1, 20, 21] that a consequence of hypertrophic 

cardiomyopathy is a prolonged repolarization period in the action potential of cardiomyocytes as 

well as a prolonged presence of calcium transient current. Passini et al. found that L-type calcium 

current reactivation contributed to repolarization abnormalities in cardiomyocytes. Coltart et al. 

described how previous investigations into prolonged repolarization of cardiomyocytes attributed 

that abnormality to reasons such as massive, short irregular fibers with abnormal nuclei, a subset 

of other cardiac diseases, and having excessive noradrenaline deposits in the diseased muscle. 

However, this study found that hypocalcemia was a contributing factor to prolonged repolarization 

periods in cardiomyocytes. Tomaselli et al. discussed the implications of functional alterations in 

the depolarizing and repolarizing currents as the general reason for changes in the action 

potential during HCM. Specifically, the down regulation of potassium currents was highlighted as 

a recurring theme in hypertrophied myocardium and additionally how a fluctuation in L-type 

calcium current density typically precedes cardiac hypertrophy.  
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Figure 2.9. Transmembrane potential (top) and transient calcium current (bottom) in healthy (left) 

and failing (right) cardiomyocytes [20].  

 
 
 From Figure 2.9, there is evidence of a distinction between the repolarization duration of 

healthy cardiomyocytes versus diseased cardiomyocytes. The longer the action potential 

duration, the more the repolarization process is subject to change. With a change in the shape of 

the action potential comes electrical remodeling of the cardiac tissue. The stage of disease is 

crucial in determining the degree and character of electrical remodeling and arrhythmic risk [20]. 

Abnormal automaticity may arise in hypertrophied cardiac tissue in the setting of a reduction in 

resting membrane potential. In fact, the most common mechanism of ventricular arrhythmias is 

reentry due to abnormal impulse conduction. Such an abnormal conduction rate may contribute to 

the production of arrhythmias in hypertrophic and failing hearts [20].  

The key components of ventricular myocyte remodeling are the functional expression of a 

number of ion channels, transporters and receptors that result in action potential prolongation, 

and abnormal 𝐶𝑎2+ handling and aberrant adrenergic signaling. The great challenge that remains 

is to use insight provided by in vitro studies to better understand these components of ventricular 

myocyte remodeling and how they contribute to arrhythmic mechanisms so that sudden death 

may be prevented in patients [20].  
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2.6 Ventricular Myocyte Remodeling 

 

Structural remodeling in ventricular myocytes is a major feature of cardiac hypertrophy 

and of heart failure. An understanding of the abnormal signaling underlying the associated 

cellular changes should have considerable clinical benefits. It is known that myocyte transverse 

growth (as opposed to longitudinal growth) is largely responsible for wall thickening during 

cardiac hypertrophy [24]. The increase in chamber diameter provides the structural basis for the 

elevated wall stress found in heart failure, which can be preceded by hypertrophy. Due to the 

spatial arrangement of myocytes within the ventricular wall, cell diameter is primarily responsible 

for changes in wall thickness. The myocyte shape alterations during cardiac hypertrophy go 

hand-in-hand with changes in ventricular anatomy. Such shape alterations are a result of volume 

overloading, leading to proportional growth in the ventricular diameter and is reflected at the 

cellular level by the proportional growth of myocyte length and cross-sectional area [24].  

There are distinct cellular and molecular events that occur between cardiomyocytes and 

non-cardiomyocytes that partially dictate the extent of remodeling in the cardiac tissue from 

volume overload. Cardiomyocytes have been proven to show phenotypic modification that results 

in cellular hypertrophy accompanied by reexpression of several fetal genes, abnormal 𝐶𝑎2+ 

handling, oxidative stress, and mitochondrial DNA damage and cardiomyocyte death due to 

necrosis or apoptosis. Cardiac fibrosis, or an excessive deposition of the extracellular matrix 

proteins, is a hallmark of pathological hypertrophy and heart failure [25]. By forming a barrier 

between cardiomyocytes, fibrosis can impair the electrical coupling of cardiomyocytes, leading to 

cardiac systolic dysfunction. Resident cardiac fibroblasts, the primary cells that contribute to 

fibrosis, are thought to arise from the embryonic proepicardial organ. During fetal development, 

their role is to proliferate and grow in size to help the heart to grow. These fetal genes become 

less prominent after sufficient fetal development. The cardiomyocyte-specific deletion of genes 

has been shown to affect not only cardiomyocyte functionality but also the phenotypes and 

functions of fibroblasts [26]. Conversely, recent studies have shown that cardiac fibroblasts 

control cardiomyocyte proliferation in the developing ventricles during embryogenesis and that 
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fibroblasts promote cardiomyocyte hypertrophy through paracrine factors and ECM. Many growth 

factors and cytokines have been shown to act in an autocrine or paracrine fashion to induce 

hypertrophic responses in cardiomyocytes and activate fibroblasts. Figure 2.10 shows the 

relationship between fibroblasts and myocyte hypertrophy with only some of the contributing 

factors identified.  

 

 
Figure 2.10. Reciprocal interactions between fibroblasts and cardiomyocytes [26].  

 

 

 Insulin-Like Growth Factor-1 (IGF-1) exerts adaptive and cardioprotective effects in 

response to stress. In the heart, IGF-1 is mainly expressed in cardiac fibroblasts and activates 

downstream signal transducers, such as phosphoinositide 3-kinase (PI3K), leading to 

cardiomyocyte hypertrophy. Additionally, cardiac IGF-1 is transactivated by KLF5, which controls 

IGF-1 expression in cardiac fibroblasts in response to stress [26]. This induction of IGF-1 is an 

essential cardioprotective response. It is theorized that the exacerbation of these factors 

contributes to the incitement of pathological hypertrophic cardiomyopathy.  
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Figure 2.11. A model for the regulation of fibroblasts by KLF5 during cardiac hypertrophy [26].  

 

 

2.7 Computationally Modeling Cardiac Tissue 

 
Computational models of ventricular myocyte electrophysiology have evolved over 

several decades and have improved the biophysical accuracy and computational efficiency of 

modeling electrical dynamics through innovative mathematical approaches. The recent advances 

in computational modeling have revolutionized patient diagnostics and treatment by enabling the 

construction of three-dimensional models of cardiac tissue that are patient specific. It can be used 

to make inferences about biophysical phenomena that are difficult to investigate and cannot be 

readily measured. For example, it is challenging to investigate the molecular causes and 

structural mechanisms that underlie reentrant arrhythmias, such as tachycardia and fibrillation 

[12]. Computational models give researchers the power to manipulate certain biophysical 

parameters, providing the advantage of understanding the cellular mechanisms that dictate 

electrical and mechanical behaviors.  
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Computational models that are patient-specific optimize diagnostic treatment because 

they reveal information that would have otherwise been concealed. Using physiology and physics 

rather than population statistics to build such models has uncovered more interindividual 

variability in pathophysiology, indicating that patient groups are less uniform than previously 

thought. The inherent need for individualized treatment for cardiac diseases is rising. With the 

increase in computational power and tissue model complexity, simulations are becoming better 

able to provide the link between the effects of genetic mutations, physiological regulations or 

drugs on protein function and emergent cellular and tissue function or clinical phenotypes. 

Three-dimensional (3D) tissue models that incorporate detailed structural information can 

provide details about the local electrical behavior that would not be otherwise available. However, 

3D models typically assume a continuum and require meshes to be on the order of 100 million 

nodes to represent a full human heart. Time steps are required to be on the order of 0.01 

seconds to achieve temporal convergence because the upstroke of the cardiac action potential is 

very rapid. This makes it challenging to use complex models to study rhythm disturbances where 

it is necessary to simulate several cycles of activation [12]. Over recent years, computational 

power has increased, allowing for finer meshes and more complex current models to be used in 

modeling cardiac tissue. As this power continues to increase in the future, it will become easier to 

obtain the most realistic in-silico model of an entire human heart.  

To satisfy tissue electrodynamics, cellular-level models can be incorporated into larger-

scale models as a discrete set of cells or tissues, assuming that at each node point there exists 

both intracellular and extracellular space. The fundamental relationships for a three-dimensional 

electrical continuum are described below [12].  

𝐸 =  −∇𝜙     (2.1) 

where E is the electric field (with units of Newtons per Coulomb, N/C) and φ is the potential (with 

units of Volts, V). 

𝐽 =  𝜎𝐸      (2.2) 

where J is current density (with units of milliampere per square meter, mA/𝑚2) and σ is the 

conductivity of the medium (with units of Siemens per meter, S/m). 
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∇𝐽 =  𝐼𝑣      (2.3) 

where 𝐼𝑣 is the source density (with units of ampere per meter A/m). 

∇2𝜙 =  −𝐼𝑣𝜎    (2.4)  

otherwise known as Poisson’s equation. 
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Chapter 3 

METHODS 

 

The Beeler Reuter model was combined with the bidomain model to simulate the 

electrical dynamics of a ventricular myocyte for the purpose of investigating the effects of 

hypertrophic cardiomyopathy (HCM) on the related action potential dynamics. The bidomain 

model was designed to be a three-dimensional cable model, serving as a piece of cardiac tissue, 

with the Beeler Reuter model simulating the ionic current fluctuations at each node as an action 

potential propagates through the model. The piece of cardiac tissue was designed with a 

rectangular shape for simplicity. This simulation is useful for understanding how changes in 

ventricular tissue thickness impact electrical impulse propagation and the ventricles’ overall ability 

to contract.  

While more complex ionic current models have been developed in recent years, the 

Beeler Reuter model was selected for its ease of use solving a matrix in MATLAB. The bidomain 

model was selected as it is the most mathematically accurate model of electrical behavior within 

cardiac tissue and is relatively straightforward to implement. A one-way ANOVA test was run to 

examine if there was a significant difference between the action potentials that resulted from 

pieces of tissue with different thicknesses 

 

3.1 Beeler Reuter Model 

 
The Beeler-Reuter model was developed in 1977 as an advancement of the Hodgkin-

Huxley model. The formulation of differential equations for the time- and voltage-dependence of 

the activation parameters behaves identically to those of the first approach in the Hodgkin-Huxley 

model, only here the sodium gates activate and inactive. The Beeler-Reuter model can provide 

information on cardiac arrhythmias and ion transport in cardiac cells [9]. This model was selected 

for its simplicity and low computational requirements. 

 The Beeler-Reuter model uses four different ionic currents to simulate the action potential 

waveform in mammalian ventricular myocardial cells. The four ionic currents consist of an initial 
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fast inward current carried primarily by sodium ions (𝐼𝑁𝑎); a secondary or slow inward current 

carried mainly by calcium ions (𝐼𝑠); a time-activated outward current carried primarily by 

potassium ions (𝐼𝑥1); and a time-independent outward current carried mainly by potassium ions 

(𝐼𝐾). Figure 3.1 shows the four ionic currents and their respective direction in and out of the 

ventricular myocyte. 

 

 
Figure 3.1. A schematic of the four ionic currents used in the Beeler Reuter model. 

 

 

There are six conduction parameters that describe the degree of activation and 

inactivation of the ion-gated channels: d, a calcium activation gate; f, a calcium inactivation gate; 

h, a sodium inactivation gate; j, a second sodium inactivation gate; m, a sodium activation gate; 

and x1, a potassium activation gate. There are a total of eight parameters that serve as inputs to 

the model: the transmembrane potential 𝑉𝑚, the intracellular calcium concentration Ca, and the 

six conduction parameters that describe the degree of activation and inactivation of the ion gated 

channels d, f, h, j, m, and x1. The equations for each ionic current and the equation representing 

the overall ionic activity in the ventricular myocyte can be found in Figure 3.2. Values of calcium 
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dynamics, Nernst potentials, and conductance can be found in Table 3.1. Initial values of the 

state variables can be found in Table 3.2.  

 
 
 
 

 
Figure 3.2. Equations for ionic current activity in the Beeler-Reuter model [22].  

 

 

 

 

 

Table 3.1. Values of Calcium Dynamics, Nernst Potentials, and Conductance 

𝒅[𝑪𝒂]𝒊

𝒅𝒕
 

−10−7𝐽𝐶𝑎 + 0.07(−10−7 − [𝐶𝑎]𝑖) 

𝑬𝑵𝒂 50 

𝑬𝑪𝒂 −82.3 − 13.0287 ∗ 𝑙𝑛[𝐶𝑎]𝑖 

𝑮𝑵𝒂 4 

𝑮𝑵𝒂𝑪 0.003 

𝑮𝑪𝒂 0.09 
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Table 3.2. Initial Values of State Variables 

State Variable Value Dimensions 

𝑉𝑚 -84.62 mV 

[𝐶𝑎]𝑖 10−7 mol/L 

d 0.003 N/A 

f 1 N/A 

h 0.99 N/A 

j 0.97 N/A 

m 0.011 N/A 

x1 0.0074 N/A 

 
  
 The action potential of a single ventricular myocyte, as described by the Beeler Reuter 

model, is represented in Figure 3.3. The code used to create the action potential can be found in 

Appendix A. 

 

 
Figure 3.3. The action potential of the Beeler-Reuter model within a ventricular myocyte. 
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3.2 Bidomain Model  

 
The bidomain model serves as the most complete representation of cardiac tissue. It is 

based on the assumption that, at the cell scale, the cardiac tissue can be partitioned into two 

ohmic conducting media, separated by the cell membrane: intracellular and extracellular domains 

[23]. It recognizes that cardiac tissue is electrically anisotropic and that, during electrical 

activation, current flows in both the extracellular and intracellular domains. Two of the most 

commonly measured cardiac electrical signals, extracellular potential and transmembrane 

potential, are direct model outputs [24].  

 The bidomain model was developed to be the first mathematical model that could 

describe the electrical properties of cardiac tissue which initially helped to unravel the 

mechanisms of how a pacemaker excites the heart. It represents cardiac tissue as a 

multidimensional cable that can be represented by a network of resistors and capacitors. For 

example, a two-dimensional bidomain model consists of one upper grid of resistors and one lower 

grid of resistors (i.e., the extracellular space and intracellular space, respectively) coupled by 

resistors and capacitors (i.e., the membrane) [24].  
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Figure 3.4. Two-dimensional bidomain network [29]. 

 While Figure 3.4 represents a two-dimensional representation of myocardial tissue, a true 

working myocardium is regarded as a three-dimensional network of coupled excitable elements 

[27]. The resistor and capacitor in parallel are analogous to the gap junction between 

cardiomyocytes. Thus, the z-direction can be thought of as units of cardiomyocytes along with the 

intercalated discs that separate them. To perform appropriate simulations of cardiac 

electrophysiology, the bidomain model must be coupled with an ionic model to capture the full 

range of cell membrane kinetics [25]. An ionic model describes the chemical and electrical 

gradients across the cell membrane of a single cardiac cell by simulating the subcellular 

processes that take place within a selectively permeable membrane, which is permeable to 

different ions under different conditions [7].  
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Figure 3.5. Ionic model represented by an equivalent circuit model.  

 

 The current flowing into the top center node from the capacitor and resistor in parallel in 

Figure 3.5 can be represented by the following equation: 

𝐶𝑚𝑑𝑉𝑚𝑑𝑡 + 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝑥1 + 𝐼𝑠 − 𝐼𝑠𝑡𝑖𝑚 = 0         

(3.1) 

This equates to the right-hand side of the second bidomain equation (Eq. 3.8) described on page 

34. The ionic currents used in Equation (3.1) represent the Beeler Reuter model. The one-

dimensional equivalent circuit model in Figure 3.5 is the unit that is repeated in the multi-

dimensional cable model shown in Figure 3.4.  

Several ionic models are available with varying differential equations. The more complex 

models have been developed in recent years and are advancements on ionic models developed 

previously. Within cardiac tissue, changes occur rapidly over a small spatial domain, so 

discretized versions of these models must be solved on a fine computational grid and small-time 
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steps must be used. For very simple ionic models, the bidomain model can be discretized and 

numerical solutions can be computed for all variables simultaneously [25]. 

 

 

 

 
Figure 3.6. Flowchart of the steps taken to implement the bidomain model into MATLAB.   
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Table 3.3. Parameters Used in the Implementation of the Bidomain Model  

Parameter Description Value 

Δt Size of time step 0.02 𝑚𝑠 

h Distance between node points 0.2E-3 𝑚 

𝜎𝑖 , 𝑥 Intracellular conductivity in the x-direction 0.2 
𝑆

𝑚
 

𝜎𝑖 , 𝑦 Intracellular conductivity in the y-direction 0.02 
𝑆

𝑚
 

𝜎𝑖 , 𝑧 Intracellular conductivity in the z-direction 0.02 
𝑆

𝑚
 

𝜎𝑒 , 𝑥 Extracellular conductivity in the x-direction 0.2 
𝑆

𝑚
 

𝜎𝑒 , 𝑦 Extracellular conductivity in the y-direction 0.08 
𝑆

𝑚
 

𝜎𝑒 , 𝑧 Extracellular conductivity in the z-direction 0.08 
𝑆

𝑚
 

𝜎𝑏  Conductivity of the surrounding bath  0.2 
𝑆

𝑚
 

β Surface area to volume ratio 3E5 
1

𝑚
 

𝐶𝑚 Membrane capacitance per unit surface area 1 
𝐹

𝑚2 

𝑉𝑚, 𝑡 = 0 Initial membrane potential -83.3 𝑚𝑉 

𝐼𝑆𝑡𝑖𝑚 Stimulus current 3E5 
𝑚𝐴

𝑚2 

 

 

 These values do not change within MATLAB model constructed in this thesis. The model 

was designed to be a continuum, wherein the electrical properties remain constant throughout the 

simulations. However, it is logical to assume that some of these values would change in a true 

case of hypertrophic cardiomyopathy. Given that cardiac disease does not progress uniformly, 

tissue conductivity may not be uniform throughout the tissue as it thickens. Additionally, the 

distance between node point (or reference points) will vary and be inconsistent by nature.  
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3.2.1 Mathematical Formulation of the Bidomain Equations 

 
To define the mathematical formulation of the bidomain model, it is helpful to first start 

with the definition of transmembrane potential: 

𝑉𝑚 =  𝜙𝑖 − 𝜙𝑒            (3.2) 

Here, 𝜙𝑖  represents intracellular potential and 𝜙𝑒  represents extracellular potential.  

 The basis of the bidomain model is that the net current flux between the intracellular and 

extracellular domains is zero everywhere and takes on the following form: 

−𝛻 ∙ 𝐽𝑖 = 𝛻 ∙ 𝐽𝑒          (3.3) 

 By taking equations (2.1) and (2.2) and substituting them in for 𝐽𝑖 and 𝐽𝑒, respectively, in 

equation (3.3), and by substituting in equation (3.2) for 𝜙𝑖,  the first bidomain equation is is written 

as: 

 ∇ ∙ (𝜎𝑖∇𝑉𝑚) =  −𝛻 ∙ ((𝜙𝑖 + 𝜙𝑒 )𝛻𝜙𝑒 )                    (3.4) 

 Additionally, 

−𝛻 ∙ 𝐽𝑖 = 𝛽𝐼𝑚 − 𝐼𝑠         (3.5) 

 where β is the surface-to-volume ratio, 𝐼𝑚 is the transmembrane current density and 𝐼𝑠 is 

an externally imposed current source density. From this expression, it can be shown that 

∇ ∙ (𝜎𝑖∇𝑉𝑚) + ∇ ∙ (𝜎𝑖∇𝜙𝑒) = 𝛽𝐼𝑚 − 𝐼𝑠       (3.6) 

 It’s important to note that we define 𝐼𝑚 as  

𝐼𝑚 = 𝐶𝑚
𝛿𝑉𝑚

𝛿𝑡
+ 𝐼𝑖𝑜𝑛         (3.7) 

 where 𝐼𝑖𝑜𝑛 is the net current carried by the transmembrane ion channels. We combine 

equations (3.6) and (3.7) to get the second bidomain equation: 

∇ ∙ (𝜎𝑖∇𝑉𝑚) + ∇ ∙ (𝜎𝑖∇𝜙𝑒) = 𝛽 (𝐶𝑚
𝛿𝑉𝑚

𝛿𝑡
+ 𝐼𝑖𝑜𝑛  ) − 𝐼𝑠             (3.8) 

 
 
 
 
 
 
 
 
 



 36 

 
 
3.2.2 Boundary Conditions of the Bidomain Equations 

 
The boundary condition used for solving the bidomain equations is that there is no 

current flow out of the intracellular domain at the surface of the heart. This can be written as 

(𝜎𝑖∇𝜙𝑖) ∙ 𝑛 = 0         (3.9) 

 Where n is a unit vector outwardly normal to the myocardial surface. To match the 

formulation of the bidomain equations, this boundary condition can be further rewritten as 

(𝜎𝑖∇𝑉𝑚) ∙ 𝑛 =  −(𝜎𝑖∇𝜙𝑒) ∙ 𝑛                               (3.10) 

 
3.2.3 Solving the Bidomain Equations 

 
 The bidomain equations must be both time discretized and spatially discretized. The time 

discretization will be solved using a forward Euler method and the spatial discretization will be 

solved using the finite difference method. The potential at each point in the tissue is a function of 

its neighboring points and can be represented through the following equation: 

∇ ∙ (𝜎∇𝜙) = 𝜎∇2𝜙 =  𝜎𝑥
∂2𝜙

∂𝑥2 + 𝜎𝑦
∂2𝜙

∂𝑦2 + 𝜎𝑧
∂2𝜙

∂𝑧2                  (3.11) 

 
3.2.3.1 Time Discretization 

 
 The time discretization of the bidomain model will be solved using the forward Euler 

method. This method is a first-order numerical procedure for solving ordinary differential 

equations with a given initial value. It is the most basic explicit method for numerical integration of 

ordinary differential equations and was thus selected for its simplicity.  

 

 
3.2.3.2 Spatial Discretization  

 
The spatial discretization of the bidomain model will be solved using the finite-difference 

method in this paper. The finite-difference method, while not often used for irregular shaped 

geometries such as cardiac tissue, has a simple formulation, low computational requirements, 
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and is fast to solve [26]. The finite difference technique is well-suited for a discontinuous 

myocardial structure with no-flux boundaries. It approximates the solution of differential equations 

by using the finite differences of the neighboring node points [7]. This is implemented by a 

Laplacian matrix, described by the operator ∇2𝜎. Numerically, this technique is straightforward, 

but it requires a uniformly spaced solution grid. For a three-dimensional model, sufficient 

discretization requires a large quantity of node points, thereby increasing the computational 

requirements. To decrease computational time, the quantity of node points in each direction was 

restricted to ten nodes. A linear system of algebraic equations arises from the spatial 

discretization which will be solved with an iterative solver. An iterative solver was selected over a 

direct solver due to its efficiency in solving large matrices [7].  

 

 
3.3 Simulating Electrical Activity in a 3D Model of Cardiac Tissue 

 

 The geometry of the three-dimensional piece of cardiac tissue is constructed 

mathematically in MATLAB. The piece of heart tissue is surrounded by a conductive bath. A 

stimulus current is applied at one node within the tissue, the location of which does not change 

throughout the simulations. The development and progression of the electrical activity, initiated by 

the stimulus, is simulated with the bidomain model. To alternate the thickness of the tissue, the 

dimension in the z-direction was manually altered and the script was re-run to produce an action 

potential that corresponded to that exact thickness. The dimensions in the x-direction and y-

direction were kept equal and remained the same throughout the simulations for simplicity.  

 

 
3.4 Statistical Analysis 

 
 A one-way ANOVA test was run to examine if there was a significant difference between 

the action potentials that resulted from pieces of tissue with different thicknesses. The array of the 

membrane potential values at each time point was saved from each time the script was run with a 

different thickness. Each set of membrane potential values was inserted into a single column in 
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JMP, and the one-way ANOVA test measured the differences between each set. The resulting p-

value was used as the determining factor as to whether the membrane potential values at each 

time were significantly different between each run with a different tissue thickness. 
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Chapter 4 

RESULTS 

 
The use of the bidomain model in combination with the Beeler Reuter model for 

replicating the effects of hypertrophic cardiomyopathy on the action potential of a ventricular 

myocyte was investigated. The bidomain model was incorporated to construct the geometry of 

and describe the electrical conductivity of the tissue. The Beeler Reuter model was incorporated 

to describe the ionic current activity at each node. The two models were combined in MATLAB. 

The output of the model was the action potential, represented as membrane potential over time, 

as it propagated through the tissue model. The thickness of the tissue model was manually 

altered, and the membrane potential output and values were collected after each run. Phases two 

and three of the action potential were specifically investigated to observe whether they prolonged 

(evidence of hypertrophic cardiomyopathy). This active model was compared to a passive model, 

as well as to a Beeler Reuter model found in the literature [9], for validation.  

 

4.1 Simulating Electrical Activity of a 3D Model of Ventricular Tissue  

 
 An action potential was created at tissue thicknesses of 5, 6, 7, 8, 9, and 10 nodes. The 

elapsed time was kept at 500 milliseconds for each run to simplify the visual comparison between 

the action potentials for each thickness. An overlay of all action potential runs can be seen in 

Figure 4.7.  
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Figure 4.1. The action potential of the tissue with a thickness of 5 nodes.  
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Figure 4.2. The action potential of the tissue with a thickness of 6 nodes.  
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Figure 4.3. The action potential of the tissue with a thickness of 7 nodes. 
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Figure 4.4. The action potential of the tissue with a thickness of 8 nodes. 
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Figure 4.5. The action potential of the tissue with a thickness of 9 nodes. 
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Figure 4.6. The action potential of the tissue with a thickness of 10 nodes.  
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Figure 4.7. The overlaid action potentials of all tissue thicknesses. 

 

 
4.2 Model Validation 

 
For this simulation, three forms of validation were utilized in order to first validate the 

effect of the stimulation current within the model; then to validate the shape of the action 

potential; and finally, to validate the electrical components (of the bidomain model) representation 

of the physiological components. For validating the effectiveness of the stimulation current 

present within the model, it was sufficient to compare the model output, which is considered to be 

an “active” model due to the presence of a stimulation current, with the output of a “passive” 

model, wherein there is no stimulation current present. This validation technique verified the 

effect of the stimulus current on the action potential. In Figure 4.8, the passive model was 

simulated by omitting the stimulation current from the ionic current script in MATLAB. While there 



 47 

is no stimulation current present, the membrane potential is still changing over time. The reason 

for this continual change in membrane potential over time is theorized to be a result of the 

continuation of the four ionic currents present within the Beeler Reuter model being held at steady 

state where no external stimulus is applied.  

 

Figure 4.8. Membrane potential over time described by a passive model where the stimulation 

current was omitted.  

 
 
 The shape of the model was validated by visually comparing it to a plot of membrane 

potential over time produced by the Beeler Reuter model found in the literature. Figure 4.9 shows 

the membrane potential over time as it is produced by the Beeler Reuter model from Beeler et. al 

[9].  
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Figure 4.9. A standard action potential described by the Beeler Reuter model found in the 

literature [9].  

 
 
 Public access to clinical data such as human action potential dynamics, including those 

taken from cardiac tissue cells, is scarce or limited by practical or ethical concerns [10]. For this 

reason, the simulation described in this paper was not validated through experimental data. 

However, computational modeling based on experimental data is an important component in 

cardiac electrophysiological research and has been used to test a variety of mechanistic 

hypotheses [10]. 

 The accuracy of the electrical representation of the physiological components is validated 

by describing the role of gap junctions, how they are affected during hypertrophic 

cardiomyopathy, and how their electrical equivalents predispose a prolonged action potential 

during cases of hypertrophy. The lengthening of the ventricular action potential is commonly 

observed in both cardiac hypertrophy and failure. Hypertrophic cardiomyopathy in the ventricles is 
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known to delay the recovery of excitability and is also associated with altered electronic coupling 

between cells, slowed conduction, and a dispersion of refractoriness. There is evidence of 

diminished outward current during hypertrophy which leads to action potential prolongation. 

Currently, an understanding of mechanisms underlying hypertrophic action potential prolongation 

is limited and, as a result, the means of treating hypertrophy-associated action potential 

prolongation is also limited.  

Gap junctions provide a chemical and electrical connection between cardiac cells, 

allowing a coordinated action potential propagation. They determine how much depolarizing 

current passes from excited to non-excited regions of the network. In an adult myocardium, a 

given cardiomyocyte is typically electrically coupled to about 10-11 adjacent cells with gap 

junctions being predominantly localized at the intercalated discs at the ends of the rod-shaped 

cells [27]. The geometry of the interconnected cells and the number, size, and location of gap 

junction plaques between them all dictate the conductive properties of those cells. The area of the 

plaque within the gap junction directly impacts the conduction velocity of an action potential 

propagating from one cell to the next [28]   
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Figure 4.10. (a) Coupled cardiomyocytes. (b) Intercalated discs from a section of stained cardiac 

tissue. (c) Gap junctions between cardiomyocytes [11] 

  

 
 Gap junction remodeling has been found to precede virtually all cardiac diseases 

predisposing to arrhythmias. In hypertrophic ventricles in particular, the reduction of gap junction 

plaque area per intercalated disc is more widespread than in other types of cardiac disease [28]. 

A decrease in gap junction plaque area correlates with a decrease in conduction velocity, leading 

to a prolonged action potential.  

As previously stated in section 3.2, the bidomain model is composed of a network of 

resistors representing the extracellular membrane and another network of resistors representing 

the intracellular membrane coupled by a series of a resistor and a capacitor in parallel. A diagram 

of a two-dimensional bidomain model can be seen in Figure 4.11.  

 



 51 

 
Figure 4.11. Two-dimensional bidomain network [29]. 

 
 

 A true working myocardium is regarded as a three-dimensional network of coupled 

excitable elements [27]. The resistor and capacitor in parallel are analogous to the gap junction 

between cardiomyocytes. Altering the resistance in this parallel combination can impede the 

conduction of electrical signals, which equates to altering the flow of current through gap 

junctions [30]. 

Increasing the resistance in parallel with the conductance will slow the conduction 

velocity of the action potential. This correlates with why the latter half of the action potential 

becomes more and more prolonged as the tissue thickens. Additionally, as the tissue thickens, 

the resistance will increase in the z-direction of the tissue, making it progressively more difficult 

for an action potential to propagate laterally. 
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4.3 Statistical Analysis  

 
A one-way ANOVA test was run in JMP to determine if any of the data sets were 

significantly different from one another. The test results yielded a p-value of <0.0001 and an F 

ratio of 23.6962. Therefore, the null hypothesis can be rejected, and it can be confidently stated 

that at least one of the groups means differs from the rest. In other words, the tissue size 

statistically affects the shape of the action potential as it propagates through the tissue 

membrane. In Figure 4.12, the mean membrane potential and first standard deviation for each 

group is designated by a green rhombus.  

 

 
Figure 4.12. The average membrane potential values for tissue sizes of 5 nodes, 6 nodes, 7 

nodes, 8 nodes, 9 nodes, and 10 nodes thickness. 
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Figure 4.13. Results from the one-way ANOVA test between each set of membrane potential 

values from each tissue thickness. The p-value is <0.0001 and the F Ratio value is 23.6962.  
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Chapter 5 

DISCUSSION 

 
This work explored the use of a computational model for investigating changes in the 

shape of a cardiac action potential brought on by ventricular tissue thickness changes from 

hypertrophic cardiomyopathy. It was originally hypothesized that the computational model would 

be able to successfully correlate an increase in ventricular tissue thickness with a prolonged 

cardiac action potential. It is known that specifically phases two and three of the cardiac action 

potentials elongate in cases of hypertrophic cardiomyopathy (Figure 2.5 indicates each phase of 

the cardiac action potential). These phases were visually investigated as a part of confirming the 

correlation. The model successfully predicted that an increase in ventricular wall thickness 

correlates with a prolonged action potential duration. A one-way ANOVA analysis revealed that at 

least one of the action potentials propagating through a piece of ventricular wall tissue was 

significantly different from the action potentials propagating through ventricular walls with different 

thicknesses. The identification of a relationship between cardiac tissue thickness and action 

potential shape lends insight into how electrical signal transmission can change during the 

progression of cardiac disease.  

 

5.1 Implications 

 
This model is useful because it analyzes the mechanisms by which an electric field 

interacts with cardiac tissue as the tissue increases in size, such as in the case of hypertrophic 

cardiomyopathy. This analysis shows how an action potential will propagate in the case of HCM, 

lending insight into how long it will take for the heart to fully contract as its ventricular tissue 

thickness increases.  

The validation demonstrated that there is a difference between the active and passive 

ionic models implemented with the bidomain model, meaning that the stimulus current was 

appropriate and has an impact on the resulting action potential. The validation further showed 
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that there is a significant difference between the action potential measurement stemming from 

pieces of ventricular tissue with differing thicknesses.  

In the medical field, there is a need for improving the specialized treatment of cardiac 

diseases and arrhythmias by tailoring therapy so that it is unique to each patient. This model can 

serve as a steppingstone for creating more in-depth models that will be able to predict the specific 

electrical behavior of each patient’s heart by incorporating their individual cardiac geometry or 

ionic current fluctuations into the model. Such a model could reveal how patients may respond to 

treatment as no two hearts are the same. It is a non-invasive, efficient preliminary model to 

examine how patients may respond to treatment based on their unique cardiac geometry or ionic 

current dynamics.  

 

5.2  Limitations 

 
The major limitations of this model can be summarized by three main points: a lack of 

computational power to implement more complex ionic models; restricted access to experimental 

data on cardiac action potential dynamics to further validate the model; and assuming continuum 

behavior throughout the hypertrophied cardiac tissue.  

As the complexity of ionic models increases, the accuracy of such ionic models also 

increases. The Beeler Reuter model, while useful, was created in 1977 and currently stands as 

one of the simpler ionic models with only 8 state variables. In recent years, ionic models have 

been developed that incorporate more ionic currents with some models having up to 67 state 

variables [31]. These complex models are more able to provide an accurate representation of the 

true ionic conductance inside of a cardiomyocyte. However, with more state variables in these 

complex models comes a demand for greater computational power. For this study, a simple ionic 

model was selected to reduce computational demand, even though this limited the accuracy of 

the ionic behavior within a cardiomyocyte.  

After conducting a thorough literature review, it was discovered that there is very limited 

access to any experimental data describing the dynamic behavior of cardiac tissue at the cellular 
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level. This kind of information is challenging to collect and is not readily available to the public by 

practical or ethical concerns [10].  

Continuum behavior was assumed for simplicity, but continuum behavior is not entirely 

depictive of diseased tissue. Since the progression of a disease is not regulated, the electrical 

behavior is not uniform throughout the entire tissue and tends to short in diseased areas.   

 
5.3 Future Work 

 
The work done to evaluate influential parameters within this model could be expanded 

upon in the future.  It may be useful to investigate the quantitative relationships between tissue 

thickness and the length of the plateau phase of the cardiac action potential to further validate the 

effect of the tissue thickness on the length of the plateau phase. One could find the area under 

the curve of each individual output in Figure 4.7 and compare those values in a statistical 

analysis. A suggested statistical analysis to use in the future would be a conjoint analysis, which 

provides more information than a one-way ANOVA test. A conjoint analysis is traditionally used in 

marketing research, but it would be beneficial to consider using in order to determine how 

different parameters influence membrane potential.  

Another example of future work in this area would be to incorporate different ionic models 

other than the Beeler Reuter model to investigate if and how that would change the shape of the 

action potential during hypertrophic cardiomyopathy. Given that their computer has enough 

processing power, future researchers could combine human models, such as the Ten Tusscher 

[36] or Iyer Mazhari Winslow [37] models, with the three-dimensional bidomain model to study the 

human heart’s electrical behavior during hypertrophic cardiomyopathy. Human models, as 

opposed to generic models, are inherently more accurate in predicting the electrical behavior of 

human cardiac tissue and would thus be a closer representation of the true electrical behavior in 

diseased or non-diseased tissue. 

The study performed in this thesis can be further validated by conducting an in vitro study 

to confirm the electrical behavior of hypertrophied cardiac tissue. Artificial hypertrophy (through 

mechanical stretch) could be performed on bovine cardiac tissue using a technique similar to that 
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described in the paper by Ovchinnikova et al [2]. It would be challenging to obtain human cardiac 

tissue, so bovine cardiac tissue would be recommended as it would be more readily available and 

perform similarly to that of human cardiac tissue.  

A common technique that was found in the previous literature that was not utilized in this 

paper was the fluctuation of ionic current concentrations to examine how the electrical behavior of 

the heart changed. The concentration of each ionic current has been previously found to impact 

the electrical activity, but it hasn’t yet been investigated for the case of hypertrophic 

cardiomyopathy. Altering the ionic current concentrations in the computational model for HCM or 

another cardiac disease would be beneficial as it is another avenue towards gaining insight on 

how the ionic concentrations affect the dynamics of the electrical behavior in the heart. A future 

investigation of potential interest could lie in creating a computational model of myocyte 

electrophysiology with an integration of and emphasis on 𝐶𝑎2+ transient dynamics. An integrative 

model of myocyte electromechanics has potential in the realm of FHC research for several 

reasons, the most prominent of which being that many FHC mutations are associated with high 

risk for lethal arrhythmias and the myocyte is the simplest system to observe in which sarcomeric 

mutations could exert an effect on electrical activity in the heart. Myocytes are the simplest cells 

to experimentally prepare and observe the effects of FHC mutations on twitch characteristics. A 

computational biophysically detailed electrical myocyte model could be created to validate the 

effects of 𝐶𝑎2+ transient current on cardiac muscle twitch in vitro. 

For an in vitro study, a new approach being explored at present is to create induced 

pluripotent stem cells from human somatic tissues that can be differentiated into heart cells. 

Myocytes derived from patients harboring FHC mutations could then be used for functional cell-

scale assays or as a means of obtaining mutant proteins for molecular studies. An emerging 

trend from similar studies has revealed that mutations linked to HCM tend to increase 𝐶𝑎2+ 

sensitivity of the myofilaments, while the small number of mutations linked to dilated 

cardiomyopathy (DCM) tend to decrease it. It seems unlikely that a single parameter would be 

able to describe a multi-dimensional phenotypic space of FHC, but the sensitivity of 𝐶𝑎2+ would 

still be useful to look into with regards to its impact on electrical dynamics related to HCM.  
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5.4 Conclusions 

 
The use of this computational model could improve clinical research efforts by serving as 

a form of validation for conducting in vitro experiments on hypertrophied cardiac tissue to gain a 

better understanding of the root mechanisms of hypertrophic cardiomyopathy or related cardiac 

diseases. By being able to input model parameters that are specific to patients’ cardiac geometry, 

personalized treatment can be delivered to better target and advance the recovery of cardiac 

diseases such as hypertrophic cardiomyopathy.  
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APPENDIX A Beeler-Reuter Model for Membrane Potential Through a Single Cell 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 
%  
%   Function:       BR_Prime 
%   Revision Date:  11/16/2020 
%   Author:         Socrates Dokos 
%   Co-Author:      Julia Kelley 
% 
%   Function for solving the Beeler-Reuter (1977) model. For use with 
%   ode15s. 
% 
%   Arguments:     t   = time (ms) 
% 
%                  y   = vector of initial values for membrane 

potential (V), 
%                        calcium concentration (Ca), and governing 

parameters  
%              (x1, m, h, j, d, and f) 
% 
%   Returns:       y_prime   = vector of approximated values for 

membrane  
%                              potential (V), calcium concentration 

(Ca),  
%                              and governing parameters(x1, m, h, j, d, 

and f) 
%                             
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%                     
                              
function y_prime = BR_Prime(t,y) 
  
global Cm r_Ca Ca_SR k_up A_K1 A_x1 g_Na g_NaC V_Na g_s A_s t_on t_dur; 
y_prime = zeros(8,1); 
  
V = y(1); 
Ca = y(2); 
x1 = y(3); 
m = y(4); 
h = y(5); 
j = y(6); 
d = y(7); 
f = y(8); 
  
alpha_x1 = 0.0005*exp(0.083*(V+50))/(exp(0.057*(V+50))+1); 
beta_x1 = 0.0013*exp(-0.06*(V+20))/(exp(-0.04*(V+20))+1); 
  
alpha_m = -(V+47)/(exp(-0.1*(V+47))-1); 
beta_m = 40*exp(-0.056*(V+72)); 
  
alpha_h = 0.126*exp(-0.25*(V+77)); 
beta_h = 1.7/(exp(-0.082*(V+22.5))+1); 
  
alpha_j = 0.055*exp(-0.25*(V+78))/(exp(-0.2*(V+78))+1); 
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beta_j = 0.3/(exp(-0.1*(V+32))+1); 
  
alpha_d = 0.095*exp(-0.01*(V-5))/(exp(-0.072*(V-5))+1); 
beta_d = 0.07*exp(-0.017*(V+44))/(exp(0.05*(V+44))+1); 
  
alpha_f = 0.012*exp(-0.008*(V+28))/(exp(0.15*(V+28))+1); 
beta_f = 0.0065*exp(-0.02*(V+30))/(exp(-0.2*(V+30))+1); 
  
V_Ca = -82.3 - 13.0287*log(Ca);     

                                                                  

    
i_K1 = A_K1*(4*(exp(0.04*(V+85))-

1)/(exp(0.08*(V+53))+exp(0.04*(V+53)))+ 
0.2*(V+23)/(1-exp(-0.04*(V+23))));    

i_x1 = A_x1*x1*(exp(0.04*(V+77))-1)/exp(0.04*(V+35));  
i_Na = (g_Na*m^3*h*j+g_NaC)*(V-V_Na);   

                                                                  

  
i_s = g_s*d*f*(V-V_Ca);        

                                                                  

              
  
if((t>= t_on)&&(t<t_on+t_dur))  

                                                                  

         
    i_stim = A_s; 
else 
    i_stim = 0; 
end 
  
% active model: 
% y_prime(1) = -(1/Cm)*(i_K1 + i_x1 + i_Na + i_s - i_stim); 
  
% passive model: 
y_prime(1) = -(1/Cm)*(i_K1 + i_x1 + i_Na + i_s); 
  
y_prime(2) = -r_Ca*i_s+k_up*(Ca_SR - Ca); 
y_prime(3) = alpha_x1*(1-x1) - beta_x1*x1; 
y_prime(4) = alpha_m*(1-m) - beta_m*m; 
y_prime(5) = alpha_h*(1-h) - beta_h*h; 
y_prime(6) = alpha_j*(1-j) - beta_j*j; 
y_prime(7) = alpha_d*(1-d) - beta_d*d; 
y_prime(8) = alpha_f*(1-f) - beta_f*f; 
end 
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APPENDIX B Three-Dimensional Model Combining the Beeler-Reuter and Bidomain Models 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 
%  
%   Script:         BRBdiomain 
% 
%   Revision Date:  12/29/2020 
% 
%   Author:         Julia Kelley 
%  
%   Script for creating a 3D model of cardiac tissue by integrating the 
%   Bidomain and Beeler Reuter Models.  
%   Uses the BR_Prime function file as the basis of the Beeler_Retuer 

model.  
%   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 
  
close all  
clear all 
  
% Tissue Grid  
Tx = 10;                       % number of nodes in the x direction  
Ty = 10;                       % number of nodes in the y direction  
Tz = 5;                        % number of nodes in the z direction  
TS = Tx*Ty*Tz;                 % total tissue size  
ht = .2e-3;                    % distance between tissue grid points 

(m) 
  
% Bath grid (on two sides of tissue) 
Bx = Tx;                       % number of nodes in the x direction 
By = Ty;                       % number of nodes in the y direction 
Bz = 10;                       % number of nodes in the z direction 
BS = Bx*By*Bz;                 % total bath size  
hb = 0.2E-3;                   % distance between bath grid points (m) 
  
% Time Steps 
t_simulation = 3;              % simulation time (ms)  
delta_t = 0.02;                % size of time step (ms)  
N = t_simulation/delta_t;      % number of time steps (dimensionless) 
  
fprintf('Set up stimulus\n') 
  
% Stimulus 
Stimulus = 3E5;                % stimulus current (mA/m^2)  
t_stim_on = 5;                 % start of stimulus (ms)  
t_stim = 1;                    % stimulus duration (ms)  
t_stim_on = t_stim_on/delta_t; % (dimensionless) 
t_stim = t_stim/delta_t;       % (dimensionless) 
  
% Stimulus point number 
P = 1;                         % Stimulate at corner point location = 

(0,0,0) 
Istim = zeros(TS,1);           % units [mA/m^2] 
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Istim(P,1) = Stimulus; 
  
% Membrane parameter 
beta = 3E5;                    % surface to volume ratio (1/m) 
  
% Conductivity 
sigmax_i = 0.2;                % intracellular conductance along fiber  

   (x dir.) (S/m) 
sigmay_i = 0.02;               % intracellular conductance vertical to 

fiber 
   (y dir.) (S/m) 

sigmaz_i = 0.02;               % intracellular conductance vertical to 

fiber 
   (z dir.) (S/m) 

  
sigmax_e = 0.2;                % extracellular conductance along fiber  

   (x dir.) (S/m) 
sigmay_e = 0.08;               % extracellular conductance vertical to 

fiber  
   (y dir.) (S/m) 

sigmaz_e = 0.08;               % extracellular conductance vertical to 

fiber 
   (z dir.) (S/m) 

  
sigmax_b = 0.2;                % bath conductance in x direction (S/m) 
sigmay_b = 0.2;                % bath conductance in y direction (S/m) 
sigmaz_b = 0.2;                % bath conductance in z direction (S/m) 
  
% Laplacian matrices used to solve finite difference method (spatial 

discretization) 
% Boundary conditions are included in the matrices  
  
fprintf('Laplacian matrix\n') 
  
% Laplacian matrix for sigma_i in tissue and bath 
BigM_i = spalloc(TS+2*BS,TS+2*BS,2*Tx*Ty+2*(Ty-2)*(Tz-2)+6*(Tx-2)*(Ty-

2)*(Tz-2)+2*BS);  % units: [dimensionless] 

 
for n = 1:BS 
    BigM_i(n,n) = 1;         
end 
for n = BS+1:BS+TS 
    BigM_i(n,n) = 1;         
    if n < BS+Tx*Ty+1 
        for k = 1:Ty-2 
            if n > BS+k*Tx+1 && n < BS + (k+1)*Tx 
                BigM_i(n,n) = (-2*sigmax_i - 2*sigmay_i)/ht^2;  % units 

= [S/m^3] defines the conductivity at each node point  
                BigM_i(n,n-1) = sigmax_i/ht^2; % Defines the 

conductivity at each point in the intracellular domain in the x 

direction 
                BigM_i(n,n+1) = sigmax_i/ht^2; 
                BigM_i(n,n-Tx) = sigmay_i/ht^2; % Defines the 

conductivity at each point in the intracellular domain in the y 

direction  
                BigM_i(n,n+Tx) = sigmay_i/ht^2; 
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            end 
        end 
    end 
    for kk = 1:Tz-2 
        for k = 1:Ty-2 
            if ((n > BS+kk*Tx*Ty+k*Tx+1) && (n < BS+kk*Tx*Ty+(k+1)*Tx)) 
            BigM_i(n,n) = (-2*sigmax_i-2*sigmay_i-2*sigmaz_i)/ht^2;  
            BigM_i(n,n-1) = sigmax_i/ht^2; 
            BigM_i(n,n+1) = sigmax_i/ht^2; 
            BigM_i(n,n-Tx) = sigmay_i/ht^2;  
            BigM_i(n,n+Tx) = sigmay_i/ht^2;  
            BigM_i(n,n-Tx*Ty) = sigmaz_i/ht^2;  
            BigM_i(n,n+Tx*Ty) = sigmaz_i/ht^2;    
            end 
        end 
    end 
end 
for n = BS+TS:TS+2*BS 
    BigM_i(n,n) = 1; 
end 
  
% Laplacian matrix for sigma e in tissue 
M_e = spalloc(TS,TS,2*Tx*Ty+2*(Ty-2)*(Tz-2)+6*(Tx-2)*(Ty-2)*(Tz-2)); 
for n = 1:TS 
    M_e(n,n) = 1; 
    if n < Tx*Ty+1 
        for k = 1:Ty-2 
            if n > k*Tx+1 && n < (k+1)*Tx 
                M_e(n,n) = (-2*sigmax_e - 2*sigmay_e)/ht^2;   
                M_e(n,n-1) = sigmax_e/ht^2; 
                M_e(n,n+1) = sigmax_e/ht^2; 
                M_e(n,n-Tx) = sigmay_e/ht^2; 
                M_e(n,n+Tx) = sigmay_e/ht^2; 
            end 
        end 
    end 
    for kk = 1:Tz-2 
        for k = 1:Ty-2 
            if ((n > kk*Tx*Ty+k*Tx+1) && (n < kk*Tx*Ty+(k+1)*Tx)) 
                M_e(n,n) = (-2*sigmax_e-2*sigmay_e-2*sigmaz_e)/ht^2;  
                M_e(n,n-1) = sigmax_e/ht^2; 
                M_e(n,n+1) = sigmax_e/ht^2; 
                M_e(n,n-Tx) = sigmay_e/ht^2; 
                M_e(n,n+Tx) = sigmay_e/ht^2;  
                M_e(n,n-Tx*Ty) = sigmaz_e/ht^2;  
                M_e(n,n+Tx*Ty) = sigmaz_e/ht^2; 
            end 
        end 
    end 
end 
  
% Laplacian Matrix for (sigma_i + sigma_e) in tissue and bath 
 BigM_ie = spalloc(TS+2*BS,TS+2*BS,2*Tx*Ty+2*(Ty-2)*(Tz-2)+6*(Tx-

2)*(Ty-2)*(Tz-2)+2*BS+12*(Bx-2)*(By-2)*(Bz-2)); 
 for n = 1:BS 
     BigM_ie(n,n) = 1; 
     for kk = 1:Bz-2         
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         for k = 1:By-2 
             if ((n > kk*Bx*By+k*Bx+1) && (n < kk*Bx*By + (k+1)*Bx)) 
             BigM_ie(n,n) = (-2*sigmax_b-2*sigmay_b-2*sigmaz_b)/hb^2;  
             BigM_ie(n,n-1) = sigmax_b/hb^2; 
             BigM_ie(n,n+1) = sigmax_b/hb^2; 
             BigM_ie(n,n-Bx) = sigmay_b/hb^2;  
             BigM_ie(n,n+Bx) = sigmay_b/hb^2;  
             BigM_ie(n,n-Bx*By) = sigmaz_b/hb^2;  
             BigM_ie(n,n+Bx*By) = sigmaz_b/hb^2;    
             end 
         end 
     end 
 end 
 for n = BS+1:BS+TS 
     BigM_ie(n,n) = 1; 
     if n < BS+Tx*Ty+1 
         for k = 1:Ty-2 
             if n > BS+k*Tx+1 && n < BS+(k+1)*Tx 
             BigM_ie(n,n) = (-(sigmax_e+sigmax_b)-(sigmay_e+sigmay_b)-

sigmaz_e-sigmaz_b)/ht^2;  
             BigM_ie(n,n-1) = (sigmax_e+sigmax_b)/2*ht^2; 
             BigM_ie(n,n+1) = (sigmax_e+sigmax_b)/2*ht^2; 
             BigM_ie(n,n-Tx) = (sigmay_e+sigmay_b)/2*ht^2; 
             BigM_ie(n,n+Tx) = (sigmay_e+sigmay_b)/2*ht^2; 
             BigM_ie(n,n-Tx*Ty) = sigmaz_b/hb^2; 
             BigM_ie(n,n+Tx*Ty) = sigmaz_e/ht^2;    
             end 
         end 
     end 
     for kk = 1:Tz-2 
         for k = 1:Ty-2 
             if ((n > BS+kk*Tx*Ty+k*Tx+1) && (n < 

BS+kk*Tx*Ty+(k+1)*Tx)) 
                 BigM_ie(n,n) = (-2*(sigmax_i+sigmax_e)-

2*(sigmay_i+sigmay_e)-2*(sigmaz_i+sigmaz_e))/ht^2;  
                 BigM_ie(n,n-1) = (sigmax_i+sigmax_e)/ht^2; 
                 BigM_ie(n,n+1) = (sigmax_i+sigmax_e)/ht^2; 
                 BigM_ie(n,n-Tx) = (sigmay_i+sigmay_e)/ht^2;  
                 BigM_ie(n,n+Tx) = (sigmay_i+sigmay_e)/ht^2;  
                 BigM_ie(n,n-Tx*Ty) = (sigmaz_i+sigmaz_e)/ht^2;  
                 BigM_ie(n,n+Tx*Ty) = (sigmaz_i+sigmaz_e)/ht^2; 
             end 
         end 
     end 
     if n > BS+Tx*Ty*(Tz-1) 
        BigM_ie(n,n) = (-(sigmax_e+sigmax_b)-(sigmay_e+sigmay_b)-

(sigmaz_e+sigmaz_b))/ht^2; 
        BigM_ie(n,n-1) = (sigmax_e+sigmax_b)/2*ht^2; 
        BigM_ie(n,n+1) = (sigmax_e+sigmax_b)/2*ht^2; 
        BigM_ie(n,n-Tx) = (sigmay_e+sigmay_b)/2*ht^2; 
        BigM_ie(n,n+Tx) = (sigmay_e+sigmay_b)/2*ht^2;  
        BigM_ie(n,n-Tx*Ty) = sigmaz_e/ht^2;  
        BigM_ie(n,n+Tx*Ty) = sigmaz_b/hb^2;  
     end 
 end 
 for n = BS+TS+1:TS+2*BS 
     BigM_ie(n,n) = 1; 
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     for kk = 1:Bz-2        
         for k = 1:By-2 
             if ((n > BS+TS+(kk-1)*Bx*By+k*Bx+1) && (n < BS+TS+(kk-

1)*Bx*By+(k+1)*Bx)) 
             BigM_ie(n,n) = (-2*sigmax_b-2*sigmay_b-2*sigmaz_b)/hb^2;  
             BigM_ie(n,n-1) = sigmax_b/hb^2; 
             BigM_ie(n,n+1) = sigmax_b/hb^2; 
             BigM_ie(n,n-Bx) = sigmay_b/hb^2; 
             BigM_ie(n,n+Bx) = sigmay_b/hb^2;  
             BigM_ie(n,n-Bx*By) = sigmaz_b/hb^2;  
             BigM_ie(n,n+Bx*By) = sigmaz_b/hb^2;  
             end 
         end 
     end 
 end 
  
 neg_BigM_ie = -BigM_ie;    % makes bicgstabl function applicable 

(positive definiteness) 
  
 fprintf('Beeler Reuter parameters\n') 
  
 global Cm r_Ca Ca_SR k_up A_K1 A_x1 g_Na g_NaC V_Na g_s A_s t_on 

t_dur; 
  
Cm = 1;         % uC/cm^23 
r_Ca = 1E-7;    % M*cm^2/nC  
Ca_SR = 1E-7;   % M  
k_up = 0.07;    % 1/ms  
A_K1 = 0.35;    % uA/cm^2 
A_x1 = 0.8;     % uA/cm^2 
V_Na = 50;      % mV 
g_Na = 4;       % mS/cm^2 
g_NaC = 0.003;  % mS/cm^2 
g_s = 0.09;     % mS/cm^2 
A_s = 40;       % uA/cm^2 
t_on = 50;      % ms 
t_dur = 1;      % ms 
  
Y_initial = [-83.3, 1.87E-7, 0.1644, 0.01, 0.9814, 0.9673, 0.0033, 

0.9884]; 
  
options = odeset('MaxStep', 1.05); 
[time, Y_out] = ode15s('BR_Prime', [0 499], Y_initial, options); 
membrane_potential = Y_out(:,1); 
   
Vhelp = zeros(TS+2*BS,1); 
  
Vhelp(BS+1:BS+TS) = membrane_potential; 
  
phi_e = zeros(TS,N); 
Big_phi = zeros(TS+2*BS,1); 
neg_Big_phi = -Big_phi; 
  
fprintf('Bidomain solution\n') 
  
for i = 1:N-1 
[neg_Big_phi(:,1),flag] = bicgstabl(neg_BigM_ie,(BigM_i*Vhelp)); 



 71 

    if flag 
    end 
     
    Big_phi(:,1) = -neg_Big_phi(:,1); 
    phi_e(:,1) = Big_phi(BS+1:BS+TS,1); 
     
     if i <= t_stim 
          dVmdt = (-M_e*phi_e(:,1)+Istim)/(beta*Cm)-

(membrane_potential(:,1)); 
      else 
          dVmdt = (-M_e*phi_e(:,1))/(beta*Cm)-

(membrane_potential(:,1)); 
      end 
       
      
      for kz = 1:Tz 
          dVmdt((kz-1)*Tx*Ty+1:(kz-1)*Tx*Ty+Tx+1,1) = 0; 
          dVmdt((kz-1)*Tx*Ty+(Ty-1)*Tx:(kz-1)*Tx*Ty+Tx*Ty,1) = 0; 
          for ky = 2:Ty-2 
              dVmdt((kz-1)*Tx*Ty+ky*Tx:(kz-1)*Tx*Ty+ky*Tx+1,1) = 0; 
          end 
      end 
       
       
      membrane_potential(:,i+1) = 

membrane_potential(:,1)+dVmdt*(delta_t/1000); 
      Vhelp(BS+1:BS+TS) = membrane_potential(:,i+1); 
end 

 

 

 

 

 

 

 

 


