
PERSONALITY AND MOOD FOR NON-PLAYER CHARACTERS: A METHOD

FOR BEHAVIOR SIMULATION IN A MAZE ENVIRONMENT

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Noah Paige

2December 2020

© 2020

Noah Paige

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Personality and Mood for Non-Player

Characters: A Method for Behavior Sim-

ulation in a Maze Environment

AUTHOR: Noah Paige

DATE SUBMITTED: December 2020

COMMITTEE CHAIR: Christian Eckhardt, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Foaad Khosmood, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Franz Kurfess, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Personality and Mood for Non-Player Characters: A Method for Behavior

Simulation in a Maze Environment

Noah Paige

When it comes to video games, immersion is key. All types of games aim to keep the

player immersed in some form or another. A common aspect of the immersive world

in most role-playing games – but not exclusive to the genre – is the non-playable

character (NPC). At their best, NPCs play an integral role to the sense of immersion

the player feels by behaving in a way that feels believable and fits within the world

of the game. However, due to lack of innovation in this area of video games, at their

worst NPCs can jar the player out of the immersive state of flow with unnatural

behavior.

In an effort towards making non-playable characters (NPCs) in games smarter, more

believable, and more immersive, a method based in psychological theory for control-

ling the behavior of NPCs was developed. Based on a behavior model similar to

most modern games, our behavior model for NPCs traverses a behavior tree. A novel

method was introduced using the five-factor model of personality (also known as the

big-five personality traits) and the circumplex model of affect (a model of emotion)

to inform the traversal of the behavior tree of NPCs. This behavior model has two

main beneficial outcomes. The first is emergent gameplay, resulting in unplanned,

unpredictable experiences in games which feel closer to natural behavior, leading to

an increase in immersion. This can be used for complex storytelling as well by offering

information about an NPC’s personality to be used in the narrative of games. Sec-

ondly, the model is able to provide the emotional status of an NPC in real time. This

capability allows developers to programmatically display facial and body expression,

iv

eschewing the current time-consuming approach of artist-choreographed animation.

Finally, a maze simulation environment was constructed to test the results of our

behavior model and procedural animation.

The data collected from 100 iterations in our maze simulation environment about our

behavior model found that a correlation can be observed between traits and actions,

showing that emergent gameplay can be achieved by varying personality traits. Addi-

tionally, by incorporating a novel method for procedural animation based on real-time

emotion data, a more realistic representation of human behavior is achieved.

v

ACKNOWLEDGMENTS

Thanks to:

• My family, for supporting me

• Sydney, for your encouragement and being the best rubber ducky

• Professor Eckhardt, for pushing me to pursue my dreams

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 The Role of NPCs in Games . 3

2.2 How do NPCs Work? . 4

2.3 The Five-Factor Model of Personality 6

2.4 Circumplex Model of Affect . 7

2.5 Procedural Animation . 7

3 Related Work . 10

3.1 Personality And Mood in NPCs . 10

3.2 Social Believability . 12

3.3 Drama Management . 13

4 Propused Solution . 14

5 Development Tools . 16

5.1 Unity . 16

5.1.1 Unity NavMesh for AI Pathfinding 16

5.1.2 Line of Sight Detection . 17

5.1.3 Animating in Unity . 17

5.2 Autodesk Character Generator . 17

5.3 Mixamo . 18

vii

6 Methods . 19

6.1 The Simulation Environment . 20

6.1.1 The Maze Graph . 21

6.1.2 Knowledge and Opinion of Other NPCs 22

6.1.3 Actions . 23

6.1.3.1 Go To Node Action 24

6.1.3.2 Greet Action . 24

6.1.3.3 Follow Action . 24

6.1.3.4 Share Action . 25

6.1.3.5 Wait Action . 25

6.1.3.6 Scan Action . 26

6.2 Behavioral Model . 26

6.2.1 Behavior Simulation . 26

6.2.2 Populating the List of Possible Actions 29

6.2.3 Mental State . 29

6.2.4 Personality Representation . 30

6.2.5 The Mood Graph . 30

6.2.5.1 Desired Mood . 30

6.2.6 Calculating EFactor and PFactor for Each Action 33

6.2.6.1 Calculating EFactor and PFactor for the Go to Node
Action . 33

6.2.6.2 Calculating EFactor and PFactor for the Follow Action 34

6.2.6.3 Calculating EFactor and PFactor for the Share Action . 35

6.2.6.4 Calculating EFactor and PFactor for the Wait Action . 36

6.2.6.5 Calculating EFactor and PFactor for the Scan Action . 36

viii

6.2.7 Calculating a Change in Mood 37

6.2.8 Potential Value . 38

6.2.9 Calculating Change in Perception 39

6.3 Procedural Animation with Mood and Blendshapes 41

7 Results . 42

7.1 Data Collection . 42

7.2 Analysis of the Behavior Model . 44

7.2.1 Go To Node vs. Trait Correlation Analysis 44

7.2.2 Follow vs. Trait Correlation Analysis 45

7.2.3 Share vs. Trait Correlation Analysis 46

7.2.4 Wait vs. Trait Correlation Analysis 47

7.2.5 Trait vs. Distance to Desired Mood Analysis 47

7.3 Summarizing Behaviour Model Analysis 49

7.4 The Maze Simulation . 50

7.4.1 The Effectiveness of the Maze as a Behavior Model Testing
Environment . 51

7.5 The Effectiveness of our Procedural Animation Method 53

8 Future Work . 54

8.1 An Alternate Mood Model . 54

8.2 Personality Trait Facets . 54

8.3 Procedural Animation . 54

8.4 Simulation Environment . 56

9 Applications . 57

9.1 Applying our Behavior model to The Elder Scrolls V: Skyrim 57

9.2 Applying our Behavior model to NBA 2K 58

ix

10 Conclusion . 59

BIBLIOGRAPHY . 60

APPENDICES

x

LIST OF TABLES

Table Page

2.1 A list of commonly associated phrases for both high and low levels of
each trait in the five-factor model. Phrases are listed in descending
order of association to the given extreme for the trait. [20] 5

2.2 Costa & McCrae’s NEO PI-R Facets. Six facets for each personal-
ity factor, where the facets for each trait provide a more detailed
description for each trait [11]. 6

7.1 The correlation between each personality trait and the go to node,
follow, share, and wait actions. The correlation value, r, is the Pear-
son product-moment correlation coefficient. 44

7.2 The correlation between each personality trait and the average dis-
tance from the NPC’s current to desired moods. The correlation
value, r, is the Pearson product-moment correlation coefficient. . . . 47

7.3 The correlation between each personality trait and the average dis-
tance to the nearest NPC, over time. The correlation value, r, is the
Pearson product-moment correlation coefficient. 53

xi

LIST OF FIGURES

Figure Page

2.1 A simple state machine consisting of two states and a transition [16]. 4

2.2 Russell’s [37] circumplex model of affect showing 28 labeled positions
of emotion on the graph, labeled by Russell. Edited to add axis and
high/low labels. 8

6.1 The maze used in our simulation. NPCs begin the maze at the
starting area, indicated in blue, and attempt to navigate to the finish
area, indicated in green. 19

6.2 An NPC in our maze simulation. 20

6.3 Our maze, overlaid with labeled maze nodes. The blue-green num-
bered spheres show the location of all the maze nodes. 22

6.4 The flowchart describing a single update cycle of the behavior con-
troller for our NPCs. Behaviour is determined using a heuristic to
perform a greedy selection of actions. 28

6.5 Our graph of emotions, based on Russell’s circumplex model of affect
[37]. Like Russell’s graph, we label emotions as positions on the
graph (marked in blue). For simplicity, we have chosen four basic
emotions that align well with the poles of our graph: happiness at (1,
0), calm at (0, -1), sadness at (-1, 0), and surprise at (0, 1). Further,
we have labeled examples of current mood (in red) and desired mood
(in green). 31

6.6 Facial animation blendshapes were mapped to moods, and then the
moods were mapped to positions on our mood graph. This shows
the resulting facial animations as the current mood moves to different
positions on the mood graph. From left to right: (1) medium en-
ergy and medium pleasantness (control), (2) medium energy and low
pleasantness, (3) medium energy and high pleasantness, (4) low en-
ergy and medium pleasantness, (5) low energy and low pleasantness,
(6) low energy and high pleasantness, (7) high energy and medium
pleasantness, (8) high energy and low pleasantness, (9) high energy
and high pleasantness. 40

xii

7.1 A screen capture of the maze simulation, including the user interface
elements that help the viewer understand what is happening. 50

7.2 A close-up view of the NPC status user interface elements, includ-
ing the view of each NPC’s face. This shows the procedural facial
animation for each NPC, which is determined by their mood. . . . 52

xiii

Chapter 1

INTRODUCTION

“If you can’t tell the difference, does it matter if I’m real or not?”[32], asks the

artificially intelligent ‘host’ in Westworld. In a show about a theme park filled with

AI human facsimiles where there are no rules or consequences – and, more broadly,

about the artificial intelligence singularity – the line between what is real and artificial

is blurred. While current technology hasn’t yet reached the problematically lofty

heights of Westworld, today’s video games share the common goal of blurring the line

between real and artificial.

When game designers talk about blurring the line, they typically use the word immer-

sion. An immersive game is one that seizes the player’s attention and makes them feel

like the game they are playing is real. Game developers strive to achieve immersion

in different ways, which vary based on the type of game that they are working on.

For instance, a racing game would likely focus on car physics, a fighting game would

work on pixel-perfect animations, or a role playing game on a rich, believable world

to explore. One part of creating a rich, believable world in role playing games – but

not exclusive to the role playing genre – is the people that inhabit it.

For games, the allegorical counterpart to Westworld’s ‘hosts’ are non-player characters

(NPCs). They are an important, yet oft-neglected component of realism and immer-

sion in games. Many games have made advances in depicting their NPCs in regards

to graphics or animation in popular games, but the underlying artificial intelligence

has been mostly unchanged for decades.

1

Johansson and Warpefelt (2013)[43] explain that most problems with NPCs in games

are due to their unbelievability, particularly in social interactions. While other aspects

of a game may contribute to blurring the line of reality, today’s NPCs usually have

the opposite effect. They often exhibit unexpected and unbelievable behavior within

the context of any given game, resulting in a loss of immersion.

In this paper, we will discuss an NPC behavioral model, a method for procedural

animation, and a maze simulation environment. Our behavioral model attempts

to create more believable NPCs in games by incorporating the personality traits of

the five-factor model [12] and the circumplex model of affect (a mood model). A

byproduct of our behavior model is a dynamic mood for NPCs, and our method for

procedural animation capitalizes on this dynamic mood by relating blendshapes to

positions on our mood model. While the hosts of Westworld [32] attempt to solve

a symbolic maze in their quest towards sentience, the behavior of our NPCs will be

measured in a literal maze. A maze simulation environment was constructed in the

Unity [4] game engine to test our behavioural model and our method for procedural

animation. Through data collection in our maze simulation environment, we were

able to measure a correlation between personality traits and changes in behavior.

2

Chapter 2

BACKGROUND

The following subsections will further explain the role of NPCs in video games, de-

scribe the AI behind NPCs, and introduce the Five-Factor model of personality, the

circumplex model of affect, and procedural animation.

2.1 The Role of NPCs in Games

The term NPC first appeared not in video games, but in tabletop Role-Playing Games

(RPGs), where they are controlled by a human Dungeon Master [27]. Within the

scope of video games, non player characters (NPCs) are all the characters in a game

that are not controlled by a human, and instead are controlled by the computer. In

video games, the role of Dungeon Master is played by the artificial intelligence that

controls NPC behavior. While video games and tabletop RPGs differ in the medium

used, NPCs between the two still share quite a bit of similarities.

In video games, just like in tabletop RPGs, NPCs can take on many different appear-

ances. Depending on the setting of the game, an NPC could be humanoid or non

humanoid in shape. Despite the drastic variance in appearance of NPCs, their roles

are quite consistent across games.

Warpefelt [42] provides a comprehensive typology of the roles that NPCs play in

games. Warpefelt lists the main four classifications for an NPC to be: functions,

adversaries, friends, and providers. Function NPCs do things like give quests, provide

services, or act as vendors. Adversary NPCs take the form of enemies and bosses.

3

Friend NPCs take the form of sidekicks, companions, pets, and minions. Provider

NPCs are storytellers and loot providers.

2.2 How do NPCs Work?

The NPCs of most popular AAA games are controlled with state machines, which are

a very common method of controlling various software and hardware. In video games,

state machines can be used to determine the behavior of AI agents. A state machine,

at its core, is a directed graph. In an NPC state machine graph, nodes denote behavior

states and edges denote events. A simple state machine example in a game is shown

in Figure 2.1, which shows the state of an NPC guard in a fictional game setting.

This state machine consists of two nodes, ‘Standing Guard’, and ‘Attacking’, and one

edge, ‘Player Seen’. In this example, the NPC will start in the ‘Standing Guard’ node

and stay in that behavior state indefinitely unless they see a player. When a player

is seen, the NPC will then transition to the ‘Attacking’ state. While it does well

at illustrating how state machines work, his simple state machine is not typical for

modern games in terms of complexity. A typical NPC state machine in a real game

would likely have tens, maybe hundreds of states.

Figure 2.1: A simple state machine consisting of two states and a transition
[16].

4

All of the many states and transitions within a state machine must be created by

developers. Because of this predetermined design, NPCs are not very flexible in

adapting to unexpected game scenarios, which are abundant in large scale games.

When an NPC does not have a pre-designed transition/state pair for a given emergent

gameplay scenario, the NPC must do its best and choose from the states it has, which

often results in the player’s sense of immersion being lost.

Trait High Levels Low Levels

Openness

Wide Interests Commonplace
Imaginitive Narrow Interests
Intelligent Simple
Original Shallow
Insightful Unintelligent

Conscientiousness

Organized Careless
Thorough Disorderly
Planful Frivolous
Efficient Irresponsible
Responsible Slipshot

Extraversion

Talkative Quiet
Assertive Reserved
Active Shy
Energetic Silent
Outgoing Withdrawn

Agreeableness

Sympathetic Fault-finding
Kind Cold
Appreciative Unfriendly
Affectionate Quarralsome
Soft-hearted Hard-headed

Neuroticism

Tense Stable
Anxious Calm
Nervous Contented
Moody Unemotional
Worrying

Table 2.1: A list of commonly associated phrases for both high and low
levels of each trait in the five-factor model. Phrases are listed in descending
order of association to the given extreme for the trait. [20]

5

Trait Facets

Openness

Ideas
Fantasy
Aesthetics
Actions
Feelings
Values

Conscientiousness

Competence
Order
Dutifulness
Achievement Striving
Self-discipline
Deliberation

Extraversion

Gregariousness
Assertiveness
Activity
Excitement-seeking
Positive Emotions

Agreeableness

Trust
Straightforwardness
Altruism
Compliance
Modesty
Tender-mindedness

Neuroticism

Anxiety
Angry Hostility
Depression
Self-consciousness
Impulsiveness
Vulnerability

Table 2.2: Costa & McCrae’s NEO PI-R Facets. Six facets for each per-
sonality factor, where the facets for each trait provide a more detailed
description for each trait [11].

2.3 The Five-Factor Model of Personality

A common representation of personality within the field of Psychology is the five-

factor model [12]. To describe the personality of a particular person, each factor in

the model is given a percentage value, where 0% indicates the person does not exhibit

these characteristics at all, and 100% meaning they fully exhibit the characteristics.

6

The five factors are: openness, conscientiousness, extraversion, agreeableness, and

neuroticism. For more explanation of each trait, refer to Table 2.1, which gives a

good representation of each trait, listing commonly associated phrases for both high

and low levels of each trait.

2.4 Circumplex Model of Affect

The circumplex model of affect is a model of emotional state that uses a two-

dimensional graph to represent human emotion. This model proposes that all emo-

tional states arise from cognitive interpretations of core neural sensations that are the

product of two neurophysiological systems [34]. With this model, the two neurolog-

ical systems, pleasantness and activation, are mapped to axes on the graph. Then,

emotional states can be placed at specific points on the graph. See Figure 2.2 for

an example of the graph, along with emotions labeled as points on the graph. For

example, someone who exhibits high pleasantness and high arousal would put their

position on the circumplex graph closest to the emotion of ‘Delighted’.

2.5 Procedural Animation

In the games industry, character animation is typically achieved through motion cap-

ture or key framing that must be authored by artists [19]. Both methods require

significant time and resources. Another little-used method for character animation,

procedural animation, offers an algorithmic approach. Procedural animation is ac-

tually a quite broad term, but it can generally be defined as any animation that is

achieved solely by an algorithm. The types of animation that fall into this broad

category include things like water simulation (and other types of physics simulation)

as well as simulation of life, like locomotion (walking, running, swimming, etc.), as

7

Figure 2.2: Russell’s [37] circumplex model of affect showing 28 labeled
positions of emotion on the graph, labeled by Russell. Edited to add axis
and high/low labels.

well as emoting via facial expression. The focus of this work in regards to procedural

animation is solely in relation to facial expression. However, chapter 8 expands on

other types of procedural animation that could be used to enhance the emotive depth

of NPCs.

The particular method for procedural facial animation that we use is known as blend-

shapes. First introduced in the computer graphics industry, blendshapes can be de-

fined as linear facial models in which the individual basis vectors represent individual

expressions [23]. More simply, a finite set of facial models are created for each char-

8

acter, with each model representing a specific facial expression. Then the artist or

algorithm can blend between some combination of shapes in the set of facial models,

effectively achieving an infinite set of expressions.

While blendshapes can be used for both procedural and hand-designed animation,

this work will focus on using them in a procedural manner. Specifically, section 6.3

explains our use of blendshapes in conjunction with our mood model.

9

Chapter 3

RELATED WORK

In this chapter we will explore the various categories of work related to our topic and

method of behavior simulation. We will cover research on personality and mood in

NPCs, social believability, and drama management.

3.1 Personality And Mood in NPCs

Others have created similar approaches to improving NPCs through the use of Psy-

chological principles and theory. Mac Namee [26] developed the first known approach,

and drives NPC behavior through Eysenck’s “two-dimensional classification” of per-

sonality [13] and Lang’s “mood model” [22]. Eysenck’s two-dimensional model of

personality is limited compared to the five-factor model, with its two axes of ex-

troversion/introversion and neuroticism/stability. Lang’s mood model draws from

Russel’s [37] circumplex model of affect, and shares many similarities. Mac Namee’s

system has a static personality for each NPC, and a dynamic mood and perception

of other characters. Mac Namee’s system also uses trained artificial neural networks

that are trained during development – before the players interact with the system.

Li and MacDonnell [24] developed an “emotion-base behavior model” that consists

of several layers: the five-factor layer, the social layer, the emotion layer, and the

interaction layer. Li and MacDonnell used the five-factor model of personality to

represent an unchanging definition of personality for a character. Similar to Mac

Namee’s method, Li and MacDonnell’s mood layer is the part of their system that

changes over the course of gameplay. The emotion generator changes the emotional

10

state of the character through their interactions with a player, with three emotions

being generated (shame, love, and shock) [15].

In their paper, NPCS AS PEOPLE, TOO: THE EXTREME AI PERSONALITY

ENGINE [15], Georgeson credits their 2011 master’s thesis, NPCs as People: Using

Databases and Behaviour Trees to Give Non-Player Characters Personality [14] as the

earliest work that, “utilized personality in a truly human way– that is, that included

sophisticated base personalities that would develop and change over time based on the

NPCs’ lived experiences,” [15]. While the original master’s thesis is unpublished and

inaccessible to the public, Georgeson’s 2016 work NPCS AS PEOPLE, TOO: THE

EXTREME AI PERSONALITY ENGINE provides a summary of the 2011 thesis.

In Georgeson’s 2011 thesis, NPCs were given adaptive personalities that change over

time based upon the input that represents interactions with the human-controlled

player. Georgeson used the five-factor model to represent personality of NPCs, but

in a different way than Li and MacDonnell. Georgeson’s method uses all thirty

facets of the five-factor model to describe personality (see Table 2.2). Additionally,

Georgeson’s method allows the personality of an NPC to change over time, which

models psychological studies that show how a person’s personality can change over

the course of their life [33] [40] [38].

In their presentation at the 2012 Game Developer’s AI Summit, Bura [9] describes

a method for controlling NPC behavior that also uses the thirty facets of the five-

factor model (see Table 2.2). In Bura’s method, each facet is given a numerical score,

and then many combinations of various facets are used to create NPC needs and

behaviors.

11

3.2 Social Believability

In modern games, the believability of NPCs in general has been found to be lacking

[17], but a great deal of research has been focused on fixing this issue with believability

[41]. In the field of social believability, believability does not refer to truthfulness per

se, but instead refers to whether a character seems lifelike, whether their actions make

sense, and whether their behaviour suspends the player’s sense of disbelief about their

experience [41]. Bates provides another definition, saying that believable character is

”one that provides the illusion of life, and thus permits the audience’s suspension of

disbelief” [8]. By this definition, a believable NPC is not necessarily one that perfectly

resembles human behavior, but instead fits within their setting enough so that the

player’s immersion remains unbroken.

Chowanda et al. created study that explored the human player’s experience in asso-

ciation with their ERiSA framework [10]. The ERiSA framework was used to imbue

NPC companions with social and emotional skills. These social and emotional skills

are modeled by creating representations for emotion, personality, and social relation-

ships within their NPCs.

Avatar Arena [35] explores believability in games by creating a system in which sim-

ulated negotiations between AI agents are modeled to resemble negotiations between

humans [7]. The simulation attempts to produce agents that form rational arguments

based on social context and personality. This work focuses on how social relationships

impacts the behavior of agents in the simulation.

Hashemian et al. [18] explores the concept of social power in the context of NPC

social interaction. By their definition, ”Power involves getting individuals to comply

with your requests, even if they are reluctant to do so” [18]. The work of Hashemian

12

et al. focused on accounting for the social power dynamic between NPCs during the

NPC’s decision-making process.

3.3 Drama Management

The topic of drama management in games focuses on how the narrative of a game is

expressed and how that expression changes based on the actions of the human player

[39]. While drama management is not strictly limited to NPCs, NPCs do play a large

part in expressing the narrative of games.

A Behavior Language [28] (or ABL) is a method for believable agents that draws

from both research about social believability and drama management. Their research

was realized and showcased through the game Façade. Like many modern games,

Façade features branching outcomes to the story, but the way in which it achieves

this branching nature is quite interesting. Mateas and Stern build upon the Hap

language [8] [25], which was specifically designed to create believable agents. ABL

extends the Hap language to include representation of dramatic beats in the agents.

The addition of dramatic beats for agent behavior allowed the characters to more

closely influence and adapt according to the drama management of the game.

13

Chapter 4

PROPUSED SOLUTION

Our goals for this work are threefold. The first is to devise a NPC behavior model that

results in differing behavioral outcomes based on initial personality traits. The second

is to implement a novel method for procedural animation based on mood. Third, we

aim to create a maze simulation environment to analyze our behavior model and

procedural animation both visually and statistically.

While others have taken various approaches to leveraging personality and mood to

control the behavior of NPCs [26] [24] [14] [15] [9], our approach combines them in

a novel way. For our behavioral model, we will create a system in which NPCs will

decide their actions based on a combination of factors: their personality traits, their

current mood, and other various objective-specific factors. Our behavior simulation

uses a greedy approach to decide the actions of NPCs by producing a ’potential value’

heuristic to compare the utility of actions. The potential value of an action will be

determined by the action’s affect on the NPC’s mood.

This fluctuating mood is also used to produce facial animation for each NPC. Facial

blendshapes that represent discrete moods are placed on our mood graph, and the

current mood of the NPC determines which blenshapes are displayed.

The maze simulation environment will include a physical maze for NPCs to navigate.

Also, the environment includes a finite set of actions that NPC agents can perform

while inside the maze environment. The simulation also includes user interface ele-

ments that describe the behaviors and mood of our NPCs in real time. Finally, the

14

maze simulation environment will be used to collect data about the behaviors of our

NPCs in order to analyze the efficacy of our behaviour model.

15

Chapter 5

DEVELOPMENT TOOLS

Here we will discuss the choices we made for our development environment, including

our game engine and the tools that we used to model and animate our NPCs.

5.1 Unity

While the Unreal is also a very popular and robust game engine, we decided to use

the Unity game engine [4]. The deciding factor between the engines for us came

down to experience; we had much more experience with Unity from previous work,

so the choice was clear. Unity also has a wide array of features that helped facilitate

the development process. Features like a C# scripting language, character animation,

blendshape support, physics simulation, and AI pathfinding were utilized to construct

our maze simulation environment.

5.1.1 Unity NavMesh for AI Pathfinding

In Unity, there is this feature for AI pathfinding called the NavMesh. This NavMesh

defines a surface, or mesh, that AI agents can traverse. This allows the programmer to

create a world, or maze in our case, and then designate which object mesh represents

the floor, and then create an navigable area for Unity’s AI agents to move around on.

This feature was integral to our maze simulation environment. We used it to move

and animate our characters, as well as help determine distances between objects in

our maze.

16

5.1.2 Line of Sight Detection

The NPCs in our simulation rely on a line-of-sight detection system for detecting

other objects. This was made possible by an asset from the Unity Asset Store called

Sensor Toolkit [3]. With the Sensor Toolkit, we are able to place line-of-sight sensors

on each of our NPCs in the maze. Additionally, we assign each NPC and each maze

node to be a ’sensor target’, which means that these objects are marked as things

that the line-of-sight sensor will attempt to detect. Finally, the terrain of our maze

had to be designated as geometry that obstructed the line-of-sight detector.

5.1.3 Animating in Unity

The built-in Unity animator component was used to animate our NPCs. In the

animator component, the programmer can designate animation states and transitions

in the animator state machine. The animation states represent a specific animation

(e.g. walking, turning, dancing), while the transitions represent events occurring. A

particularly nice feature of the Unity animator is the ability to trigger events from

within a script, which we used extensively. The behavior of our NPCs is controlled

through a series of scripts, and those scripts are able to easily communicate with the

animator component to trigger various animations to play.

5.2 Autodesk Character Generator

A good character model takes a considerable time to create. The Autodesk Charac-

ter Generator [2] is a robust online character model creation tool that can produce

character models in minutes. The models produced include skeleton animation rig-

17

ging and facial blendshapes, which are both necessary for animating our NPCs. We

created all character models in this work with the Autodesk Character Generator.

5.3 Mixamo

Just like character models, character animation is a very time-consuming task. Adobe’s

Mixamo [1] is an online animation library that allowed us to circumvent the work of

creating animations for our models.

18

Chapter 6

METHODS

In this chapter we will explain our maze simulation environment, our behavioral

model, and our method for procedural animation.

Figure 6.1: The maze used in our simulation. NPCs begin the maze at
the starting area, indicated in blue, and attempt to navigate to the finish
area, indicated in green.

19

6.1 The Simulation Environment

We chose the setting of a maze for the sandbox in which our NPCs and their AI

would be tested. This environment provides a clear, singular goal for all NPCs, while

also affording the ability for NPCs to interact in meaningful ways. The maze, shown

in Figures 6.3 and 6.1, is standard maze, where the NPCs will begin at the starting

area (see figure 6.1) and must navigate to the end of the maze. At the start of the

simulation, NPCs are strangers so they must get acquainted with one another and

either learn to work together or attempt to solve the maze on their own. The way

each NPC decides to try to solve the maze is dependent on their innate personality

as well as their fluctuating mood. By choosing the maze we are making the assertion

that this environment is a suitable simulation environment for our NPC AI method,

which we believe can be applied across a wide range of video game genres.

Figure 6.2: An NPC in our maze simulation.

20

6.1.1 The Maze Graph

The way we chose to internally represent the maze was with an connected, undirected

graph. In Figure 6.3, notice the blue-green, numbered spheres placed periodically

throughout the maze. These spheres are the maze graph’s nodes. The nodes were

placed strategically at every crossing, corner, and dead-end in the maze. These nodes

can be thought of as waypoints – that is, all the possible places an NPC could decide

to walk to within our maze.

In order for an NPC to be able to navigate from one node to the next, an adjacency

list for each node was also created. In general, the nodes adjacent to a given node,

referred to as neighbors, are defined to be the closest node in each of the four cardinal

directions where the node is not obstructed by a wall. For example, consider node

10, which is located near the center of the maze. For the sake of explanation, assume

that the direction towards the top of Figure 6.3 is oriented with the cardinal direction

of North. Node 10 has three neighbors: node 6, node 11, and node 12. Node 6 is the

closest node to the West; node 11 is the closest unobstructed node to the South; node

12 is the closest unobstructed node to the East. Notice that node 10 has no neighbor

to the North because there are no unobstructed nodes in that direction. Following

this method, an adjacency list for each node was constructed.

Nodes can also be marked as ’visited’. This allows the NPCs to remember where

they have been in the maze to better make decisions about where to go next. Section

6.1.3.6 goes into more depth about how NPCs visit nodes.

21

Figure 6.3: Our maze, overlaid with labeled maze nodes. The blue-green
numbered spheres show the location of all the maze nodes.

6.1.2 Knowledge and Opinion of Other NPCs

Our maze simulation involves interaction between NPCs, so we felt it necessary for

each NPC to contain some form of knowledge and opinion about the other NPCs that

they encounter. We model this in two ways: a ‘perception’ value and a maze graph.

22

The perception value is a number that ranges from -1 to +1. When an NPC meets

another NPC, the other NPC will start with a neutral perception. As the simulation

progresses, interactions between the two NPCs – specifically, the positive or negative

outcomes of interactions – will then adjust this value. Further, this perception value

will be used to determine the value of certain social actions.

The maze graph for other NPCs works in an almost identical fashion as described in

section 6.1.1, with the only difference being in how the graph is updated. Given NPCs

A and B, NPC A’s perceived maze graph for NPC B would include only the nodes

that NPC B has shared with NPC A, as well as the nodes that NPC A has shared with

NPC B. This may not correctly reflect all the nodes that NPC B has actually visited,

but correctly models perceived knowledge of B, given imperfect information. From

NPC A’s point of view, this representation is correct because NPC A’s knowledge

of B is limited to their interactions with B. This memory of what has been shared

is useful for NPCs when they are deciding what information to share with another

NPC.

6.1.3 Actions

Our model of NPC behavior follows a similar approach to the state machine model

covered in the section 2.2. The behavior model can be viewed as a form of state

machine, where behavior states represent nodes and events represent the transitions

between states. In our model, we call our behavior states actions. The transition

events generally occur when actions are completed. For a more precise explanation

of the transition events, refer to section 6.2.1.

We do consider our method extensible to any behavior model that uses a form of state

machine, but we will describe the actions for our particular behavior model in order

23

to supplement the explanation of our method for state transitions. The following is

a description of all the possible actions that an NPC can perform in our simulation.

6.1.3.1 Go To Node Action

Since the nodes represent all the possible places to explore in our maze, we needed

an action that lets an NPC explore the maze by navigating to a node. This action

consists of an NPC walking towards a maze node, and is considered finished when

the NPC collides with the sphere of the targeted maze node.

6.1.3.2 Greet Action

The NPCs all start the maze as strangers, so there must be some action that allows

them to get acquainted with one another. This action consists of the NPC turning

towards another NPC and waving at them. The action is considered finished when

the waving animation is finished playing. This action is special in that, for a given

NPC, the ‘Follow’, ’Share’, and ’Wait’ actions cannot be performed with another

NPC until the given NPC first performs a ‘Greet’ action.

6.1.3.3 Follow Action

Once acquainted with one another, some NPCs may choose to follow others through

the maze in hopes that they will lead them closer to the finish, or just because they

don’t want to be alone. In this action, an NPC will walk towards and follow another

NPC. This action is considered finished when the NPC gets within a certain range of

the target, which is about an arm’s length away.

24

6.1.3.4 Share Action

Not only do NPCs store a memory of where they have been in the maze, but they are

also able to share that memory with other NPCs in the simulation. In this action,

an NPC will follow another NPC until they are within a certain distance to share

information about the maze. Once they are close enough, the NPC will begin sharing

the information. If they are not able to share all the information before the target

NPC moves beyond the share distance, then the NPC will continue to follow their

target NPC until they are once again close enough to share. Given NPCs A and B,

the information that NPC A can share with NPC B are all the nodes that NPC A

has visited. Once the action is complete, NPC B goes into their own maze graph

and marks all the nodes that NPC A shared as visited. This action is considered

finished after all the information is finished sharing. The way we determine when

the information sharing is finished is by use of a timer. The target time limit for the

timer scales linearly by the number of nodes being shared.

6.1.3.5 Wait Action

Over the course of the maze, NPCs may develop bonds. To facilitate this, we added

the ability for NPCs to wait for each other. NPCs will perform this action when they

notice that another NPC is following them or sharing information with them. This

action consists of the NPC turning to look at the other NPC and standing still. This

action is considered finished once the other NPC is finished following or sharing.

25

6.1.3.6 Scan Action

Navigating a maze is often disorienting for those trying to solve it, so we created an

action that allows NPCs to scan their environment. In this action, an NPC will look

at each of the maze nodes and NPCs near them, and may also look at any other

NPCs near them. The maze nodes that this action chooses to look at are all the

nodes near the NPC that are not obstructed by walls. Other NPCs may be looked

at as well if the NPC judges it worth their time to do so. This judgement is based on

their perception of other NPCs, as well as their personality traits. The scan action is

important because it must be performed before any other action is performed. Only

the objects that the NPC chooses to look at may be acted upon. Specifically, a maze

node must be looked at before an NPC can walk to it; another NPC must be looked

at before the NPC can greet, follow, share, or wait with the other NPC. This action

is considered finished once the NPC has looked at everything they have judged worth

looking at.

6.2 Behavioral Model

Now that we have defined our simulation environment we can explain how our be-

havioral model works. This section will cover how personality and mood have been

utilized in our method to enhance the NPC behavior model.

6.2.1 Behavior Simulation

Our behavior model follows a similar state machine approach to most NPC behavior

models, where actions represent states in the state machine, and events represent

transitions. The complete list of possible actions can be found in section 6.1.3. Our

26

simulation has no explicit representation of an ‘event’ to trigger transitions. Instead,

we transition to a new state when the current action is finished, or when the NPC

decides to interrupt their current action. Figure 7.2 shows how the behavior model

chooses whether to transition to a new action or to continue with the current action.

Since each action has defined finish conditions, we can check whether those conditions

have been met in each update cycle. When an action finishes, the mental state of the

NPC is updated to reflect how they feel about completing the action they just finished.

This includes applying the change in mood for the action, as well as adjusting the

perception of all the NPCs nearby based on perceived value of the completed action.

After this, a new action must be chosen. The list of potential actions is populated

based on their surroundings, and then the potential value for each action is calculated

and compared to the others. The action with the highest potential value is the action

that is ultimately chosen by the NPC. If there are ties, then ties are broken by

choosing the action that the NPC predicts will take less time to complete. If there

are still ties then the NPC simply picks a random action among the ones tied for

best. It is important to note that actions rarely have the exact same predicted time

to complete, so this random choice rarely occurs.

The NPCs don’t always finish every action that they choose to do because they can

also interrupt their current action. A repopulation timer is always running, and when

that timer reaches its limit the NPC populates their list of potential actions from their

surroundings and chooses whether to switch to a new action based on potential value

and projected time to complete.

27

Figure 6.4: The flowchart describing a single update cycle of the behavior
controller for our NPCs. Behaviour is determined using a heuristic to
perform a greedy selection of actions.

28

6.2.2 Populating the List of Possible Actions

When an action is completed or interrupted a list of possible actions must be pop-

ulated so that the NPC may choose a new action. The way this list is populated is

determined by what is in sight of the NPC. The NPCs can only act on what they

can see. The list of potential actions is populated by taking everything in sight (and

everything seen recently, which is defined as things that have been seen at most 15

seconds ago) and adding all the possible actions associated with the object in sight.

Additionally, it is important to note that the object must first be marked as looked

at before its associated actions may be added to the list. If an NPC is in sight, then

greet, follow, and share actions may be added to the list. If a maze node is in view,

then a go to node action is added to the list.

The scan action is a special case. The scan action is added to the list if at least one

new object (maze node or NPC) has been recently detected. The scan action will look

at all the maze nodes near the NPC and possibly some of the other NPCs nearby,

and then once the objects have been marked as looked at then they may be added to

the list of potential actions.

6.2.3 Mental State

The mental state is home to the personality, mood (desired and current), and knowl-

edge about other NPCs. When an action is finished, the mental state must be updated

to apply the change in mood for the action, as well as to reflect any changes about

the knowledge of other NPCs (perception and maze graph).

29

6.2.4 Personality Representation

One component of our NPC behavior model that helps inform transitions between

behavior states is our representation of personality for each NPC. In our personality

representation we follow a similar approach to Li and MacDonnell [24] in that each

NPC receives a numerical score for each of the five personality traits (openness,

conscientiousness, extraversion, agreeableness, neuroticism). The numerical scores

range from 0 to 1, where 0 indicates that the NPC does not exhibit the behaviors

associated with this trait at all, and 1 indicates that the NPC fully exhibits the

behaviors associated with the given trait. The personality scores for each NPC can

be set before each run of our simulation and do not change once the simulation begins.

6.2.5 The Mood Graph

We chose to include a changeable mood to our behavior model. The way we model

mood is very similar to the circumplex model of affect [37]. Figure 6.5 shows a visual

representation of the mood graph we used in our behavior model. Our mood graph has

two axes: energy (which correlates to Russell’s ‘arousal’ axis) and pleasantness. The

values along each axis are restricted to lie within -1 and +1. When an NPC completes

an action, their mood is updated to reflect how the completion of the action makes

them feel. The mood graph is also used to animate the facial expressions of our NPCs.

For more on how this is done, refer to section 6.3.

6.2.5.1 Desired Mood

The desired mood for an NPC is a position on the mood graph that is pre-calculated

when the simulation begins, and is based on the NPC’s personality traits. See Figure

30

Figure 6.5: Our graph of emotions, based on Russell’s circumplex model
of affect [37]. Like Russell’s graph, we label emotions as positions on the
graph (marked in blue). For simplicity, we have chosen four basic emotions
that align well with the poles of our graph: happiness at (1, 0), calm at
(0, -1), sadness at (-1, 0), and surprise at (0, 1). Further, we have labeled
examples of current mood (in red) and desired mood (in green).

6.5 for an example position for desired mood. Since the desired mood is determined

by the NPC’s personality, every NPC has their own distinct desired mood. While the

current mood of an NPC fluctuates as the simulation progresses, the desired mood

stays constant throughout.

The desired mood consists of two values: an energy value and a pleasantness value.

We chose to hold the desired pleasantness constant across all NPCs, assigning it a

value of 1, which is maximum pleasantness. By assigning the desired pleasantness in

31

this way we are able to model how humans tend to generally seek happiness in life.

Additionally, this allows us to easily compare actions of the same type. For instance,

walking towards a dead-end in the maze, or walking to an undiscovered area. If the

goal is to solve the maze, then the obvious better choice is to walk to an undiscovered

area. Since all NPCs desire a pleasantness of +1, we can produce a higher, positive

change in pleasantness for walking towards an undiscovered area and be sure that

this will increase the value of this action (see section 6.2.8 for exactly how potential

value is calculated).

Conversely, the value for desired energy is completely dependent on personality traits.

The traits that we determined would affect desired mood are conscientiousness, ex-

traversion, and neuroticism. The following formula was used to calculate desired

energy:

DesiredEnergy = 0.5 ∗ ε+ 0.5 ∗ PN ∗ ω − 0.5 ∗ PC ∗ ω (6.1)

Where,

ε = (PE ∗ 2)− 1 (6.2)

ω =
ε

|ε|
(6.3)

The symbols PC , PE, and PN correspond to the NPC’s personality traits of con-

scientiousness, extraversion, and neuroticism, respectively. ε represents extraversion

(which ranges from 0 to 1) mapped to a value between -1 and +1. ω is used to capture

the sign of ε.

Recall that the energy axis on the mood graph ranges from -1 to +1, so the equa-

tion above was designed to produce values within this range. The first term in the

equation, 0.5 ∗ ε gives a number that ranges from -0.5 to +0.5. The second term,

32

0.5 ∗ PN ∗ ω, increases the absolute value of desired energy based on the magnitude

of neuroticism, while the third term, −0.5 ∗ PC ∗ ω decreases the absolute value of

desired energy.

6.2.6 Calculating EFactor and PFactor for Each Action

Before the potential value of an action can be calculated, an action must produce

two values: EFactor and PFactor. These values are numbers that range from 0 to

+1, and represent the effect of a given action on an NPC’s mood. After the values

are produced, EFactor is used to affect a change in energy, and PFactor is used to

affect a change in pleasantness. When 0 <= EFactor < 0.5, a negative change in

energy is produced; when EFactor = 0.5, no change in energy is produced; when

0.5 < EFactor <= 1, a negative change in energy is produced. The PFactor works

similarly, except it affects a change in pleasantness. Equations 6.15 and 6.16 show

exactly how EFactor and PFactor are used to produce a change in mood. The following

subsections will describe how EFactor and PFactor are calculated for each action.

6.2.6.1 Calculating EFactor and PFactor for the Go to Node Action

The following equations describe how EFactor and PFactor are calculated for the go to

node action:

EFactor = lerp(0.5, 0, PE) (6.4)

PFactor = 0.25 ∗NodeInterest+ 0.75 ∗NodeInterest ∗ PC (6.5)

where,

NodeInterest =
1

γ
(6.6)

33

The EFactor equation above uses the ‘lerp’ function, or linear interpolation, which is

defined as lerp(a, b, x) = a + (b − a) ∗ x, and is used to blend between two values.

The PE and PC symbols represent the NPC’s extraversion and conscientiousness,

respectively. the γ symbol represents the distance from an unexplored node. It is

important to note that the distance from an unexplored node is guaranteed to be at

least 1, so that we do not divide by zero. This particular EFactor equation (equation

6.4) produces values that range from 0 to 0.5, and depends on the NPC’s value for

extraversion. The PFactor (equation 6.5) consists of a couple terms, so we will explore

each one. The first term, 0.25∗NodeInterest, is added to this equation to make sure

that PFactor can output a nonzero value, even if the NPC’s conscientiousness is zero.

This is useful for comparing go to node actions for NPCs that have a conscientiousness

score of 0. The second term, 0.75∗NodeInterest∗PC , is very similar to the first, but

is multiplied by conscientiousness. This ensures that the NPC must have a sufficiently

high conscientiousness score in order to have a positive change in pleasantness.

6.2.6.2 Calculating EFactor and PFactor for the Follow Action

The following equations describe how EFactor and PFactor are calculated for the follow

action:

EFactor = 0.75 (6.7)

PFactor = 0.5 ∗ perception+ 0.5 ∗ PE (6.8)

In equation 6.8, the symbols perception and PE correspond to the perception of the

NPC that is to be followed (see equation 6.22 for a precise definition of perception)

and the NPC’s extraversion, respectively. The EFactor – equation 6.7 – is hard-coded

to be 0.75 to make it more likely for highly extroverted NPCs to choose this action,

34

since high extroversion produces a higher desired energy. Equation 6.8 is designed to

produce a PFactor that is equally influenced by both perception and extroversion.

6.2.6.3 Calculating EFactor and PFactor for the Share Action

The following equations describe how EFactor and PFactor are calculated for the share

action:

EFactor = 0.75 (6.9)

PFactor = 0.125 ∗ PA + 0.125 ∗ PE + 0.75 ∗ β (6.10)

where,

β =
numNodesToShare

numV isitedNodes
(6.11)

In equation 6.10, the symbols PA and PE represent the NPC’s agreeableness and

extraversion, respectively. In equation 6.11, the symbols β, numNodesToShare,

and numV isitedNodes represent the usefulness of the information being shared, the

number of nodes being shared with this action, and the number of total nodes that the

sharer NPC has visited. Similar to equation 6.7, the share action EFactor (equation

6.9) is hard-coded to be 0.75 to make it more likely for highly extroverted NPCs to

choose this action, since high extroversion produces a higher desired energy. For the

PFactor calculation (equation 6.10), agreeableness and extroversion are given relatively

small weight coefficients, while the usefulness value, β, is given a much stronger weight

coefficient. This is to make sure that NPCs will only share information when the

information includes a significant number of nodes.

35

6.2.6.4 Calculating EFactor and PFactor for the Wait Action

The following equations describe how EFactor and PFactor are calculated for the wait

action:

EFactor = PE (6.12)

PFactor = 0.5 ∗ PE + 0.5 ∗ PE ∗ perception (6.13)

In equations 6.12 and 6.13 above, PE represents the extroversion of the NPC. In

equation 6.13, perception represents the perception of the current NPC about the

NPC that they are considering waiting for. The EFactor is set to the NPC’s value for

extroversion so that the change in energy produced by this EFactor will be desirable

to any personality, since the polarity of desired energy is dependent on the value of

extroversion (see equation 6.1). Equation 6.13 calculates PFactor for the wait action,

and consists of two terms. While both terms multiply by PE, the first term, 0.5 ∗

PE ensures that extroverted NPCs will get a reasonably high PFactor, despite the

perception of the other NPC. The second term, 0.5 ∗ PE ∗ perception, is included to

deter NPCs from waiting for other NPCs that they do not like.

6.2.6.5 Calculating EFactor and PFactor for the Scan Action

The scan action behaves a bit differently than other actions. This action is designed

to produce an artificially high potential value so that NPCs choose to scan the en-

vironment, since this is absolutely necessary in a maze environment. When a scan

action is complete, it has no effect on mood – that is, the EFactor and PFactor are both

set to 0.5.

36

6.2.7 Calculating a Change in Mood

Every action produces a change in mood. Each action first computes a EFactor and

PFactor, and then the EFactor and PFactor are used to determine a change in mood. A

change in mood is expressed by a change in energy and pleasantness. The following

equations provide a precise definition for how these values are calculated:

∆Mood = (∆E,∆P) (6.14)

where:

∆E = lerp(−τ, τ, EFactor) ∗ (1− |ΨE|) (6.15)

∆P = lerp(−τ, τ, PFactor + λ) ∗ (1− |ΨP |) (6.16)

λ = lerp(0,−0.25, PN) (6.17)

τ = lerp(0.1, 0.5, PN) (6.18)

The symbols ∆Mood, ∆E, and ∆P represent the change in mood, the change in energy,

and the change in pleasantness, respectively. The symbols ΨE and ΨP represent the

current mood’s values for energy and pleasantness, respectively. Recall that the

energy and pleasantness values for mood range from -1 to +1. The EFactor and

PFactor are values that are pre-calculated by each action, and are guaranteed to be

bounded between 0 and 1. Section 6.2.6 describes exactly how EFactor and PFactor are

calculated for each action. PN represents the NPC’s personality trait of neuroticism,

which ranges from 0 to 1. Many of the equations above use the ‘lerp’ function, or

linear interpolation, which is defined as lerp(a, b, x) = a+ (b− a) ∗ x, and is used to

blend between two values.

37

τ represents the bounds for possible delta values. This value itself is bounded between

0.1 and 0.5, which are arbitrary, but have been found to work sufficiently well by

producing a change in mood that is large enough to be noticed, but not so large

that mood swings drastically. The ∆E and ∆P values are bounded by this τ value –

specifically, −τ and +τ . This ensures that both delta values lie within a symmetric

range, and that the magnitude of the range is directly correlated with the magnitude of

neuroticism. This produces larger changes in mood for NPCs who are more neurotic,

which emulates real life data [45]. A neurotic skew, λ, is also applied to ∆P , which

mimics a correlation between neuroticism and less pleasant emotional reactions to

events [21].

In equation 6.15, the result of the lerp function is multiplied by (1−|ΨE|), which alters

the the value for ∆E so that the magnitude decreases as the current approaches the

boundaries of the energy axis on the mood graph (both axes on the mood graph are

bounded from -1 to +1). In equation 6.16, the result of the lerp function is multiplied

by (1 − |ΨP |) to achieve a similar result for the pleasantness axis. This achieves a

’sticky’ effect as the current mood approaches the edges of any axis.

6.2.8 Potential Value

Potential value is our heuristic for comparing the utility of different actions in our

simulation. Just like in life, some actions are better than others, and some actions

may have positive or negative effects. This effect of real-life actions is simulated with

our potential value calculation. Each action produces a potential change in mood,

and that potential change is mood is used to calculate our potential value heuristic.

This heuristic is calculated based on the distance between desired mood and the

potential position of the current mood if an NPC were to complete the given action.

The following equation provides a more precise definition:

38

PotentialV alue =
(DC −DP)√

8
(6.19)

where,

DP = |PD − (∆Mood + PC)| (6.20)

DC = |PD − PC | (6.21)

The symbols DP and DC represent the distance from a potential mood to the desired

mood, and the distance from the current mood to the desired mood, respectively.

The difference in distances is divided by the maximum possible distance between two

points on our graph, which evaluates to
√

8. We do this to ensure that the potential

value never exceeds the bounds of -1 to +1. Bounding the potential value in this

way is useful for calculating change in perception (see section 6.2.9). The symbols

PD, PC , and ∆POT represent the position of the desired mood, the position of the

current mood, and the potential change in mood, respectively. The potential change

in mood, ∆Mood, is calculated for each potential action (see equation 6.14 for how

this is calculated).

6.2.9 Calculating Change in Perception

Recall from section 6.1.2 that perception of others is represented with a single value

that ranges from -1 to +1. Given NPCs A and B, NPC A’s perception of B changes

based on the potential value of an action completed in the vicinity of B, and the

neuroticism of A. The following is the precise equation for calculating change in

perception:

Perception = Perception+ σ ∗ (PotentialV alue+ φ) (6.22)

39

where:

σ = −(1− |2 ∗ Perception− 1|)
2

(6.23)

φ = −lerp(0, |PotentialV alue|, PN ∗ PA) (6.24)

The symbols σ and φ represent a distance from the boundaries (perception is bounded

between -1 and +1) and a skewed potential value, respectively. This distance from

the boundaries value, σ, alters the change in perception so that the magnitude of

the change in perception decreases as the perception value approaches the boundary

values. This ’sticky’ effect models a history of experience between NPCs. The φ value

represents a narcissist skew, which is determined by PN and PA, the NPC’s traits for

neuroticism and agreeableness. As both PN and PA increase, an NPC will have worse

perceptions of the other NPCs because φ is guaranteed to always be negative. If

PN and PA are both 1, then the NPC is not able to increase perception of others –

instead, perception will only stay the same or decrease.

Figure 6.6: Facial animation blendshapes were mapped to moods, and then
the moods were mapped to positions on our mood graph. This shows
the resulting facial animations as the current mood moves to different
positions on the mood graph. From left to right: (1) medium energy and
medium pleasantness (control), (2) medium energy and low pleasantness,
(3) medium energy and high pleasantness, (4) low energy and medium
pleasantness, (5) low energy and low pleasantness, (6) low energy and high
pleasantness, (7) high energy and medium pleasantness, (8) high energy
and low pleasantness, (9) high energy and high pleasantness.

40

6.3 Procedural Animation with Mood and Blendshapes

The mood graph is used in two ways. As already discussed, the potential value for

actions in our behavior model is determined by current and desired mood. Another

function of our mood graph is to drive facial animation. The mood graph shown

in Figure 6.5 shows the four emotion blendshape targets (in blue) and their corre-

sponding positions on the graph. The facial animation of each NPC is determined

by where the current mood lies on our mood graph. If the current mood is in the

top-right quadrant of the graph then facial blendshapes are blended between surprise

and happiness blend targets. If the current mood is in the bottom-right quadrant

of the graph then facial blendshapes are blended between calm and happiness blend

targets. If the current mood is in the bottom-left quadrant of the graph then facial

blendshapes are blended between calm and sadness blend targets. If the current mood

is in the top-left quadrant of the graph then facial blendshapes are blended between

surprise and sadness blend targets. Figure 6.6 shows the facial animations produced

for varying positions of mood on the mood graph.

41

Chapter 7

RESULTS

Here we will analyze the results of our behaviour model, the maze simulation envi-

ronment, and the mood-based procedural animation.

7.1 Data Collection

Data was collected over the course of several runs of the maze simulation. Each run

contained 10 NPCs with randomized personality traits, and the simulation run was

considered finished only when all of the NPCs had reached the finish node in the

maze. We collected data for each NPC about their personality traits, which actions

they performed, and the average distance from their current mood to their desired

mood. Tables 7.1 and 7.2 show the data we have collected. We ran 100 simulations

consisting of 10 NPCs per simulation, resulting in 1000 data points.

To measure the correlation of traits and actions (see Table 7.1), we recorded the

fraction of the number of a specific type of chosen action over the total number

of chosen actions. It is important to make the distinction of chosen actions, since

actions may be interrupted, which means that some portion of chosen actions are

never completed. The four actions we decided to measure were: the go to node

action, the follow action, the share action, and the wait action.

We chose to omit the look, scan, and greet actions. The look and scan actions are

actions that are given an artificially high value (regardless of personality traits) so

that the NPCs will scan often. This trait-agnostic value for look and scan actions

42

means that no correlation between traits and these actions can be drawn. As for greet

actions, we chose to omit them because greeting only occurs at most nine times and

NPCs will typically complete over 100 actions in a single simulation.

The data for Table 7.2 was collected by taking the average distance from the desired

mood to the current mood, each frame. If the NPC reached the end of the maze,

then we stopped adding samples to the average because the NPC’s mood does not

change after it reaches the finish. Since each NPC finishes at different times, we did

not want to continue to sample the mood of an NPC after it finished.

Table 7.3 includes data about the distance to the closest NPC. This data was collected

by iterating over all the NPCs in the scene and determining which NPCs are closest

to each other, every frame. After the simulation is over, the average of the distance

to the closest NPC, per NPC in our simulation, was calculated by dividing by the

total number of frames. It is important to note that the measured distance between

NPCs takes into account paths around the walls of our maze.

After data was collected, we calculated the Pearson product-moment correlation co-

efficient, r. This coefficient ranges from -1 to +1 and is used to measure the lin-

ear relationship between two variables. A positive value for r indicates that the

datasets are directly correlated, while a negative value indicates that the data is in-

directly correlated. The magnitude of r represents how closely the data is correlated,

with |r| = 0 indicating that there is no correlation, and |r| = 1 indicating that the

data is perfectly correlated. The r value can be classified into 3 categories based

on strength of association: strong, medium, and weak. For strongly correlated data

0.5 < |r| ≤ 1, for medium correlated data 0.3 < |r| ≤ 0.5, and for weakly correlated

data 0.1 < |r| ≤ 0.3. The Pearson product-moment coefficient was calculated for

both tables 7.1 and 7.2.

43

7.2 Analysis of the Behavior Model

Recall that our goal was to devise a NPC behavior model that results in differing

behavioral outcomes based on the initial personality traits. The maze simulation

environment was created to test this behavior model. In the context of our maze,

differing behavioral outcomes are represented by the actions that a given NPC chooses

to perform. Put simply, the desired results would show that the actions of our NPCs

change when their personality traits change.

Trait Versus Action r Correlation

trait r Correlation

Go To Node Follow Share Wait
Openness -0.0645 -0.0178 0.1245 0.0048
Conscientiousness 0.0146 -0.0144 0.1805 0.0159
Extraversion -0.7166 0.7970 0.1477 0.5224
Agreeableness -0.0427 0.0061 0.0694 -0.0488
Neuroticism 0.0702 -0.0071 0.0709 0.0864

Table 7.1: The correlation between each personality trait and the go to
node, follow, share, and wait actions. The correlation value, r, is the
Pearson product-moment correlation coefficient.

Table 7.1 shows the r value for each combination of personality trait and our set of

actions. This allows us to analyze the effects of traits on different actions. We will

discuss each action and its corresponding correlations for each trait.

7.2.1 Go To Node vs. Trait Correlation Analysis

The go to node action shows virtually no correlation for openness, conscientiousness,

agreeableness, and neuroticism. For openness, agreeableness, and neuroticism, this

makes sense because those are not factors that influence the calculation of the go to

node action’s EFactor and PFactor in equations 6.4 and 6.5. However, conscientiousness

44

does affect the go to node action’s PFactor in equation 6.5, so at first it might seem

that this does not make sense. Despite this, this correlation can be explained by the

way the actions were populated into the list of potential actions. When an NPC is

near other NPCs, they have the option to follow or share or wait for others, but if

they are alone then their only options for actions are to scan and to go to a node.

This does not change, no matter the NPC’s personality.

The go to node action is found to have a negative, strong correlation with extraversion.

This can be attributed to an indirect effect from the follow, share, and wait actions,

since the calculation of PFactor for the follow, share, and wait actions increases as

extraversion increases. Thus, the NPCs are more likely to choose some other action

other than a go to node action if they have a high extraversion rating.

7.2.2 Follow vs. Trait Correlation Analysis

The follow action shows nearly no correlation for openness, conscientiousness, agree-

ableness, and neuroticism. This is consistent with our equation 6.8, since it does not

use these traits to calculate EFactor and PFactor in equations 6.7 and 6.8.

Extraversion has a strong positive correlation to the follow action. This is consistent

with our equation 6.8, which results in a higher value for PFactor as extraversion

increases. This is also consistent with the EFactor equation for the follow action,

equation 6.7, and the equation for calculating desired energy, equation 6.1. Since

NPCs with high extraversion will have positive desired energy, then it would make

sense for an NPC with high extraversion to choose to follow due to the EFactor for a

follow action being relatively high.

45

7.2.3 Share vs. Trait Correlation Analysis

Almost no correlation is found between the share action and the agreeableness and

neuroticism traits. For neuroticism, this is consistent with equations 6.9 and 6.10,

since they does not use neuroticism to calculate EFactor and PFactor. As for agree-

ableness, it does contribute to the calculation of PFactor in equation 6.10, but it only

contributes to 1
8

th
of PFactor. This is must be the reason for the low correlation.

Interestingly, the share action shows a weak positive correlation to conscientiousness.

Equations 6.9 and 6.10 show that conscientiousness is not used in the calculation of

EFactor or PFactor. Nevertheless, there is a positive correlation. The positive correla-

tion here must be due, indirectly, to β, the usefulness of the information being shared,

from equation 6.10. This usefulness value increases with the number of nodes being

shared. Since conscientious NPCs are more likely to venture out and explore on their

own, if they eventually meet back up with other NPCs then this usefulness value will

be very high. This high usefulness value will raise the potential value of the share

action, resulting in a higher likelihood of this action being chosen.

Lastly, the share action shows a weak positive correlation to extraversion. Just like

agreeableness, equation 6.10 show that extraversion only accounts for 1
8

th
of PFactor.

Since agreeableness showed nearly no correlation to the share action, it seems like

extraversion should follow suit. However, it does not match the correlation for agree-

ableness. This may be attributed to the fact that highly extroverted NPCs are likely

to often choose to follow and to wait, so they are often near other NPCs. Since they

are near other NPCs, they will be given the option to share information with others.

If they were not near other NPCs, then they would not even have the option to share

information.

46

7.2.4 Wait vs. Trait Correlation Analysis

The wait action shows basically no correlation for the openness, conscientiousness,

agreeableness, and neuroticism traits. This is consistent with equations 6.12 and 6.13,

since these trait are not used to calculate EFactor or PFactor for the wait action.

The extraversion trait shows a strong positive correlation to the wait action. This

is consistent with equation 6.13, since extraversion is used to calculate PFactor for

the wait action. This is also consistent with equations 6.12 and 6.1, since highly

extroverted NPCs are likely to have positive desired energy, and since the EFactor for

the wait action is hard-coded to give a positive change in energy.

7.2.5 Trait vs. Distance to Desired Mood Analysis

In analyzing Table 7.2, it is important to note that a negative correlation shows that

distance from the current mood to the desired mood gets smaller as the given trait

gets higher. For positive correlation, that means that distance from the current mood

to the desired mood gets bigger as the given trait gets higher. Recall that, ultimately,

the goal of an NPC when choosing what action to perform is to get closer to their

desired mood.

Trait Versus Distance to Desired Mood r Correlation

trait r Correlation

Openness -0.0816
Conscientiousness -0.6751
Extraversion -0.2678
Agreeableness -0.0461
Neuroticism 0.2857

Table 7.2: The correlation between each personality trait and the average
distance from the NPC’s current to desired moods. The correlation value,
r, is the Pearson product-moment correlation coefficient.

47

Table 7.2 shows a strong negative correlation for conscientiousness, a weak negative

correlation for extraversion, a weak positive correlation to neuroticism, and nearly no

correlation for openness and agreeableness.

The strong negative correlation to conscientiousness shows that highly conscientious

NPCs were, on average, closer to their desired mood at any given time. This is likely

due to the combination of how we populated the list of potential actions and how we

calculated the PFactor for the go to node action. Whenever an NPC is deciding their

next action, the list of possible actions will always contain a go to node action, which

is due to the way we have distributed our nodes across the maze. Since the PFactor

equation for the go to node is strongly dependent on the conscientiousness of the NPC,

it makes sense that highly conscientious NPCs would have a higher pleasantness in

their mood.

The weak negative correlation to extraversion shows that highly extroverted NPCs

were, on average, closer to their desired mood at any given time. Like the correlation

for conscientiousness, this is likely due to the combination of how we populated the

list of potential actions and how we calculated the PFactor for the follow, share, and

wait actions. One might expect the correlation for extroversion to be stronger, like the

correlation to conscientiousness, since the PFactor calculations for the follow, share,

and wait actions are analogous to the PFactor calculation for the go to node action

(if we substitute conscientiousness with extraversion). However, this incongruity can

be attributed to the way we populate the list of potential actions. Although highly

extroverted NPCs tend to stay close to other NPCs, they do sometimes become

separated from others. When a highly extroverted NPC is alone, they are forced to

navigate through the maze using only go to node actions. Since the go to node action

is designed to make highly conscientious NPCs happy (and not necessarily highly

extroverted NPCs), this is why we see a smaller correlation.

48

The weak positive correlation to neuroticism shows that highly neurotic NPCs were,

on average, further away from their desired mood at any given time. This is to

be expected, since the potential value equation, equation 6.19, includes a neurotic

skew (λ). The λ value decreases the change in pleasantness for any given action

by up to 0.25, which ultimately results in an overall lower pleasantness for highly

neurotic NPCs. Since the desired pleasantness for every NPC is hard-coded to be 1

(the maximum value for pleasantness), and since highly neurotic NPCs have a lower

pleasantness in their mood, it follows that highly neurotic NPCs should be further

from their desired mood, on average.

7.3 Summarizing Behaviour Model Analysis

As we have mentioned several times, our goal was to devise a NPC behavior model

that results in differing behavioral outcomes based on the initial personality traits.

An analysis of Tables 7.1 and 7.2 shows that we have succeeded in producing a be-

havior model that results in differing behavioral outcomes based on personality traits.

In our maze simulation, the differing behavioural outcomes is represented by the ac-

tions that an NPC decides to perform. Table 7.1 shows that we measure significant

correlations between personality traits and chosen actions. These correlations show

that personality traits can be used to affect the behavior of NPCs.

It is unfortunate that we did not observe a significant correlation between the traits

for openness and agreeableness and the average distance to desired mood in Table

7.2. Ideally, each personality trait would show a some type of significant correlation

to distance to desired mood. This would show that each personality trait has been

sufficiently integrated into the simulation environment, which would indicate that we

have maximized the opportunity achieve differing outcomes based on the variation of

49

personality. While we have not maximized the differing outcomes, we have at least

shown that a variation of behavior is possible. Given our heavy use of conscientious-

ness and extraversion in comparison to openness and agreeableness in our model, we

assert that this failure to maximize differing outcomes is due to the limited types of

actions in our maze simulation environment.

7.4 The Maze Simulation

Our maze simulation environment was created with the sole purpose of testing our

NPC behavior model. Figure 7.1 shows what the maze simulation looks like while it

is running. For the purposes of live analysis and demonstration, we included several

user interface features that explain what is happening in the scene in real time.

Figure 7.1: A screen capture of the maze simulation, including the user
interface elements that help the viewer understand what is happening.

On the left side of the screen, a list of information cards for each NPC displays

relevant information. The information on the cards includes the NPC’s name, their

current action, their personality traits, and and their current mood. To the right of

50

each information card is a superimposed camera view of the NPC’s face, which is

used to analyze facial animation.

In addition to the screen-space user interface items, we also included world-space

interface. The name of each NPC hovers above each NPC’s head as they move around

the maze, allowing observers to easily recognize who is who. The other world-space

user interface feature we included was the line-of-sight line. This line protrudes from

just in front of the NPC’s face, and extends towards whatever they are looking at.

This gives observers a good idea of what an NPC may be thinking or doing, without

the need to read what action they are performing.

7.4.1 The Effectiveness of the Maze as a Behavior Model Testing Environment

As mentioned in section 7.3, the maze as a simulation environment is not without

faults. The maze environment is a quite limited testing environment compared to the

settings of modern role-playing games. However, we believe the maze environment

served our purposes sufficiently, especially when considering the development load.

By restricting our environment to a maze, we were able to create a relatively simple

simulation environment for our behavior model. In some ways, this simplicity has

been beneficial because we did not have to spend much time creating the environment

that our NPCs lived in.

While it was not the focus of our work, it is encouraging to find that the design of the

actions in our maze simulation environment promoted the formation of groups. Table

7.3 shows a weak negative correlation between the extroversion personality trait and

the distance

51

Figure 7.2: A close-up view of the NPC status user interface elements,
including the view of each NPC’s face. This shows the procedural facial
animation for each NPC, which is determined by their mood.

52

Trait Versus Distance to Nearest NPC r Correlation

trait r Correlation

Openness -0.0142
Conscientiousness -0.0275
Extraversion -0.1309
Agreeableness -0.0305
Neuroticism -0.0771

Table 7.3: The correlation between each personality trait and the average
distance to the nearest NPC, over time. The correlation value, r, is the
Pearson product-moment correlation coefficient.

7.5 The Effectiveness of our Procedural Animation Method

While not the main purpose of this work, the procedural animation for our NPCs

worked exceedingly well. Figure 7.2 offers a closer view of the facial expressions for

each NPC. In the figure, it is easy to visually discern the difference in facial animation

between each NPC despite our quite simple set of mood blendshape targets. As a

proof of concept, this method of using a fluctuating mood to produce procedural

animation is quite a success. However, this could be improved further to include

more variety in animation, which is covered in chapter 8.

53

Chapter 8

FUTURE WORK

8.1 An Alternate Mood Model

Another popular model of mood is the PAD temperament model [29]. This model is

very similar to the circumplex model of affect, except that the PAD model adds a third

axis to the model: dominance. This changes the mood model from two dimensions

to three, increasing the range of emotions that can be expressed by a mood model.

This third dimension could provide more variation in both the behavior of NPCs in

our model and in our method for procedural animation.

8.2 Personality Trait Facets

In our behavior model, personality traits are successfully used to modulate the behav-

ior in NPCs. However, we believe that this modulation of behavior can be improved

by including not only the five-factor model, but also the six facets for each of the five

personality traits [20]. By including the trait facets, our behavior model would be

able to simulate a more granular range of behaviors.

8.3 Procedural Animation

As a byproduct of the fluctuating mood of our behavior model, we were able to

produce procedural animation by mapping blendshapes to positions on our mood

graph. While procedural animation in this work was not the main focus of this work,

54

we believe that future research could build on our procedural animation method. We

identify four areas for improvement on our procedural animation method: use of the

PAD temperament model, more emotion blendshapes, a more sophisticated blending

function, and body language animation.

The PAD temperament model [29] adds a third dimension to the circumplex model

of affect, which would increase the range of emotion that characters could express.

Emotion blendshape targets could be mapped to three-dimensional positions on the

PAD model.

In our model, we only use four emotion blendshape targets. Fidelity of expression

could be improved by identifying more emotional states, plotting them on the mood

graph, and creating blendshape targets for them.

The blending function for our procedural animation method was quite rudimentary.

The blending function first determines which quadrant the mood is in, then blends

between the two blendshapes that bookend the quadrant. If more emotion blend-

shapes were added to the model and/or if the the PAD temperament model were

to be used to replace the circumplex model of affect, a more sophisticated blending

function must be designed. This new blending function must be able to identify the

closest set of emotional blendshape targets and blend between them accordingly.

Our procedural animation method only animated the face of our NPCs. Future work

could explore how the mood model could be used to produce procedural animation

for the whole body. For instance, step width, arm swing, head tilt, and posture could

be modulated using real-time information from the mood graph.

55

8.4 Simulation Environment

Our maze simulation environment served its purposes well by providing a simple,

structured environment in which to test our behaviour model. In our maze simulation

environment, we are able to observe a correlation between a change in personality

traits and the actions of our NPCs. In order to take the next step towards our

behavior model being realized within a published game, our behavior model should

be tested in different environments. We believe the best environment to test our

model in next is a role-playing game (RPG) environment, since we believe our model

is best suited to be used in RPGs.

If a suitable RPG environment can be created, then similar methods for data collec-

tion can be used to measure correlations between personality traits and NPC actions.

Further, the RPG environment could be used to iterate upon the behavior model.

Compared to our maze environment, an RPG environment would be significantly

more complex. It is likely that a change in environment would shed light on im-

provements that could be made to the behavior model in order to make the model

extensible to many types of games.

56

Chapter 9

APPLICATIONS

9.1 Applying our Behavior model to The Elder Scrolls V: Skyrim

Released in 2011, The Elder Scrolls V: Skyrim [5] remains an immensely popular

game in the open world role-playing game (RPG) genre. Like all modern open world

RPGs, Skyrim features a vast world to explore that is full of NPCs. These NPCs live

in medieval towns and cities, and fulfill all of the typical roles that Warpefelt [42]

provides. In Skyrim, NPCs sell items, offer quests, serve as companions to the player,

speak to the player, speak to each other, and generally go about their every-day lives.

While Skyrim is a great game, it is a bit outdated, especially with regards to the

behavior and animation of NPCs. NPCs all behave very similarly across the vast,

varied regions and collective groups. Further, they deliver dialogue with deadpan

facial expression, giving a quite lifeless feel to the characters.

If Skyrim were to implement our behaviour model and method for procedural ani-

mation into their game, the NPCs would be brought to life. The predictability of

Skyrim’s NPCs could be erased by inserting personality into the Skyrim’s NPC be-

havior models. By varying personality traits by region, the NPCs of Skyrim could be

made to feel as though they belong to a region and culture. The emotional believ-

ability of NPCs would be greatly improved as well by implementing the procedural

animation from this work, as well as the improvements suggested in chapter 8.

57

9.2 Applying our Behavior model to NBA 2K

While we have mainly focused on the RPG genre in this work, we believe that sports

games like the NBA 2K [6] franchise could also benefit from integrating our methods

for behavioral AI and procedural animation. Each player in a NBA game simulation

in NBA 2K could be assigned personality traits in order to inform the decisions they

make over the course of a basketball game. These traits could be used to create more

organic, realistic behavior during basketball games.

Assertive and submissive behaviors could be added to the game, and changes in mood

could occur as the results of the assertive/submissive behaviors. These changes in

mood could then be used to affect subsequent behavior over the course of the game.

For instance, an assertive player could choose to approach the player with the ball

and demand they pass it to them. If they receive the pass, then the assertive player’s

mood will become more pleasant. If they do not receive the pass, then the player’s

mood will be less pleasant. This fluctuation of mood could then be used to determine

further interactions over the course of the game. For instance, an assertive player

whose teammates do not like to pass the ball to could become a ’black hole’, where

whenever they do get a chance to hold the basketball, they don’t ever pass to their

teammates.

58

Chapter 10

CONCLUSION

Our behavior model uses personality traits and mood to determine the actions of

NPCs in our maze simulation environment. A novel, greedy approach to behavior

state traversal has been achieved by incorporating a mood-maximizing algorithm.

Actions, or behavior states, can be used to generate a change in mood, which repre-

sents how the completion of the action may affect the mood of the NPC. A desired

mood for each NPC can be generated based on personality traits, and then the mood-

maximization is achieved by choosing actions that bring the mood of the NPC closest

to their desired mood.

Building off our behavior model, our method for procedural animation utilizes the

fluctuating mood to produce facial animations from blendshapes. A simple blending

function is used to blend between facial blendshapes depending on the position of the

NPC’s mood on our mood graph.

A maze simulation environment has been constructed to observe the results of our

behavior and procedural animation models. A memory of the maze can be represented

as an undirected graph, where nodes of the graph can be marked as visited in order

to record the areas of the maze an NPC has explored.

A correlation between the variation of personality traits and the decisions of NPCs

in our simulation can be observed. This correlation shows that different behaviors be

achieved by modulating the personality traits of NPCs in our simulation environment.

Further, this correlation sheds light on the efficacy of personality and mood models

from the field of Psychology for use in NPC behavior modeling.

59

BIBLIOGRAPHY

[1] Adobe mixamo. https://www.mixamo.com/#/.

[2] Autodesk character generator. Autodesk.

https://charactergenerator.autodesk.com/.

[3] Sensor toolkit |AI |unity asset store.

[4] Unity game engine. Unity Technologies. version 2020.1.6f1.

[5] The Elder Scrolls V: Skyrim. [PC CD-ROM], 2011.

[6] NBA 2k21. [PC CD-ROM], 2020.

[7] N. Afonso and R. Prada. Agents that relate: Improving the social believability

of non-player characters in role-playing games. In S. M. Stevens and S. J.

Saldamarco, editors, Entertainment Computing - ICEC 2008, volume 5309

of Lecture notes in computer science, pages 34–45. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2009.

[8] J. Bates. The role of emotion in believable agents. Communications of the

ACM, 37(7):122–125, jul 1994.

[9] S. Bura. Emotional AI for expanding worlds.

https://www.gdcvault.com/%20play/1015613/Beyond-Eliza-Constructing-

Socially-Engaging.

[10] A. Chowanda, M. Flintham, P. Blanchfield, and M. Valstar. Playing with social

and emotional game companions. In D. Traum, W. Swartout,

P. Khooshabeh, S. Kopp, S. Scherer, and A. Leuski, editors, Intelligent

60

Virtual Agents, volume 10011 of Lecture notes in computer science, pages

85–95. Springer International Publishing, Cham, 2016.

[11] P. Costa and R. Mccrae. Neo PI-r professional manual. Psychological

Assessment Resources, 396, jan 1992.

[12] J. M. Digman. Personality structure: Emergence of the five-factor model.

Annual review of psychology, 41(1):417–440, jan 1990.

[13] H. J. Eysenck and S. Rachman. The Causes and Cures of Neurosis (Psychology

Revivals): An introduction to modern behaviour therapy based on learning

theory and the principles of conditioning. Routledge, nov 2013.

[14] J. Georgeson. NPCs as people: Using databases and behaviour trees to give

non-player characters personality, 2005.

[15] J. Georgeson and C. Child. NPCs as people, too: The extreme AI personality

engine. arXiv:1609.04879 [cs], sep 2016.

[16] L. Gruenwoldt, M. Katchabaw, and S. Danton. CREATING REACTIVE NON

PLAYER CHARACTER ARTIFICIAL INTELLIGENCE IN MODERN

VIDEO GAMES. page 8.

[17] H. Gómez-Gauch́ıa and F. Peinado. Automatic customization of non-player

characters using players temperament. In S. Göbel, R. Malkewitz, I. Iurgel,

D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.

Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,

D. Terzopoulos, D. Tygar, M. Y. Vardi, and G. Weikum, editors,

Technologies for interactive digital storytelling and entertainment, volume

4326 of Lecture notes in computer science, pages 241–252. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2006.

61

[18] M. Hashemian, R. Prada, P. A. Santos, and S. Mascarenhas. Enhancing social

believability of virtual agents using social power dynamics. In Proceedings

of the 18th International Conference on Intelligent Virtual Agents, pages

147–152, New York, NY, USA, nov 2018. ACM.

[19] I. Horswill. Lightweight procedural animation with believable physical

interactions. IEEE Transactions on Computational Intelligence and AI in

Games, 1(1):39–49, mar 2009.

[20] O. John and S. Srivastava. The big-five trait taxonomy: History, measurement,

and theoretical perspectives. In Handbook of personality: Theory and

research, volume 2, pages 102–138. Guilford Press, New York, 1999.

[21] E. Komulainen, K. Meskanen, J. Lipsanen, J. M. Lahti, P. Jylhä, T. Melartin,

M. Wichers, E. Isometsä, and J. Ekelund. The effect of personality on daily

life emotional processes. Plos One, 9(10):e110907, oct 2014.

[22] P. J. Lang. The emotion probe: Studies of motivation and attention. American

Psychologist, 50(5):372–385, 1995.

[23] J. P. Lewis, K. Anjyo, T. Rhee, M. Zhang, F. Pighin, and Z. Deng.

EUROGRAPHICS 2014 / S. Lefebvre and M. Spagnuolo STAR – State of

The Art Report Practice and Theory of Blendshape Facial Models.

[24] L. Li and S. Macdonnell. An Emotion-based Adaptive Behavioural Model for

Simulated Virtual Agents.

[25] A. B. Loyall, J. Bates, and W. Reilly. Integrating reactivity, goals, and emotion

in a broad agent. 1992.

[26] B. Mac Namee. Proactive persistent agents: Using situational intelligence to

create support characters in character-centric computer games, 2004.

62

[27] D. Mackay. The Fantasy Role-Playing Game. A new Performing Art.

McFarland.

[28] M. Mateas and A. Stern. A behavior language for story-based believable

agents. IEEE intelligent systems, 17(4):39–47, jul 2002.

[29] A. Mehrabian. Pleasure-arousal-dominance: A general framework for

describing and measuring individual differences in temperament. Current

Psychology, 14(4):261–292, dec 1996.

[30] A. Mehrabian. Pleasure-arousal-dominance: A general framework for

describing and measuring individual differences in temperament. Current

Psychology, 14(4):261–292, dec 1996.

[31] T. Mitchell. Believable agents: Building interactive personalities. pages 97–123,

1997.

[32] J. Nolan. Westworld, oct 2016.

[33] W. T. Plant. Longitudinal changes in intolerance and authoritarianism for

subjects differing in amount of college education over four years. Genetic

Psychology Monographs, 72(2):247–287, 1965.

[34] J. Posner, J. A. Russell, and B. S. Peterson. The circumplex model of affect: an

integrative approach to affective neuroscience, cognitive development, and

psychopathology. Development and Psychopathology, 17(3):715–734, 2005.

[35] T. Rist and M. Schmitt. AVATAR ARENA : AN ATTEMPT TO APPLY

SOCIO-PHYSIOLOGICAL CONCEPTS OF COGNITIVE

CONSISTENCY IN AVATAR-AVATAR NEGOTIATION SCENARIOS.

2002.

[36] D. Rosen. Animation bootcamp: An indie approach to procedural animation.

63

[37] J. A. Russell. A circumplex model of affect. Journal of Personality and Social

Psychology, 39(6):1161–1178, 1980.

[38] N. Sanford. Introduction. Journal of Social Issues, 12(4):3–12, oct 1956.

[39] M. Sharma, S. Ontañón, M. Mehta, and A. Ram. Drama management and

player modeling for interactive fiction games. Computational Intelligence,

26(2):183–211, may 2010.

[40] L. H. Stewart. Change in personality test scores during college. Journal of

Counseling Psychology, 11(3):211–220, 1964.

[41] H. Verhagen, M. P. Eladhari, M. Johansson, and J. McCoy. Social believability

in games. In D. Reidsma, H. Katayose, and A. Nijholt, editors, Advances in

Computer Entertainment: 10th International Conference, ACE 2013,

Boekelo, The Netherlands, November 12-15, 2013. Proceedings, volume

8253 of Lecture notes in computer science, pages 649–652. Springer

International Publishing, Cham, 2013.

[42] H. Warpefelt. The non-player character : Exploring the believability of NPC

presentation and behavior. 2016.

[43] H. Warpefelt, M. Johansson, and H. Verhagen. Analyzing the believability of

game character behavior using the game agent matrix. page 11.

[44] H. Warpefelt and H. Verhagen. A model of non-player character believability.

Journal of Gaming & Virtual Worlds, 9(1):39–53, mar 2017.

[45] D. G. Williams. Effects of psychoticism, extraversion, and neuroticism in

current mood: A statistical review of six studies. 11(6):615–630.

64

[46] Y. Zhang and L. Li. A personality model based on NEO PI-r for emotion

simulation. IEICE transactions on information and systems,

E97.D(8):2000–2007, 2014.

65

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background
	2.1 The Role of NPCs in Games
	2.2 How do NPCs Work?
	2.3 The Five-Factor Model of Personality
	2.4 Circumplex Model of Affect
	2.5 Procedural Animation

	3 Related Work
	3.1 Personality And Mood in NPCs
	3.2 Social Believability
	3.3 Drama Management

	4 Propused Solution
	5 Development Tools
	5.1 Unity
	5.1.1 Unity NavMesh for AI Pathfinding
	5.1.2 Line of Sight Detection
	5.1.3 Animating in Unity

	5.2 Autodesk Character Generator
	5.3 Mixamo

	6 Methods
	6.1 The Simulation Environment
	6.1.1 The Maze Graph
	6.1.2 Knowledge and Opinion of Other NPCs
	6.1.3 Actions
	6.1.3.1 Go To Node Action
	6.1.3.2 Greet Action
	6.1.3.3 Follow Action
	6.1.3.4 Share Action
	6.1.3.5 Wait Action
	6.1.3.6 Scan Action

	6.2 Behavioral Model
	6.2.1 Behavior Simulation
	6.2.2 Populating the List of Possible Actions
	6.2.3 Mental State
	6.2.4 Personality Representation
	6.2.5 The Mood Graph
	6.2.5.1 Desired Mood

	6.2.6 Calculating EFactor and PFactor for Each Action
	6.2.6.1 Calculating EFactor and PFactor for the Go to Node Action
	6.2.6.2 Calculating EFactor and PFactor for the Follow Action
	6.2.6.3 Calculating EFactor and PFactor for the Share Action
	6.2.6.4 Calculating EFactor and PFactor for the Wait Action
	6.2.6.5 Calculating EFactor and PFactor for the Scan Action

	6.2.7 Calculating a Change in Mood
	6.2.8 Potential Value
	6.2.9 Calculating Change in Perception

	6.3 Procedural Animation with Mood and Blendshapes

	7 Results
	7.1 Data Collection
	7.2 Analysis of the Behavior Model
	7.2.1 Go To Node vs. Trait Correlation Analysis
	7.2.2 Follow vs. Trait Correlation Analysis
	7.2.3 Share vs. Trait Correlation Analysis
	7.2.4 Wait vs. Trait Correlation Analysis
	7.2.5 Trait vs. Distance to Desired Mood Analysis

	7.3 Summarizing Behaviour Model Analysis
	7.4 The Maze Simulation
	7.4.1 The Effectiveness of the Maze as a Behavior Model Testing Environment

	7.5 The Effectiveness of our Procedural Animation Method

	8 Future Work
	8.1 An Alternate Mood Model
	8.2 Personality Trait Facets
	8.3 Procedural Animation
	8.4 Simulation Environment

	9 Applications
	9.1 Applying our Behavior model to The Elder Scrolls V: Skyrim
	9.2 Applying our Behavior model to NBA 2K

	10 Conclusion
	BIBLIOGRAPHY

