

Developing a Data Acquisition System for use in Cold Neutral

Atom Traps

A Senior Project

presented to

the Faculty of the Physics Department

California Polytechnic State University, San Luis Obispo

by

Jonathan Fuzaro Alencar

June 2022

In Partial Fulfillment

of the Requirements of the Degree

Bachelor of Science

Physics

2

Table of Contents

Abstract .. 4

1. Introduction .. 5

2. Theoretical Background ... 6

2.1. The Magneto Optical Trap .. 6

2.2. Laser Spectroscopy & Tuning ... 8

3. Development of New DAQ System .. 11

4. Conclusion ... 15

References ... 16

Appendix .. 17

3

Table of Figures

Figure 1: Pump and trap transitions of 87Rb. The MOT uses the pump transition to
optically pump 87Rb to the cycling trap transition where it may be cooled [2]. 7

Figure 2: Configuration of Zeeman shift due to MOT in 1D. Atoms that deviate from the
center will have their energies shifted to interact with the corresponding beam pointing
inwards (𝜎 + or 𝜎 − circularly polarized) [2]. .. 8

Figure 3: Littrow configuration of ECDL Laser [4]. .. 9

Figure 4: Simplified Arduino DAQ configuration with labeled pin connections. The
Portenta H7 pin connections are highly simplified. ... 12

Figure 5: Saturated absorption PD plotted against the grating PZT voltage. 14

Figure 6: Fabry-Perot PD signal plotted against the grating PZT voltage. 15

4

Abstract

 The rising interest in quantum computing has led to new quantum systems

being developed and researched. Among these are trapped neutral atoms which have

several desirable features and may be configured and operated on using lasers in an

optical lattice. This work describes the development of a new data acquisition system

for use in tuning lasers near the precise hyperfine transition frequencies of 87Rb atoms,

a crucial step in the functionality of a neutral atom trap. This improves on previous

implementations that were deprecated and limited in laser frequency sweep range.

Integration into the experiment was accomplished using an Arduino microcontroller

and Python for real-time data acquisition and visualization.

5

1. Introduction

 A quantum computer uses properties of quantum systems such as superposition

and entanglement to perform a select number of calculations faster than a

conventional classical computer. Like a classical computer uses circuitry to retain

information in the form of binary digits (bits), a quantum computer requires a system

that encapsulates information as quantum bits (qubits) that are manipulated with

quantum algorithms to perform a desired calculation. The criteria that make a

quantum computer have been identified [1], some of which are ideally satisfied by

neutral atoms where scalability and long coherence times (stability) are achievable [2].

 Neutral atom quantum computing experiments may realize a qubit as the

hyperfine ground states of the valence electron in alkali atoms. For example, atoms of

Rubidium-87 (87Rb) may be placed in an optical lattice which would form an ensemble

of qubits that may be used as a quantum computer. To achieve, this 87Rb atoms must

first be cooled significantly and localized to a central point in space where they may

then be trapped in the optical lattice. Cooling and localizing are experimentally

accomplished using Doppler cooling and the Zeeman effect in a magneto-optical trap

(MOT) [3]. This experiment attempts to trap 87Rb atoms in a MOT

 Paramount to the function of both the optical lattice and magneto-optical trap is

a precise tuning of laser light which must first be accomplished using a dichroic-

atomic vapor laser lock (DAVLL) and saturated absorption spectroscopy to determine

the laser frequency relative to the hyperfine transition frequencies of 87Rb. Prior

electronics and software comprising the data acquisition (DAQ) configuration were

limited in the range of its laser frequency sweep and had become deprecated by out-of-

6

date device drivers. This work describes the development of a new DAQ and

visualization framework implemented using the Arduino microcontroller and the

Python programming language.

2. Theoretical Background

2.1. The Magneto Optical Trap

 The MOT is a device that uses light (lasers) and magnetic fields to trap and cool

neutral atoms in a vacuum chamber. The MOT uses a process called Doppler cooling

which exploits the Doppler effect to lower the temperature of an atomic specimen.

Magnetic fields are used to exploit the Zeeman effect coupled with radiation pressure

from polarized laser light to aggregate atoms toward a central location. In conjunction,

these two processes allow the MOT to reduce the temperature of an atomic specimen to

very low temperatures in a centralized location within the MOT chamber.

 Doppler cooling makes use of the relativistic doppler effect which occurs when

the frequency of light changes due to the relative motion of the interacting atom. When

light is incident on an atom that is moving towards it, the Doppler effect indicates that

the light will become blueshifted in the atom’s reference frame. Likewise, light

incident on an atom that is moving away from it will appear redshifted in the atom’s

reference frame. To induce radiation pressure on an atom that is not moving, the laser

frequency must be tuned near the excitation frequency of the atom. Therefore, to slow

down an atom that is moving, incident laser light must be red-detuned slightly below

resonance to induce pressure against its axis of motion. This idea may apply to all three

axes of motion with six lasers, two counterpropagating lasers for each axis. The result

7

is an optical molasses that cools atoms within the intersecting laser beams using the

trap transition shown in Figure 1.

Figure 1: Pump and trap transitions of 87Rb. The MOT uses the pump transition

to optically pump 87Rb to the cycling trap transition where it may be cooled [2].

 The MOT also consist of anti-Helmholtz coils that create a quadrupole magnetic

field in the center of the vacuum chamber. Near the center of the chamber, the

magnetic field strength varies linearly in space and induces splitting in the atomic

energy levels of 87Rb by the Zeeman effect. Figure 2 displays the configuration in 1

dimension; due to atomic transition rules, atoms that deviate from the center of the

trap will have their energy levels shifted closer towards the frequency of polarized

8

laser light that points inward. This will induce a converging radiation pressure that will

drive 87Rb atoms towards the center of the vacuum chamber.

Figure 2: Configuration of Zeeman shift due to MOT in 1D. Atoms that

deviate from the center will have their energies shifted to interact with the

corresponding beam pointing inwards (𝜎! or 𝜎" circularly polarized) [2].

2.2. Laser Spectroscopy & Tuning

 Together, both Doppler cooling and the polarized light radiation on the Zeeman

shifted atoms will work to cool and collect atoms in the MOT. Subsequently, an optical

lattice may then be configured by loading the atoms into dipole traps. Critical to this

entire process is the precise tuning of laser light towards the hyperfine transition

frequencies of 87Rb shown in Figure 1. This experiment uses a near infrared (NIR)

external cavity diode laser (ECDL) utilizing the Littrow configuration for mechanical

feedback as shown in Figure 3. In this configuration, the diffraction grating serves as a

9

retro-reflector and frequency tuner where the first order diffracted beam is reflected

back into the laser diode. The angle of the diffraction grating is controllable via a

piezoelectric transducer (PZT) which results in changing the seed laser frequency and

therefore ECDL output frequency. By applying a voltage ramp to the grating PZT, the

laser frequency may thus be swept.

Figure 3: Littrow configuration of ECDL Laser [4].

 The laser is locked to a reference frequency using a dichroic-atomic-vapor laser

lock (DAVLL). The DAVLL functions by measuring the intensity of linearly polarized

laser light which passes through a Rb vapor cell subject to a magnetic field pointing

along the beam axis. The light is a superposition of right (𝜎!) and left (𝜎") circularly

polarized light and due to a Zeeman shift in the Rb atoms by the magnetic field, the 𝜎!

and 𝜎" light is absorbed at different frequencies. This light subsequently passes

through a quarter-wave plate and then beam splitter producing two beams, each

consisting of the former 𝜎! and 𝜎" light of which are fed into separate photodiodes

(PD) used to measure light intensity. If the laser frequency is swept, the result is two

10

 To resolve precise hyperfine transitions of 87Rb that are indistinguishable in the

Doppler broadened signals, this experiment utilizes saturated absorption (SA)

spectroscopy. This technique functions by applying counter-propagating beams from

the same laser, a “pump” and “probe” beam, into a Rb vapor cell. The pump beam is

much more intense than the probe beam, and when tuned near resonance, will excite a

group of atoms moving along its axis because of the Doppler effect. Similarly, a

different group of atoms moving in the opposite direction will be excited by the probe

beam. When the laser is tuned precisely on a hyperfine transition frequency, the pump

and probe beams will now interact with the same group of atoms, i.e., those moving

perpendicular to the beam axis. The pump beam optically pumps and thus saturates

this group resulting in a lack of absorption from the probe beam. If the laser frequency

is swept and the probe beam measured with a PD, hyperfine transitions will appear as

small peaks in probe beam intensity. The probe beam intensity is relatively small and a

lock-in amplifier is needed to amplify the PD signal. The frequency at which to amplify

the pump beam is modulated using an optical chopper. The saturated absorption

photodiode provides crucial information regarding the laser frequency and is thus

another stream of data actively collected by the DAQ during frequency sweeps [2].

roughly identical Doppler broadened absorption signals each separated by an amount

relative to the magnetic field strength. These two absorption signals are subtracted

electronically to produce an error signal whose zero point represents the intersection

of the two peaks and a good reference point for grating locking. The error signal also

provides a useful reference point from which to observe other signals and as such, is

one of the streams of data collected by the DAQ [2].

11

 In addition to the DAVLL error and SA signals, the experiment also utilizes a

Fabry-Perot (FP) interferometer. The FP is used by measuring the transmission

intensity with a PD across the FP cavity. This provides information on when the laser

light undergoes resonance with the cavity and is useful in distinguishing cavity mode

hops during a sweep. FP signals will consist of single sharp peaks at a free spectral

range 300 MHz apart.

 Together, signals from the DAVLL error, saturated absorption PD, and Fabry-

Perot PD provide the necessary data for precise laser characterization, tuning, and

feedback. This project developed a new data acquisition framework for acquiring,

saving, and visualizing data in real-time during laser frequency sweeps and is

discussed in the next section.

3. Development of New DAQ System

Previous implementation of the data acquisition system utilized the National

Instruments (NI) PCI-6014 multifunction DAQ. The necessary replacement of ramping

electronics that could easily interface to a newer and more flexible DAQ system

resulted in the development of a new DAQ implementation using the Arduino Portenta

H7 microcontroller and Python programming language. The Arduino Portenta was

selected for its ease of use and ability to recreate the grating PZT ramp voltage using its

built-in digital to analogue converter (DAC). Likewise, Python was selected for its ease

of use, and mature package ecosystem.

12

Figure 4: Simplified Arduino DAQ configuration with labeled pin connections.

The Portenta H7 pin connections are highly simplified.

 The DAQ Arduino configuration is outlined in the diagram in Figure 4. Here the

Arduino is responsible for mediating input and output (I/O) between the laboratory

computer and optical system including the lasers and PDs. The pinout is simplified

showing only analog pins labeled A0 through A6. The analog pins are capable of

reading voltage signals ranging from 0 to 5 volts which are converted into digital

(binary) form via the built-in analog to digital converter (ADC). The built-in ADC

defaults to a 10-bit read resolution but may be configured higher on the Portenta H7 up

to 16 bits [5]. This allows for a theoretical measuring resolution of #
$#$

 V though in

practice it is likely much higher. The Portenta H7’s built-in DAC may be accessed

exclusively on the A6 pin and is configured as the ramp voltage output that is amplified

and sent to control the grating PZT for laser frequency sweeps. The Arduino is powered

using the laboratory computer using a USB connection (USB-C on the Portenta H7)

though may also be powered externally.

 In order to read data collected on the Arduino and issue commands related to

data acquisition or the grating PZT ramp, the computer and Arduino must have a

13

means of communication. This is currently accomplished with the USB connection to

serve as a port for serial communication. On the lab computer, software written in

Python is run to interface with the serial port device (USB) drivers using the pySerial

package [6]. The speed of serial communication is limited by baud (bits/s), which for

serial to USB is typically 115200 baud (~14 kB/s). Thus, in tandem with the Arduino,

Python software on the computer uses pySerial to save signal data fed through the

serial port and plots it in real time.

 The visualization of data in real-time is accomplished using Python’s matplotlib

package [7]. Matplotlib is typically used for generating and displaying figures of data

plots. Real-time plotting is accomplished using the package’s Animation class which

facilitates the process of repeatedly drawing and updating plot figures. A figure in

matplotlib is typically distinguished by its own desktop window. A figure can consist of

several axes that may either share a common axis or use their own axis to yield several

subplots on one figure. For laser frequency sweeps, it is desirable to have the DAVLL

error and SA PD signals share an axis on a single figure, with their signal voltages

plotted against the ramp voltage. A second figure consisting of the FP PD signal voltage

is also plotted against the ramp voltage. The result are two figures with all three signals

plotted in real time against the ramping voltage of the grating PZT.

 The appendix contains a functional Python script (.py file) making use of the

packages and techniques just described. It also contains corresponding simplified

Arduino C++ (.ino file) code used for reading and streaming data across the serial port.

The Python script works by defining a Python class called “serialPlot” to facilitate data

collection, timing, and threading. In essence, the serialPlot class initializes by opening

the serial port and creating a background thread (process) that actively saves data that

14

Figure 5: Saturated absorption PD plotted against the grating PZT voltage.

is streamed in by the Arduino while the program is running. In the “main” function,

the program configures the figures to be used for plotting and attempts to

automatically detect which serial port the Arduino is connected to. It then instantiates

a serialPlot object to be used with the animation module from matplotlib to begin

streaming and plotting data. Before the program is ended, the program waits for the

background thread to terminate and then finally saves all collected data in the form of

a csv file. Up to date source code for these files may be found in [8]. Examples of

recorded SA and FP PD signals plotted against a grating PZT voltage sweep are shown

in Figure 5 and Figure 6 respectively. The peaks in the SA signal correspond to

locations at which the grating (laser frequency) is at a Rb hyperfine transitions.

15

Figure 6: Fabry-Perot PD signal plotted against the grating PZT voltage.

4. Conclusion

 Using the Arduino Portenta H7 microcontroller and Python programming

language, a new DAQ system was successfully implemented into the existing

experiment. Acquisition of the saturated absorption and Fabry-Perot photodiode

signals was accomplished for laser frequency sweeps whilst simultaneously rendering

data plots of the corresponding streams in real-time. At time of writing, functionality

may be improved in various ways through the addition of a graphical user interface

(GUI) used to control and configure the DAQ and voltage ramp systems. Additionally,

the Python and Arduino source code may be generalized and improved to ease future

development.

16

References

[1] D. P. DiVincenzo, "The Physical Implementa;on of Quantum Computa;on," Fortschri)e der Physik,
vol. 48, no. 9-11, pp. 771-783, 2000.

[2] K. Christandl, "Advancing neutral atom quantum compu;ng: Studies of one-dimensional and two-
dimensional op;cal laRces on a chip," The Ohio State University, 2005.

[3] H. J. Metcalf and P. Van, Laser Cooling and Trapping, New York: Springer, 1999.

[4] K. Christandl, "A Compact, Gra;ng-stabilized Diode Laser for Atomic Spectroscopy," The Ohio State
University, 2000.

[5] "analogReadResolu;on()," Arduino, 20 October 2020. [Online]. Available:
hbps://www.arduino.cc/reference/en/language/func;ons/zero-due-mkr-
family/analogreadresolu;on/. [Accessed 9 June 2022].

[6] C. Liech;, "pySerial," 2020. [Online]. Available: hbps://pyserial.readthedocs.io/en/latest/. [Accessed
9 June 2022].

[7] "Matplotlib: Visualiza;on with Python," 2021. [Online]. Available: hbps://matplotlib.org/. [Accessed
9 June 2022].

[8] "AtomTrapLab," GitHub, Inc., 2022. [Online]. Available:
hbps://github.com/KGAtomTrapLab/AtomTrapLab_auto. [Accessed 9 June 2022].

17

Appendix

Python Source Code
from threading import Thread
from serial.tools import list_ports
import serial
import time
import collections
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import struct
import copy
import numpy as np

class serialPlot(Thread):
 def __init__(self, serialPort='/dev/ttyUSB0', serialBaud=38400, plotLength=100, dataNumBytes=2, numPlots=1):
 self.port = serialPort
 self.baud = serialBaud
 self.plotMaxLength = plotLength
 self.dataNumBytes = dataNumBytes
 self.numPlots = numPlots
 self.rawData = bytearray(numPlots * dataNumBytes)
 self.dataType = None
 if dataNumBytes == 2: self.dataType = 'h' # 2 byte integer
 elif dataNumBytes == 4: self.dataType = 'f' # 4 byte float
 elif dataNumBytes == 8: self.dataType = 'd' # 8 byte float (double)
 self.data = []
 self.privateData = None # for storing a copy of the data so all plots are synchronized
 for i in range(numPlots): # give an array for each type of data and store them in a list
 self.data.append(collections.deque([0] * plotLength, maxlen=plotLength))
 self.isRun = True
 self.isReceiving = False
 self.thread = None
 self.plotTimer = 0
 self.previousTimer = 0

 if serialPort == None:
 for ports in list_ports.comports():
 if 'arduino' in str(ports.manufacturer).casefold():
 self.port = ports.device
 print('Trying to connect to: ' + str(serialPort) + ' at ' + str(serialBaud) + ' BAUD.')
 try:
 self.serialConnection = serial.Serial(serialPort, serialBaud, timeout=4)
 print('Connected to ' + str(serialPort) + ' at ' + str(serialBaud) + ' BAUD.')
 except:
 print("Failed to connect with " + str(serialPort) + ' at ' + str(serialBaud) + ' BAUD.')

 def readSerialStart(self):
 if self.thread == None:
 self.thread = Thread(target=self.backgroundThread)
 self.thread.start()
 # Block till we start receiving values
 while self.isReceiving != True:
 time.sleep(0.1)

 def getSerialData(self, frame, lines, lineValueText, lineLabel, timeText, pltNumber):
 if pltNumber == 0: # in order to make all the clocks show the same reading
 currentTimer = time.perf_counter()
 self.plotTimer = int((currentTimer - self.previousTimer) * 1000) # the first reading will be erroneous
 self.previousTimer = currentTimer
 self.privateData = copy.deepcopy(self.rawData) # so that the 3 values in our plots will be synchronized to the same
sample time
 timeText.set_text('Plot Interval = ' + str(self.plotTimer) + 'ms')
 data = self.privateData[(pltNumber*self.dataNumBytes):(self.dataNumBytes + pltNumber*self.dataNumBytes)]
 value, = struct.unpack(self.dataType, data)
 self.data[pltNumber].append(value) # we get the latest data point and append it to our array
 lines.set_data(range(self.plotMaxLength), self.data[pltNumber])
 lineValueText.set_text('[' + lineLabel + '] = ' + str(value))

 def backgroundThread(self): # retrieve data
 time.sleep(1.0) # give some buffer time for retrieving data
 self.serialConnection.reset_input_buffer()
 while (self.isRun):
 self.serialConnection.readinto(self.rawData)
 self.isReceiving = True

 def close(self):
 self.isRun = False

18

 self.thread.join()
 self.serialConnection.close()
 np.savetxt('out.csv', np.array(self.data), delimiter=',', fmt='%8f')
 print('Disconnected...')

def makeFigure(xLimit, yLimit, title):
 xmin, xmax = xLimit
 ymin, ymax = yLimit
 fig = plt.figure(figsize=[16, 5])
 ax = plt.axes(xlim=(xmin, xmax), ylim=((ymin - (ymax - ymin) / 10),(ymax + (ymax - ymin) / 10)))
 ax.set_title(title)
 ax.set_xlabel("Time")
 ax.set_ylabel("Photodiode Signal [V]")
 # ax.set_yticks(xrange(ymin, ymax))
 return fig, ax

def findPort() -> str:
 print('Searching for DAQ serial port...', flush=True)
 ports = list_ports.comports()

 for port in ports:
 for info in [port.description, port.manufacturer, port.product]:
 if isinstance(info, str):
 if any(match in info.casefold() for match in ('arduino', 'envie')):
 return port.device
 print('Cannot find Arduino! Port must be specified', flush=True)
 return None

def main():
 portName = findPort()
 baudRate = 115200
 maxPlotLength = 1000 # number of points in x-axis of real time plot
 dataNumBytes = 4 # number of bytes of 1 data point
 numPlots = 2 # number of plots in 1 graph
 s = serialPlot(portName, baudRate, maxPlotLength, dataNumBytes, numPlots) # initializes all required variables
 s.readSerialStart() # starts background thread

 # plotting starts below
 pltInterval = 42 # Period at which the plot animation updates [ms]
 lineLabelText = ['Saturated Absorption', 'Fabry-Perot']
 title = ['Saturated Absportion', 'Fabry-Perot']
 xLimit = [(0, maxPlotLength), (0, maxPlotLength), (0, maxPlotLength)]
 yLimit = [(-0.05, 1), (-0.05, 5)]
 style = ['b-', 'c-'] # linestyles for the different plots
 anim = []
 for i in range(numPlots):
 fig, ax = makeFigure(xLimit[i], yLimit[i], title[i])
 lines = ax.plot([], [], style[i], label=lineLabelText[i])[0]
 timeText = ax.text(0.50, 0.95, '', transform=ax.transAxes)
 lineValueText = ax.text(0.50, 0.90, '', transform=ax.transAxes)
 anim.append(animation.FuncAnimation(fig, s.getSerialData, fargs=(lines, lineValueText, lineLabelText[i], timeText, i),
interval=pltInterval)) # fargs has to be a tuple
 plt.legend(loc="upper left")
 plt.show()

 s.close()

if __name__ == '__main__':
 main()

19

Arduino Source Code (C++)
/**
 * @file simple_daq.ino
 * @author Jonathan Fuzaro Alencar (jfuzaroa@outlook.com)
 * @brief Arduino program to test piezo ramp and data acquisition.
 * @date 2022-06-12
 */

#if defined(LEDR) && defined(LEDG) && defined(LEDB)
 #define PORTENTA
 #define LED_BUILTIN LEDB
#else
 #define LEDR LED_BUILTIN
 #define LEDG LED_BUILTIN
 #define LEDB LED_BUILTIN
#endif

#ifndef PORTENTA
 auto const kTestOut = 3; // digital (PWM) output pin for voltage ramp
 auto constexpr aReadRes = 10; // [bits] analogRead bit resolution
 auto constexpr aWriteRes = 8; // [bits] analogWrite bit resolution
#else
 auto const kTestOut = A6; // analog (DAC) output pin for voltage ramp
 auto constexpr aReadRes = 16; // [bits] analogRead bit resolution
 auto constexpr aWriteRes = 12; // [bits] analogWrite bit resolution
#endif

auto constexpr kBaud = 115200; // serial baud rate (bits per second)
auto constexpr kSatAbsPin = A0; // analog input pin for saturated absorption PD
auto constexpr kErrorPin = A1; // analog input pin for error signal
auto constexpr kFabPerPin = A2; // analog input pin for Fabry-Perot PD

auto const aReadMax = pow(2, aReadRes) - 1; // max read value
auto const aWriteMax = pow(2, aWriteRes) - 1; // max write value

/**
 * @brief Configures built-in LED including RGB leds of Arduino Portenta.
 */
void setupLED() {
 pinMode(LED_BUILTIN, OUTPUT);
 #ifdef PORTENTA
 pinMode(LEDR, OUTPUT);
 pinMode(LEDG, OUTPUT);
 pinMode(LEDB, OUTPUT);
 digitalWrite(LEDR, HIGH);
 digitalWrite(LEDG, HIGH);
 digitalWrite(LEDB, HIGH);
 #endif
}

/**
 * @brief Maps value (x) from one floating point range (in_min, in_max) to another another (out_min, out_max).
 *
 * @param in Input value in range between `in_min` and `in_max`.
 * @param in_min Minimum input value.
 * @param in_max Maximum input value.
 * @param out_min Minimum output value.
 * @param out_max Maximum output value.
 * @return double Mapped output value.
 */
double mapD(double in, double in_min, double in_max, double out_min, double out_max) {
 return (in - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}

/**
 * @brief Streams data out through serial as raw byte values.
 *
 * @param data1 First data value to be sent.
 * @param data2 Second data value to be send.
 */
void sendSerial(float* data1, float* data2)
{
 byte* byteData1 = (byte*)(data1);
 byte* byteData2 = (byte*)(data2);
 byte buf[8] = {byteData1[0], byteData1[1], byteData1[2], byteData1[3],
 byteData2[0], byteData2[1], byteData2[2], byteData2[3]};
 Serial.write(buf, 8);
}

void setup() {
 pinMode(kSatAbsPin, INPUT);

20

 pinMode(kErrorPin, INPUT);
 pinMode(kFabPerPin, INPUT);
 setupLED();

 Serial.begin(kBaud); // begin serial communication via USB
}

void loop() {
 int satAbsRaw = analogRead(kSatAbsPin);
 int fabPerRaw = analogRead(kFabPerPin);
 float SA = mapD(satAbsRaw, 0, aReadMax, 0.0, 5);
 float FP = mapD(fabPerRaw, 0, aReadMax, 0.0, 5);
 sendSerial(&SA, &FP);
}

