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Abstract 

 The rising interest in quantum computing has led to new quantum systems 

being developed and researched. Among these are trapped neutral atoms which have 

several desirable features and may be configured and operated on using lasers in an 

optical lattice. This work describes the development of a new data acquisition system 

for use in tuning lasers near the precise hyperfine transition frequencies of 87Rb atoms, 

a crucial step in the functionality of a neutral atom trap. This improves on previous 

implementations that were deprecated and limited in laser frequency sweep range. 

Integration into the experiment was accomplished using an Arduino microcontroller 

and Python for real-time data acquisition and visualization.  
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1. Introduction 

 A quantum computer uses properties of quantum systems such as superposition 

and entanglement to perform a select number of calculations faster than a 

conventional classical computer. Like a classical computer uses circuitry to retain 

information in the form of binary digits (bits), a quantum computer requires a system 

that encapsulates information as quantum bits (qubits) that are manipulated with 

quantum algorithms to perform a desired calculation. The criteria that make a 

quantum computer have been identified [1], some of which are ideally satisfied by 

neutral atoms where scalability and long coherence times (stability) are achievable [2]. 

 Neutral atom quantum computing experiments may realize a qubit as the 

hyperfine ground states of the valence electron in alkali atoms. For example, atoms of 

Rubidium-87 (87Rb) may be placed in an optical lattice which would form an ensemble 

of qubits that may be used as a quantum computer. To achieve, this 87Rb atoms must 

first be cooled significantly and localized to a central point in space where they may 

then be trapped in the optical lattice. Cooling and localizing are experimentally 

accomplished using Doppler cooling and the Zeeman effect in a magneto-optical trap 

(MOT) [3]. This experiment attempts to trap 87Rb atoms in a MOT 

 Paramount to the function of both the optical lattice and magneto-optical trap is 

a precise tuning of laser light which must first be accomplished using a dichroic-

atomic vapor laser lock (DAVLL) and saturated absorption spectroscopy to determine 

the laser frequency relative to the hyperfine transition frequencies of 87Rb. Prior 

electronics and software comprising the data acquisition (DAQ) configuration were 

limited in the range of its laser frequency sweep and had become deprecated by out-of-
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date device drivers. This work describes the development of a new DAQ and 

visualization framework implemented using the Arduino microcontroller and the 

Python programming language.  

2. Theoretical Background 

2.1. The Magneto Optical Trap 

 The MOT is a device that uses light (lasers) and magnetic fields to trap and cool 

neutral atoms in a vacuum chamber. The MOT uses a process called Doppler cooling 

which exploits the Doppler effect to lower the temperature of an atomic specimen. 

Magnetic fields are used to exploit the Zeeman effect coupled with radiation pressure 

from polarized laser light to aggregate atoms toward a central location. In conjunction, 

these two processes allow the MOT to reduce the temperature of an atomic specimen to 

very low temperatures in a centralized location within the MOT chamber. 

 Doppler cooling makes use of the relativistic doppler effect which occurs when 

the frequency of light changes due to the relative motion of the interacting atom. When 

light is incident on an atom that is moving towards it, the Doppler effect indicates that 

the light will become blueshifted in the atom’s reference frame. Likewise, light 

incident on an atom that is moving away from it will appear redshifted in the atom’s 

reference frame. To induce radiation pressure on an atom that is not moving, the laser 

frequency must be tuned near the excitation frequency of the atom. Therefore, to slow 

down an atom that is moving, incident laser light must be red-detuned slightly below 

resonance to induce pressure against its axis of motion. This idea may apply to all three 

axes of motion with six lasers, two counterpropagating lasers for each axis. The result 
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is an optical molasses that cools atoms within the intersecting laser beams using the 

trap transition shown in Figure 1. 

 

  

Figure 1: Pump and trap transitions of 87Rb. The MOT uses the pump transition 

to optically pump 87Rb to the cycling trap transition where it may be cooled [2]. 

 

 The MOT also consist of anti-Helmholtz coils that create a quadrupole magnetic 

field in the center of the vacuum chamber. Near the center of the chamber, the 

magnetic field strength varies linearly in space and induces splitting in the atomic 

energy levels of 87Rb by the Zeeman effect. Figure 2 displays the configuration in 1 

dimension; due to atomic transition rules, atoms that deviate from the center of the 

trap will have their energy levels shifted closer towards the frequency of polarized 
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laser light that points inward. This will induce a converging radiation pressure that will 

drive 87Rb atoms towards the center of the vacuum chamber. 

 

 
Figure 2: Configuration of Zeeman shift due to MOT in 1D. Atoms that 

deviate from the center will have their energies shifted to interact with the 

corresponding beam pointing inwards (𝜎! or 𝜎" circularly polarized) [2]. 

 

2.2. Laser Spectroscopy & Tuning 

 Together, both Doppler cooling and the polarized light radiation on the Zeeman 

shifted atoms will work to cool and collect atoms in the MOT. Subsequently, an optical 

lattice may then be configured by loading the atoms into dipole traps. Critical to this 

entire process is the precise tuning of laser light towards the hyperfine transition 

frequencies of 87Rb shown in Figure 1. This experiment uses a near infrared (NIR) 

external cavity diode laser (ECDL) utilizing the Littrow configuration for mechanical 

feedback as shown in Figure 3. In this configuration, the diffraction grating serves as a 
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retro-reflector and frequency tuner where the first order diffracted beam is reflected 

back into the laser diode. The angle of the diffraction grating is controllable via a 

piezoelectric transducer (PZT) which results in changing the seed laser frequency and 

therefore ECDL output frequency. By applying a voltage ramp to the grating PZT, the 

laser frequency may thus be swept. 

 

 
Figure 3: Littrow configuration of ECDL Laser [4]. 

 

 The laser is locked to a reference frequency using a dichroic-atomic-vapor laser 

lock (DAVLL). The DAVLL functions by measuring the intensity of linearly polarized 

laser light which passes through a Rb vapor cell subject to a magnetic field pointing 

along the beam axis. The light is a superposition of right (𝜎!) and left (𝜎") circularly 

polarized light and due to a Zeeman shift in the Rb atoms by the magnetic field, the 𝜎! 

and 𝜎" light is absorbed at different frequencies. This light subsequently passes 

through a quarter-wave plate and then beam splitter producing two beams, each 

consisting of the former 𝜎! and 𝜎" light of which are fed into separate photodiodes 

(PD) used to measure light intensity. If the laser frequency is swept, the result is two 
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 To resolve precise hyperfine transitions of 87Rb that are indistinguishable in the 

Doppler broadened signals, this experiment utilizes saturated absorption (SA) 

spectroscopy. This technique functions by applying counter-propagating beams from 

the same laser, a “pump” and “probe” beam, into a Rb vapor cell. The pump beam is 

much more intense than the probe beam, and when tuned near resonance, will excite a 

group of atoms moving along its axis because of the Doppler effect. Similarly, a 

different group of atoms moving in the opposite direction will be excited by the probe 

beam. When the laser is tuned precisely on a hyperfine transition frequency, the pump 

and probe beams will now interact with the same group of atoms, i.e., those moving 

perpendicular to the beam axis. The pump beam optically pumps and thus saturates 

this group resulting in a lack of absorption from the probe beam. If the laser frequency 

is swept and the probe beam measured with a PD, hyperfine transitions will appear as 

small peaks in probe beam intensity. The probe beam intensity is relatively small and a 

lock-in amplifier is needed to amplify the PD signal. The frequency at which to amplify 

the pump beam is modulated using an optical chopper. The saturated absorption 

photodiode provides crucial information regarding the laser frequency and is thus 

another stream of data actively collected by the DAQ during frequency sweeps [2]. 

roughly identical Doppler broadened absorption signals each separated by an amount 

relative to the magnetic field strength. These two absorption signals are subtracted

electronically to produce an error signal whose zero point represents the intersection 

of the two peaks and a good reference point for grating locking. The error signal also 

provides a useful reference point from which to observe other signals and as such, is

one of the streams of data collected by the DAQ [2].
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 In addition to the DAVLL error and SA signals, the experiment also utilizes a 

Fabry-Perot (FP) interferometer. The FP is used by measuring the transmission 

intensity with a PD across the FP cavity. This provides information on when the laser 

light undergoes resonance with the cavity and is useful in distinguishing cavity mode 

hops during a sweep. FP signals will consist of single sharp peaks at a free spectral 

range 300 MHz apart.  

 Together, signals from the DAVLL error, saturated absorption PD, and Fabry-

Perot PD provide the necessary data for precise laser characterization, tuning, and 

feedback.  This project developed a new data acquisition framework for acquiring, 

saving, and visualizing data in real-time during laser frequency sweeps and is 

discussed in the next section. 

3. Development of New DAQ System 

Previous implementation of the data acquisition system utilized the National 

Instruments (NI) PCI-6014 multifunction DAQ. The necessary replacement of ramping 

electronics that could easily interface to a newer and more flexible DAQ system 

resulted in the development of a new DAQ implementation using the Arduino Portenta 

H7 microcontroller and Python programming language. The Arduino Portenta was 

selected for its ease of use and ability to recreate the grating PZT ramp voltage using its 

built-in digital to analogue converter (DAC). Likewise, Python was selected for its ease 

of use, and mature package ecosystem. 
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Figure 4: Simplified Arduino DAQ configuration with labeled pin connections. 

The Portenta H7 pin connections are highly simplified. 

 

 The DAQ Arduino configuration is outlined in the diagram in Figure 4. Here the 

Arduino is responsible for mediating input and output (I/O) between the laboratory 

computer and optical system including the lasers and PDs. The pinout is simplified 

showing only analog pins labeled A0 through A6. The analog pins are capable of 

reading voltage signals ranging from 0 to 5 volts which are converted into digital 

(binary) form via the built-in analog to digital converter (ADC). The built-in ADC 

defaults to a 10-bit read resolution but may be configured higher on the Portenta H7 up 

to 16 bits [5]. This allows for a theoretical measuring resolution of #
$#$

 V though in 

practice it is likely much higher. The Portenta H7’s built-in DAC may be accessed 

exclusively on the A6 pin and is configured as the ramp voltage output that is amplified 

and sent to control the grating PZT for laser frequency sweeps. The Arduino is powered 

using the laboratory computer using a USB connection (USB-C on the Portenta H7) 

though may also be powered externally.  

 In order to read data collected on the Arduino and issue commands related to 

data acquisition or the grating PZT ramp, the computer and Arduino must have a 
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means of communication. This is currently accomplished with the USB connection to 

serve as a port for serial communication. On the lab computer, software written in 

Python is run to interface with the serial port device (USB) drivers using the pySerial 

package [6]. The speed of serial communication is limited by baud (bits/s), which for 

serial to USB is typically 115200 baud (~14 kB/s). Thus, in tandem with the Arduino, 

Python software on the computer uses pySerial to save signal data fed through the 

serial port and plots it in real time. 

 The visualization of data in real-time is accomplished using Python’s matplotlib 

package [7]. Matplotlib is typically used for generating and displaying figures of data 

plots. Real-time plotting is accomplished using the package’s Animation class which 

facilitates the process of repeatedly drawing and updating plot figures. A figure in 

matplotlib is typically distinguished by its own desktop window. A figure can consist of 

several axes that may either share a common axis or use their own axis to yield several 

subplots on one figure. For laser frequency sweeps, it is desirable to have the DAVLL 

error and SA PD signals share an axis on a single figure, with their signal voltages 

plotted against the ramp voltage. A second figure consisting of the FP PD signal voltage 

is also plotted against the ramp voltage. The result are two figures with all three signals 

plotted in real time against the ramping voltage of the grating PZT. 

 The appendix contains a functional Python script (.py file) making use of the 

packages and techniques just described. It also contains corresponding simplified 

Arduino C++ (.ino file) code used for reading and streaming data across the serial port. 

The Python script works by defining a Python class called “serialPlot” to facilitate data 

collection, timing, and threading. In essence, the serialPlot class initializes by opening 

the serial port and creating a background thread (process) that actively saves data that 
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Figure 5: Saturated absorption PD plotted against the grating PZT voltage. 

is streamed in by the Arduino while the program is running. In the “main” function, 

the program configures the figures to be used for plotting and attempts to 

automatically detect which serial port the Arduino is connected to. It then instantiates 

a serialPlot object to be used with the animation module from matplotlib to begin 

streaming and plotting data. Before the program is ended, the program waits for the 

background thread to terminate and then finally saves all collected data in the form of 

a csv file. Up to date source code for these files may be found in [8]. Examples of 

recorded SA and FP PD signals plotted against a grating PZT voltage sweep are shown 

in Figure 5 and Figure 6 respectively. The peaks in the SA signal correspond to 

locations at which the grating (laser frequency) is at a Rb hyperfine transitions.
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Figure 6: Fabry-Perot PD signal plotted against the grating PZT voltage. 

 

4. Conclusion 

 Using the Arduino Portenta H7 microcontroller and Python programming 

language, a new DAQ system was successfully implemented into the existing 

experiment. Acquisition of the saturated absorption and Fabry-Perot photodiode 

signals was accomplished for laser frequency sweeps whilst simultaneously rendering 

data plots of the corresponding streams in real-time. At time of writing, functionality 

may be improved in various ways through the addition of a graphical user interface 

(GUI) used to control and configure the DAQ and voltage ramp systems. Additionally, 

the Python and Arduino source code may be generalized and improved to ease future 

development. 
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Appendix 

Python Source Code 
from threading import Thread 
from serial.tools import list_ports 
import serial 
import time 
import collections 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
import struct 
import copy 
import numpy as np 
 
class serialPlot(Thread): 
    def __init__(self, serialPort='/dev/ttyUSB0', serialBaud=38400, plotLength=100, dataNumBytes=2, numPlots=1): 
        self.port = serialPort 
        self.baud = serialBaud 
        self.plotMaxLength = plotLength 
        self.dataNumBytes = dataNumBytes 
        self.numPlots = numPlots 
        self.rawData = bytearray(numPlots * dataNumBytes) 
        self.dataType = None 
        if dataNumBytes == 2: self.dataType = 'h' # 2 byte integer 
        elif dataNumBytes == 4: self.dataType = 'f' # 4 byte float 
        elif dataNumBytes == 8: self.dataType = 'd' # 8 byte float (double) 
        self.data = [] 
        self.privateData = None     # for storing a copy of the data so all plots are synchronized 
        for i in range(numPlots):   # give an array for each type of data and store them in a list 
            self.data.append(collections.deque([0] * plotLength, maxlen=plotLength)) 
        self.isRun = True 
        self.isReceiving = False 
        self.thread = None 
        self.plotTimer = 0 
        self.previousTimer = 0 
 
        if serialPort == None: 
            for ports in list_ports.comports(): 
                if 'arduino' in str(ports.manufacturer).casefold(): 
                    self.port = ports.device 
        print('Trying to connect to: ' + str(serialPort) + ' at ' + str(serialBaud) + ' BAUD.') 
        try: 
            self.serialConnection = serial.Serial(serialPort, serialBaud, timeout=4) 
            print('Connected to ' + str(serialPort) + ' at ' + str(serialBaud) + ' BAUD.') 
        except: 
            print("Failed to connect with " + str(serialPort) + ' at ' + str(serialBaud) + ' BAUD.') 
 
    def readSerialStart(self): 
        if self.thread == None: 
            self.thread = Thread(target=self.backgroundThread) 
            self.thread.start() 
            # Block till we start receiving values 
            while self.isReceiving != True: 
                time.sleep(0.1) 
 
    def getSerialData(self, frame, lines, lineValueText, lineLabel, timeText, pltNumber): 
        if pltNumber == 0:  # in order to make all the clocks show the same reading 
            currentTimer = time.perf_counter() 
            self.plotTimer = int((currentTimer - self.previousTimer) * 1000)     # the first reading will be erroneous 
            self.previousTimer = currentTimer 
        self.privateData = copy.deepcopy(self.rawData)    # so that the 3 values in our plots will be synchronized to the same 
sample time 
        timeText.set_text('Plot Interval = ' + str(self.plotTimer) + 'ms') 
        data = self.privateData[(pltNumber*self.dataNumBytes):(self.dataNumBytes + pltNumber*self.dataNumBytes)] 
        value,  = struct.unpack(self.dataType, data) 
        self.data[pltNumber].append(value)    # we get the latest data point and append it to our array 
        lines.set_data(range(self.plotMaxLength), self.data[pltNumber]) 
        lineValueText.set_text('[' + lineLabel + '] = ' + str(value)) 
 
    def backgroundThread(self):    # retrieve data 
        time.sleep(1.0)  # give some buffer time for retrieving data 
        self.serialConnection.reset_input_buffer() 
        while (self.isRun): 
            self.serialConnection.readinto(self.rawData) 
            self.isReceiving = True 
 
    def close(self): 
        self.isRun = False 
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        self.thread.join() 
        self.serialConnection.close() 
        np.savetxt('out.csv', np.array(self.data), delimiter=',', fmt='%8f') 
        print('Disconnected...') 
 
 
def makeFigure(xLimit, yLimit, title): 
    xmin, xmax = xLimit 
    ymin, ymax = yLimit 
    fig = plt.figure(figsize=[16, 5]) 
    ax = plt.axes(xlim=(xmin, xmax), ylim=((ymin - (ymax - ymin) / 10),(ymax + (ymax - ymin) / 10))) 
    ax.set_title(title) 
    ax.set_xlabel("Time") 
    ax.set_ylabel("Photodiode Signal [V]") 
    # ax.set_yticks(xrange(ymin, ymax)) 
    return fig, ax 
 
def findPort() -> str: 
    print('Searching for DAQ serial port...', flush=True) 
    ports = list_ports.comports() 
 
    for port in ports: 
        for info in [port.description, port.manufacturer, port.product]: 
            if isinstance(info, str): 
                if any(match in info.casefold() for match in ('arduino', 'envie')): 
                    return port.device 
    print('Cannot find Arduino! Port must be specified', flush=True) 
    return None 
 
def main(): 
    portName = findPort() 
    baudRate = 115200 
    maxPlotLength = 1000 # number of points in x-axis of real time plot 
    dataNumBytes = 4     # number of bytes of 1 data point 
    numPlots = 2         # number of plots in 1 graph 
    s = serialPlot(portName, baudRate, maxPlotLength, dataNumBytes, numPlots)   # initializes all required variables 
    s.readSerialStart()                                               # starts background thread 
 
    # plotting starts below 
    pltInterval = 42    # Period at which the plot animation updates [ms] 
    lineLabelText = ['Saturated Absorption', 'Fabry-Perot'] 
    title = ['Saturated Absportion', 'Fabry-Perot'] 
    xLimit = [(0, maxPlotLength), (0, maxPlotLength), (0, maxPlotLength)] 
    yLimit = [(-0.05, 1), (-0.05, 5)] 
    style = ['b-', 'c-']  # linestyles for the different plots 
    anim = [] 
    for i in range(numPlots): 
        fig, ax = makeFigure(xLimit[i], yLimit[i], title[i]) 
        lines = ax.plot([], [], style[i], label=lineLabelText[i])[0] 
        timeText = ax.text(0.50, 0.95, '', transform=ax.transAxes) 
        lineValueText = ax.text(0.50, 0.90, '', transform=ax.transAxes) 
        anim.append(animation.FuncAnimation(fig, s.getSerialData, fargs=(lines, lineValueText, lineLabelText[i], timeText, i), 
interval=pltInterval))  # fargs has to be a tuple 
        plt.legend(loc="upper left") 
    plt.show() 
 
    s.close() 
 
 
if __name__ == '__main__': 
    main()  
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Arduino Source Code (C++) 
/** 
 * @file simple_daq.ino 
 * @author Jonathan Fuzaro Alencar (jfuzaroa@outlook.com) 
 * @brief Arduino program to test piezo ramp and data acquisition. 
 * @date 2022-06-12 
 */ 
 
#if defined(LEDR) && defined(LEDG) && defined(LEDB) 
    #define PORTENTA 
    #define LED_BUILTIN LEDB 
#else 
    #define LEDR LED_BUILTIN 
    #define LEDG LED_BUILTIN 
    #define LEDB LED_BUILTIN 
#endif 
 
#ifndef PORTENTA 
  auto const kTestOut = 3; // digital (PWM) output pin for voltage ramp 
  auto constexpr aReadRes = 10; // [bits] analogRead bit resolution 
  auto constexpr aWriteRes = 8; // [bits] analogWrite bit resolution 
#else 
  auto const kTestOut = A6; // analog (DAC) output pin for voltage ramp 
  auto constexpr aReadRes = 16; // [bits] analogRead bit resolution 
  auto constexpr aWriteRes = 12; // [bits] analogWrite bit resolution 
#endif 
 
auto constexpr kBaud = 115200; // serial baud rate (bits per second) 
auto constexpr kSatAbsPin = A0; // analog input pin for saturated absorption PD 
auto constexpr kErrorPin  = A1; // analog input pin for error signal 
auto constexpr kFabPerPin = A2; // analog input pin for Fabry-Perot PD 
 
auto const aReadMax  = pow(2, aReadRes)  - 1; // max read value 
auto const aWriteMax = pow(2, aWriteRes) - 1; // max write value 
 
/** 
 * @brief Configures built-in LED including RGB leds of Arduino Portenta. 
 */ 
void setupLED() { 
    pinMode(LED_BUILTIN, OUTPUT); 
    #ifdef PORTENTA 
        pinMode(LEDR, OUTPUT); 
        pinMode(LEDG, OUTPUT); 
        pinMode(LEDB, OUTPUT); 
        digitalWrite(LEDR, HIGH); 
        digitalWrite(LEDG, HIGH); 
        digitalWrite(LEDB, HIGH); 
    #endif 
} 
 
/** 
 * @brief Maps value (x) from one floating point range (in_min, in_max) to another another (out_min, out_max). 
 *  
 * @param in Input value in range between `in_min` and `in_max`. 
 * @param in_min Minimum input value. 
 * @param in_max Maximum input value. 
 * @param out_min Minimum output value. 
 * @param out_max Maximum output value. 
 * @return double Mapped output value. 
 */ 
double mapD(double in, double in_min, double in_max, double out_min, double out_max) { 
  return (in - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; 
} 
 
/** 
 * @brief Streams data out through serial as raw byte values. 
 *  
 * @param data1 First data value to be sent. 
 * @param data2 Second data value to be send. 
 */ 
void sendSerial(float* data1, float* data2) 
{ 
  byte* byteData1 = (byte*)(data1); 
  byte* byteData2 = (byte*)(data2); 
  byte buf[8] = {byteData1[0], byteData1[1], byteData1[2], byteData1[3], 
                 byteData2[0], byteData2[1], byteData2[2], byteData2[3]}; 
  Serial.write(buf, 8); 
} 
 
void setup() { 
  pinMode(kSatAbsPin, INPUT); 
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  pinMode(kErrorPin, INPUT); 
  pinMode(kFabPerPin, INPUT); 
  setupLED(); 
   
  Serial.begin(kBaud); // begin serial communication via USB 
} 
 
void loop() { 
  int satAbsRaw = analogRead(kSatAbsPin); 
  int fabPerRaw = analogRead(kFabPerPin); 
  float SA = mapD(satAbsRaw, 0, aReadMax, 0.0, 5); 
  float FP = mapD(fabPerRaw, 0, aReadMax, 0.0, 5); 
  sendSerial(&SA, &FP); 
} 


