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ABSTRACT

Interplanetary Trajectory Optimization with Automated Fly-By Sequences

Emily Doughty

Critical aspects of spacecraft missions, such as component organization, control al-

gorithms, and trajectories, can be optimized using a variety of algorithms or solvers.

Each solver has intrinsic strengths and weaknesses when applied to a given optimiza-

tion problem. One way to mitigate limitations is to combine different solvers in an

island model that allows these algorithms to share solutions. The program Spacecraft

Trajectory Optimization Suite (STOpS) is an island model suite of heterogeneous

and homogeneous Evolutionary Algorithms (EA) that analyze interplanetary trajec-

tories for multiple gravity assist (MGA) missions. One limitation of STOpS and other

spacecraft trajectory optimization programs (GMAT and Pygmo/Pagmo) is that they

require a defined encounter body sequence to produce a constant length set of design

variables. Early phase trajectory design would benefit from the ability to consider

problems with an undefined encounter sequence as it would provide a set of diverse

trajectories – some of which might not have been considered during mission planning.

The Hybrid Optimal Control Problem (HOCP) and the concept of hidden genes are

explored with the most common EA, the Genetic Algorithm (GA), to compare how

the methods perform with a Variable Size Design Space (VSDS). Test problems are

altered so that the input to the cost function (the object being optimized) contains

a set of continuous variables whose length depends on a corresponding set of discrete

variables (e.g. the number of planet encounters determines the number of transfer

time variables). Initial testing with a scalable problem (Branin’s function) indicates

that even though the HOCP consistently converges on an optimal solution, the ex-

pensive run time (due to algorithm collaboration) would only escalate in an island
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model system. The hidden gene mechanism only changes how the GA decodes vari-

ables, thus it does not impact run time and operates effectively in the island model.

A Hidden Gene Genetic Algorithm ( HGGA) is tested with a simplified Mariner 10

(EVM) problem to determine the best parameter settings to use in an island model

with the GTOP Cassini 1 (EVVEJS) problem. For an island model with all GAs

there is improved performance when the different base algorithm settings are used.

Similar to previous work, the model benefits from migration of solutions and using

multiple algorithms or islands. For spacecraft trajectory optimization programs that

have an unconstrained fly-by sequence, the design variable limits have the largest

impact on the results. When the number of potential fly-by sequences is too large it

prevents the solver from converging on an optimal solution. This work demonstrates

HGGA is effective in the STOpS environment as well as with GTOP problems. Thus

the hidden gene mechanism can be extended to other EAs with members containing

design variables that function similarly. It is shown that the tuning of the HGGA is

dependent on the specific constraints of the spacecraft trajectory problem at hand,

thus there is no need to further explore the general capabilities of the algorithm.Your

abstract goes in here
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Chapter 1

INTRODUCTION

1.1 Statement of Problem

When designing an interplanetary spacecraft trajectory, there are various mission re-

quirements that constrain the problem, e.g., total time of flight, planet encounter,

and propulsion capabilities. These requirements may be dependent on each other,

which can largely increase the complexity of optimizing a problem. Spacecraft trajec-

tory problems are complex and require an optimization algorithm that can effectively

search a design space that may contain multiple local and global minima. Optimiza-

tion algorithms take input design variables that are derived from requirements and

systematically alter them in the search for an optimal solution [29]. Evolutionary

Algorithms (EA) are fast and effective at solving a variety of problems, but due to

their heuristic nature do not guarantee the result is the best solution [35]. This may

be overcome if algorithm parameters and configuration are tuned, improving the per-

formance of solving a given problem. The biggest limitation of EAs is the ability

to handle variable length sets of design parameters, which occurs when the prob-

lem includes both continuous and discrete variables. Typically, an interplanetary

spacecraft trajectory is evaluated with a defined number of encounter planets and

related transfer time variables. For a problem with an undefined planet encounter

or fly-by sequence, the resulting number of encounter planets and related transfer

times will vary. Evaluating this type of problem with EAs provides mission designers

with diverse trajectories that may not have been previously considered. This also

expands the capabilities of independent researchers to explore new trajectories more
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efficiently. An undefined sequence can largely expand the solution space depending

on the number of allowed encounters. EAs may be altered to evaluate variable sets

of design parameters, but due to the increased complexity of the solutions space they

may not be able to converge on a good solution. Investigating the tuning of EA pa-

rameters and configurations for evaluating undefined encounter spacecraft trajectory

problems can improve the optimization performance, and thus remove the limitations

on mission designers when considering these problems.

1.2 Proposed Solution

The Spacecraft Trajectory Optimization Suite (STOpS) program is a collection of

EAs that work collaboratively to solve multiple gravity assist (MGA) problems [26].

MGA problems describe trajectories with a defined fly-by sequence between multiple

bodies. STOpS has been continuously developed and improved as Master’s thesis

projects with the future goal of providing an open source trajectory optimization

suite that can evaluate a variety of problems and constraints. A defined encounter

sequence is commonly required by optimization solvers because they work with a

constant number of design variables. However, without a predefined number of planet

encounters the number of these design parameters will vary. This work compares two

methods that solve MGA problems with undefined fly-by sequences for their potential

performance in the collaborative scheme of STOpS, also referred to as an island model

[23, 6, 34]. This will improve STOpS’s capability of analyzing problems with different

types of design variables for early phase mission planning.

The most common EA is the Genetic Algorithm (GA) whose functions are the basis

of the island model [34]. The GA will serve as the base optimization algorithm for the

two methods implemented to evaluate problems with an undefined fly-by sequence.
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The first method is the Hybrid Optimal Control Problem (HOCP) which combines

two optimization algorithms in a nested loop to evaluate variable types separately

[23]. The outer loop will generate a sequence of encounter bodies to be evaluated by

the inner loop algorithm. This method allows the GA to function as designed because

the variable types are separated so the number of design parameters is constant in

each loop. The second method allows for variable length members with a constant

population length with a hidden gene mechanism. [6] Certain variables are ”hidden”

or not evaluated by the cost function determined by tags or a marker gene. While

members may be evaluated with a different number of design variables, the hidden

genes fill in the extra space when the constant size population is required. This

solution space is larger and more diverse than problems with a defined sequence, so

these solvers may benefit from the collaboration of the island model.

1.3 Literature Review

Investigation of algorithm performance for spacecraft trajectory optimization is an

ongoing process as new solvers and mechanisms are developed. The process of de-

veloping base code for a common algorithms is well understood so independent re-

searchers commonly use open source code that is provided by organizations like NASA

and ESA when analyzing spacecraft trajectory problems [26, 10, 28, 8]. The solvers

provided can be used by others to investigate new mission, tune parameters, or as a

baseline for comparison to other solvers. In 2007 NASA released the first version of

the General Mission Analysis Tool (GMAT) as a convenient GUI (and C++ source

code) for anyone working to develop new mission concepts or improve current mis-

sions [28, 30, 31]. Since then, GMAT has been updated with contributions from

private industry and individual collaborators and the most current release is GMAT

R2020a. The Advance Concepts Team (ACT) from the ESA developed the parallel

3



optimization scientific libraries Pygmo (Python) and Pagmo (C++) that provides the

user with many optimization algorithms to apply to different problems [28, 9, 7, 44].

The Spacecraft Trajectory Optimization Suite, developed by Tim Fitzgerald, aims

to serve a similar purpose but it is only available to run in MATLAB with a license

[26]. In an educational setting MATLAB is easily accessible, so STOpS has been used

as the base of other educational research to help implement improvements like low

thrust trajectories, three body model, and conversion to Python. An overview of the

differences between these programs is found in Table 1.1.

Table 1.1: Summary of Spacecraft Trajectory Optimization Program Ca-
pabilities [26, 8]

Orbits Model Mission
Sequence

Cost
Function

Optimization
Scheme

(STOpS) 2B Patched Conics, (MGA),
Impulsive

Defined Single EAs, (LS),
Island
Model

Pygmo/
Pagmo

2-B Patched Conics,
(MGA), (MGADSM), Im-
pulsive, Low Thrust

Defined Single+
Multi

37 Algs, Is-
land Model

(GMAT) 2+3B Patched Conics,
MGA, MGADSM, Impul-
sive, Low Thrust

Defined Single+
Multi

(BV) Tar-
geting

The two types interplanetary trajectory problems commonly evaluated are Multiple

Gravity Assist and Multiple Gravity Assist with Deep Space Maneuvers (MGADSM)

[14]. The difference between these problems is the number of design variables. The

addition of DSMs requires the solver to determine the optimal point to perform a

burn during a given leg of a trajectory [34]. It is apparent in Table 1.1 that the

orbit model used in GMAT and PAGMO can handle more types of trajectories than

STOpS. However, these programs are compared for the same type of trajectory being

optimized and this work will focus on interplanetary trajectories. The current cost

function in STOpS is single-objective and it only optimizes the total cost or delta-V
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of a given trajectory [26]. GMAT and Pygmo/Pagmo take this one step further by

simultaneously optimizing additional design variables like phasing orbits or launch

velocity [31, 8, 33]. Regardless if the program can handle single or multi-objective

problems, they all require a defined trajectory sequence to constrain the number of

design variables being optimized [26, 33, 8, 31].

In mission design, it is common to assess a potential trajectory in different stages –

where early stages generate an initial guess that is used in later stages to refine the

answer with more constraints. These constraints can vary depending on the mission

and come from requirements. The trajectory design of the Earth orbiting Transiting

Exoplanet Survey Satellite (TESS) was completed in three stages using GMAT. The

first stage used a 2-body patched conics model and a multiple shooting process solver

to estimate the trajectory from an Earth orbit to lunar fly-by to science orbit. The

second stage solved back from the lunar fly-by to launch vehicle separation with a

3-body patched conics model including phasing orbits. The third phase is simply a

propagation of the solutions from the previous phases to check constraints are not

exceeded. A mission is considered to be a boundary value problem and is solved using

targeting or shooting methods that works by breaking a problem up into intervals

and solving the problem in portions to determine a final solution. In the case of

a spacecraft trajectory problem, this can be seen as solving the different legs of a

trajectory, usually separated by planet encounters [31]. For TESS, the first and

second phases used a nonlinear programming (NLP) solver as a targeter to find only

feasible solutions that meet mission requirements. The first phase of this analysis is

similar to the test problems from Pygmo/Pagmo and STOpS because they all start in

an Earth orbit. However, for actual missions the launch vehicle requirements need to

be considered and the solver effectively finds a feasible solution for phasing loops and

separation constraints. STOpS and Pygmo/Pagmo both aim to optimize a solution

rather than find a feasible one and could serve in the place of GMAT for the first
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phase if an optimal trajectory is desired. The current capabilities of STOpS and

Pygmo/Pagmo do not solve problems that consider launch requirements. All phases

of analysis with GMAT required defined planet encounters.

Pygmo/Pagmo requires more programming knowledge to work with compared to

GMAT’s user-friendly GUI, but it can provide a more optimal final solution [45, 32,

44]. The main idea of this library is to utilize multiple algorithms at once in the

form of an island model, where the algorithms share solutions while running [34].

There are 18 heuristic global optimizers, 16 local optimizers, and 3 meta-algorithms

that can handle different combinations of single/multi-objective cost functions and

constrained/unconstrained variables using targeting or stochastic methods [8, 33].

The support for collaboration of these algorithms is built into the Pygmo/Pagmo

library where the individual algorithms run asynchronously in parallel (Chapter 3.5)

[34, 33, 8]. Pygmo was release in 2015 and was originally developed with Python 2.7

[33]. Pagmo was first released in 2017 and is frequently updated, the last time being

in 2020 [8]. This program would serve better for the first phase of mission design

due to the current configuration of provided test functions that use 2-body patched

conics.

The Pygmo/Pagmo library comes with a set of scalable test problems that are com-

monly used to evaluate the performance of optimization algorithms [33, 8]. ESA also

provides open-source code that can be used with Pygmo/Pagmo to evaluate MGA

and MGADSM problems [40]. The user can either evaluate a new mission or use one

of the provided problem bounds to test the performance of an optimization scheme.

In 2012 after Izzo, Ruciński, and Biscani had developed the first version of Pagmo,

they investigated the benefits of algorithm collaboration and the impact of migration

topology design (Chapter 3.5) [34]. They used a combination of 11 problems (scalable

and spacecraft trajectory) with 6 heuristic global optimizers and ran each test case
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30 times. These tests showed that in general, the migration or sharing of solutions

between algorithms improves the performance [34]. They concluded that the perfor-

mance of an island model system depends on the combination of base algorithms and

optimization problem. The migration topology defines how the base algorithms share

solutions (Chapter 3.5). It was found that the base algorithm selected has the largest

impact of performance of different migration topologies [34].

In a different study, Vinko and Izzo, investigated the performance of three heuristic

global optimizers and 1 local optimizer [44]. This study expanded upon the previ-

ous research by focusing on the island model performance for spacecraft trajectory

optimization [34]. They first looked at the performance of each algorithm in solving

MGA and MGADSM problems. The test cases used were Cassini1, GTOC1, SAGAS,

Cassini2, Messenger, and Rosetta and the bounds for these cases are available through

the Global Trajectory Optimization Portal (GTOP) [40]. Between the available al-

gorithms they developed eight cases, four of which were collaborative models. For

Cassini1, none of the independent solvers were able to find the know best value of

4.9 km/s because of a local minimum at 5.3 km/s. Three of the cooperative methods

were able to go lower than the local minimum, with one finding the best known value.

For GTOC1, none of the solvers were able to locate the best-known value but the

cooperative solvers still performed the best [44]. While the results for the two MGA

problems may not be favorable for the majority of the solvers, they can be used as a

reference of ways for change the combination of solvers for MGA problems. Overall

Vinko and Izzo concluded that cooperative methods are the more desirable solvers

for MGA and MGADSM problems [44]. Izzo and Ampatzis also found that approx-

imating the solution space for a given spacecraft trajectory problem helps heuristic

algorithms converge on a better solution [44].
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Jason Bryan from California Polytechnic State University developed a program based

on ESA’s Pagmo, exploring the capabilities of pruning, dynamic restarts, and sub-

domain decomposition [10]. These additions helped to prevent the solver from getting

stuck and handling solutions with multiple launch windows. The program uses an

island model with heuristic global optimizers and local search algorithms. MGADSM

test problems from GTOP are evaluated to compare the success rate of Bryan’s pro-

gram and Pagmo. For the problems Messenger (reduced), Cassini 2, and Messenger

(full), the two solvers only found the best known solution for Messenger (reduced). In

testing, no island model or algorithm parameters were altered or investigated [10]. It

was noted that increasing the number of function evaluations improves the solution,

but a more efficient way to do this to alter island model and algorithm parameters

[29]. The unsuccessful tests may be the result of only one island model system was

used for testing because it has been found that designing a model based on prelimi-

nary testing can improve results [26]. Bryan mentions that the program would benefit

from the ability to handle variable planet sequences in future work [10].

STOpS, developed in 2014, has a GUI that allows the user to customize all aspects of

a given spacecraft trajectory problem and the parameters of the optimization solver

[26]. This MATLAB program evaluates MGA problems in a 2-body patched conics

system using combinations of 5 heuristic global optimizers and 1 local optimizer in a

customized island model system (Chapter 2, 3.5) [26]. The main difference between

STOpS and Pygmo/Pagmo is the implementation of parallelization, that dictates

whether the algorithms run asynchronously or synchronously. Unlike Pygmo/Pagmo,

STOpS runs synchronously which means that the speed of the slowest algorithm

will dictate the total run time [26]. As discussed in Chapter 3.5, the synchronous

implementation probably does not effect overall performance of the island model, but

does increase the run time. Fitzgerald’s publication provides an overview of the GA,

Differential Evolution (DE), Particle Swarm Optimization (PSO), and Ant Colony
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Optimization (ACO) solvers that are provided [21, 13, 29, 26]. These solvers are all

heuristic global optimizers and stochastic processes that are also categorized as EAs.

These algorithms aim to mimic natural optimal processes like survival of the fittest,

by evaluating a population of potential solutions and evolving the population based

on the ”fittest” members [29]. The stochastic nature of these algorithms make them

a great option for spacecraft trajectory optimization where there may be multiple

global optima present [29, 34].

The development of STOpS used a similar approach to that of Izzo and others with

Pygmo/Pagmo [26, 34]. The EAs were verified using test cases with Ackley and

Rosebrock functions to determine how different parameters effect the performance.

To test the model performance with spacecraft trajectories, a simple Mariner 10 case

was used where the actual mission dates and the Earth, Venus, Mercury sequence

constrained the problem [26]. The actual mission cost (4.537 km/s) was determined

by evaluating the reported mission transfer times into the STOpS cost function [26].

First, the algorithms were set up in a homogeneous island model and the difference

in performance for different methods of sharing solutions was evaluated (Chapter

3.5). It was found that sharing fewer solutions between algorithms helps to prevent

premature convergence [26]. Fitzgerald also looked at how including a local search

algorithm with a heuristic global optimizer could impact performance. Similar to Izzo

and others, Fitzgerald found that pairing these types of algorithms can improve the

overall performance [26, 44, 34]. STOpS was then evaluated by combining multiple

heuristic global optimizers and a local optimizer in three different models. Two of

these models used all of the algorithms available. Using the results of individual

algorithms, a third model was develop using only two of the global optimizers and

one local. When the base algorithms are chosen based on previous performance,

the overall model performance improves [26]. The lowest cost achieved with a solo

algorithm was 4.6135 km/s and the third island model design had the lowest cost of
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4.1979 km/s [26]. Overall, the island model system improves the solution of spacecraft

trajectory optimization problems [34, 26]. But determining which algorithms are

used and how solutions are shared between them is critical to prevent premature

convergence or limitations the ability to effectively search the design space [26].

EAs are only a subset of the solvers available in Pygom/Pagmo, but as seen in STOpS

they are a large focus in independent research aiming to asses the performance of

optimizing spacecraft trajectory problems [8, 33, 42, 12, 10, 26, 37, 27]. Vaile, Minisci,

and Locatelli investigated the ability of different EAs and meta algorithms. This

work determined that the meta-algorithm found a better set of minimum cost values.

With this, they experimented with collaborative methods between meta-algorithms

and EAs. These methods allowed the collaborative models to perform better than

the solo algorithms [43]. The performance of different EAs combined with a space

pruning method was studied by Izzo and other members of the ACT using MGA

problem from the GTOP [40]. They found that when evaluating multi-objective

optimization problems the pruning method helped to locate more desirable areas of

the design space. This helps the EAs to search more efficiently and is similar to

the work with STOpS using a local search method in combination with an EA [16].

STOpS’s approach was based on Ricciardi, Maddock, and Vasile where they used

a combination of local search methods to solve spacecraft trajectory problems that

are more constrained. Similar to tests with heuristic algorithms, they found that

the collaborative methods improved the overall performance of the model [38]. Other

research that applies different optimization methods to spacecraft trajectory problems

only use problems that have a defined trajectory sequence so they are not directly

relevant to this work.

Another global optimizer that has been extensively investigated for the application

of spacecraft trajectory optimization is NSGA-II [19, 36, 46]. This algorithm is an
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altered EA that can solve multi-objective optimization problems vert effectively. Izzo

and Märtens looked into how NSGA-II and EAs perform in an island model to solve

an actual NASA/ESA mission proposal for a tour from Earth to Jupiter [36]. They

developed 10 trajectory sequences to optimize with no DSMs. This work aimed to

use a large computational platform that could handle 128 algorithms running in the

island model. Even though they used a large number of islands, the populations were

kept small and it did not effect the performance [36]. Similar to other work, the

overall performance of the island model was better than NSGA-II on its own [36].

Researchers from Indian Institute of Technology Kanpur use NSGA-II to optimize

both time of flight and launch velocity for comparison to known missions values

[19]. The sequences Earth-Venus-Mars (EVM), Earth-Venus-Venus-Jupiter-Saturn

(EVVEJS), and Earth-Mars (EM) were evaluated and results interpreted through

correlation plots of launch velocity, launch date, and total time of flight. These

tests were run with a standard population size of 100 for 300 generations in order to

generate a large amount of data to visualize trends in the design space [19]. With the

EVM and EM they created a plot of the results to visualize how the design space of

direct and fly-by trajectories compare. With the design variables of this study, the

EVM vs. EM showed that the fly-by trajectories had a lower launch velocity and a

higher total time of flight than the direct transfer for this mission [19].

In the works reviewed thus far, there has not been a method presented that is able to

handle a spacecraft trajectory optimization problem that has dependent continuous

and discrete variables. This problem was introduced in Section 1.3 and could be used

to improve the capability of the first phase of mission design by providing a variety

of trajectories for a given start and end body. Two methods were discovered that

handle a variable number of design factors by altering individual genes of a population

member and nesting solvers with EAs (Chapter 3.3, 3.4) [6, 5, 25, 24, 23].
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In Jacob Englander’s dissertation (University of Illinois), space mission planning is

formulated as a hybrid optimal control problem (HOCP) [23].These problems contain

both real-valued (launch date, flight times, magnitudes of thrust, flyby altitudes) and

categorical variables (sequence of flybys). The HOCP consists of an outer loop that

finds solutions to the sequence of flybys and the inner loop that optimizes the cost of

a given solution [25, 23, 24]. The benefit of the two loops is that specific algorithms

that are best suited for each problem type can be selected based on performance

metrics that are developed from previous research results and initial testing. For the

outer loop the flyby sequence must be represented as a discrete optimization problem,

this is achieved by considering each planet to be a unique integer. This allows the

problem to be successfully solved by integer valued or binary GAs [23]. One difficulty

with the GA is that it requires a fixed length decision vector which is related to the

number of flybys, and some solutions may not have the same number of encounters.

To overcome this, Englander implemented a method of null genes where the outer

loop decision vector of n genes has limits of 0 < n < 15 where a number of 1-8

represents a planet and all other values represent no encounter (Table 4.6) [23]. Once

the outer loop produces a solution, the inner loop optimizes cost, such as deltaV or

mass. The problem is driven by constraints of flight time or flyby feasibility, which

can be determined for a specific outer loop solution. There were four different solvers

investigated for the inner loop: GA, PSO, DE, and a cooperative algorithm with PSO

and DE. The program was run to compare to the Galileo mission, but was not able

to determine the exact flyby sequence because the Lambert’s solver used could not

handle resonant flybys [23].

Ceriotto and Vasile also considered the multi-objective optimization problem as a

HOCP where one layer finds the optimal sequence of flybys and the second finds

the optimal trajectory for a given sequence [11]. The first layer uses a ”complete

trajectory” method that organize all possible trajectories in a tree structure. Each

12



solution is checked for infeasible components that helps to rule out solutions based

on constraints like flyby altitude and transfer time [11]. This method is very similar

to one mentioned by Englander but was deemed invalid to use for this portion of

the problem in his work[23]. Once a flyby sequence is determined, the second layer

of the problem utilizes an ACO algorithm. In the formulation of this specific ACO,

the work space is organized like a tree where each branch represents a leg of the

problem and each leaf represents a node of a different planet or transfer option. A

population of ”ants” is sent out to explore the work space but unlike common ACO

implementation, the population members do not leave behind a flag for single legs

of the trajectory the other members consider if encountered. Instead, the population

members will develop solutions and assess the feasibility and cost by referencing a

trajectory model (map of solution space) [11].

A different method to handle the variable fly-by sequence problem uses ”hidden genes”

in a GA, referred to as a Hidden Gene Genetic Algorithm (HGGA) by Abdelkhaik

[6]. This method allows the algorithm to function without an inner and outer loop

where members that are bound by the maximum possible design variables [6, 5].

Different parameters and evolutionary mechanisms are investigated for Cassini1 and

Cassini2 problems. This work uses MGADSM problems but also reports on results of

these problems evaluated without the DSMs, but with the same problem constrains.

This allowed for comparison of a given trajectory with and without DSMs, but was

mainly helpful for verification of the algorithm with less design variables. The ”hidden

gene” method allows the core function of a EA to assess a variable size of input

design variables for a given cost function. The design variables are the number of

encounter planets, departure date, time of flight for each leg and other variables

required for DSM calculations. This research found that changing the departure

date has the largest impact on the resulting cost. This was determined by plotting

the trend of individual design variables with cost. The data was gathered using
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the PaGMO software’s GA and DE (not in collaboration) and found that the best

mechanism to advance hidden genes is a stochastic method [6]. This method found

that for the Cassini1 (MGA), the minimum cost for the Earth-Venus-Venus-Earth-

Jupiter-Saturn (EVVEJS) trajectory is 11.2259 km/s. This compares to the value of

8.383 achieved by Schlueter, Fiala, and Gerdts. Other research also achieved values

within thousandths of this, but all of these values were found using only the time of

flight between legs of a defined trajectory to estimate cost with a solo optimizer [40].

Introducing new trajectory sequences to a search space decreases the area a given

optimizer can explore [6, 5].

1.4 Structure of Paper

This paper will first introduce the orbital mechanics model used in the calculations

of spacecraft trajectory optimization problems. Along with the statistical analysis to

be conducted with the SAS software JMP. Next, the optimization concepts that were

implemented to solve the test problems are outlined, the main focus is the Genetic

Algorithm because it is the core of the methods investigated. The understanding of

how heuristic algorithms function is key to understanding the results of this work and

others.

The HOCP and HGGA are initially run with two test functions: Branin’s function

as a scalable problem for verification and a simplified Mariner 10 mission: Earth-

Venus-Mercury (EVM). These tests helped to characterize and verify these solvers by

comparing the results of each for two different problem types. The performance of

the HOCP and HGGA with tests determine the feasibility of implementation to the

island model.
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The island model testing is done with the Cassini 1 MGA test function from GTOP:

Earth-Venus-Venus-Earth-Jupiter-Saturn (EVVEJS). The limits on the design vari-

ables from GTOP are altered so that it can evaluate a undefined fly-by sequence. It

was found from initial testing that only the HGGA was feasible for island model im-

plementation. The HGGA was tested with different design variable limits for Cassini

1 along with different island model parameters like topology and migration policy.
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Chapter 2

METHODOLOGY

2.1 Orbital Mechanics Model

Planning and executing interplanetary trajectories is a complex problem involving

multiple factors. But the actual trajectories are derivative of the deceptively simple

Newton’s Laws of Motion. They show how an object enters and maintains an orbit

around a body or follow an interplanetary trajectory due to the forces acting upon

it which are proportional to the acceleration of the object. The term ”zero-g” is

often mistakenly ascribe to objects in orbit or in interplanetary trajectories. The

gravitational influence of any mass exerts to infinity, albeit falls off as 1
r2
. One way

to utilize the natural gravitational effects of the solar system outside of Earth’s orbit

is planetary fly-bys. This is where an object travels very close to a planet but does

not go into orbit around it; instead it experiences a change in momentum that alters

its trajectory. Objects can also create an applied force in a specific direction using a

propulsion system to alter their trajectory. The cost of a propulsive maneuver on a

mission is termed ”delta-V”. [14].

In 1961 the former Soviet Union’s Venera 1 flew by Venus becoming the first spacecraft

to travel to another planet [18]. Throughout the 1960s and 1970s, there were many

missions attempted by both the United States and the former Soviet Union. After

many failures, there came success, soon there were images and data being sent from

spacecraft throughout the solar system [17, 3]. In 1971, the United States successfully

put the first spacecraft in orbit another planet with Mariner 9 which traveled to Mars,

seen in Figure 2.1 [15].
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Figure 2.1: Mariner 9 Trajectory

2.1.1 Delta-V

Delta-V is the velocity required for an object to change its orbit, whether it be for a

transfer or correction maneuver. For a spacecraft mission the total delta-V is a critical

factor in determining the feasibility of the mission. Assuming thrust is applied with

constant direction and mass; delta-V is calculated by subtracting the desired speed

from the current speed of the spacecraft [14].

∆V = ||vf − vi|| (2.1)

Here it is assumed the spacecraft experiences an instantaneous change in velocity

that will effect the trajectory in a desired way. This is referred to as an impulsive

maneuver where the spacecraft position r is not effected. There are other ways for a

spacecraft to change orbit such as low thrust; however, that requires a very different

way of modeling the trajectory due to the continuous applied force [14]. This work

focuses on spacecraft trajectories that use impulsive maneuvers.
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2.1.2 Patched Conics

The method of patched conics can be applied to estimate the total delta-V required

for an interplanetary trajectory. For this system we assume a two-body orbit of the

spacecraft and influencing body. In the case of interplanetary trajectories this means

that when the spacecraft is outside the sphere of influence of a planet, it travels in an

unperturbed orbit around the sun. The term ”conics” refers to the assumption orbits

are conic sections and in this case multiple conics are patched together to simulate

each part of the interplanetary trajectory [14].

Looking at the example of Mariner 9 (EM) there are three conics to be considered: (1)

the departure from Earth, (2) the heliocentric trajectory based on the planet positions,

and (3) the arrival at Mars [15, 14]. First, the position and velocity of each planet must

be found for the desired dates (planet ephemeris). Next, the heliocentric trajectory

is determined based on the initial and final position of the planets using a Hohmann

transfer or Lambert’s solver to estimate the respective hyperbolic velocities (v∞). A

Hohmann transfer is not realistic for simulating actual missions because it requires

the initial and final orbit to be circular, placing a constraint on the orbit eccentricity.

The Lambert’s solver relies on the assumption that solving for the velocities of a

desired trajectory is independent of the orbit eccentricity given the initial and final

position and the time of transfer is known. The full derivation of this solver can be

found in section 5.3 of Orbital Mechanics for Engineering Students [14]. This solver

can be described by the function

[v∞D, v∞A] = f(RD, RA,∆t) (2.2)

where the subscripts D and A refer to departure and arrival and ∆t is the time of

transfer. Once the velocity describing each conic of the trajectory is determined, the
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required delta-V of departure and arrival can be calculated

∆VD = ||VP1 − v∞D||

∆VA = ||v∞A − VP2|| (2.3)

∆Vtotal = |∆VA|+ |∆VD| (2.4)

where P1 and P2 refer to the start and end body. The total delta-V of the trajectory

is the sum of these individual delta-V values [14].

2.1.3 Mission Sequence

For missions that involve more than two planets, the application of patched conics can

be expanded to include the addition of planetary fly-bys or gravity assists. Spacecraft

executing a planetary fly-by enters the sphere of influence of a planet but does not

go into orbit or crash into the surface. Instead the spacecraft follows a hyperbolic

trajectory around the planet and the resulting change in the heliocentric velocity is

calculated [14]. The geometry of the flyby around a given body is shown in Figure

2.2 – the relevant variables for this model are discussed below.

To achieve the desired maneuver the main factors to assess are the difference in

incoming and outgoing hyperbolic velocities and the required turn angle Beta – δ.

For natural flybys the hyperbolic velocity values are equal, as seen in Equation 2.5.

In this case, the turn angle is then used to determine the resulting change in the

velocity vector of the spacecraft during the fly-by [14].

v∞ = v∞+ = v∞− (2.5)
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Figure 2.2: Geometry of Fly-By Trajectory [14]

sin(
δ

2
) =

µp

µp + rpv2∞
(2.6)

∆Vnpf = 2v2∞ sin(
δ

2
) (2.7)

Besides the velocity, the planet’s standard gravitational parameter µp and radius of

periapse during fly-by rp are used to calculate the required turn angle. With this,

Equation 2.7 describes the apparent change in velocity during the fly-by [14].

A powered fly-by is required when v∞+ ̸= v∞− which results in either a low periapse

radius or large turn angle [14]. This means that the spacecraft must apply a small

impulse at the periapse radius, with the resulting delta-V calculated by finding the

difference between incoming and outgoing hyperbolic velocities at the flyby periapse
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radius (vm) shown in Equation 2.9.

vm =

√
v2∞ +

2µp

rp
(2.8)

∆Vpf = |vm+ − vm−| (2.9)

Combining the equations presented for a simple patched conics problem with flyby

calculations produces Equation 2.10 of total delta-V required for a MGA problem

[14].

∆Vtotal = ∆VD +
n∑

i=1

∆Vpf +∆VA (2.10)

2.2 Statistical Analysis

The SAS software JMP is used to analyze the sample sets, X, produced from the

different test methods explored here [2]. For a given sample set of length n, the

average or mean value, x̄, of all the samples x ∈ X is calculated with Equation 2.11

[20]. The mean is used to determine the spread of the samples from the standard

deviation s (Equation 2.12) [20].

x̄ =
1

n

( n∑
i=1

xi

)
(2.11)

s =

√√√√ 1

n− 1

n∑
i=1

(x1 − x̄)2 (2.12)

For optimization problems, a mean that is close to the known optimal value with a

low standard deviation is desired because that would indicate the solver consistently

produces desired solutions. These two statistical parameters are calculated for each

set as well as distributions of the data. Viewing the distributions enables a quick
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qualitative assessment of differences between conditions, this characteristic is a key

requirement of statistical tests for comparing means like the t-test or z-test [20]. When

this criteria is not met, inferences can be made about the differences between sample

sets using the distributions. Distribution are plotted as histograms (bar graphs) in

which the sample set elements are assigned bins based on their value. Too few bins

only yields a few bars, while too many bins leads to a spiky display – both condition

obscure the shape of the distributions [20]. JMP can automatically generates the

number of bins for a distribution based on the range of samples [2].

Figure 2.3: Normal Distribution

Figure 2.4: Right Skewed Distribution

Distributions tend to contain a few peaks that represent a large concentration of

solutions in those bins. For a symmetric (normal) distribution a single peak will

correspond to the location of the mean, but is not necessarily the case for a skewed

distribution, seen in Figure 2.4. In terms of the results from an optimization prob-

lems multiple peaks may indicate the presence of local optima. Some distributions
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may appear to trend to one direction (skewed) as a result of outliers present in the

solutions. Considering optimization problems that aim to find a minimum, a right

skewed distribution would indicate a problem with the solver because the solutions

trend away from the optimum value. Where as a left skewed distribution may be

acceptable because the solutions are trending towards the optimum solution.

Figure 2.5: Density Plot Example

Complex solution spaces can be visualized with a contour plot where the density of

solution categories is generated from pairs of design variables [20]. In JMP pairs of

an input design variable and corresponding solution are plotted and the occurrence of

pairs in the design space are simplified to areas with a set degree of shading related

to the concentration of pairs in an area [2]. The shaded areas can represent the total

set, or with the application of an overlay, additional dimensions can be visualized as

shown in Figure 2.5.
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Chapter 3

OPTIMIZATION

3.1 General

For any engineering problem, finding the ”best” or optimal solution is always desired.

When solving these problem the possibility of finding the best solution can depend

on the given problem and constraints. For spacecraft missions, there are countless

ways to formulate an optimization problem depending on the mission requirements

considered. Some of the constraints may be derived from mission life, launch period,

eclipse frequency, and propulsion capabilities [31].

Optimization is the process of varying the inputs to a given problem to find a minimum

or maximum solution [29]. The solutions that are produced are referred to as the

evaluated ”cost” or ”fitness” of a function. There may be multiple potential local

optima but only one global optimum value.

An example of this concept can be see with Ackley’s function that is defined as

f(xi) = −a ∗ exp

(
− b

√√√√1

d

d∑
i=1

x2
i

)
− exp

(
1

d

d∑
i=1

cos cxi

)
+ a+ exp(1)

xi ∈ [−32.768, 32.768] for i = 1, ..., d

(3.1)

where d is the number of dimensions and a, b, and c are constant values [1]. Figure 3.1

shows the 2-dimensional solution space to Ackley’s function with the global optimum

of f(0, 0) = 0. The global optimum is clearly shown in the center of the solution

space at the bottom of the dark blue area and the yellow plane above this consists of
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many local minima as dimples across the space. Given the potential complexities of

a function’s solution space, the choice of which optimization scheme to use is critical

to a successful search for the global optimum [29].

Figure 3.1: Ackley’s Function 2-D

Optimization schemes have different ways of comparing the calculated cost of sets

of input variables and altering those inputs to converge on the best cost [29]. The

components of an optimization algorithm can be broken down into six categories.

The categories outlined in Table 3.1 are introduced by Haupt in Practical Genetic

Algorithms [29]. The factors that apply to the optimization scheme of this work will

be further explained in upcoming sections.

Table 3.1: Optimization Categories [29]
1 Trial and Error Function
2 Single Variable Multiple Variable
3 Static Dynamic
4 Discrete Continuous
5 Constrained Unconstrained
6 Random Minimum Seeking
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1. The problem to be optimized can be solved with a trial and error method or

function. The trial and error method describes the process where there is a lack

of knowledge of the problem in question, so inputs to the problem are varied

without knowledge of whether the solution is actually improving. This method

is used in experimental settings, like the development of new technology. The

second option is the use of a mathematical function that describes the problem

with defined variables, like Ackley’s function.

2. If only one input is varied, the problem is single variable or one-dimensional.

For more complex problems there are usually more than one input and this

is described as multidimensional optimization. The capabilities of individual

optimization schemes to handle multidimensional optimization problems differs.

In the example of Ackley’s function, the dimensions are defined by the user (e.g.

2-dimensions in Figure 3.1).

3. Static optimization problems output solutions that are independent of time,

where as dynamic problems have solutions that are a function of time. In

the Ackley example, the solution is static but in the application of spacecraft

trajectory optimization time is almost always a factor.

4. Discrete variables are seen as having a finite number of possible values, like the

number of cities a plane can land at. Continuous variables can have an infinite

number of possible values, but are usually bounded by the constraints of the

given problem. For a spacecraft trajectory problem, the number of planets to

encounter is discrete and the transfer time of each leg is continuous.

5. The variables for a given problem can be generated either unconstrained or

constrained. This means that the possible values the variables can take on are

bounded if constrained. The optimization scheme and knowledge of the desired

solution space are factors that influence applying bounds. Complex solution
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spaces like spacecraft trajectory problems always use some information like

launch window or planet positions to bound variables. Unconstrained problems

require a specific solver are are not suited for EAs.

6. The method used to generate variables influences a solver’s ability to find the

global minimum of a problem. With iterative or minimum seeking processes,

the variables are altered based on a determinant sequence of steps. The issue

with this process is simply following steps to minimum values can cause the al-

gorithm the converge prematurely on local minima. The other option is random

processes that alters the variables with defined stochastic mechanisms, which

helps introduce new areas of the solution space.

This work will focus on optimization problems that have a defined function, intro-

duced in Chapter 2, and will be referred to as the optimization algorithm’s ”cost

function”. The complexities of a spacecraft trajectory problem with an undefined

fly-by sequence requires a multidimensional solution space with constrained, dynamic

variables. Stochastic processes are capable of evaluating the diverse solution space of

these problems and are implemented with methods like EAs. This problem consists

of both continuous and discrete variables due to the undefined fly-by sequence. The

variables will be constrained by the known bounds of test functions and spacecraft

trajectory test cases.

3.2 Genetic Algorithms

The most common EA, the Genetic Algorithm, aims to mimic the process of evolution

found in nature [35]. This algorithm randomly generates a population composed of

potential solution members. The members (chromosomes) contain a finite number of

variables (genes) that are input to the cost function. The fitness, J , of each member
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is evaluated and this value is used as a metric for comparison between members [29].

The relationships of these components are shown in Equations 3.2 and 3.3.

memberi = [gene1, ..., genen]

Population = [member1, ...,memberi]

(3.2)

Ji = fCostFunction(memberi) (3.3)

Next, the population goes through selection, mating, and mutation that alters the

population members based on a defined method; therefore changing the input vari-

ables to be evaluated in the cost function. The process will repeat for a defined

number of generations or until other stopping criteria it met [29]. The goal is that

the members with the optimal cost will survive each generation and the component

of continuous random search will avoid premature convergence [35]. GAs have been

expanded to applications of parallel processing and handling members with variable

length in order to deal with more complex problems [34]. The algorithm components

of selection, mating, and mutation have different potential operations – the versions

used in the work are discussed below. Figure 3.2 outlines how the process of the GA

flows until convergence, or the number of generations is met.

It is also important to note that all of the variables will be generated and altered in

binary form. This means the the size of each member is defined by the number of

bits allocated for each variable in the member. The number of bits for each gene is

determined using the limits of the given variable. Once the population is generated,

there are equations to decode and encode the individual genes of each member. These

methods and the related equations are described in more detail in Haupt’s Practical

Genetic Algorithms [29]. The difference between having a population of continuous

and binary members effects the process of altering the population. The original work
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Figure 3.2: Genetic Algorithm Flow Chart

on the STOpS program investigated the differences found between populations of

continuous versus binary members and found that a binary GA had a higher success

rate of finding the global optimum. For this reason and the effectiveness of the

stochastic solver with complex solution spaces, this work will focus on binary GAs.

A simplified population for Branin’s function (Equation 3.4) is used to illustrate

the process of altering population members in GAs. It is assumed that there is a

population of four members each containing two constrained, continuous, and static

variables. The mechanisms for selection, mating, and mutation are still applicable to

larger populations and more complex cost functions.

f(x1, x2) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t) cosx1 + s (3.4)
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Branin’s function differs from Ackley’s because it is defined as 2-dimensional with the

input variables x1 and x2. Equation 3.4 shows the relationship of these two variables

along with the constants a, b, c, r, s, and t (values listed in Appendix A) [39]. The

three global minima of f(x∗) = 0.397887 are shown on the solution space in Figure

3.3. Where x∗ is a matrix of the three pairs of x1 and x2 solutions. The three

solutions to Branin’s function are all considered to be a global optimum because they

have the same fitness value. This precision of this solutions depends on the number

of digits included in pi when evaluating the function. If the same number of digits is

used for all three solutions then the optimum will be equal for all three to the desired

degree. Note: this problem will be used as a test function for the implemented solvers

(Chapter 4.1).

Figure 3.3: Branin’s Function

3.2.1 Selection

The selection process is important because it determines which members of the current

population to pass onto the new generation. Ideally, if the member with the best
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cost is found in an early generation, it will survive mating and be present in the

final solution. GAs are not guaranteed to find the fittest member, but judicious

parameter tuning can improve the likelihood of doing so. Selection methods sort the

population based on fitness value and take Nkeep of the members from the population

for the next generation [29]. The remainder of the next generation (Npop − Nkeep)

is filled with offspring that are various combinations of the Nkeep members from the

current population. The offspring are essential because they explore new areas of the

solution as they are a new combination of old and new design variables, explained

further in the next section (3.2). The value of Nkeep depends on the problem at

hand, a general rule is to keep half of the current population. For large values of

Nkeep, fewer new solutions will be introduced to the population via offspring which

may result in premature convergence. When Nkeep is small there may not be enough

parent members to effectively generate offspring [29]. Equation 3.5 shows how Nkeep

is defined by Xratio of the total population.

Nkeep = Npop ∗Xratio

where Xratio = 0.5

(3.5)

The Branin’s function example population of 4 members requires Nkeep = 2 .

There are many options for how to select members of the population – this work will

focus on the options presented in Chapter 2 of Haupt’s Practical Genetic Algorithms

and is used in the previous version of STOpS [29, 26]. The selected members are

used to generate offspring that contain old and new combinations of genes from the

parents (Chapter 3.2.2). For the example with Branin’s function, Table 3.2 shows the

members and their respective fitness (Note: none of the example members contain

the known optimal solution).
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Table 3.2: Branin’s Function Example Population and Cost
Member x1 x2 Cost

1 1 0 0 1 0 1 0 1 1 1 0.6346
2 1 0 0 0 0 1 1 0 1 1 1.635
3 0 0 1 1 0 0 1 1 0 1 0.9121
4 1 1 1 0 1 0 1 0 1 0 2.0841

1. Random Selection: This simple method randomly selects the population

members to keep based on the value of Nkeep.This can be executed in a program

by generating Nkeep random numbers and selecting the members with that index

in the population. The population in the Branin example would be selected

based on two random numbers.

2. Natural Selection: This method is also referred to as ”survival of the fittest”

because it sorts the members from best to worst cost and selects Nkeep of the

best members for mating. This method works well because the best members

are always passed onto the next generations. In the case of the Branin example

population, no members contain the optimal solution but members one and

three would be selected for mating because they have the best fitness (Table 3.2).

The next generation would contain these existing members and two offspring

that contain old and new combinations of parent genes.

3. Threshold: Members are selected based on a ”threshold” value that is defined

with knowledge of the expected range of solutions. In early generations, there

may not be Nkeep members that meet the threshold value and in this case

random random members will be generated to fill the remaining parent slots. If

the threshold value for the Branin’s function example is set closer to the known

optimal solution, e.g. 0.5, then none of these population members would be

selected. With a less conservative threshold value, e.g. 1, the Nkeep quota is

met by three of the members and the best two will be selected. A threshold
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value of 0.75 is only met by member one so the other Nkeep spot would be filled

with a randomly generated member.

4. Weighted Random Pairing: This method assigns a probability to each mem-

ber and ranks them. The probability is inversely proportional to the cost. So

a higher probability means better cost. Next the members are selected based

on this probability from a rank system or cost. In the rank system a random

number between 0 and 1 is generated and then the members are checked one by

one until the probability is equal to the number. When evaluated with cost, the

probability is found with a normalized cost value, and then the same process of

selecting the embers is used as described above.

3.2.2 Mating

This process is also referred to as ”crossover” since it mimics the process of chromo-

somes evolving and trading genes for the resulting offspring in biology. This stochastic

process proves to be efficient in nature and is mimicked in this computational mech-

anism. Two parent members are selected and combined to form two offspring that

result in a combination of old and new parent genes that progress the solution. The

number of offspring generated through mating is determined by Npop − Nkeep and

can vary depending on the value of Xratio. This work will use the standard mating

methods presented in Chapter 2 of Haupt’s Practical Genetic Algorithms [29].

1. Uniform Crossover: Two members will exchange binary values up to a single,

predetermined location and the resulting chromosomes of mixed genes are the

offspring. The location of the crossover is randomly generated based on the

total length of the member and is in the same location for each parent. This

method is considered to be a generalization of crossover methods and extensive
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research by Syswerda showed that uniform crossover is almost always more

effective at combining members for the new population [29]. Assuming the

uniform crossover occurs at bit three, Figure 3.4 shows the resulting offspring

from crossing members one and three of the Branin’s function example.

Figure 3.4: Branin’s Function Example with Uniform Crossover

The new members five and six are created with different combinations of the two

parent members. The blue and gray highlighted strings in Table 3.4 indicate

the bits that switch for in the offspring and the non-highlighted bits did not

change. In this simple example x2 does not change in both offspring, so is not

benefiting from mating specifically but may prove to be a desired gene as a

whole since it belongs to one of the ”best” members. On the other hand, x1

has taken on a new value in both offspring which introduces new areas of the

solution space. Depending on the crossover location the offspring may take on

completely different variables that help to progress the solution.

2. Random Crossover This method is similar in concept to uniform crossover ex-

cept the crossover occurs at multiple points in the chromosome. The specific

bit locations are selected at random which leads to very different crossover

schemes for subsequent pairs. The number of crossover points is constant for

34



all generations and must consider the total number of bits in the chromosomes

to effectively produce offspring. For a chromosome with ten bits, using three

crossover points would cause a large change in the offspring because there are

only nine potential crossover locations. Larger chromosomes do not necessarily

benefit from more crossover points because that may see out desired genes if

too many points are used. Figure 2 shows the resulting offspring of the natural

selection population for Branin’s function with 2 crossover points.

Figure 3.5: Branin’s Function Example with Random Crossover

The crossover occurred at bits three and eight and produced two offspring that

have completely new values of x1 and x2. The effectiveness of the crossover will

be revealed when the new variables are evaluated by the cost function.

After the mating process between two members is complete, the crossover probability,

pc, is considered before adding offspring to the next generation. For each set, a random

probability between 0 and 1 is generated which is compared to the defined value of

pc.
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3.2.3 Mutation

After the new population is generated, the last alteration is the mutation of individual

bits that occurs based on the probability of mutation, pm. A given population member

with length Nbit and the probability of mutation, pm , will result in M bits mutated

[29].

M = pm(Npop − 1)Nbit (3.6)

M randomly selected bits from the population flip their value – 0 to 1 and 1 to 0.

This causes a change in the variables that experience mutation which can potentially

eliminate a desired gene. The change also introduces new areas of the solution space

which can help prevent premature convergence. It is standard for the probability of

mutation to be lower to prevent altering the desired members of the population [35].

For example, Branin’s function assumes Nbit = 10, Npop = 4, and pm = 0.3 which

results in three bits altered from Equation 3.6. Each mutated bit is defined by a row

and column position that is randomly generated. For this example the row values

are ( 1 , 3 , 2 ) and column values are ( 5 , 1 , 9 ). The bits that will be mutated

are highlighted in Figure ?? and will flip states changing the related variable. After

this, the next generation will begin the process again and the effectiveness of the

evolutionary mechanism will be revealed when the stopping criteria is met.

3.2.4 Limitations

One of the limitations of GAs is the inability to handle cost functions that require

variable length members. This can occur when the number of design variables depends

on another so there are both continuous and discrete variables present. This disrupts

the uniform population size required for performing crossover and mutation [29].
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Figure 3.6: Branin’s Function Example Mutation

Achieving the ability to analyze this type of cost function will present the problem of

increased solution space due to the different combinations of continuous and discrete

variables.

3.3 Hybrid Optimal Control Problems

The Hybrid Optimal Control Problem (HOCP) evaluates systems with continuous

and discrete variables using nested loops [23]. This method separates the variables so

that they may be evaluated with a GA or other optimization algorithm as a constant

length chromosome. The outer loop will generate members of continuous variables

that determine the constraints of the discrete variables optimized in the inner loop.

The inner loop considers each member of continuous variables independently in order

to evaluate different length sets of discrete variables [23].

In the classic example of the Traveling Salesman Problem (TSP) there is a defined

set of Q cities that can be visited with the objective to minimize the total distance

traveled between them [23]. Figure 3.7 is an example of a solution to the TSP where

all of the cities, q ∈ Q, are shown with the optimal path between them. If the number
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Figure 3.7: Traveling Salesman Problem Example [4]

of cities varies, the number of distances to travel or legs between cities to be evaluated

changes. Applying a HOCP, the outer loop will generate a vector q of cities q ∈ Q

and the inner loop will optimize the distance between the number of cities defined

by q. The outer loop that will evaluate the cost of each q and use an optimization

scheme to find the best q* of the generation [23].

Research has found that using GAs as the outer loop solver is more effective than

methods like Branch and Bound (B&B) because it explores a more diverse areas of

the search space [23]. The B&B method systematically creates a tree structure of all

design variable combinations that are evaluated. This method is limited when eval-

uating cost functions with discrete and continuous variables because it can eliminate

sets of continuous variables that actually define the desired solution space. A variety

of heuristic algorithms may substitute for the GA in the outer loop, similarly to the

inner loop. Research has investigated different EAs to serve as the inner loop solver

but the most general one to use is the GA [23]. The inner loop will perform the most

function evaluations so it is important that an efficient solver is used.
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One limitation of this application is that it requires a large amount of computing

power. The inner loop optimization improves the solution of discrete variables for a

related continuous set by increasing the number of function evaluations. This method

may be better for a problem when there is little known about the desired solution

because it is designed to automatically explore a large amount of potential solutions.

It separates the problem so that each loop evaluates similar components allowing a

more extensive search of possible combinations of continuous and discrete variables.

3.4 Variable Size Design Space Problems

The design space of Ackley’s function is defined by the number of variables or di-

mensions included and when evaluated with an EA, the design space is constant for

all generations. For the TSP with a varied number of cities to visit, the subsequent

number of input variables changes between members in the population resulting in a

variable sized design space (VSDS). This problem cannot be solved with a standard

EA because the different length members cause problems for the process of crossover

and mutation. The concept of hidden genes can be applied to the functions of a GA

in order to solve VSDS problems.

An approach to the VSDS problem is the hidden gene genetic algorithm and is defined

by Lmax or the maximum possible number of design variables [6]. This algorithm

mimics the natural process of chromosomes skipping over genes that are not relevant

to the type of cell being generated (e.g. chromosome will skip over genes for eyes

when generating nose). There are random, probability based, or logical mechanisms

available to determine each gene’s tag which refers to whether or not the gene is

hidden or active. When a gene is hidden it is not evaluated in the cost function, this

allows for members of different length to be considered [6]. This work will only focus
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on the logical application because it allows more control over which genes are hidden

and active relative to the variables involved in the problem.

The only difference between a GA and HGGA is the process of evaluating which

genes of each member are hidden and active. In a logical sense there is a marker

gene that determines the given chromosome’s tags. For example, Branin’s equation

is 2-dimensional so each chromosome as two genes. Implementing the HGGA would

create a chromosome with Lmax = 3 where the first gene is a marker describing second

and third gene tags. The value of gene1 would have the limits [0,3] because there are

three combinations of possible tag combinations between the two genes. This idea can

be expanded to problems like the traveling salesman because the marker genes can

be used to serve the discrete variables. Then, the number of discrete variables that

are dependent on the continuous parameters would change based using the concept

of logical tags [6].

The limitation of the HGGA method compared to the HOCP is that there is not as

much iteration of the potential solution of the discrete variables. This means that

if the correct marker value is generated, it may not be paired with optimal discrete

values. With the Branin example, this would occur every time the second and third

genes are both active (since not of the optimal solutions contain a member (x,y) that

is equal to zero). This method will require a less expensive run time than a HOCP

because there are fewer computations overall.

3.5 Generalized Island Model

The idea of an Island Model optimization is derived from the structure of a GA

[34]. This method utilizes the idea of parallel processing when multiple algorithms

run in parallel, evaluating the same problem. The GA structure comes in when
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Figure 3.8: Example Island Model Archipelago

these algorithms share population members with each other. This is the same as the

process of creating a new population because each algorithm selects members to keep

and replace, except in this case the new offspring are filled with shared members.

An example of an Archipelago is shown in Figure 3.8 and describes the given model

parameters. The Archipelago is composed of a number of base optimization algo-

rithms or islands that are connected with a defined topology. The topology defines

which islands communicate or share solutions with each other. The migration de-

scribes how solutions are shared between islands. Overall, the archipelago can be

defined as a couple composed of the set of n islands, I, and the migration topology,

T [34].

A = ⟨I, T ⟩ (3.7)

Each island in I has four components, the optimization algorithm (A), the population

(P), the migration selection and replacement policy (S and R). Where the population
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is composed of the evaluated fitness value, J, and related population member Pi.

Ii = Ai, Pi, Ti, Ri for i = 1, ..., n

where P = ⟨J, Pi⟩
(3.8)

Figure 3.9 shows the process a given archipelago follows and at what point solutions

are shared based on a defined number of migrations [34]. Similar to GAs, this model

also requires tuning of the best parameter values. One of the factors to consider is

the number of islands to use because using a large number of islands will not always

provide a better solution [34, 26]. Having more islands will require more intricate

design of the topology and migration policy. More islands will result in increased

run time and this will be experienced more depending on the type of migration. The

migration occurs when the migration interval, µ, is met and the stopping criteria is

normally a defined number of migrations to occur between islands.

Figure 3.9: Generalized Island Model Flowchart
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The migration can be asynchronous or synchronous and describes if solutions are

shared between islands at the same time or independent of the state of the other

islands. Asynchronous migration has good scalability because it efficiently utilizes

available computational resources by not requiring each island to wait for the slowest

to finish. This migration benefits models with a large number of islands. While

the synchronous migration may result in a slower model, it provides a deterministic

process that is easier to monitor and control. There is no evidence that the migration

type effects the model performance, only the run time [34].

When there is a defined migration path between two islands the direction of infor-

mation flow also needs to be specified. It gives the option to prevent some solvers

from receiving solutions while still sharing them. For a given island there is a se-

lection policy that picks out members from the population for sharing. Then the

island replacement policy describes what members will be removed for the incoming

shared members [34]. The number of members that an island replaces can effect its

performance. The simplest implementation of this is sorting the population of each

island from best to worst, then selecting n members from the top of the list to share

with adjacent islands. Figure 3.10 shows an island that is accepting n solutions and

replacing m members from the bottom of the sorted population [34].

Initial research into this model used a homogeneous archipelago composed of GAs

[34]. However, it is possible to use other evolutionary, heuristic, or local search meth-

ods because the different nature of these algorithms can perform better depending

problems. A heterogeneous archipelago allows individual islands to benefits from the

strengths of adjacent islands and improve performance. The ATC’s research into the

island model with Pygmo/Pagmo demonstrate that heterogeneous models outperform

the corresponding homogeneous one [34]. The amount of migration for the different

Archipelagos varied to compare performance for different amounts of shared solutions.
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Figure 3.10: Selection and Replacement Processes

The ACT found that in general, migration benefits the model but Fitzgerald notes

that too much migration may accidentally eliminate desired solutions [34, 26]. The

diverse set of potential topologies was investigated revealing that the base algorithm

selected impacts the performance of a topology the most compared to other factors

like number of islands and problem. The main takeaway from the characterization

of this model is that the performance depends on the pair of cost function and base

algorithm [34].
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Chapter 4

ALGORITHM VERIFICATION

Two test cases are selected to test the HOCP and HGGA methods: Branin’s Function

and the Mariner 10 trajectory. The goal is to test to test the processes introduced

for evaluating problems with discrete and continuous variables. Testing these func-

tions provides metrics for comparison between the two methods to determine the

most effective mechanism for selection and mating, as well as overall feasibility of

implementation of the island model.

The HOCP approach allows the base algorithms in both loops to operate with stan-

dard genes and can be implemented as a binary GA that is outlined by Haupt in

Chapter 2 of Pratical Gentic Algorithms [29]. This was done in order to compare

the HOCP model to the HGGA for the different GA selection and mating methods.

A more extensive investigation to the HOCP with spacecraft trajectory design was

presented by Englander where he investigated substituting the GA with other EAs

and more complex trajectories [24].

The HGGA implementation uses the same GA from Haupt, but it differs from the

HOCP version in the way it generates and evaluates populations. The specifications

of the altered population member for each test function will be introduced in the

following sections. Other work has investigated the application of the HGGA for

MGADSM problems and how more specific mechanisms that deal with the hidden

genes effect the performance [6]. This work will use a simple implementation of this

algorithm in order to focus on the island model implementation.
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These tests were run in MATLAB on a 2.6 GHz 6-Core Intel, 2.2 GHz 2-Core Intel,

and 1.4 GHz Intel Core processors. The run time for different tests was only recorded

when the same processor was used. All of the Branin runs were completed on the

2.6 GHz 6-Core Intel processor so the execution time provided a useful metric with

which to compare the various tests. The Mariner 10 tests were completed on multiple

processors. The distributions and statistical other information was generated with

the SAS software JMP.

4.1 Branin’s Function

Branin’s function has three global minima all equal to f(x1,x2) = 0.397887 and can

be altered to consider the continuous variable C that determines the values of x1 and

x2, shown in Equation 4.1.

f(C, x1, x2) =


C = 0, 0 ≤ x1 ≤ 15, −5 ≤ x2 ≤ 10

C = 1, x1 = 0, −5 ≤ x2 ≤ 10

C = 2, 0 ≤ x1 ≤ 15, x2 = 0

(4.1)

The updated limits to Branin’s function in Equation 4.1 show how the function

changes when either x1 or x2 is equal to zero. None of the optimal solutions have

x1 or x2 equal to zero so ideally, the methods analyzed here will have the number

of population members with C = 0 increase over the generations. To investigate the

difference in how each method evaluates the continuous variable C, each was run

with five selection and two crossover methods, with constant crossover and mutation

probabilities.
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To compare the consistency of each test method the shape and fit of the distribution

of the minimum cost of the final generation are compared. When a distribution is

generated, each sample in a set is placed in a bin with a defined range. The number

of bins used can change how the spread of the samples appears. Distributions will be

compared using the same scale with a small number of sets at a time to avoid skewing

the results. The distributions tend to be skewed so the mean is not a particularly

useful parameter for comparison. The standard deviation, however, does tend to

reflect the differences seen in the results. These metrics can only be used to estimate

relationships between the different data sets due to the skewed distributions of sample

sets. With test problems that simulate a real world problems, it is important to

consider the minimum of each sample set because it shows the best value an algorithm

is capable of achieving. In the case of scalable test problems, it is better to look at

the sample set as a whole to evaluate the consistency of the solver.

Table 4.1: Generic GA parameters
Npop 100
Ngen 30
keep 50
pc 0.7
pm 0.3

threshold 0.75

To isolate the impact of the selection and crossover methods, a generic set of remaining

parameters were selected based on other work [6, 26, 29]. For the population size,

100 is a reasonable size because of the already large amount of function evaluation

and was used in other HGGA work [6]. The number of members to keep for the next

generation is just half of the total population, the generic setting presented by Haupt

[29]. The crossover and mutation probability can be tested to find desired values but

this work will use generic values [29, 26]. The threshold value is only used for the

threshold selection method and depends on the cost function being evaluated. For
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Branin’s function a threshold 0.75 that is 0.35 above the solution was used because

if the value is too low is may make the solver less effective. For Mariner 10 a value

of 17 km/s was used because it is also slightly above the known optimal value of the

total delta-V (Chapter 4.2).

4.1.1 HOCP

With the HOCP, the outer loop generates the continuous variable C, that determines

the limits of the discrete variables x1 and x2, shown in Equation 4.1. Both GAs run

with the generic conditions in Table 4.1. It took approximately 18 hours to run all

10 test cases 30 times. A summary of the test cases is shown in Table 4.2 and a more

extensive compilation is given in Appendix A. For 10 samples, the mean minimum

values were considered with the standard deviation to see how consistent the solver

is which is also related to the average value of C.

Table 4.2: HOCP Branin’s Function Results
Uniform Crossover

Avg Min
Cost

Avg Final
C

Avg Time
(s)

Std

Random 0.4179 1.01 138.4 1.3755
Natural 0.3980 0.45 196.3 0.0716
Threshold 0.3979 0.47 214.9 0.0095
Rank 0.4051 0.59 198.2 1.3697
Cost 0.4232 1.03 226.9 1.8811

Random Crossover

Avg Min
Cost

Avg Final
C

Avg Time
(s)

Std

Random 0.4134 0.77 215.2 1.3037
Natural 0.3982 0.46 236.9 0.0319
Threshold 0.3979 0.45 252.3 0.0047
Rank 0.4070 0.57 235.1 1.1987
Cost 0.4186 0.81 236.9 1.7363
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All of the selection methods consistently provide a cost that is close to the known

solution, but natural selection and threshold perform better than the other three.

Distributions of the tests show the trend of how consistent the different methods

are. As shown in Table 4.2 the standard deviations which are relatively low, with

natural selection and threshold having the lowest values. When the selection method

is constant, the crossover methods results in a similar distribution shape showing

that the crossover method does no have an impact on performance in this case. As

an example, the distributions for natural selection are shown in Figure 4.1.1. The

other four are found in Appendix A and will all be considered here. The distributions

show the concentration of solutions with the count value on the y-axis in different

ranges of solutions along the x-axis.

Figure 4.1: HOCP Natural Selection Distributions for Branin’s Function
with Uniform Crossover

Figure 4.2: HOCP Natural Selection Distributions for Branin’s Function
with Random Crossover
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The nature selection distributions have similar shapes and are skewed to the left. In

Figure 4.1.1 the uniform method has a tighter distribution than the random method

indicated by the higher density of samples in the tail than on the right side. This

shape could be a result of the increased variability in the random method resulting

in more outliers than the uniform case. Comparing distributions provides potential

relationships between different sample sets. Figure 4.1.1 shows how to peak of both

crossover methods for natural selection occur at the same bin range. This indicates

that the crossover method does not have a large impact on the overall performance

for natural selection. Random, threshold, and rank weighted selection methods also

have similar mean values and distribution shapes between the different crossover

methods. Again indicating the crossover methods does not have a large impact on

overall performance.

The distribution of cost weighted reveals a difference in the applied crossover methods

(Appendix A). Random crossover has a tighter distribution with a tall peak while the

uniform crossover as a wider spread that is relatively flat – they both have similar

means. Even though cost weighted with random crossover has a tight spread, the

mean value is higher than the natural selection and threshold methods. Similarly, the

random distribution has a tight distribution but a larger mean than natural selection

and threshold. The distribution of random with uniform crossover is largely skewed

by one outlier. Overall, these distributions show that the real difference in results is

due to the selection method with natural selection and threshold outperforming the

others.

Since it appears there is no significant difference in the crossover methods, the dis-

tributions of Natural Selection and Threshold with uniform crossover are compared

in Figure 4.1.1 (random crossover produces a similar result). The distributions are

set on the same scale which emphasizes their different shapes. The distributions in
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Figure 4.1.1 are both skewed to the left, but the natural selection distribution has a

tail, showing that more outliers are present in the sample. With this scale, it also

shows that the peak of the threshold distribution is lower than natural selection. One

reason for this difference may be that the threshold method is driven by a cutoff value.

Where as the natural selection method suffers from occasional premature convergence

causing rightward skewing. The spread of the natural selection distribution is more

broad than threshold which may benefit certain problems.

Figure 4.3: HOCP Natural Selection Distributions for Branin’s Function

Figure 4.4: HOCP Threshold Distributions for Branin’s Function

The generalizations derived from the distributions are supported by the visualization

of population trends for each iteration. The average value of C and the final minimum

cost of the population of the population are plotted for 30 generations for all 10 test

cases in Figure 4.5. These trends reveal some of the benefits of the HOCP set up

and the first example of this is the minimum cost. The trend of natural selection

and threshold is a straight line the is relatively close to the known minimum value.
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These selection methods are effective at finding the optimal solution early on. This

is because the inner loop is efficient at finding the best solution for a given value of

C. Thus, the HOCP can be run with fewer generations on the outer loop because

there is not much change in the solution over the 30 generations. Englander also

notes this factor and implemented a secondary stopping criteria that would end the

program when the solution stagnated [24]. The three under-performing algorithms

have a trend the oscillates around values that are slightly higher than the known

solution.

The evolution of C is important, especially with a problem with a known solution.

In this case, it is better if C trends towards zero. By the fourth generation natural

selection and threshold methods reach a value that is very close to 0 and continues

to oscillate slightly. The rank weighted method has the next best trend that starts

around one and drops to 0.6 by the fifth generation, but remains there for the rest

of the generations. The trend of random and cost weighted vary slightly around one

and never trend downwards significantly. The better performing algorithms have a

average C trend that starts high and by the fourth generation levels out to a lower

value. The methods with a lower average C of the final population have a lower

minimum cost solution.

The last factor that was tracked is the run time of this algorithm. As mentioned,

obtaining this data required extensive run time. For all of the selection methods

the run time of the uniform crossover method was generally shorter than random.

This excessive run time is concerning in a preliminary test case because it is a simple

evaluation of variables in one equation. When extended the spacecraft trajectories

the required time to evaluate all defined and undefined variables will increase quickly.
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Figure 4.5: Trend of Branin’s Function with Uniform Crossover

4.1.2 HGGA

To evaluate Branin’s function with a HGGA, each population member is configured

to have three genes: C, x1, and x2, where C is the marker that determines the range

of x1 and x2 (Equation 4.1). Table 4.3 shows the hidden and active states of the

variables corresponding to C. The generic parameters in Table 4.1 are used with a

sample size of 30 and to collect all the data for this test case, it took the HGGA

approximately 22 seconds to run.

Table 4.3: HGGA Marker Gene
Marker C x1 x2

0 active active
1 hidden active
2 active hidden

The restricted capabilities of the HGGA to explore the entire design space of the

discrete variable is evident in the results shown in Table 4.4. Only the natural selection
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and threshold methods yield a mean that is relatively close to the know solution. The

other, more stochastic selection methods do not perform well with this problem. The

smallest solution found in the distribution of the results for these poor performing

methods are close the the know solution – but the methods do not consistently find

that solution.

Table 4.4: HGGA Branin’s Function Results
Uniform Crossover

Avg Min
Cost

Stdev Avg Final
C

Avg Time
(ms)

Random 2.111 1.3755 0.1 58.2
Natural 0.4487 0.0716 0 62.7
Threshold 0.4058 0.0095 0 65.1
Rank 01.941 1.3697 0.067 70.1
Cost 2.578 1.8811 0.23 78.1

Random Crossover

Avg Min
Cost

Stdev Avg Final
C

Avg Time
(s)

Random 1.5356 1.3037 0.03 77.9
Natural 0.4289 0.0319 0 72.1
Threshold 0.4030 0.0047 0 83.9
Rank 1.4968 1.1987 0.03 81.3
Cost 2.2715 0.0895 0.03 78.1

When the selection method is constant, the resulting cost is of the same magnitude for

different crossover methods. This is seen in Table 4.4, as well as a comparison of the

distributions from different methods. Similar to the HOCP analysis, the distributions

are compared by crossover method on the same scale.

Overall, the distribution shapes for the different crossover methods are consistent,

so again it appears that the crossover method does not effect the consistency of the

algorithm performance. While the crossover method may not impact the performance

for problems with shorter chromosomes, in more complex cost functions crossover

may have an effect. The distributions of random, rank, and cost weighted have a
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Figure 4.6: HOCP Threshold Distributions for Branin’s Function with
Uniform Crossover

Figure 4.7: HOCP Threshold Distributions for Branin’s Function with
Random Crossover

wide spread, in contrast to the other two methods with much narrower distributions.

The natural selection distributions indicates the most consistent performance though

with some outliers. The threshold method is the next best, and while it has a tight

fit, it is more skewed to the left with a longer tail than the natural selection. As

an example, the distributions for the threshold method are shown in Figure 4.9 –

the other four are presented in Appendix A. In the different threshold distributions,

the peak occurs in different bin locations. In the uniform method, when the peak is

lower, there are more outliers present in the set. This is evidence that the skewed

distributions implying that an algorithm is not as consistent. The random method has

a distribution that trends more towards normal, suggesting more consistent results.
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Figure 4.8: HOCP Random Crossover Distributions for Branin’s Function
with Natural Selection

Figure 4.9: HOCP Random Crossover Distributions for Branin’s Function
with Threshold Selection

Similar to the HOCP analysis, the selection method is the most significant factor

affecting consistency. This is seen by comparing the distributions of two selection

methods with constant crossover. Figure 4.9 shows the natural selection and threshold

distribution for random crossover. The distribution of the threshold method changes

when on the same scale as the natural selection. This is due to the fact that the

actual range of answers is smaller than natural selection. The skewed nature of this

distribution is not shown when the bin size is decreased. The outliers present in the

natural selection with random crossover were not apparent when put on the same scale

as uniform natural selection because of the difference in range. These two methods

have skewed distributions on different scales, but still consistently perform better

than the other three methods at finding the best solution.

56



The trend of different parameters over the number of generations relates to the find-

ings of the distributions. Figure 4.10 shows the trends for the different selection

methods with uniform crossover. The two best performing algorithms showed the de-

sired trends for average value of C and minimum cost of the final generation. For the

minimum cost, natural selection and threshold started at a higher value and leveled

out to a value less than 0.5 around the fifth generation. The other three methods

started around the same value as natural selection and threshold but use oscillate

around that value for all of the generations. As expected, the natural selection and

threshold methods find the optimal value of C=0 by the second generation, while the

other methods vary slightly from zero throughout the generations.

Figure 4.10: Trend of Branin’s Function with Uniform Crossover

4.1.3 Comparison

The distributions of the HOCP and HGGA results indicate that direct comparison

would not be beneficial because there is a vast difference in the range of the data
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sets. This fact does reveal how the smaller and lower range of the HOCP data may

suggest the HOCP has a better and more consistent performance. But this should

be expected because this method allows the input variable to be optimized with

a second solver (the inner loop). Where as in the HGGA, it only has one chance

to generate potential input variables. In some cases with the HGGA, the discrete

variables generated could be one of the solutions, but if the marker gene is not equal

to zero it will miss the opportunity to evaluate the optimal solution. It is interesting

that for both algorithms, the natural selection and threshold methods performed best.

Figure 4.12 and 4.1.3 shows the distributions of uniform natural selection from the

HOCP and HGGA results. They are not shown on the same scale, but to a scale that

is automatically created by the JMP software that generates the distribution scale

base on sample size and range. Both distributions have a tail to the right but the

HOCP is more skewed to the left than HGGA. Skewed distribution suggest that the

performance does not have consistent performance.

Figure 4.11: Natural Selection for Branin’s Function Comparison with
HGGA

These tests also reveled the need to consider the run time of these algorithms. The

HOCP test cases took 2,947 times longer than the HGGA algorithm. Granted this

was collecting multiple samples of different test cases. This is a preliminary test

where the goal is to build upon these methods. The individual run time of the HOCP

with a simple test function is about 4 minutes, compared too the 50 ms run time of
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Figure 4.12: Natural Selection for Branin’s Function Comparison with
HOCP

HGGA. That can be expected in increase with the application of spacecraft trajectory

problems and even more so with the island model implementation. While the results

of the HOCP appear to be better and more consistent than the HGGA, the run time

will cause problems when trying to implement new concepts to the model that might

improve the solutions but are computationally expensive.

4.2 Mariner 10

A simplified Mariner 10 problem was used test the performance of these methods

for a simple spacecraft trajectory. This real mission was launched on November 3,

1973 from Earth and performed the first planetary fly-by of Venus on February 5,

1974. Due to the trajectory leaving Venus, a large delta-V would be required to enter

into orbit around Mercury. The spacecraft instead performed a fly-by of Mercury

on March 29, 1974 and then onto a heliocentric trajectory that would allow for two

more fly-bys of Mercury and the specific details of the mission are shown in Table 4.5.

Using the model presented in Chapter 2, a cost function that takes a planet sequence

and corresponding time of flight values to compute the total delta-V of the trajectory.

This cost function uses the same method as STOpS so that there is a baseline for

comparison.
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Figure 4.13: Mariner 10 Trajectory

It is difficult to compare the results of this simulation to the actual delta-V used

in the mission, this is due to correction maneuvers and actual result of predicted fly-

by trajectory. Because of this, the mission dates and Earth-Venus-Mercury (EVM)

trajectory are evaluated by the cost function. This produces a delta-V of 16.2485

km/s, which is high because the arrival delta-V is equal to 10.2557 km/s alone. In

order to get a better idea of the actual delta-V, the arrival delta-V will be subtracted

from the results due to the fact the mission never entered orbit around Mercury

resulting in a delta-V of 5.9928 km/s. This solution is not necessarily ”optimal”

in this design space due to the realities of launch delays, perturbations, and other

factors that can impact the trajectory, detailed by Dunne and Burgess in The Voyage

of Mariner 10 [22].

For these tests, there are 30 samples for the HGGA and 10 for the HOCP and these

values were chosen based on algorithm run time from Branin’s function and past re-
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Table 4.5: Mariner 10 Mission Parameters and Variable Limits
Mariner 10 Lower Bound Upper Bound

Flyby Planet Venus Mercury Neptune
Departure Date Nov. 3, 1973 Oct 10,1973 Dec. 1,1973

t1 (days) 94 70 110
t2 (days) 52 35 70
t3 (days) - 40 100

search [6, 24, 26]. These experiments used the two best performing selection methods

from Branin’s function tests including both crossover methods to see if crossover has

an impact with a larger chromosome size. Initially there were eight test cases between

the HGGA and HOCP mechanism combinations. These tests revealed an issue with

the cost function that allowed for high turn angle fly-bys of Earth to be selected as the

optimal solution. This happened because of two reasons, first the required departure

delta-V to enter a heliocentric orbit that has a similar period to Earth is less than a

Venus/Mercury bound trajectory. Second, the penalty applied to the fly-by delta-V

was not large enough to eliminate these trajectories. For this problem the sum of the

departure and fly-by delta-V of an Earth bound heliocentric trajectory values will

always be less than just the departure delta-V of a Venus bound trajectory. This

causes the solver to generally miss the EVM sequence and converge on the unrealistic

Earth-Earth-Earth-Mercury (EEEM) sequence. In the second round of testing the

cost function was altered to account for this inconsistency and the tests were rerun

with only uniform crossover and both selection methods. Even though the EEEM

sequence is not feasible, in these tests it shows how this algorithm performs when

solving a problem that has multiple optima.

In the results from Branin’s function, when there was a smaller range, or lower stan-

dard deviation, the performance of the algorithm was more consistent. This is because

there was never a solution with the marker gene C not equal to 0 and knowing the

solution to the problem, a good solver would not converge on a different value of C.
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In the case of spacecraft trajectory optimization problems, the state of the marker

gene has larger impact than in Branin’s function besides just changing the number

of design variables. For each potential marker gene state, there is a vast amount of

specific planet sequences that can be generated. So when looking at a set of solu-

tions from a given algorithm, the statistical parameters must be considered with the

different number of planet sequences present in mind.

4.2.1 HOCP

The simple approach to the HOCP used in Branin’s equation needs to be extended to

handle a variable sequence MGA problem. The outer loop will generate a population

of planet sequences that will be evaluated by the inner loop that generates a popula-

tion of transfer times. In terms of the Branin’s function implementation, the variable

C will become a vector with length equal to the maximum number of allowed fly-bys.

For the Mariner 10 problem there are a maximum of two fly-bys allowed so the outer

loop will consider two continuous variables P1 and P2 that represent the encounter

planets. In order to vary the length of trajectories generated, the idea of null genes

is implemented. This mechanism is used for decoding chromosomes to be evaluated.

Simply, the limits of P1 and P2 are greater than the number of planet bodies available

and those extra values represent Null values, or no planet encounter. Table 4.6 has

the possible values of P1 and P2 and their related planet body or Null state. The

limits in Table 4.5 will be used in these tests with the exception of the fly-by planet

that will increase the limits from [1 8] to [0 15].

Due to the long run time, multiple computers were used to run the tests so the run

time was not evaluated but it appeared to be on the same magnitude as the Branin

tests. All of these runs resulted in the EEEM sequence as the best solution. The best

member for every generation of all ten test runs was also saved and out of the 1200
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Table 4.6: HOCP Null Gene Decoding
Continuous Variable Planetary Representation

1 Mercury
2 Venus
3 Earth
4 Mars
5 Jupiter
6 Saturn
7 Uranus
8 Neptune

9-15 Null

values the EVM sequence only occurred in the first or second generation five times.

While the EEEM trajectory is not feasible, it is the global optima for this design

space and the HOCP proved to be very good at converging on the global optima in a

low number of generations. As discussed with Branin’s results, this is because of the

second solver that is able to ensure each sequence generated is evaluated thoroughly.

The algorithm consistently produced solutions in the expected range. The mean and

standard deviation of these sets become skewed when neglecting the arrival delta-V

because some of the solutions found trajectories that a higher departure delta-V but

a much lower arrival delta-V, around 0.1 km/s. While the members had a very low

cost, they appeared to be large outliers until the individual delta-V components were

reconsidered. This shows that subtracting the arrival delta-V is only applicable when

the EVM sequence is present so for results with only EEEM the arrival delta-V will

still be considered. Some of the EEEM trajectories presented solutions that may

have allowed Mariner 10 to enter orbit around Mercury so the solutions should be

considered as a whole.

The time variables are expected to be in the same general range because of the tight

limits used. The departure dates are all in the lower end of the set limits. The

distributions for this data shows some trends but is only composed of 10 samples so
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Table 4.7: HOCP Mariner 10 Results
Avg (km/s) Std Min (km/s) Dep Date UTC t1 t2 t3

NSU 11.2571 0.0754 11.1566 28-Nov-1973 101 65 67
NSR 8.3796 4.5661 1.6961 29-Nov-1973 81 86 65
TU 9.0278 3.2343 1.5671 27-Nov-1973 107 62 66
TR 11.1778 0.0489 11.1263 25-Nov-1973 99 69 68

Figure 4.14: Contour Plot for Density of Solutions in the Solution Space
of Departure Date vs Cost where t0 is 07-Nov-1973 09:35:59

it is hard to draw conclusions. The standard deviation of uniform natural selection

and random threshold were very low, even though these sets did not have the lowest

mean or minimum solution. This shows that these models are effective at finding the

trajectory sequence of the global minima, but it converges on the inner loop solution

prematurely. The random natural selection and uniform threshold had the lowest

mean but a high standard deviation showing these models are able to find the best

sequence and explore the discrete variable space more.

This is visualized in a density plot of the solutions comparing the departure date

and cost. There are three main areas of solutions, the areas that are lower on the
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y-axis have desired cost. However, the majority of solutions occupy the area around

the higher solution of 11 km/s. Figure 4.14 includes all four combinations but only

uniform natural selection and random crossover have distinguishable trends. If the

area around 11 km/s was expanded, the details of the density distribution of random

natural selection and uniform threshold are shown. Looking at the overall trend of

this figure, the departure dates at the lower and upper area of the set limits have a

more optimal solution and the random threshold has the most diverse set of solutions.

4.2.2 HGGA

In this problem the population members are constrained by the maximum amount of

allowed flybys, in this case 2, resulting in Lmax = 7. The marker gene is the variable

n and it will determine the state of other genes in the member. The potential states

of a chromosome are shown in table 4.15. The other GA parameters will use the

generic setting found in Table 4.1. There did not appear to be an extreme change in

the run time for these test cases compared to the results for Branin’s function. Unlike

the HOCP, these test produced sample sets with different trajectory sequences that

makes it difficult to evaluate the set as a whole.

Figure 4.15: HGGA Mariner 10 Potential Chromosome States
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The two trajectory sequences that resulted were EVM and EEEM and looking at

the whole set the solutions with the EEEM sequence had the best cost. All of the

trajectories with the Earth fly-bys were the result of the a large turn angle and none

of them found trajectories with a low arrival delta-V as seen in Chapter 4.2.1. These

results can be compared with the assumption that the spacecraft is capable of execut-

ing the fly-by with an impulsive maneuver and the arrival delta-V is subtracted from

all samples. This reveals how the constraints on a spacecraft trajectory optimization

problems is important, even more so when there is not a defined sequence. In this

case when there were less constraints on one design variable it opened up a new area

of the design space with a different sequence.

Table 4.8: HGGA Mariner 10 Results
Avg Std EVM EEEM

Natural Selection, Uniform 3.5098 1.3092 17 13
Natural Selection, Random 4.1414 0.8245 25 5
Threshold, Uniform 4.2952 0.7057 25 5
Threshold, Random 4.0347 0.8381 23 7

The ratio of resulting planet sequences, seen in Figure 4.16, impacts the distribution

of the given set. For both threshold types and random natural selection, the EEEM

sequence appeared less than 25% of the time, where as uniform natural selection

was almost evenly split. All of these distributions are skewed to the right, opposite

of the trends seen in Branin’s results (Appendix A). The distribution peaks are all

centered around the solutions for the EVM sequence and decay towards the lower

cost EEEM solutions. In terms of the design space here, the EEEM sequence is

the global optimum and EVM is the local optima. Ideally, an algorithm will find

the global optima the majority of the time resulting in a low standard deviation

and normally distributed solutions. In this case, a lower standard deviation is not

necessarily desirable because the samples with a lower standard deviation did not find
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the global optimum sequence as often. These test cases show that uniform natural

selection is more effective at searching areas of a diverse design space and selecting

optimal members from them.

Figure 4.16: HGGA Mariner 10 Sequence Breakdown

Figure 4.17: Best HGGA solutions for Mariner 10 with Uniform Natural
Selection

Looking more closely at the uniform natural selection set, the design variables of

the best solution for each planet sequence is found in Figure 4.17 The distributions

for each sequence were generated but did not reveal anything because the difference

in shape is thought to be the result of difference in sample size. Figure 4.18 shows
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the two trajectories for the best solution and it illustrates the expensive maneuver

required by the EEEM sequence. The EVM solution was so close to the known

parameters of Mariner 10 that when plotted together the lines virtually overlapped.

It is obviously not expected for the EEEM solution to have similar transfer times,

but the numbers are close due to the fact that the bounds were tight in favor Of the

Mariner 10 trajectory.

Figure 4.18: Mariner 10 Solution Trajectories for HGGA Sequences

Table 4.9: HGGA Mariner 10 Best Solutions for EVM and EEEM Delta-V
Total Delta-V Departure Fly-By 1 Fly-By 2 Arrival

EVM 4.3742 4.3468 0.0274 NaN 10.2401
EEEM 0.9948 0.0175 0.0017 0.9757 10.6473

The delta-V breakdown is outlined for the best found solutions for each sequence in

Table 4.2.2 (both produced with the uniform natural selection method). The arrival

delta-V is not considered for this problem and even if it were, the EEEM sequence

would still have a lower total cost. The difference in departure delta-V is expected

because of the target planet for each sequence. The fly-by delta-V for the EMV
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solution was on the higher end due to the difference in dates from known parameters.

The second fly-by delta-V for the EEEM sequence exceeds non-powered fly-by limits

but it is the lowest recorded value for any EEEM member.

The density plot in Figure 4.19 is more diverse than the HOCP results because of the

difference in sample sizes. All of the test cases populated the global optimum area

(EEEM) in different capacities and the uniform natural selection solutions occupied

the largest amount with subsequent methods following the trends of the mean and

standard deviation values. The majority of the solutions are indicated by the darker

area and occupies the area around 4-5 km/s across the lower end of the departure

date limits. The EEEM solutions here only occupy one of the known solution spaces

for EEEM which is around the same cost value with a lower departure date (Figure

4.14).

Figure 4.19: Density Plot of All Solution Sequences for Mariner 10 with
HGGA where t0 is 13-Oct-1973 16:36:28
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4.2.3 Constrained Mariner 10

In order to evaluate a more realistic spacecraft trajectory problem, the STOpS cost

function was altered to apply a larger penalty for the fly-by turn angle. Based on the

results from the first test, uniform natural selection and threshold showed a consistent

performance for both algorithms. The second Mariner 10 test will use these selection

methods in order to compare the performance of HGGA and HOCP with the corrected

cost function. These comparisons are made with the fact that the algorithms test sets

have different sample sizes in mind. The generic GA settings were used from Table

4.1.

All of the final solutions found the EVM trajectory sequence and this was expected

because of the changes made to the cost function. Using this cost function to evaluate

the reported transfer times for Mariner 10 resulted in a cost of 5.9928 km/s. Results

from STOpS and this work has produced values less than this cost and these solutions

have very similar transfer times but do not suffer from the realities that may constrain

a mission. The reported Mariner 10 mission having less optimal solution shows why

it is difficult to use real missions as a test case – the cost function does not include

anomalies that may occur at any step of a mission. The best found solution for each

sequence is outlined in Table 4.10.

Table 4.10: Best Solutions for EVM and HGGA and HOCP
Alg Sel Avg (km/s) StDev Min (km/s) Dep (JD) t1 (d) t2 (d)

HGGA NS 4.5770 0.0960 4.4235 30-Oct-1973 93 58
T 4.4993 0.0781 4.4031 01-Nov-1973 92 57

HOCP NS 4.4231 0.0196 4.3953 06-Nov-1973 87 56
T 4.4118 0.0161 4.3751 04-Nov-1973 89 57

As seen in all of the previous tests that resulted in the EVM sequence, the time

variables are very close to the actual mission dates and when these trajectories are
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plotted they basically overlap one another. HOCP produced the lowest final cost, and

the small samples also had the lowest means. The HGGA values are relatively close

to the HOCP solutions, and only HGGA natural selection did not produce a mean

and minimum value that was less than the reported value being compared. All of

these sets have low standard deviations, but the difference in the HGGA and HOCP

sets is visualized in Figure 4.20. Where the density areas of the HOCP sets are very

concentrated in one area compared to the large area that the HGGA sets occupy. For

both algorithms, the threshold method performed better than natural selection. But

both selection methods are useful depending on the desired results. Natural selection

explores a wider area of the design space and does a relatively good job at finding low

cost at the same time. While threshold is driven by a specific value so it is confined

to a smaller area of the design space seen in Figure 4.20.

Figure 4.20: Density of Solutions for HGGA and HOCP when t0 is 16-
Oct-1973 05:03:50
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The difference in performance of the HGGA and HOCP had been consistent through

all these test cases. With the right selection method, both algorithms demonstrate

the ability to handle problems with both continuous and discrete variables. While

the HOCP is more consistent than the HGGA, it has an extremely long run time

that would only increase while any kind of island model implementation. The HOCP

already works as a kind of collaborative algorithm system that is very good at finding

the global minima. For normal EAs, it has been extensively researched how homo-

geneous and heterogeneous collaboration and the addition of local search solvers can

improve the performance of the algorithms as a whole. It is very likely that if these

alterations were made, the result of the inner loop would improve as seen in other re-

search, along with an increase in run time. Acknowledging this, the HGGA is a better

candidate for island model implementation because it has a very short run time and

is still able to produce solutions in the range of what HOCP achieves. Collaboration

of the HGGA requires an algorithm that is also able to handle a VSDS problem.
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Chapter 5

ISLAND MODEL FOR A VARIABLE SIZED DESIGN SPACE

5.1 Cassini 1

ESA ACT’s Global Trajectory Optimization Problems (GTOP) Database provides

open source code that serves as the framework for other research to apply and compare

derivative-free solvers for MGA and MGADSM problems [34, 8, 33]. This framework

is commonly found in spacecraft trajectory optimization research, most notably in

Abdelkhlik’s hidden gene work [6, 5]. He mainly focused on the DSM problem using

different hidden gene mechanisms, similar to the different selection methods in Section

3.2.1, to identify the effect on performance. This work aims to determine if the

benefits of the island model for normal EAs are realized when using a HGGA island

model system. Cassini 1 is a MGA problem from GTOP that is similar to the actual

Cassini mission without the DSMs and it aims to minimize total delta-V based on

transfer time design variables. The problem is designed to evaluate the sequence of

Earth-Venus-Venus-Earth-Jupiter-Saturn (EVVEJS) shown in Figure 5.1. The limits

of each design variable is outline in Table 5.1. The lowest delta-V of 4.9340 km/s was

achieved by Pinna and Izzo using an EA from Pagmo. Abdelkhlik reported a value of

11.2259 km/s using a HGGA, but this was only a preliminary study of the algorithm

as of the work focused on DSM problems.

As seen in STOpS, optimization schemes function more effectively when they are

thoughtfully designed. This usually requires more preliminary testing of the set-up of

an algorithm, but ultimately results in a better solution. In the case of STOpS, all of

the EAs were tested individually for Mariner 10. Then sets of islands were constructed
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Figure 5.1: Trajectory of the Best Known Solution for Cassini1 from Izzo
and Pinna

with the result that the best solution came from the model with the algorithms that

performed best in the preliminary evaluation. This work aims to tune the algorithms

in a similar fashion, except in this case it is limited to the algorithm parameters.

While it was found that in heterogeneous models, the base algorithm parameters

do not have large impact on the performance, Izzo did not say whether or not that

was the case for homogeneous models. The Branin runs described in Table 4.2 and

4.4 show that natural selection and threshold are the best selection methods. The

Mariner 10 problem confirms this and shows a slight advantage towards threshold.

The crossover methods do not appear to have a large impact. Abdelkhlik and other

researchers in general generally skip to the MGADSM problem because that provides

a more realistic trajectory. This work uses the MGA problem to learn about the
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consistency of the algorithm performance and how the solution space changes when

the island model parameters or problem constraints are altered.

The mga.m cost function from the GTOP database is used for these tests [41]. Similar

to the function used in Mariner 10 tests, this uses a 2-body patched conics approx-

imation to solve the interplanetary trajectory legs. It assumes that all maneuvers

are instantaneous and generates local information on required planet ephemeris. A

version of Izzo’s Lambert’s solver is used in STOpS and these Mariner 10 tests. The

mga.m function provides an updated version of this solver that uses a new graph

method that converges in fewer iterations. This function is designed for powered

fly-by maneuvers and this requires the delta-V at the fly-by pericenter radius to be

calculated relative to the encounter body. The calculations of the orbits model is

described in more detail in Curtis’s Orbital Mechanics for Engineering Students and

other works [34, 24, 6].

The Cassini 1 problem presented by the ACT describes the objective as completing

an EVVEJS trajectory to arrive at Saturn with a pericenter radius of 108,950 km and

an eccentricity of 0.98. Izzo’s best known solution to this problem is shown in Figure

5.1. The limits on the design variables provided by the ACT are very wide, because

it is expected this problem will be solved with only six time of flight variables. The

limits on encounter planets P1, ..., Pn for the Mariner 10 tests include all planets in

the solar system because the maximum number of fly-bys was low. In this case, fly-by

limits are [0 4] because the cost function being used is only designed to handle up to

four fly-bys. Figure 5.2 shows all of the design variables along with an example of the

hidden genes activated by the marker gene n = 2. Below the potential chromosome

states for the hidden gene system in Figure 5.2 is the best solution presented by Izzo

for reference to the solutions generated with these models.
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Figure 5.2: Example Chromosomes with Hidden Genes

The variety of solutions for this problem is much larger than seen in Mariner 10

tests. It was very clear from early tests that this problem requires more constraints

depending on the desired outcome. If the GTOP limits are used with the addition of

the number planet encounters ranging from [0 4] and encounter bodies ranging from

[2 5], the most common sequence is Earth-Earth-Earth-Earth-Saturn (EEEES). The

lowest recorded cost for this trajectory is 3.1537 km/s. This is similar to the problem

found in the Mariner 10 testing, except in this case the cost function is designed

to calculate the delta-V required to execute the maneuver. With the Mariner 10

problem, these Earth fly-by’s disappear from the results when the turn-angle penalty

is adjusted for non-powered fly-by. The Cassini 1 tests will not alter the GTOP cost

function in any way in order to allow for comparison between results that used this

model. The design variable limits are changed in order to explore broader areas of

the solution space. The two options are to constrain the encounter body, which is

exactly what past research has done, or constrain the transfer time. The altered

transfer times for Cassini 1 are compared to the GTOP in Table 5.1 and provide a

more diverse set of sequence solutions with no constraints on encounter bodies.

Similar to individual EAs, the island model performance can depend on the tuning of

the parameters. The island model parameters very similar to the general functioning

of a GA (Section 3.5). In the ACT’s extensive investigation into the Island Model
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Table 5.1: Cassini 1 Variable Limits for the GTOP Version and Island
Model Testing

GTOP Set 1 Set 2
n 4 2 4 2 4
P1 V V V J
P2 V V V J
P3 E V J V J
P4 J V J V J
T0 -1000 0 -1000 0 -1000 -500
t1 30 400 30 400 100 200
t2 100 470 100 470 400 470
t3 30 400 30 400 30 100
t4 400 2000 400 2000 900 1100
t5 1000 6000 1000 6000 4000 5000

performance, they used scalable test functions (MGA and MGADSM) quantify the

benefits that migration and topology consideration can provide. The one parameter

not included in this work is the collaboration of different base algorithms. While other

works have developed altered EAs with a hidden gene component, it is not necessary

to implement them here because it is well known that collaboration of different base

algorithms will improve the result of many optimization problems [6, 5].

Mariner 10 testing demonstrated that threshold is better at finding a lower cost while

natural selection is better at searching areas closer to the known optima. With this in

mind three different combinations of selection are used for testing the island model.

The first two are homogeneous models of all natural selection or threshold where there

is two way communication between all connected islands. The third is a combination

of natural selection and threshold islands, where the communication only occurs from

the threshold island sending solutions to a natural selection island.
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5.2 Topology

The ACT’s research found that the performance of different migration topologies was

most affected by changing the base optimization algorithms. For these tests all of the

base algorithms are HGGA so it is not expected that different topology styles (chain,

ring, grid, etc.) will impact performance. The ACT also found that increasing the

number of islands in a topology does not necessarily improve the performance, and

can be restricted by computational platform. Including more islands in a HGGA

island model will theoretically allow the solver to explore more areas of the solution

space, something the HGGA struggled with in previous testing (Chapter 4). Three

Archipelagos with different numbers of islands are tested with the ”Set 1” limits in

Table 5.1 using the different selection method combinations. These limits constrain

P1 and P2 to Venus and use the broad time ranges from the original GTOP problem.

The three topologies studied consist of one, six, and ten islands. The multi-island

Archipelagos are set in a chain topology shown in Figure 5.3 rather than something

like fully connected because more communication does not necessarily result in a

better solution. The ring topology provides a standard level of communication be-

tween all islands. The ten island model on the left shows the two way communi-

cation between adjacent islands. The heterogeneous model on the right shows how

the threshold islands send solutions to adjacent natural selection islands. The single

island model shares solutions with itself.

The distributions for these sample sets are non-normal and have different variance.

Surprisingly, the distributions of the single island model appear to be the most nor-

mal, and as the number of islands increase any trends in the distribution decrease

(Appendix B). In contrast, the final minimum cost of the model improves when more

islands are used. Table 5.2 shows how the results improve when the number of se-
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Figure 5.3: Example of 10-Island all NS (left) and 6-Island NS/T Combi-
nation (right) Topologies

quences present in the solution set is lower. This implies that for the HGGA, using

more islands helps the solver find the most optimal sequences and more effectively

explore the discrete variables for a given sequence.

Table 5.2: Results for Different Number of Islands and Selection Methods
Num Islands Selection Min (km

s
) Avg (km

s
) Std Num Seq

NS 14.1 22.4 3.81 8
1 T 19.4 62.7 20.1 14

NS-T 11.1 21.8 3.95 10
NS 10.5 18.3 2.07 7

6 T 20.0 39.3 11.2 12
NS-T 8.01 20.8 3.40 9
NS 5.65 9.62 1.89 2

10 T 5.48 21.2 11.2 9
NS-T 5.60 10.6 3.03 3

The threshold method consistently has the highest mean and standard deviation but

with ten islands found the lowest cost of all the tests. It makes sense that this method

would find the lowest cost because as the mean decreases, the threshold process still

produces a high standard deviation. So when a larger number of islands is used the
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solver should produce a value close to the global optima when a sufficient amount

of runs are conducted. The natural selection method was improved by combination

of threshold for the tested number of islands. The all-natural-selection model has

a larger decrease in standard deviation than that of the combined method as more

islands are added. The number of planet sequences of the combined method is greatly

decreased with ten islands.

Figure 5.4: Density of Solutions for Natural Selection Models with 10
Islands where t0 is 19-Apr-1856 13:35:02

Figure 5.4 and 5.5 shows the difference in density of solutions for the natural selection

model with one and ten islands. As seen in Table 5.2, the number of sequences

found in the solutions decreases as islands are added. With more islands the solver

is able to converge on the best sequences. For initial mission planning however, it

may be beneficial to also get the results of the one island test in order to see other

potential sequences. But this wouldn’t necessarily be presenting a more optimal

path, because the most common sequence with one island, Earth-Venus-Venus-Venus-

Saturn (EVVVS), is not found in any solutions from the ten island tests. The solutions
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Figure 5.5: Density of Solutions for Natural Selection Models with 10
Islands where t0 is 19-Jul-1856 14:16:48

for the EVVEJS sequence has cost values from 18-26 km/s for the one island test which

decreases with 10 islands. In some cases it may be desirable to be presented with more

planet sequences for early mission design phases. On the other hand, getting the more

concentrated results ensures that those solutions will be more optimal compared to

everything else the solver has evaluated. The settings of the HGGA can be altered to

change the number of sequences and cost value. Larger number of sequences results

in larger cost values and lower number of sequences with lower cost values.

5.3 Migration

The same ACT research determined that models benefit from migration of solutions

by comparing tests of models with and without migration [34]. STOpS tested how

more specific values of migration changed the performance and found that too much

migration may actually cause the solver to eliminate an optimal solution [26]. With
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these findings in mind, a two island model was used to test three different values of

migration. These tests use the ”Set 1” limits form Table 5.1 where the time ranges

are broad and the first two planets are constrained to Venus.

Table 5.3: Results for Different Number of Migrations
Num Migrations Selection Min (km

s
) Avg (km

s
) Std Num Seq

NS 9.43 20.0 2.64 10
2 T 19.2 52.3 15.5 22

NS-T 13.2 22.0 3.29 10
NS 5.95 11.3 2.28 2

4 T 5.75 34.6 14.8 8
NS-T 5.73 12.1 2.88 2
NS 9.13 17.4 2.12 9

8 T 18.6 52.3 15.5 17
NS-T 10.2 19.1 2.33 9

All of the distributions are still non-normal, but the distributions of samples with

less migration appear to be less skewed. This does not correlate to lower cost values.

There is a large improvement in solutions when the number of migrations is doubled.

However, when the migrations are increased further, the solutions actually got worse

as the solver is not able to converge on less sequences. The continuous variables

benefit from more migration of solutions, but gain too much migration introduces new

sequences that may lead the solver away from a more optimal search area. Natural

selection is the most consistent solver for different migration settings, but when the

settings are ideal the addition of threshold produces the best cost of these tests. The

threshold model is most sensitive, but has shown the potential to have the best cost

when the correct settings are used. The standard deviation is the one parameter that

didn’t change with different migrations. This suggests that the average of a given set

is lower if there are less sequences present.

The minimum cost does not improve as much from altering the migration as compared

to the number of islands. Similar to those tests, Figure 5.6 shows how the variety of
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Figure 5.6: Density of Solutions for Natural Selection and Threshold
Model with Two Migrations where t0 is 11-Mar-1856 07:37:55

sequences decreases as the solution improves compared to Figure 5.7 which contains

10 sequence. While changing the migration may not provide the best known solution,

it is computationally less expensive compared the adding more islands. The change in

migration introduces the solver to new sequences but does not provide the additional

cost evaluations that another island provides. A combination of the two mechanisms

can be altered depending on the desired results: more sequences or better cost.

5.4 Design Variable Limits

With knowledge of how topology and migration impacts performance, these tests will

combine the parameters to evaluate Cassini 1 with the ”Set 2” limits from Table 5.1.

The limits on the time variables are reduced towards the solution presented by Pinna

and Izzo found in Table 5.2. The planets are constrained to Venus to Jupiter which

allows for four potential encounter bodies along with the four potential fly-bys. As

83



Figure 5.7: Density of Solutions for Natural Selection and Threshold
Model with Four Migrations where t0 is 22-Jul-1856 01:58:04

mentioned, leaving planet variables unconstrained will result in a larger occurrence of

Earth fly-bys. Previous testing showed that natural selection has the most consistent

performance for a variety of settings but with the right tuning threshold produces

solutions with a better cost. Two migration policies for six islands will be compared

and utilizing the combination of the natural selection and threshold methods. The

third Archipelago included is composed of three islands and all are shown in Figure

5.8. The minimum cost of the model is saved after two, four, and eight migrations

and all of the distributions of the sample sets are present in Appendix C.

Expanding the design variable limits for this problem increases the resulting cost of

the solutions. This highlights the limitation of the HGGA where as the number of

potential continuous variable sequences increases the ability of the solver to converge

on the optimal set of discrete variables decreases. The number of migrations and

different topologies did not appear to have an impact on the number of resulting

sequences. In previous tests some of the models resulted in double the amount of
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Figure 5.8: Archipelagos for Design Variable Testing

sequences presented here. The standard deviation also experienced little change from

the different configurations but the higher values corresponded to a lower overall

minimum cost. The higher standard deviation means that there are more values

further away from the mean, and in the case of this problem there are outliers to

the left of the mean or towards a lower cost. Compared to the other parameters

the minimum of the set changes for different numbers of migrations but there is no

notable pattern. The lack of characteristics in this data is related to the change

in constraints on the first two planet variables, resulting in 256 potential sequences

of the four continuous variables. Even when the algorithm collaborates with others

it is unable to converge on an optimal solution of the discrete variables due to the

large amount of sequences being evaluated. The best solution found for each model

is Earth-Venus-Venus-Earth-Saturn (EVVES) and the ”3 Islands” model found the

lowest cost of all with the trajectory shown in Figure 5.9.

The ”6 Islands V1” and ”3 Islands” models were run in previous tests with the

constrained planet limits and these results allowed produced lower cost values along

with various amounts of sequences, depending on the configuration. The difference

between these tests is the constrains on the first two planet variables showing how the

limits places on variables impacts the results. The limits on continuous variables have
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Table 5.4: Results from Different Archipelagos with Expanded Design
Variable Limits

Model Migrations Min (km
s
) Avg (km

s
) Std Num Seq

2 29.4 37.1 3.25 5
6 Islands V1 4 22.1 37.0 4.21 6

8 21.4 36.6 3.78 6
2 19.3 35.9 4.24 6

6 Islands V2 4 19.6 36.8 4.27 5
8 24.5 36.6 3.53 5
2 29.1 39.5 3.60 4

3 Islands 4 25.8 39.1 3.97 6
8 15.4 38.4 4.03 5

Figure 5.9: EVVES Trajectory Solutions from Best Island Model Result
with Open Planet Constraints

a larger effect because in these tests the discrete limits were shortened which should

have helped the solver find the more optimal solution space around 5 km/s. When

the limits on the continuous variables are too wide, it decreases the performance of

the solver because there are too many sequences to consider. This limitation is not

overcome with the addition of collaboration through the island model for the extent
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of these tests. The HGGA does exhibit improved results from the model parameters

of migration and topology when parameters are constrained to an extent.
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Chapter 6

CONCLUSION

This work demonstrated the effectiveness of the island model for improving the per-

formance of different methods for solving MGA spacecraft trajectory optimization

problems with undefined trajectory sequences. The HOCP was implemented to solve

Branin’s function and a simplified Mariner 10 mission. This method was very good

at finding the best set of discrete variables for a given set of continuous ones because

each set is solved with an independent algorithm. The collaboration of algorithms

results in a long run time which is not ideal for scalability in the island model – a

key factor. The HGGA allows for the combination of continuous and discrete vari-

ables within the same solver, making it a better fit for the island model. The HGGA

results for Branin’s function and the simplified Mariner 10 were not as good overall

compared to HOCP, but some configurations produced solutions close to the know

global optima.

The HGGA was implemented into different Archipelagos (island configuration) with

the base algorithm settings derived from early testing to evaluate the GTOP Cassini

1 mission. The GTOP limits were altered to allow for four open fly-bys with tighter

transfer time limits, and with two open fly-bys having the original GTOP transfer

time limits. Comparing tests with the different limits revealed the effect design vari-

able bounds have on the results in a the VSDS. When the planet bounds are too

wide the solver is unable to converge on an optimal solution, even with the collabo-

ration of the island model and tight time variable bounds. When the tighter planet

bounds are used the solver produces more optimal cost values even with open time

bounds. The bounds on the planets (discrete) have a larger effect on the results
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than the transfer time (continuous) variables. In general, using this method for early

phase mission design requires some knowledge of the desired solution with a degree

of uncertainty around the encounter sequence. The natural selection and threshold

selection methods explore different ranges of the solution space and can provide an

improved solution when combined. An ideal number of migrations and larger number

of islands may provides a more optimal cost along with a concentrated numbers of

trajectory sequences. Other configurations result in an increased number of trajectory

sequences with a less optimal answers. Depending on how much a given mission wants

to consider other sequences, either result may be beneficial. Increasing the number of

islands is more effective than changing the number of migrations at improving the so-

lution but this also increases run time with the larger number of function evaluations.

Changing the number of migrations is a more efficient way to improve solutions but

requires preliminary testing. Before the island model parameters can be investigated

the design variable limits must be set with knowledge of the scope of the problem at

hand.

6.1 Future Work

The island model in this work had one type of base algorithm because of the focus on

the HOCP and hidden gene functionality. Englander implemented other EAs as the

HOCP base algorithm and the island model system has been thoroughly evaluated

with EAs and other algorithms. Collaboration of different base algorithms is these

cases improves the solution for a variety of problems with a defined trajectory se-

quence. Other EAs that have a similar population member structure may work with

the hidden gene mechanism and it has already been implemented to a DE and PSO.

Implementing hidden genes to more algorithms like EAs and ACOs that allows for

the creation of heterogeneous Archipelagos that evaluate a VSDS. The island model
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migration can be changed from synchronous to asynchronous, which would improve

the run time of the model allowing for larger Archipelagos. MGADSM problems may

also be evaluated with heterogeneous and homogeneous island models using resources

from GTOP.

While there is some future work that may improve the capabilities of the hidden

gene mechanism in an island model, it should be notes that the main influence on

parameter tuning is the trajectory problem at hand. There is extensive research into

the performance of island models that can be used for reference when tuning as the

hidden gene mechanism does not change the nature of the algorithms in the island

model. It would be most beneficial to work on this algorithm with actual problems

as tuning with test problems may not translate to every problem. Working with this

algorithm requires tuning but it can provide an efficient and reasonable solution to

complex optimization problems.
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APPENDICES

Appendix A

BRANIN’S FUNCTION TESTING

Branin’s Function Definitions:

f(x∗) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t) cosx1 + s

x = [x1, x2]

x1 ∈ [−5, 10] and x2 ∈ [0, 15]

a = 1, b =
5.1

4π2
, c =

5

π
, r = 6, s = 10, t =

1

8π

(A.1)

Three global optimum values: f(x∗) = 0.397887

Table A.1: The 10 Different Test Configurations for Branin’s Function
Testing

Uniform Crossover Random Crossover
Random Selection Rand-U Rand-R
Natural Selection NS-U NS-R

Threshold Selection T-U T-R
Rank Weighted Selection Rank-U Rank-R
Cost Weighted Selection Cost-U Cost-R
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Table A.2: Uniform Crossover Results for Different Selection Methods
from Branin’s Function Evaluated with HOCP

Rand NS Thresh Rank Cost

Min 0.513873 0.399595 0.398239 0.527482 0.411203
%Err 0.0884 32.5708 3.3467 0.8830 0.0320
Avg 0.417915 0.398026 0.397897 0.405093 0.423193
%Err 5.0337 0.0349 0.0024 1.8111 6.3600
Std 0.0333 0.0001 0.0000 0.0061 0.0265

Avg C 1.0107 0.4497 0.4650 0.5883 1.0303
Avg run time 138.4228 196.3422 214.8980 198.2228 226.8760

Table A.3: Uniform Crossover Results for Different Selection Methods
from Branin’s Function Evaluated with HOCP

Rand NS Thresh Rank Cost

Min 0.401400 0.398014 0.397982 0.419291 0.421271
%Err 0.8830 0.0320 0.0239 5.3794 5.8769
Avg 0.413430 0.398169 0.397896 0.406983 0.418633
%Err 3.9063 0.0708 0.0023 2.2861 5.2141
Std 0.0149 0.0003 0.0000 0.0089 0.0215

Avg C 0.7673 0.4597 0.4453 0.5713 0.8083
Avg run time 215.2308 236.8948 252.2705 235.1390 263.8878

Table A.4: Uniform Crossover Results for Different Selection Methods
from Branin’s Function Evaluated with HGGA

Rand NS Thresh Rank Cost

Minimum 0.513873 0.399595 0.398239 0.527482 0.411203
%Err 29.1506 0.4293 0.0884 32.5708 3.3467

Average 2.111281 0.448729 0.405874 1.941790 2.579365
%Err 430.6233 12.7781 2.0074 388.0255 548.2656
Std 1.3755 0.0716 0.0095 1.3697 1.8811

Avg C 0.1000 0.0000 0.0000 0.0667 0.2333
Avg run time 0.0582 0.0627 0.0651 0.0701 0.0781
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Table A.5: Random Crossover Results for Different Selection Methods
from Branin’s Function Evaluated with HGGA

Rand NS Thresh Rank Cost

Minimum 0.401400 0.398014 0.397982 0.419291 0.421271
%Err 0.8830 0.0320 0.0239 5.3794 5.8769

Average 1.535585 0.428899 0.403044 1.496898 2.271577
%Err 285.9350 7.7942 1.2961 276.2119 470.9101
Std 1.3037 0.0319 0.0047 1.1987 1.7363

Avg C 0.0333 0.0000 0.0000 0.0333 0.1333
Avg run time 0.0779 0.0722 0.0839 0.0813 0.0895

Figure A.1: Random Selection Distributions for HGGA and HOCP Eval-
uating Branin’s Function

Figure A.2: Natural Selection Distributions for HGGA and HOCP Eval-
uating Branin’s Function

99



Figure A.3: Threshold Selection Distributions for HGGA and HOCP Eval-
uating Branin’s Function

Figure A.4: Rank Weighted Selection Distributions for HGGA and HOCP
Evaluating Branin’s Function

Figure A.5: Cost Weighted Selection Distributions for HGGA and HOCP
Evaluating Branin’s Function
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Figure A.6: Trend of Branin’s Function with Random Crossover HOCP

Figure A.7: Trend of Branin’s Function with Random Crossover HGGA
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Appendix B

MARINER 10 TESTING

[Mariner 10 Mission]Mariner 10 Mission

Reported Mariner 10 [22] Simple Mariner 10 [26]
Fly-By Planet 1 V V
Fly-By Planet 2 M -
Fly-By Planet 3 M -
Fly-By Planet 4 M -

Departure Date (UTC) 1973-11-03 1973-11-03
T1 (days) 94 94
T2 (days) 52 52
T3 (days) 237 -
T4 (days) 115 -

Table B.1: HOCP ∆V Results for Different Selection and Crossover Meth-
ods

HOCP Arrival Delta-V Included

Avg (km/s) Std Min (km/s) Dep Date UTC t1 t2 t3
NSU 11.2571 0.0754 11.1566 28-Nov-1973 101 65 67
NSR 8.3796 4.5661 1.6961 29-Nov-1973 81 86 65
TU 9.0278 3.2343 1.5671 27-Nov-1973 107 62 66
TR 11.1778 0.0489 11.1263 25-Nov-1973 99 69 68

HOCP No Arrival Delta-V

Avg (km/s) Std Min (km/s) Dep Date UTC t1 t2 t3
NSU 1.8253 0.1301 1.6433 24-Nov-1973 105 67 66
NSR 4.5478 4.5539 1.5176 11-Nov-1973 92 94 66
TU 5.3529 4.9221 1.2868 30-Nov-1973 104 63 64
TR 1.9346 0.08623 1.7549 28-Nov-1973 104 64 66
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Figure B.1: Distributions from Mariner 10 Samples with the Arrival Delta-
V Excluded from the Solutions

Table B.2: HOCP ∆V Component Results for Different Selection and
Crossover Methods

HOCP Arrival Delta-V Included

∆Vdepart ∆Vfb1 ∆Vfb2 ∆Varrive

NSU 9.528797 0.002026 0.057565 1.701026
NSR 9.678286 0.004516 0.008662 1.504460
TU 9.834196 0.010564 0.026535 1.249736
TR 9.632275 0.001913 0.051491 1.473301

HOCP No Arrival Delta-V

∆Vdepart ∆Vfb1 ∆Vfb2 ∆Varrive

NSU 0.014519 9.470721 0.022489 1.648884
NSR 0.021639 0.004654 0.000948 1.668814
TU 0.008586 0.050379 0.005079 1.503019
TR 0.006308 9.461727 0.004328 1.653976
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Figure B.2: Distributions from Mariner 10 Samples with the Arrival Delta-
V Included in the Solutions
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Figure B.3: Distributions of Samples for HGGA Testing

105



Table B.3: HGGA ∆V Results for Different Selection and Crossover Meth-
ods

HGGA - All Samples

Avg (km/s) Std Dep Date UTC t1 t2 t3
NSU 3.5098 1.3092 1973-11-30 104 68 58
NSR 4.1414 0.8245 1973-11-23 107 68 64
TU 4.2952 0.7057 1973-11-11 110 70 70
TR 4.0347 0.8381 1973-11-29 97 63 71

HGGA - EVM

Avg (km/s) Std Dep Date UTC t1 t2 t3
NSU 4.5414 0.0926 1973-11-03 90 58 -
NSR 4.4825 0.0502 1973-11-06 87 56 -
TU 4.5794 0.0883 1973-11-01 92 57 -
TR 4.4694 0.0514 1973-11-04 89 57 -

HGGA - EEEM

Avg (km/s) Std Dep Date UTC t1 t2 t3
NSU 3.5098 1.3092 1973-11-30 104 68 58
NSR 4.1414 0.8245 1973-11-23 107 68 64
TU 4.2952 0.7057 1973-11-11 110 70 70
TR 4.0347 0.8381 1973-11-29 97 63 71

Table B.4: HGGA ∆V Component Results for Different Selection and
Crossover Methods

HGGA - All Samples

Min (km/s) ∆Vdepart ∆Vfb1 ∆Vfb2 ∆Varrive

NSU 0.9948 0.017452 0.001682 0.975690 10.647380
NSR 1.4134 0.008662449 0.010795 1.393943 9.825043
TU 1.9851 0.017424353 0.011204 1.956478 9.448132
TR 2.1519 0.005081768 0.047235 2.099655 9.171176

HGGA - EVM

Min (km/s) ∆Vdepart ∆Vfb1 ∆Vfb2 ∆Varrive

NSU 4.3741 4.3467 0.027395 - 10.240082
NSR 4.3997 4.3839 0.015768 - 10.146120
TU 4.4043 4.4041 0.000183 - 10.172403
TR 4.3988 4.3790 0.019864 - 10.172074

HGGA - EEEM

Min (km/s) ∆Vdepart ∆Vfb1 ∆Vfb2 ∆Varrive

NSU 0.9948 0.017452 0.001682 0.975690 10.647380
NSR 1.4134 0.008662449 0.010795 1.393943 9.825043
TU 1.9851 0.017424353 0.011204 1.956478 9.448132
TR 2.1519 0.005081768 0.047235 2.099655 9.171176
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Figure B.4: Constrained Mariner 10 Distributions for Both HGGA and
HOCP
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Appendix C

CASSINI 1

Figure C.1: Distributions of Solutions Sets with Number of Islands Varied
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Figure C.2: Distributions of Solutions Sets with Number of Migrations
Varied
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Figure C.3: Distributions of Solutions Sets with Planet Design Variable
Limits Expanded
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