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ABSTRACT

An Application of the Unscented Kalman Filter for Spacecraft Attitude Estimation

on Real and Simulated Light Curve Data

Kent Alejandro Rush

In the past, analyses of lightcurve data have been applied to asteroids in order to de-

termine their axis of rotation, rotation rate and other parameters. In recent decades,

these analyses have begun to be applied in the domain of Earth orbiting spacecraft.

Due to the complex geometry of spacecraft and the wide variety of parameters that

can influence the way in which they reflect light, these analyses require more com-

plex assumptions and a greater knowledge about the object being studied. Previous

investigations have shown success in extracting attitude parameters from unresolved

spacecraft using simulated data. This paper presents a focused attempt to derive

attitude parameters using an Unscented Kalman Filter from both simulated and real

data provided by Lockheed Martin Space.

This thesis characterizes and presents the differences in performance between three

simulated geometries in low, medium, and geostationary orbit in both cases where

they are spinning about a constant axis and in cases in which they are tumbling.

Additionally, this thesis hypothesizes and tests the idea that a predictable and extra-

neous angular velocity solution exists which is the reflection of the true solution about

the plane defined by the sun and observation vectors. This thesis encountered multi-

ple instances of this type solution appearing in simulation and provides an example

as well as a visualization.
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Finally, this thesis demonstrates the ability to converge to a solution from real data

although there were large discrepancies between the measurement model and the

data. This thesis discusses the validity of these solutions and sources of error.
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Chapter 1

INTRODUCTION

Light curve data is possible one of the most accessible and plentiful sources of data

that can be acquired from a spacecraft. It requires nothing from the spacecraft and

can be collected by anyone for as many passes as could be desired. Given that interest

in utilizing Earth orbit has never been higher, the utility of this rich vein of data has

also never been higher.

Because the light reflected from a spacecraft is so dependent on that spacecrafts geom-

etry, attitude and material properties that it is possible to estimate these quantities.

This thesis focuses on the latter, but substantial work has already been published on

the topic of geometry estimation.

Being able to estimate the attitude of a spacecraft for the duration of a pass also

enables the estimation of its angular velocity, and these two quantities combined offer

incredible potential to increase the situational awareness of space operations. For

example, recently a well funded effort to deorbit space debris has begun both by

government and commercial organizations. This undertaking must contend with the

challenge that their targets are often spinning and telemetry is unavailable. Here,

light curve data enables the spin of the target to be estimated without requiring

telemetry and allows for operators to be prepared before proximity operations with

the target begin.

Additionally, it offers a method of identifying and classifying uncatalogued objects.

Because attitude and spin are so closely linked to the mission of a spacecraft, estimat-
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ing these from light curve data allows for debris to be differentiated from functioning

spacecraft and more.

In this thesis, an Unscented Kalman Filter is formulated and tested against simulated

data to verify proof of concept and characterize performance with respect to varying

orbits and geometries. Additionally, a hypothesis is tested where a set of solutions

which are indistinguishable from the truth exist but which is predictably related to

the truth by the direction of illumination and observation.

Finally, this thesis attempts to bring the theoretical prospects of lightcurve data into

practical ones. Using high quality data provided by Lockheed Martin Space’s Santa

Cruz observation site, attitude and spin rate estimation will be attempted using real

data and high fidelity geometric models of real spacecraft.
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Chapter 2

BACKGROUND

2.1 Previous Work Applying the Kalman Filter to Light Curve Data

Kalman Filters excel at estimating parameters when a model and data can be corrob-

orated. Since the models for orbital dynamics, spacecraft rotation, and reflection are

all well known, it is no surprise that the Kalman Filter has been applied extensively

in this area.

2.1.1 Attitude Estimation

One of the most common applications of Kalman filtering when applied to light curve

data is to estimate the attitude and rotation of a spacecraft given a known geometry

[21] [16] [17]. These filters work by guessing an initial attitude and angular velocity

and generating a reflectance value based on the known obit and material properties

of the spacecraft model. The Kalman filter performs this operation across the entire

dataset, comparing the predicted reflectance intensities with the measured data and

updating its estimate of the spacecraft’s attitude and angular velocity. Eventually

this method should converge to an state representation of the spacecraft that matches

the measured data as closely as possible.

Several formulations have been proposed, each estimating different quantities but all

estimating attitude and angular velocity. In all three however, the angular velocity

was assumed to be constant and about the major axis of their modelled geometries.

[21] [16] [17].
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In order to account for a variable spin axis, information about the inertia of the

spacecraft is required. This is difficult to know in advance, however if the geometry is

known, it is possible to create a plausible estimate of the inertial properties assuming

a constant density [16].

It has been demonstrated through simulation that by using Kalman filters it is possible

to converge on usefully accurate values for attitude and angular velocity as well as

other parameters. However, only Wetterer et al. attempted to apply their techniques

to real data. Their attempt proved unsuccessful and cited difficulties due to their

simplified reflectance model and simplified geometric model of the rocket body [21].

2.1.2 Shape Characterization

Using the same principles as above, it is possible to guess a geometry and see how

well it is capable of fitting the data. Linares et al. demonstrated success in running

multiple Kalman filters in parallel and applying a multiple-model adaptive estima-

tion (MMAE) algorithm to select the geometry with the best fit [17]. Since many

spacecraft have similar geometries, this method shows promise for determining a non-

convex geometry for a completely unknown spacecraft. The downside is that there

is no guarantee that the true geometry is within the set of hypothesized geometries.

However, should the true geometry be in the set of hypothesized geometries, this

process is expected to converge to it.

2.1.3 Angles and Light Curve Synthesis

Going one step beyond simply estimating the spacecraft attitude and angular velocity,

it is possible to synthesize light curve data with additional data to estimate parameters

that are not directly measurable such as the mass of a spacecraft.
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R. Linares et. al and M. Jah. et. al. demonstrated that by using a Kalman filter

to sythesize light curve data with angular observation measurement (angles) it is

possible to estimate the mass, area, and albedo of a spacecraft as well as its orbital

state vectors [16] [7]. Their method models the effects of solar radiation pressure

(SRP) and aerodynamic drag on the orbit and compares the predicted changes to the

perturbations measured by the angles data.

2.2 Mathematical Definition of the Kalman Filter

The Kalman Filter is a statistical estimation technique derived with the intention of

solving state estimation problems. [20] The derivation for the Kalman filter assumes

that the system is linear and for this case is shown to be optimal [11]. However,

many estimation problems exist which are nonlinear in nature and for these cases

modification to the original Kalman Filter have been made. These modifications are

the Extended and Unscented formulations which approach the problem in different

ways. In this thesis the Extended formulation will be mentioned but not explored in

depth as it can quickly be shown to be unsuitable for the application of this thesis.

In a sentence, the Kalman Filter combines a model of how a system is expected to

behave and compares the predictions of this model with real world measurements of

the system to discover what state of the system best corroborates the two. In other

words, the Kalman Filter attempts to minimize the difference between measured data

and predicted data by finding the state estimate that minimizes the difference [14].

5



Formulating a Kalman Filter begins by defining the model and measurements of a

system to be the following:

ẋ = f(x) + wx, (2.1)

z = h(x) + wz, (2.2)

where x is the state of the system, z is the measurement, wx and wz are the noise

for the system and measurement models respectively. f(x) describes the dynamics

of the system and h(x) is the measurement function. wx and wz are assumed to be

gaussian with a mean of zero [14].

If the system is completely linear, as it is assumed to be in the standard Kalman

Filter, these functions can be written in the following form:

ẋ = Ax+ wx, (2.3)

z = Hx+ wz, (2.4)

where A is now the system dynamics matrix and H is the measurement matrix.

Since wx is assumed to have a mean of zero, the differential equation for x can be

solved by the equation

x(t) = x0e
At, (2.5)

and thus:

x(t+ δt) = x(t)eAδt. (2.6)

6



By pluggingAδt into the series expansion of the exponential function you can calculate

the state transition matrix F such that

xk+1 = Fxk. (2.7)

Here, k denotes an discrete measurement time evenly spaced by δt.

The matrices F and H are the crux of the Kalman Filter and can only truly be

calculated when the system and measurement functions are linear.

The final major component of the Kalman Filter is the state error covariance matrix,

Px which is defined to be [14]

Px = E[(x̂− x)(x̂− x)T ], (2.8)

with x̂k defined to be the true state, which can never truly be known. Because of this

uncertainty, the covariance matrix must also be estimated and propagated with the

state. The propagation equation for P is the following:

P−
k = FPk−1F +Q, (2.9)

where Q describes the error covariance of the system model and is defined to be

Q = E[wxw
T
x ]. (2.10)

At each timestep the state estimate, xk, is updated using the following equation:

xk = x−k +Kk(zk −Hx−k ), (2.11)
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where x−k is the predicted state from equation (2.7) and Kk is called the Kalman gain

and is calculated using

Kk = P−
xk
HT (HP−xkH

T +R)−1. (2.12)

P−
xk

is the predicted covariance matrix calculated from equation (2.9) and R describes

the error covariance of the sensors and is defined to be

R = E[wzw
T
z ]. (2.13)

Finally, the state error covariance matrix, P , is also updated using

Pxk = (I −KkH)P−
xk
. (2.14)

The final process can be summarized in figure 2.1.

Predict x−k = Fxk−1

P−
k = FPxk−1

F +Q
Kk = P−

x−k
HT (HP−

x−k
HT +R)−1

Update xk = x−k +Kk(zk −Hx−k )
Pxk = (I −KkH)P−

xk

Figure 2.1: Kalman Filter Process [14]

2.3 The Unscented Kalman Filter

As previously mentioned, the Unscented Kalman Filter (UKF) is a modification to

the original Kalman Filter designed to work around its assumption of linearity. Non-

linearity can enter the Kalman Filter in two ways. The system dynamics may become

nonlinear, the measurement function may become nonlinear, or both. When this hap-

pens it no longer becomes possible to analytically calculate the Kalman gain, which

8



in turn means that the optimal state estimate is no longer possible. The UKF is a

method by which the optimal state estimate can be approximated and can be shown

to be accurate to at least the second order [20].

The UKF works by sampling a small set of points around the current state estimates

and propagating them through the nonlinear system dynamics and measurement func-

tions [20]. By doing this, the state error covariance can be estimated by looking at

the mean and covariance of the transformed sample points [20].

The equation for selecting the sample points are the following [9]:

X0 = x (2.15)

Xi = x+ (
√

(L+ κ)Px)i i = 1, ..., L (2.16)

Xi = x− (
√

(L+ κ)Px)i−L i = L+ 1, ..., 2L (2.17)

Here L is the number elements in the state x. Px is the state covariance error, the

same as in the standard Kalman Filter. κ is an arbitrary constant used to tune the

sigma points. The notation (
√

(L+ κ)Px)i represents the ith column of the matrix√
(L+ κ)Px. Since, the square root of a matrix is not uniquely defined. This thesis

uses the Cholesky decomposition.

In the formulation of the UKF, the equation for the Kalman gain at each time step

becomes [20]

K = PxyP
−1
yy . (2.18)
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Pxy is the cross covariance of the sample points transformed by the nonlinear system

dynamics and measurement function and Pyy is the covariance of the sample points

transformed by the measurement function.

The equations to calculate the covariances are as follows: [20]:

χ = [f(X0), ..., f(X2L)] (2.19)

Y = [h(χ0), ..., h(χ2L+1)] (2.20)

x− =
2L∑
i=0

Wiχi (2.21)

y =
2L∑
i=0

WiYi (2.22)

P−
x =

2L∑
i=0

Wi(χi − x−)(χi − x−)T (2.23)

Pyy =
2L∑
i=0

Wi(Yi − y)(Yi − y)T (2.24)

Pxy =
2L∑
i=0

Wi(χi − x−)(Yi − y) (2.25)

Here W represent a set of weights for each sample point. The equation to calculate

the weights is [9]

Wi = 1/2L i = 1, ..., 2L. (2.26)

Now that the sample points and covariances can be calculated, the full procedure is

shown in figure 2.2.
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χ = [f(X0), ..., f(X2L)]
Y = [h(χ0), ..., h(χ2L)]

Predict x−k =
∑2L

i=0Wikχik
yk =

∑2L
i=0WikYik

P−
xk

=
∑2L

i=0Wik(χik − x−k )(χik − x−k )T

Pykyk =
∑2L

i=0Wik(Yik − yk)(Yik − yk)T
Pxkyk =

∑2L
i=0Wi(χik − x−k )(Yik − yk)

Update Kk = PxkykP
−1
ykyk

xk = x−k +Kk(zk − yk)
Pxk = P−

k −KkPykykK
T

Figure 2.2: Unscented Kalman Filter Process

2.4 Light Curves

Light curves are data that is collected from a telescope observing a spacecraft. The

lightcurves for this thesis were helpfully provided by Lockheed Martin Space and

collected from their facility in the Santa Cruz mountains in California.

There are two methods to collecting light curve data, either take a long exposure

photograph and record the spacecraft as a streak across the sensor or have the tele-

scope track the spacecraft while taking images at intervals. Lockheed Martin Space’s

facility performs the latter [22].

Once the raw data is collected, it is processed with the Python library SEP which

is a wrapper around the Source Extractor command-line program (SEP) analyses

astronomical images. The data used in this thesis was returned using SEP’s extract

function which calculates the ”flux” of an object at ever frame. ”Flux” is simply the

sum total of all the pixel values corresponding to that object.

The value of any given pixel in the data is determined by the CCD of the detector. The

CCD used for this data was Basler avA2300-25gm [3]. In astronomy, each increment

that a CCD pixel reports is called a ”count” and represents a threshold of photons
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hitting that pixel. The number of photos per count is given by the CCD’s gain which

in this case was 4.8. This means that the flux reported by SEP represents the total

counts received from the spacecraft. By multiplying the counts recieved by the CCD

gain, the number of photons received can be calculated.

2.5 Light Curve Modeling

An important aspect of parameter estimation using light curves comes from the abil-

ity to predict a measurement from those parameters. Other researchers have used

several models of light reflectance. The most commonly used model is the Phong

Bi-Directional Reflection Function developed by Ashikhmin et. al [2]. This model

has been utilized by Linares et. al., and Jah et. al. among others because it obeys

conservation of energy, and models the changes in specular and diffuse reflection as

the angle of incidents increases. [17] [7] [16].

The Phong BDRF model only models how bright a surface is given that it is visible

and illuminated. For convex geometries in which no surfaces occlude each other, this

can be determined by checking the dot product between the illumination and surface

normal vectors as well as the observation and surface normal vectors. If both are

greater than zero then the entire surface is visible and illuminated.

This does not work for non-convex geometries where surfaces may cast shadows on

or partially occlude each other from the observer. A method for modeling this was

proposed by Kaasalainen and Torppa in which each surface is broken up into sam-

ple points which are each checked for illumination and visibility using a ray tracing

algorithm [10].
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Chapter 3

UNSCENTED KALMAN FILTER FORMULATION

3.1 Assumptions

This thesis assumes knowledge of the spacecraft geometry. This assumption is used

by Wetterer et. al., Holzinger et. al, to name a few [21] [6]. Alternative analyses have

made attempts to estimate the geometry but have assumed knowledge of angular

velocity [10] [17] [15] [5] .

This thesis attempted to derive a UKF which required data that could be plausibly

acquired in an analysis of real data. Unfortunately, this problem requires either the

geometry or the angular velocity to be known as one cannot be determined without the

other. This thesis assumes that the geometry is accessible, either from photographs,

access to design drawings or other means.

This thesis does not assume any prior knowledge of attitude, angular velocity, or

inertia of the object. The first formulation described is for the case in which the

inertia does not need to be known which occurs when the object is spinning about its

major axis. The second includes the inertia in the state estimate to enable attitude

estimation in the case of a tumbling object.

3.2 Non-Tumbling Formulation

This thesis actually utilizes two formulations of the UKF. The defines the state vector

is composed of the modified Rodriguez parameters and angular velocity and is in the
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form:

x =

p
ω

 , (3.1)

where p are the Modified Roriguez Parameters (MRPs) and w is the angular velocity

vector. This formulation is utilized in this thesis to filter data for objects that are

assumed to be spinning about a constant axis or whose inertial properties are known.

In either of these cases inertial properties do not need to be estimated.

The Modified Rodriguez Parameters were selected as the attitude representation of

choice for this thesis. The use of quaternions and Euler Angles were investigated

but were not used for various reasons. Quaternions suffer from the issue that they

are redundant (They constitute of four elements rather than the minimum of three)

and are constrained to unit length [19]. This means that at all time only three of

the quaternion elements can change freely while allowing for a total magnitude of

one. This causes singularities arise in the UKF covariance matrix unless complex

additional measures are taken [19] [16]. Additionally, values cannot be added to a

quaternion as it is unit norm constrained which poses an extra challenge during the

update step of the UKF.

Euler angles do not suffer from the singular covariance issue as they are a minimal

attitude representation and are not unit norm constrained, however they do suffer

from another form of singularity where in certain orientation two of the angles become

indeterminate and can vary wildly with only small changes in attitude. This makes

it very difficult for the UKF to converge on a solution.

Modified Rodriguez Parameters are related to the quaternion, but they represent

the attitude in a minimal form using only three elements. This means that they

do not result in a singular covariance matrix. Additionally, they are not unit norm

constrained and only have a single singularity near the attitude represented by the
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quaternion as −1 + 0i + 0j + 0k where the MRP elements tend towards infinity.

This requires a fix, but one which requires no conditions. Fortunately, for each

MRP there is an equivalent, known as a shadow parameter, which has represents

the same attitude but whose magnitude is inverted [19]. This allows you to swap

between the MRP and its ”shadow parameter” whenever its magnitude gets too large.

This maintains a consistent attitude parametrization without ever getting near the

singularity. The equation for converting between an MRP and its shadow parameter

and vice verse is the following:

pshadow = − p

||p||2
. (3.2)

The kinetmatic equations of motion for the Modified Rodriguez Parameters are as

follows [4]:

ṗ =
1

2

(
1

2
(1− pTp)I + p× + ppT

)
ω. (3.3)

This flipping between can be seen in the MRP plots in figures 5.9 to 5.11 and 5.13 to

5.15 as sudden jump discontinuities.

3.3 Tumbling Object Formulation

In the case that the object is tumbling, that is to say that the angular velocity is not

constant in the ECI frame, inertial properties need to be either known or estimated.

If these properties are known then the state definition above suffices and only the

forward propagation model must be changed. This is unlikely however as it is often
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difficult even for operators to accurately measure a spacecrafts inertial properties.

This leads to the necessity to estimate the inertial properties.

3.3.1 Reducing the Statespace

This thesis estimates the inertial properties by adding them to the state estimate of

the UKF. This typically requires nine elements to fully define, which adds significantly

more computational complexity to estimate. The ability to effectively represent the

inertia of the object in the fewest number of parameters significantly reduces the

number of calculations required.

It is possible to take advantage of the symmetric properties of the inertia matrix

and add the matrices diagonal and only estimate the diagonal and either the upper

or lower triangular. This only adds six elements to the state as opposed to nine,

however this is still a significant jump in computational complexity and increases the

difficulty for the UKF to converge on accurate values. This thesis makes the following

two assumptions to reduce the number of elements even further.

1. The principal inertial frame is sufficiently aligned to the frame in which the

geometry is defined such that the off-diagonal elements are negligible. This

allows for the off-diagonal elements to be assumed to be zero, reducing the

elements required to be estimated to only the diagonal.

2. The disturbance torques applied to the spacecraft are negligible over the dura-

tion of a single pass. In can be shown that in the absence of disturbing torques

the specific values of the inertia matrix no longer matter, rather it is only their

relative magnitudes. This assumption is valid a wide range of spacecraft as the

duration of a single pass is so small that very few torques could significantly
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affect measurements. This assumption allows for one element of the inertia

matrix to be assumed to be one.

The combination of these two assumptions reduces the number of elements that

needed to be estimated to two: the second and third diagonal elements. Given these

assumptions, the state vector becomes:

x =


p

ω

Ξ

 , (3.4)

where Ξ is defined to be a 2x1 vector containing two of the diagonal elements of the

objects principal inertia matrix.

3.4 Modifications

The only midification from the standard UKF implementation used in this thesis was

to bound the angular velocity and inertia estimates between reasonable values. In

preliminary simulations it was found that the UKF would initially deviate signifi-

cantly before settling on a value. This large deviation both slowed down computation

significantly and resulted in the UKF settling on unrealistically high angular veloci-

ties.

These can be changed to best fit the circumstance. This thesis did not simulate an

object rotating faster than 0.3 radians per second and did not expect the real data to

produce results higher than 1 radian/second which is what this thesis set as its limit

for angular velocity.
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For the inertia limits, the limit was set to 5 kg∗m/s2. Because the inertia was defined

in relative terms, the full range of inertial ratios can still be reached by the UKF as

the values are allowed to go infinitely near zero.
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Chapter 4

MEASUREMENT MODEL

Light curves are the data collected by observing a satellite with a telescope and mea-

suring the amount of light collected from it. In order to predict how much light a

spacecraft is reflecting as a function of its attitude a reflection model is needed. This

thesis implements a modified version of the Phong Bi-Direction Reflection Distribu-

tion Function (BRDF) as used by Linares et. al [16] as well as a ray tracing algorithm

that was proposed by Kaasalainen and Torppa [10].

An overview of the process is that there is a spacecraft geometry defined by a set of

flat facets and at every measurement the facets that are both illuminated and visible

by the observation site are evaluated by a BRDF. This BRDF takes into account

the direction of the illumination source and observation as well as the illuminated

area of the facet which is calculated using a ray tracing algorithm. The individual

contributions of each facet are then summed to return the total reflected by the

spacecraft.

All math for the measurement model can be calculated in any frame, however the

author decided to work entirely within the spacecrafts body frame as this minimizes

the number of rotations that need to be performed. Using the spacecraft body frame

only requires that the observation and sun vectors be rotated rather than the entire

spacecraft geometry.
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4.1 Observation Model

According to Ashikhmin and Shirley, reflections can be modelled as the sum of their

specular and diffuse components such that [2]:

ρtotal = ρs + ρd (4.1)

All vectors in the following equations are used in the spacecraft body frame.

One feature of the BRDF used in this thesis is the ability to model anisotropic re-

flection, meaning that it can model the ”streakyness” of surfaces like brushed metal.

However, this requires additional information to describe the distribution of this re-

flection. This thesis assumes that the specular reflection is evenly distributed along

all directions which allows the equation of specular reflection to be was follows [2]

[17]:

ρsi =
n+ 1

8π

(uni
·uh)n

uni
·usun + uni

·uobs − (uni
·usun)(uni

·uobs)
Freflecti , (4.2)

where n is the specular distribution parameter, which this thesis assumes has a value

of 1. A realistic value for real materials is not specified in the origninal publication

of the Phong model, nor in similar research applying it [2] [17] [7] [10].

The equation for Freflecti is [2]:

Freflecti = Rspeci ∗ (1−Rspeci)(1− usun·uh)5. (4.3)

Where Rspeci is the specular coefficient for facet i.
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Figure 4.1: Definition of vectors with respect to a facet.

For surfaces which reflect diffusely, the formula for the diffuse component is as follows

[2] [17]:

ρdi =

(
28Rdiffi

23π

)
(1−Rspeci)

[
1− (1− uni

·usun
2

)5
] [

1− (1− uni
·uobs
2

)5
]

(4.4)

Where Rdiffi is the diffuse coefficient for the facet i.

This thesis implements a geometric model which enables each surface of the object

to be assigned a unique specular and diffuse coefficient. This enables the modeling of

variegated surface coatings and varying materials.

The equation for the total visible power reflected by the spacecraft then becomes:

Fobs =
Csun,vis
d2

N∑
i=0

Aiρtotali(uni
·usun)(uni

·uobs) (4.5)

Where Csun,vis is the power flux output from the sun in the visible spectrum [455W/m2]

[16]. d is the distance from the observer to the spacecraft in meters, Ai is the illumi-

nated area of facet (calculated by a ray tracing algorithm), and N is the number of

facets.
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This quantity is the basis for all observations, however data from collected in tele-

scopes is rarely reported in Watts, but in either counts or intensity. Intensity is

defined to be a logarithmic scaling of power, while counts is a linear scaling of the

number of photons received by the CCD sensor during a single measurement. The

conversion from Watts to intensity magnitude used in this thesis is as follows [17]:

m = −26− 2.5 log10(Fobs/Csun,vis) (4.6)

and the conversion from Watts to counts used in this thesis is:

counts =
Fobsα∆t

Ee−K
(4.7)

Where α represents the area of the telescope, ∆t is the exposure time, Ee− is the

energy of a visible wavelength photon in Joules, and K is the CCD gain of the sensor

[ e−

count
]. Either eq. 4.6 or eq. 4.7 should be used depending on the data.

4.2 Ray Tracing Model

As mentioned previously, the ray tracing algorithm is based on a description in

Kaasalainen and Torppa [10]. This algorithm works by dividing each facet into sam-

ple grids, where the center of each grid is checked both for visibility by the observer

and illumination from the sun. If either of these conditions is false then the area

of the grid is not included in the total illuminated area. It is important to distin-

guish between body mounted facets and exposed facets (such as solar panels) as the

backsides of body mounted facets are assumed to never be illuminated while exposed

facets could be illuminated from either side. The backside of a face of a cube, for

instance, is geometrically impossible to be illuminated from behind as its backside is

completely hidden from the light source.
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The first step is to iterate through each facet and precompute a list of other facets that

could cast a shadow on them. When only rectangles are used, this implies checking

the vertices of any potential occluding facets. If any vertex of facet B rises above the

plane of facet A, then facet B is in the list of facets that could ever occlude A. This

algorithm significantly reduces the number of facets that need to be checked, but it

should be noted that it does not reduce it to the maximum extent. For example,

this algorithm will include facets that may be separated by the body and in reality

could never cast a shadow on one another. In the case of exposed panels, this thesis

assumed that all other facets could cast shadows. This algorithm is described with

pseudocode in Algorithm 1.

Un = unit normal of B
Bc = center of B
for vertex in A do
Vp = position of vertex
if (Vp −Bc)·Un > 0 then

A occludes B
Exit loop

end if
end for

Algorithm 1: Determine if Facet A occludes B

Figure 4.2: Visualizaion of an occluding facet.
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In order to estimate the area of a facet that is contributing to the measurement,

regularly space sample points need to be precomputed across each face. Finer spacing

will result in more accurate results but increase the computer time required. It is

important that each sample point represents an equal area of the facet. To do this,

sample points should be placed at the centers of grid squares of equal area.

When the visible brightness of any facet needs to be computed, these points will

have to be checked for both visibility and illumination. A point is both visible and

illuminated if all of the following conditions are met:

1. uobs· un > 0

2. usun· un > 0

3. There is no facet between the point and the sun. (Shadow)

4. There is no facet between the point and the observer. (Hidden)

The last two rely on the vector-plane intersection equation.

d =
(p0 − l0)·n

l·n
(4.8)

Here, d is the distance between point l0 and the plane defined by the normal vector n

along the vector l. p0 is a point on the plane. This equation will be used to determine

the point of intersection of uobs and usun from each sample point to the planes of each

occluding facet.

As long as l is not perpendicular to n there always exists a distance d. This thesis

determines whether or not a ray intersects a facet within its boundaries by first
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calculating the point of intersection of the ray and plane using:

px = l0 + dl (4.9)

This point of intersection is then recalculated from the center of the occluding facet

and its projection along ux and uy are compared to the facets dimensions to determine

if it hit within the edges of the facet.

The full algorithm derived by the author is shown in algorithm 2.

for facet in set of facets from Alg. 1 do
dobs = Distance from point to facet along uobs from eq. 4.8
dsun = Distance from point to facet along usun from eq. 4.8
px,obs = Intersection along uobs from eq. 4.9
px,sun = Intersection along usun from eq. 4.9
p0 = Center of the intersected facet
if dobs > 0 then

ux = X axis of intersected panel frame
uy = Y axis of intersected panel frame
w = width of intersected facet
l = length of intersected facet
if |(px,obs − p0)·ux| < w AND |(px,obs − p0)·uy| < l then

return FALSE {Point is hidden from the observer}
end if

end if
if dsun > 0 then

ux = X axis of intersected panel frame
uy = Y axis of intersected panel frame
w = width of intersected facet
l = length of intersected facet
if |(px,sun − p0)·ux| < w AND |(px,sun − p0)·uy| < l then

return FALSE {Point is in shadow}
end if

end if
end for
return TRUE {If no faces hide or shadow the point, it is visible and illuminated}

Algorithm 2: Determine if a point is visible and illuminated
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The approximation of the total illuminated area of the facet then becomes:

Ai = Ai0

(
1− number of points excluded

total number of points

)
(4.10)

Where Ai0 is the total area of the facet. In the convenient case where a facet has no

other facets that could occlude it, Ai = Ai0. This is true of every facet on a geometry

which is a convex polyhedron.

Figure 4.3: A sample point that is visible but not illuminated
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Chapter 5

RESULTS AND ANALYSIS

5.1 Simulated Data

5.1.1 Test Cases

The test cases looked at were selected to determine the effects of the spacecraft inertia,

the spacecrafts orbit and its geometry. In total 18 total cases were simulated, each

were simulated at various times of the year with randomized angular velocities.

The geometries used in this analysis were a rectangular prism, a cylinder, and a box-

wing. The first two are convex geometries that have differing levels of symmetry,

while the box-wing geometry is concave. These geometries can be seen in figure 5.1.

The orbits examined are Low Earth Orbits (LEO), elliptical Medium Earth Orbits

(MEO) and Geostationary (GEO). The final variable is the spacecrafts inertia. In

the first case, the pricipal inertial axes are assumed to be aligned with the spacecraft

body frame and equal in magnitude. This corresponds to the inertial properties of a

uniform sphere. The effect of this is to make the spin axis constant for all time. In

the second case, the principal inertial axes are all different and are not aligned with

the body frame, causing the spin axis to change over time.
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Rectangular Prism Cylinder

Box Wing

Figure 5.1: Three Simulated Geometries.

Orbit Eccentricity Semimajor Axis Inclination Period
LEO 0.0029656 6,864 km 97.042 94.30 min

Eccentric MEO 0.5989717 17,254 km 31.273 375.92 min
GEO 0.0001267 42,164 km 0.028 1436.7 min

Figure 5.2: Three Simulated Orbits.
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5.1.2 Methodology

5.1.2.1 Simulation Methodology

First, a LEO, MEO, and GEO orbit were selected. Passes were calculated by brute

force sampling a spacecrafts location and checking for necessary conditions. These

conditions were obviously that the spacecraft must be above the horizon of the ob-

servation site and that the spacecraft be illuminated. Passes lower than 20 degrees

elevation were discarded because of their decreased length. Additionally, because this

thesis assumed that atmospheric effect were negligible, low elevation passes violate

this assumption. Additionally, in preliminary experiments it was noticed that the

UKF often failed to converge to a solution when the angle between the observation

and sun vector was greater than 90 degrees. This is likely because the probability

of any facet to be illuminated and visible drops significantly as the illuminated faces

become predominantly on the far side of the object. This increases the indeterminacy

of the problem as sometimes as few as only one illuminated surface may be visible.

Therefore passes whose observation and sun vectors were separated by more than

90 degrees were also discarded. Passes were also limited to only 5 minutes of data

collection as MEO spacecraft passes can be hours long and geostationary passes are

perpetual.

A 5 minute pass provides a significant amount of data, more than enough for the

UKF to converge to a result. Additionally, based on the data provided by Lockheed

Martin Space, real pass data is rarely collected for more than a few minutes.

Once a pass was identified, the spacecraft was given three initial attitudes and angular

velocities between 0.1 and 0.3 radians per second. These were then propagated and

used to calculate three different light curves per pass. Before entering the Kalman
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Filter, Gaussian noise was added to the light curve whose distribution was similar to

that of the real data collected. Gaussian noise is standard as the assumption of the

Kalman Filter is that the noise processes are distributed in a Gaussian manner [11].

The standard deviation seen in the real data varied typically between 1-30 counts,

and so this range of values was used to generate the gaussian noise.

The simulated sample rate was 100 measurements per second or 0.01 seconds be-

tween measurements. This is significantly higher than the sample rates used by other

researchers such as one sample every 1.316 seconds in Wetterer et. al [21] or one

every 5 seconds in Holzinger et. al [6]. This was done to match the data provided by

Lockheed Martin Space which contained a range of sample rates which were typically

in the neighborhood of one sample every 0.025 seconds. This is quite a remarkable

data rate.

The inertia matrix used for the spacecraft in the tumbling cases was as follows:


1 .01 .01

.01 2 .01

.01 .01 3

 , (5.1)

with the exception of the MEO and GEO box wing tumbling cases whose off-diagonal

elements were set to zero.

These diagonal elements are each different, meaning that this object now has a minor,

major, and intermediate axis which leads to tumbling behavior. The off-diagonal

elements reflect a rotation between the inertial axes and the geometric frame which

was assumed to be negligible in the formulation. In the box wing MEO and GEO cases

these are set to zero, meaning that the inertial axes are aligned with the geometric

30



frame. In this case, the assumption that the off-diagonals are negligible is completely

correct and the UKF can fully estimate the state.

This matrix follows the assumption used in the derivation of the UKF formulation

which was that the off-diagonal elements are small and therefore negligible. It should

be noted that the formulation used to estimate these parameters does not estimate

the off-diagonal elements.

Both UKFs were initalized with an angular velocity of [0.01, 0.01, 0.01] and an initial

Modified Rodriguez Parameter of [0.01, 0.01, 0.01]. These values were arbitratily se-

lected so as to give the UKFs no initial information about the objects state. It was

also noticed that when given all zeros initially the UKF was much slower to reach an

estimate.

The diagonal inertia terms were initially set to [1, 1]. Again these are simply arbitrary

values in a reasonable range.

No differences were added to the geometric models between the data simulation and

UKF analysis.

5.1.2.2 Convergence Criteria

Convergence was determined by examining the magnitude of the update to the an-

gular velocity. If it was seen that the angular velocity was updated on average less

than 1e-4 radians/second then it was said to have converged. For the real data the

threshold of 2e-3 was applied to determine convergence. These values were empirically

derived through guessing and checking.

For the cases where angular velocity was held constant, this resulted in very satisfac-

tory results. However, in the cases where the angular velocity was not constant, the
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UKF would meet the convergence criteria without producing a realistic solution. The

successful runs of the UKF for these cases were then hand selected using the criteria

that a valid solution for angular velocity should appear sinusoidal and not change

dramatically in amplitude or period.

This is likely due to the UKF’s formulation as it is unable to completely estimate the

inertia matrix. Therefore even when it converges to the correct angular velocity it

deviates from this over time requiring relatively large update steps.

5.1.2.3 Data Filtering

When analyzing the data it is important to keep in mind that this problem is indeter-

minate and that multiple solutions are possible which are all equally plausible when

the objects true attitude is not known. This poses a challenge in quantifying the

performance of the UKF as the result can only be directly compared to the simulated

truth when the UKF happens to converge to it rather than another equally plausi-

ble solution. When the UKF produces one of these alternate solutions, it cannot be

compared to the simulated truth to measure accuracy. This would not be an issue if

these alternate solutions were the minority of solutions found as they could simply

be discarded. However, these alternative solutions are by far the majority.

A known example of a solution which can never be discarded is the angular velocity

corresponding to the negative of the truth. It is not possible to know whether an

object spins clockwise or counterclockwise about any given axis using only light curve

data [18]. Therefore, in this thesis, only the axis of rotation is examined. What this

means is that, during analysis, the estimated angular velocity was multiplied by 1

or -1 to minimize the dot product between the true angular velocity and estimated

angular velocity. This simply serves to make valid results more apparent.
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As can be seen in figure 5.3 by simply comparing the converged solution with the

truth model the performance appears to be lousy. This does not make sense, as every

converged solution successfully recreated the simulated lightcurve, meaning that it is

a completely plausible solution.

Figure 5.3: Relative Error in the ECI Frame When Directly Comparing
to Simulated Truth

What was assumed is that for any given simulated trial, for every axis there are

multiple valid solutions and that if the data were filtered many times these solutions

would each appear as a group of solutions centered on a mean with similar variances.

A hypothetical example of this is shown in figure 5.4. These assumptions may not

be valid. It may me that the solutions overlap significantly and it is not possible to

separate them. However, in general once the UKF settled on a solution it showed a

very small variance, making it likely that this assumption is true.

In order to yield meaningful results without reducing the sample size to only a handful

of cases, the following methodology was applied to the data. If any component of

the angular velocity fell within 3 standard deviations of the ground truth,

it was considered to be converging towards it and its error would be added
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Figure 5.4: Hypothetical Results for Multiple Trials

to the statistics. This allows for an analysis to be conducted but does

reduce the strength of the results.

5.1.2.4 The Observation Frame

Angular velocities were analyzed in two frames: the body frame and the observation

frame. The body frame is the reference frame fixed to the spacecraft body, examples

of which can be seen in figure 5.1. In this frame, direct comparisons can be made

to the ground truth and deductions can be made about performance with respect to

the spacecraft geometry. As it can be shown that multiple attitudes can result in the

same light curve, the body frame serves as a poor frame to analyze angular velocities

which may appear wildly different in body frame but which closely mirror the ground

truth when the spacecraft attitude is accounted for.

Often, a solution may match the truth model much more closely in a frame that does

not depend on the attitude of the object. An example of this can be seen in 5.11

where the angular velocity in the body frame is significantly more off than in the

Observation Frame.
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Figure 5.5: Definition of the Observation Frame With Respect to the Sun
and Observation Vectors.

The observation frame is defined to have its origin at the center of the spacecraft, its X

axis along the observation vector, the Z axis being the cross of the sun and observation

vector, and the Y axis completing the frame. This frame enabled comparisons between

the estimated and true angular velocities in a frame which is irrespective of the

spacecrafts attitude. Additionally, this frame allows for the error analysis with respect

to the geometry of the situation. For instance, in figure 5.16 the observation frame

reveals a solution which is unrelated to the model truth except that it is mirrored

about the plane defined by the observation and illumination vectors.

5.2 Simulation Results

5.2.1 Existence of Multiple Solutions

The simulation results reveal that the problem of uniquely identifying an attitude

profile from a light curve is an indeterminate problem. The data shows that for any

light curve, there are multiple combinations of attitude profiles and angular velocities
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that can produce it. Many of these solutions are a result of the symmetry of the

spacecraft.

The number of indistinguishable solutions could be reduced if the observed object

has a highly asymmetric geometry or if its reflectance properties vary between pan-

els. These two quantities both depend on the object and can be conveniently selected

in simulations, however in reality many objects are highly symmetrical and the re-

flectance properties across the geometry would be unknown.

After seeing these results, one final run was conducted using the rectangular prism ge-

ometry in a geostationary orbit with each face having different reflactance properties.

What was found was that the convergence success rate increased to 83%, however

only 1 solution in 36 converged exactly to the simulated truth. The individual re-

sults were not significantly different than the other shown and so plots have not been

included. The author would simply like to mention that this was investigated.

It should be carefully considered when selecting the reflectance properties of the

spacecraft without complete knowledge. Any light curve can be recreated using any

combination of geometry and reflectance properties [18]. Attempting to reduce the

number of solutions in this way without knowledge of the true properties may result

in the exclusion of correct solutions.

5.2.2 Hypothesis

This thesis hypothesizes that a predicable set of solutions exists which can recreate a

given lightcurve. This second set of solutions is characterized by an angular velocity

vector whose magnitude and direction are directly mirrored across the XY plane of

the observation frame.
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It can be noticed in the formulation of the measurement model that measured light

intensity is a function of the relative directions of the facet normals, observation,

and velocity vectors. If sufficient symmetry exists within the spacecraft geometry

such that it is possible to create what appears to be a reflection of the spacecraft

geometry though only rotation, then this second set of solutions is expected to exist.

This is because a mirroring of the spacecraft geometry about the XY plane of the

observation frame preserves the angles between the sun, observation, and each facet

normal vector.

This is only possible when the observational plane remains relatively constant how-

ever. As the observational plane changes, so must the mirrored angular velocity. As

the UKF used in this thesis assumes that the angular velocity is either constant or

changes according to Eulers equations of rigid body motion. This un-modeled motion

usually excludes the mirrored solution as valid.

5.2.3 Case 1: Fixed Axis of Rotation

It is seen in figure 5.6 that the UKF performs significantly better in the Geostationary

cases. Excepting the cylinder case, where the LEO and MEO had similar success

rates, it seems that LEO is the most challenging for the UKF.

This is likely due to the fact that in both MEO and LEO, the amplitude of the light

curve can vary dramatically across the pass as the objects distance from the observer

changes. This means that small errors in the state estimate correspond to different

magnitude errors depending on when they occur during the pass. This is to say

that the model uncertainty changes throughout the pass while the UKF assumes it

is constant. The reason MEO performs better than LEO is because a MEO object

near apogee has a very constant amplitude. In GEO, the spacecraft effectively do
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not change their distance from the observer and so their model uncertainty remains

extremely constant.

Geometry LEO MEO GEO Total Trials
Cylinder 52.77% 48.88% 69.44% 117

Rectangular Prism 19.44% 57.77% 63.88% 117
Box-Wing 0.00% 50.00% 86.95% 80

Figure 5.6: Percentages of Trials with Converged Solutions: Fixed Axis
Case

It can be see that in figure 5.7, the cylinder geometry had significantly better perfor-

mance about its Z-axis which corresponds to its length. In figure 5.1 it can be seen

that the cylinder is modeled as a set of flat facets. It is likely that as the number of

facets increases that the error along the Z axis also increases. This is because as the

cylinder rotates each facet brightens and then dims. A true cylinder with uniform

albedo would not behave like this, instead it would maintain a constant brightness

throughout its rotation about the Z axis. The approximation of the cylinder using a

finite number of flat facets likely enabled higher performance than would be expected.

In general the box-wing geometry has large error compared two the other two in figure

5.7. It is likely that the significantly reduced error about the Y axis has to do with

the placement of the panels. The Y axis of this geometry corresponds to the axis

normal to the ”wings”. The box-wing geometry was also the smallest geometry and

so the modeled noise affected the signal proportionately more, which would explain

the overall higher uncertainty for this geometry.

Looking that the error in the Observation Frame performance in figure 5.8, the cylin-

der geometry performed significantly better than the other two. Potentially this is due

to the fact to make large changes in the attitude without affecting the performance

by changing its rotation about its Z body axis. This decoupling between atitude and
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Figure 5.7: Angular Velocity Error by Body Axis and Geometry With
Data Filtering

lightcurve may decrease the potential for this geometry to become stuck in a local

minimum.

Figure 5.8: Angular Velocity Error by Observation Frame Axis and Ge-
ometry With Data Filtering

Figures 5.9, 5.10, and 5.11 are an example of a converged trial for each geometry.

These results contain the angular velocity in the body frame as well as the obser-

vation frame so that the results may be compared directly as well as in a frame

irrespective of the spacecraft attitude. The Light curve comparisons and residuals
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are also shown in the top left. The residual represents the difference between the

estimated measurement and the true measurement. It can be seen in the residuals

that once the angular velocities converge, the residuals also drop near zero with some

variance which is largely a byproduct of the Gaussian noise added to the data. How

close the residual is to zero is the only measurement of how well the state estimate

matches the data. Finally, the Modified Rodriguez Parameters are included in the

bottom right. These are included to show that solutions are found with entirely dif-

ferent attitudes than the truth but which still fit the data. It should be noted that the

sudden jumps in both the true and estimated MRPs are simply the result of flipping

between the MRPs and their shadow parameter as is described in eq. 3.2.

What you expect to see from a positive result in this case is the angular velocity

in body frame to converge to fixed values and remain constant. In the Observation

frame, it is not expected for the results to converge to a fixed value as the frame is

non inertial. However, it is more likely for the estimated angular velocity to line up

with the truth model in the observation frame and so it is expected but not required

that a successful result match the truth model in the observation frame.

Additionally, a successful result is always expected to minimize the residual between

the true lightcurve and the estimated light curve. Seeing the residual of the light

curve comparison converge to a small number near zero is a sign of a valid solution

regardless of the agreement between the modeled and true state.

Finally, there is no expectation of the MRPs as in all cases there were multiple

orientations which produced the same light curve. These results were included to

show that there does not need to be any agreement between the true and simulated

MRPs to produce a result that matches the data. If the problem were completely

determinate the estimated MRPs would align with the simulated truth.
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In this data we do see that the angular velocities converge to constant values which

indicates success. Additionally when the estimate matches the truth in the observa-

tion frame it matches very closely. In all cases the residuals converge near zero. The

variance around zero is largely due to the noise added to the measurements fed to the

UKF.

It is shown that there are multiple MRP solutions which can produce the same curve as

in all three figures (5.9, 5.10, and 5.11) the MRPs converged to significantly different

values.

Angular Velocity in Body Frame Light Curve Comparison

Angular Velocity in Observation Frame Modified Rodrigues Parameter Comparison

Figure 5.9: Converged Solution of a Rectangular Prism in LEO spinning
About a Fixed Axis.
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Angular Velocity in Body Frame Light Curve Comparison

Angular Velocity in Observation Frame Modified Rodrigues Parameter Comparison

Figure 5.10: Converged Solution of a Cylinder in LEO Spinning About a
Fixed Axis.
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Angular Velocity in Body Frame Light Curve Comparison

Angular Velocity in Observation Frame Modified Rodrigues Parameter Comparison

Figure 5.11: Converged Solution of a Box-Wing in GEO Spinning About
a Fixed Axis

The formulation used in case 1 in which the angular velocity was assumed to be con-

stant yielded very positive results with a solution being found in approximately half

of the trials. Reiterating, these trials did not simulate geometric model uncertainty.

This means that should this formulation be applied to real data the performance

would be expected to decrease. Additionally, it is clear that any solution produced

by any UKF is not unique. Figures 5.9, 5.10, and 5.11 demonstrate solutions which

highly fit the data but are significantly different from the truth model.
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5.2.4 Case 2: Tumbling Spacecraft

The success rates for the tumbling cases were far lower than in the fixed axis case as

can be seen in figure 5.12. This is to be expected however as the number of parameters

to estimate and the complexity of the models are significantly greater. Again though,

we see the pattern in which performance increases with orbital altitude with GEO

having the highest success rate and LEO having the lowest.

Geometry LEO MEO GEO Total Trials
Cylinder 22.00% 25.00% 25.00% 108

Rectangular Prism 2.77% 2.77% 16.66% 108
Box-Wing 0.00% *0.00% *41.37% 101
* Spacecraft truth model had no off-diagonal elements.

Figure 5.12: Percentages of Trials with Converged Solutions: Tumbling
Case

Another trend which has continued into the tumbling case is that there are once again

multiple solutions which result in the same predicted measurement. In this new data

we see solutions converging with variations in period and amplitude in addition to

magnitude and direction. These extra degrees of freedom could potentially be why

the UKF struggles to settle on a single solution.

In regards to the Inertia estimation, results varied wildly. It is known that in the

absence of disturbances only the relative magnitude of the inertia values matter. The

top left element was forced to be 1, and the other two diagonal elements were expected

to converge to the true values.

Figures 5.13, 5.14 and 5.15 are examples of converged results for each geometry.

What is shown are the angular velocities in body and observation frame, comparisons

to the predicted and measured light curve, and the values of the estimated inertia

parameters. Only the inertia’s about the Y and Z axes are shown as in the formulation
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the X axis parameter is forced to be 1 and is not estimated. Off-diagonal elements

are not estimated and so are not shown.

In this case it is not expected that the angular velocity converge to a constant value

since the spacecraft is tumbling. Instead it is expected to converge to some continuous

curve. The inertia parameter are expected to converge to constant values.

Here as in the case of the fixed axis the residual is the only measurement of how well

the state estimate fits the data. The resudial is simply the difference between the

light curve generated by state estimate and the true lightcurve. A positive result is

expected to have a residual converge near zero.

The MRPs were not included in these results as figures 5.9, 5.10, and 5.11 show that

the attitude of the spacecraft could be any number of possible solutions and the same

was seen in the tumbling cases.

Indeed we see that in the converged cases the angular velocities in the body frame

converge to continuous, periodic curves. In the body frame they seem to have some

relationship but do not match. No trial run showed a perfect match between the

angular velocity in either the body of observation frame.

In figures 5.13 and 5.14 it appears that in the body frame the UKF has converged

to a solution which is related to the truth as each has one axis that aligns very well

with the truth while the other two seem to be 180 degrees out of phase. In figure

5.15 the body frame rate estimates seem to imply the UKF becoming stuck in a local

minimum as its angular velocity in the X axis seems to be in resonance with the true

rate. It can be seen that for ever 4 periods of the true solution the estimated solution

has completed 5.
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Unlike in case 1 where the axis of rotation was fixed, there is no clear deduction

to be made from the angular velocities in the observation frame. Figures 5.13 and

5.14 seem so show some kind of reflection about the Z axis of the observation frame,

implying some kind of geometric relationship between the estimated solution and the

true solution. However, there is no clear alignment in the X and Y axes in either

of these figures which was typical of solutions whose angular velocity was reflected

about the plane of observation in case 1.

The performance of the residuals in the case 2 are also visibly worse when compared

to the results of case 1. In figure 5.15 the residual is on the order of the measurement

which signals that this result is simply the product of the UKF falling into a local

minimum. Figure 5.15 is an example of a trial which converged but matched the data

very poorly as it seems to have become ”stuck” in a solution whose angular velocity

has resonance with the truth.

In terms of the inertia estimations, it is seen in figures 5.13, 5.14 and 5.15 that the

inertia does indeed converge to constant values, although they are not as constant as

the angular velocities were in case 1. It is interesting to note that in figure 5.15 the X

axis inertia was estimated to be intermediate axis as the Y axis value was estimated

to be less than one. In figures 5.13 and 5.14 the X axis inertia is correctly estimated

to be the minor axis as the other inertia parameters are greater than 1, however in

both figures the Y axis parameter was determined to be the major axis and the Z

axis was determined to be the intermediate axis. This is determined by their relative

magnitudes, in both cases Y > Z > X. By looking at figure 5.1 it can be seen that

this is incorrect. Both of these solutions minimized the residual and can be considered

valid results, meaning that once again, there are multiple possible solutions for the

inertial parameters that can match the data.
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Angular Velocity in Body Frame Light Curve Comparison

Angular Velocity in Body Frame Estimated Inertia Values

Figure 5.13: Converged Solution of a Cylinder in MEO Tumbling.
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Angular Velocity in Body Frame Light Curve Comparison

Angular Velocity in Body Frame Estimated Inertia Values

Figure 5.14: Converged Solution of a Rectangular Prism in MEO Tum-
bling.
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Angular Velocity in Body Frame Light Curve Comparison

Angular Velocity in Body Frame Estimated Inertia Values

Figure 5.15: Converged Solution of a Box-Wing in GEO Tumbling.

The UKF formulation in which only two inertia parameters were estimated was able

to converge to solutions which fit the data for all three geometries. However, the

success rate was significantly low. This could potentially be improved slightly through

tuning, however this formulation cannot fully estimate the inertia parameters which

significantly reduces its ability to converge to a solution. Should this formulation be

applied to real data it should be noted that the solutions produced are not unique

and it is possible for the UKF to become stuck in a locally optimal solution which

fails to fit the data.
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5.2.5 Hypothesis Results

By examining the angular velocities in the observation frame, it was observed that 6

of the 314 trials converged to a solution which was mirrored across the observational

plane. This was apparent because, in the observation frame, the angular velocity

converged to the correct axis and magnitude with the exception that the Z component

was the negative of what the truth.

Angular Velocity in the Observation Frame Light Curve Comparison

Figure 5.16: Example of a solution which is flipped across the observation
plane.

Figure 5.17: Consecutive Images from the observers perspective of truth
[TOP] and estimate [BOTTOM] showing a mirror image solution.

In figure 5.16 it can be see that the angular velocity estimate converges to ground

truth except for along the Z axis, where it converges to the negative. This corresponds

with a mirroring of the angular velocity about the XY plane of the observation frame.

In figure 5.17 a visualization is shown of the truth and estimated spacecraft atti-

tudes. Here the symmetrical relationship between the true attitude and its mirrored
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counterpart. Additionally, it can be seen in figure 5.17 that the light curve is nearly

identical to the original, suggesting that these two solutions are indistinguishable.

This result is important because as there are so many ways in which this attitude

estimation problem are indeterminate. Any way in which a result can be predictably

associated with a set of other potential solutions significantly increases the utility

of the analysis. Knowing that this additional solution is possible allows for any

single solution to now represent at least four alternative solutions which are simple

transformations of each other. These 4 solutions are then the true angular velocity,

its reflections, and their negatives.

5.3 Real Data

5.3.1 Real vs Simulated Data

It is noted that the real data looks significantly different than the simulated data.

The simulated data has clearly defined, macroscopic, periodic variations which can

clearly be attributed to a rotating, reflecting surface. The real data, which can be

seen in Appendix B., is much more ambiguous. It is unknown if the high frequency

variations in the data are noise or signal. A Fourier transform of the data did not

show any frequency begin significantly dominant.

The UKF largely ignored this high frequency variation and instead appeared to track

the mean.
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SERT-2, Source: NASA SERT-2 Reflectance Model

Figure 5.18: SERT-2 vs Reflectance Model

5.3.2 SERT-2

The Space Electric Rocket Test II (SERT-2) is a modified Aegena rocket body whose

mission was to test two ion propulsion systems on board [12]. In order to power these

propulsion systems, two deployable solar panels were added to the Aegena rocket

body whose dimensions were 1.5x6 meters. The dimensions of the Aegena module

were also 1.53x6 meters.

SERT-2 was launched on February 3rd, 1970 and was finally decommissioned in 1991.

Due to the age of the spacecraft and considering that there is potentially fuel remain-

ing within the Aegena tank, this spacecraft can be assumed to be spinning about its

major axis. This simplifying assumption allows for the implementation of the simpler

UKF formulation where no inertial parameters are estimated.

The geometry of SERT-2 is essentially a cylinder with two rectangular panels radiating

from one end. This model is non-convex which means that it can take advantage of

ray tracing algorithm described in this thesis.

The geometric model for SERT-2 can be see in figure 5.18. The reflectance properties

used for each panel were a specular reflectance of 0 and a diffuse reflectance of 0.002.

This reflects the properties of matte paint which reflects entirely diffusely. The diffuse
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coefficient value seems low, although a realistic range of values is not described in

the original publication of the Phong model, nor is it described in similar research

applying the Phong model [2] [17] [7] [10]. This value was empirically estimated to

best fit the measured data.

Obviously there is nothing to compare these estimates with as the true angular ve-

locity of SERT-2 is unknown. However, in figure 5.3.2 the angular velocity and

measurement dates are reported for the successful trials. Since it is assumed that

SERT-2 is spinning about a fixed axis, it would be expected that the angular velocity

in the ECI frame would all match. This is not the case however.

It is interesting to note that in the body frame, the majority of the solutions show

SERT-2 primarily spinning about its Z axis in body frame. This corresponds to it

spinning about its length, meaning that the solar panels would be moving rapidly. It

would then be expected that some high frequency oscillations would appear in the

generated light curve, however none are visible in figure 5.19. This implies that this

solution converged to an attitude in which the contribution of the solar panels was

minimized.

Measurement Date X Body Y Body Z Body X ECI Y ECI Z ECI
2018-06-02 -0.03838 0.099123 0.276464 -0.03607 -0.20629 -0.20946
2018-06-15 0.094913 0.307434 -0.29946 0.4386 -0.0136 0.025415
2018-06-23 -0.0934 -0.0615 0.547375 0.448295 -0.31579 -0.10693
2018-06-27 0.004656 -0.00586 -0.58329 0.29951 -0.38325 0.322009
2018-07-02 0.012748 0.02757 -0.68151 -0.08979 -0.67597 -0.01929
2018-07-07 0.107008 0.096465 0.264944 0.206755 -0.21221 -0.05632
2018-07-16 -0.00967 -0.75654 -0.00129 -0.53145 0.385914 -0.37562
2018-08-10 -0.06039 0.011915 0.613305 -0.33712 0.489952 0.161957

Table 5.1: Final Angular Velocity Vector of SERT-2 According to UKF
Estimates.

In figure 5.19 the results from one set of data are shown. These are presented in

nearly the same manner as the trials in case 1 of the simulated trials. Here the
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angular velocity is presented in the body frame and the ECI frame (rather than the

observation frame). The comparison between the light curve produced by the state

estimate and the real data rare shown in addition to their residual. Finally, the MRPs

are provided.

In this case the only quantity which can be compared are the measured light curve

and the one generated by the state estimate. By looking at the light curve comparison

it can be seen that the estimated state was generally able to predict the macroscopic

trends of the data. This is a promising result which implies at least some success.

The angular velocities in both the body and ECI frame both converge to fairly con-

stant values which is expected. Additionally the MRPs settled into a stable set of

solutions. The strange behavior around 20 seconds in the MRP plot is caused by the

UKF updating the MRP estimate very near the threshold of the flip from MRP to

shadow parameter causing it to switch back and forth.

Angular Velocity in Body Frame Light Curve Comparison

Angular Velocity in ECI Frame Modified Rodrigues Parameter Estimates

Figure 5.19: Convergence of a solution using real data of SERT-2.
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5.3.3 Ajisai (EGS)

Ajisai was a mission launched on August 13th, 1986 and was primarily intended as a

dummy payload for the H-I launch vehicle. [8] Ajisai is essentially a sphere covered

with 1,436 corner cube reflectors and 318 mirrors. [13] Its secondary mission (after

being mass) was to determine the exact position of the more isolated Japanese islands.

[8]

Because this spacecraft is so old and because it is a sphere, it is highly likely that

it is spinning about its major axis and the simpler UKF formulation can be applied

once more.

AJISAI, Source: JAXA AJISAI Reflectance Model

Figure 5.20: AJISAI vs Reflectance Model

The geometry of the spacecraft is simply a large set of reflective panels. Being mirrors,

these panels will have very high specular reflectance and almost no diffuse reflectance.

The corner cube reflectors designed to reflect light back to its source. For this thesis,

that source is the sun, and so the corner cube reflectors can be assumed to contribute

nothing to the lightcurve. Thankfully, the positions of each corner cube reflector were

documented, and the panel locations can be inferred from them.
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Figure 5.21: AJISAI with Engineer [Left]. Corner Cube Reflector Loca-
tions [Right] [13]

The reflective properties used in this spacecrafts model was as specular reflectance of

0.002 and a diffuse reflectance of 0. These values were empirically estimated to best

fit the measured data. It can be seen in figure 5.22 that the measurement model was

unable to find an attitude which could recreate the magnitude of the measured data.

This was the case for all attempts to filter data collected from this spacecraft.

Had the measurement model agreed with results, it still would have been a challenge

for the UKF to converge to an accurate solution as AJISAI is roughly a sphere and

its light curve is expected to vary only slightly as a function of attitude. Very high

quality data would be needed to capture the detail necessary to discern attitude.

Figure 5.22 shows a trial with AJISAI data in which a solution was found but which

did not fit the data. This is due to the large discrepancy between the true optical

properties and the ones assigned to the model. It can be seen that even though a

constant angular velocity is reached in the body frame, the light curve generated by

this state estimate is significantly off from the real data. Additionally, by looking at

the angular velocity in the ECI frame, it can be seen that the UKF had difficulty
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converging to a set of MRPs. It is likely that the attitude converged upon simply

minimized the total brightness.

Angular Velocity in Body Frame Light Curve Comparison

Angular Velocity in ECI Frame Modified Rodrigues Parameter Estimates

Figure 5.22: Measurement model mismatch with real data from AJISAI.

5.3.4 Second Stage Ariane-40 R/B

The final object analyzed in this thesis was the second stage of an Ariane-40 rocket.

This particular rocket body was launched on September 26th, 1993 [1]. Roughly

speaking, the geometry of this debris is roughly cylindrical and be expected to be

rotation about its major axis. Therefore the same UKF formulation was applies as

the previous two objects. Additionally, being a rocket body, fuel left over is expected

to be removing kinetic energy through friction which increases the likelihood that it

is spinning about its major axis.
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Figure 5.23: Ariane-40 R/B Reflectance Model

The reflectance properties used for this model were, once again, a specular reflectance

of 0 and a diffuse reflectance of 0.002 . These values were empirically estimated to

best fit the measured data.

The UKF managed to converge to a solution in 6 of the 8 trials. Figure 5.2 shows the

final angular velocities for the Ariane-40 R/B trials. It can be seen that in the body

frame the majority of the solutions primarily lie along the Z axis. This is unsurprising

as the Z axis of a cylinder has the least effect on the light curve. This means that

there should be a large uncertainty about this axis leading to larger values.

Given the results of the simulated results presented in case 1, it was shown that the

cylinder geometry had the smallest uncertainty about the Z axis. This is believed to

be due to approximating the geometry with a small number of flat surfaces. Therefore

the results from the case 1 trials cannot be used to interpret the data. Not only is this

low uncertainty about the Z axis an artifact of approximation, the real object being

studied is a true cylinder not a series of flat surfaces. The effect of approximating a

cylinder with multiple surfaces is unknown.
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Similarly to Sert-2, this object was assumed to be spinning about a fixed axis. It

is then expected that any solution generated by the UKF would produce the same

angular velocity in ECI with every dataset. As with SERT-2, this was not the case.

Measurement Date X Body Y Body Z Body X ECI Y ECI Z ECI
2018-09-2 -0.00119 0.001628 0.950441 0.093358 -0.87499 0.359184
2018-10-09 0.011574 0.040714 0.088763 0.095156 0.02459 0.003341
2018-10-20 0.008365 0.013743 0.005531 -0.01437 0.00181 0.00893
2018-10-23 0.001357 -0.00594 -0.2812 -0.24557 0.110988 -0.08052
2018-10-26 -0.01314 -0.02531 -0.22751 -0.14322 0.173103 0.045802
2018-10-29 0.009859 -0.01175 -0.9638 0.264907 0.904247 -0.20324

Table 5.2: Final Angular Velocity Vector of Ariane-40 R/B According to
UKF Estimates.

In figure 5.24 the results from one set of data are shown. These are presented in

nearly the same manner as the trials in case 1 of the simulated trials. Here the

angular velocity is presented in the body frame and the ECI frame (rather than the

observation frame). The comparison between the light curve produced by the state

estimate and the real data rare shown in addition to their residual. Finally, the MRPs

are provided.

It can be seen that the UKF does find a solution which minimized the residual,

however the data provided for this spacecraft was mostly very flat. This is likely due

to the spacecraft spinning so slowly that variations in the data are lost in the noise.

This limits the interpretability of the results, as the signal is so faint that it is unlikely

to be sufficient for concrete results. However, the UKF does converge on a solution

with near zero angular velocity in the X and Y body axes and only angular velocity

in the Z axis. Again, the Z axis in the body frame corresponds to the length of the

cylinder and is expected to have a minimal effects of the light curve.
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Angular Velocity in Body Frame Light Curve Comparison

Angular Velocity in ECI Frame Modified Rodrigues Parameter Estimates

Figure 5.24: Convergence of a solution using real data of Ariane-40 R/B.

5.3.5 Overall Results

This thesis confirms that is is possible to determine the attitude of a spacecraft using

an Unscented Kalman Filter on simulated data. This was possible in cases in which

an object is spinning about a fixed axis as well as when an object is tumbling. It

was also demonstrated that any attitude solution which fits the data is not unique,

and that in some cases a there is a predictable, geometric relationship between some

solutions.

Using data collected from SERT-2 and an Ariane-40 Rocket Body the UKF was able

to present a plausible solution given the data. However this is unverifiable since the

true angular velocity and attitude are unknown.

Finally, a large discrepancy was noticed between the light model and the measured

data in which the model predicted significantly brighter measurements than the col-
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lected data in the case of AJISAI. This is potentially due to unmodeled atmospheric

effects,
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Chapter 6

CONCLUSIONS

Two UKF formulations were derived to estimate the angular velocity of spacecraft

using only light curve data. One formulation focused on the case in which the object

is expected to be spinning about a constant axis, while the other accounted for the

potential of the spacecraft to be tumbling. Both formulations were assessed using

simulated light curves and the former was applied to real data which was collected

and provided by Lockheed Martin Space.

On the simulated data it was shown that in the case of the object spinning about

a fixed axis, solutions were converged upon for a the majority of the trials. For the

trials in which the spacecraft was tumbling the success rates were significantly lower

and varied significantly with respect to the objects geometry and orbit.

Overall it was noticed that both formulations performed significantly better when

the object being analyzed was in a geostationary orbit where the amplitude of the

light curve varied little. It was also noticed that performance varied significantly with

respect to the presence of geometry features.

A novel result of this thesis is the existence of a second group of solutions. It was

found that for some angular velocity solutions, there is another solution which is

simply the reflection of the first solution about the plane defined by the observation

and sun vectors. This is interesting as it adds another element of uncertainty for

any solution which is verified by simply comparing the produced light curve. It also

allows for a single any single solution to potentially represent a family of solutions

which can be easily checked without using brute force methods.
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Solutions were converged upon when real data was analyzed, however it is unlikely

that these solutions are correct and they cannot be verified. It was also discovered

that there was a significant discrepancy between the light reflectance model used by

the UKF and the real data collected. The reflectance properties of each spacecraft

had to be significantly lowered in order to match the magnitude of the real data.

This thesis attempted to create the simplest possible UKF formulations which would

produce meaningful results. The belief was that by minimizing the number of pa-

rameters estimated, the fewer data would be required to converge on a solution as

high quality data is usually scarce. This was accomplished, however the performance

in the case of tumbling objects was very poor and the process of manually selecting

the reflectance properties of the spacecraft were coarse and left much to be desired.

When the off-diagonal elements were removed from the truth model, the tumbling

UKF formulation improved significantly although too few trials were conducted with-

out them to say so definitively. It is likely worthwhile to expand the estimated state

to include a representation of the full inertia matrix.
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Chapter 7

FUTURE WORK

7.1 Reflectance Simulation

The largest area for improvement is the light reflectance model. Ideally, a model

would be developed that is able to produce simulated light curve data which is very

similar to real data. This would likely involve more accurate modeling of the telescope

used to capture the data including its noise processes. More accurate modeling of

atmospheric effects as well as any post processing applied to the data. Atmospheric

effects could also be negated by ensuring that the data is properly calibrated against

stars of known brightness. Finally, parameters for materials could be empirically

measured through experimentation to produce high fidelity data.

With ray tracing included in the reflectance model, the speed of the significantly

increased which significantly detracts from development time. A large area of im-

provement would be to implement the light curve model in a more efficient language

such as C or C++. Potentially, the development of a single, robust, and fast light

curve model could be a single thesis project which would enable for higher fidelity

analysis to be performed by future students.

7.2 UKF Improvements

This thesis attempted to create the simplest formulations which would produce mean-

ingful results, however it was realized that in the tumbling case, simulated results were

lacking. Additionally, the reflectance properties of each panel of the modeled geome-
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try had to be manually selected when it would likely be more effective to add them

to the state estimate.

A potentially significant improvement to the UKF worth exploring would be to add

an estimate of the off-diagonal elements of the inertia matrix to the state estimate as

well as the optical properties of the panels in geometry model.

The off-diagonal inertia terms could be either directly estimated or the Modified Ro-

driguez Parameters which describe the alignment between the geometry and principal

inertia frame could be estimated. Both would require the addition of 3 additional

state elements.

In order to estimate the optical properties of each panel, a value for the specular and

diffuse reflectance would need to be added to the state for each panel in the geometry

model. This is potentially an enormous number of parameters and so an effective way

of reducing this complexity would be a worthwhile area of research.

7.3 Orbit Estimation

While TLE’s are fairly accurate and easily attainable, small positional and temporal

errors can affect the ability of a UKF to converge to a solution. By estimating

the orbit of the object using the angles measurements collected at the same time

as the light curve, there may be a significant improvements in performance. This

performance increase would be due to the increased accuracy of the position of the

object in relation to the sun and observer.

This orbit estimation could be integrated as part of the UKF state estimation or

could be estimated using typical orbit estimation methods.
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7.4 Improved Data Acquisition and Processing

Since there have been so few attempts made to apply light curve analyses to real

data, and since there are such a variety in telescopes, it is not known what settings

or parameters are crucial to acquiring the most meaningful data. An investigation

on the effects of local humidity, weather, and cloud cover in addition to thing like

exposure time and pass duration during data acquisition would significantly improve

the data acquisition process. The ability to clearly differentiate light curve variations

due to reflection and noise would significantly increase the strength of results using

this method.
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APPENDICES

Appendix A

SOFTWARE USED

Software Version Application/Description
Python3 3.7.3 Programming language used to develop code
Filterpy 1.4.5 Open Source Library for Kalman Filtering by Roger Labbe

Table A.1: External Software Used.
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Appendix B

LIGHT CURVE DATA

B.1 SERT-2

SERT-2 Data Subsection of Data

SERT-2 Data Subsection of Data
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SERT-2 Data Subsection of Data

SERT-2 Data Subsection of Data

SERT-2 Data Subsection of Data
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SERT-2 Data Subsection of Data

SERT-2 Data Subsection of Data

SERT-2 Data Subsection of Data
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SERT-2 Data Subsection of Data

SERT-2 Data Subsection of Data

B.2 AJISAI

AJISAI Data Subsection of Data
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AJISAI Data Subsection of Data

AJISAI Data Subsection of Data

B.3 Ariane-40

Ariane-40 Data Subsection of Data
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Ariane-40 Data Subsection of Data

Ariane-40 Data Subsection of Data

Ariane-40 Data Subsection of Data
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Ariane-40 Data Subsection of Data

Ariane-40 Data Subsection of Data

Ariane-40 Data Subsection of Data
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Ariane-40 Data Subsection of Data
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Appendix C

INTENSITY DATA

C.1 Simulated Data

Light Intensity During Simulated Cylinder Geometry Pass

Light Intensity During Simulated Rectangle Geometry Pass
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Light Intensity During Simulated Bow Wing Geometry Pass

C.2 Real Data

Light Intensity During SERT-2 Pass

Light Intensity During Ajisai Pass
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Light Intensity During Ariane-40 Pass
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