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ABSTRACT 

Triangular Cosserat Point Element Method for Reducing Soft Tissue Artifact: Validation and 

Application to Gait 

Jake Edward Deschamps 

 

Human motion capture technology is a powerful tool for advancing the understanding of 

human motion biomechanics (Andriacchi and Alexander, 2000). This is most readily 

accomplished by applying retroreflective markers to a participant’s skin and tracking the position 

of the markers during motion. Skin and adipose tissue move independently of the underlying 

bone during motion creating error known as soft tissue artifact (STA), the primary source of error 

in human motion capture (Leardini et al., 2005). 

(Solav et al., 2014) proposed and (Solav et al., 2015) expanded the triangular Cosserat 

point element (TCPE) method to reduce the effect of STA on derived kinematics through 

application of a marker cluster analyzed as a set of triangular Cosserat point elements. This 

method also provides metrics for three different modes of STA. 

Here the updated TCPE method (Solav et al., 2015) was compared to the established 

point cluster (PC) method of (Andriacchi et al., 1998) and the marker position error minimizing 

Procrustes solution (PS) method of (Söderkvist and Wedin, 1993) in two implant-based 

simulations, providing quantitative measures of error, and standard gait analysis, providing 

qualitative comparisons of each method’s determined kinematics. Both of these experiments 

allowed the TCPE method to generate observed STA parameters, informing the efficacy of the 

simulation. 

The TCPE method’s performance was similar to the PS method’s in the implant 

simulations and in standard gait. The PC method’s results seemed to be affected by numerical 

instability: simulation trial errors were larger and standard gait results were only similar to the 

other methods’ in general terms. While the PS and TCPE results were comparable, the TCPE 

method’s physiological basis provided the added benefit of non-rigid behavior quantization 

through its STA parameters. In this study, these parameters were on the same order of 
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magnitude between the standard gait experiments and the simulations, suggesting that implant 

simulations could be valuable substitutes when invasive methods are not available. 

 

Keywords: Human Motion Biomechanics, Motion Analysis, Gait Analysis, Soft Tissue Artifact 
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Chapter 1  

INTRODUCTION 

 

Human motion capture is an established technology with numerous applications, 

including the potential to combine observed kinematic motion with measured kinetic forces to 

estimate stress within joints during physical activity (Andriacchi and Alexander, 2000). These 

systems use cameras to record the three-dimensional positions of retroreflective markers 

attached to a participant. Software analysis subsequently processes these marker trajectories in 

an attempt to determine the motion of the underlying bone. Markers may be mounted directly to a 

participant’s bones; however, this process is both invasive and expensive (Benoit et al., 2006; 

Tashman et al., 2007). Mounting markers to a participant’s skin with an adhesive greatly 

improves the accessibility of this technology, but presents another issue: the efficacy of these 

surface marker applications hinges upon the ability to reconstruct the motion of underlying bone 

from the motion of the skin. 

Skin and adipose tissue frequently move independently of a person’s bone structure. This 

movement creates error known as soft tissue artifact (STA). STA is a primary source of error in 

human motion capture (Leardini et al., 2005). Commonly used clinical methods, like the Helen 

Hayes method, consider individual segments of the body to be rigid, and all observed marker 

motion is taken as indicative of bone motion. Errors caused by STA can significantly alter the 

measured kinematics of many human motions. (Reinschmidt et al., 1997) observed that 

erroneous rotation from STA could be almost as large as the true motion for knee varus/valgus 

and internal/external rotations. The importance of understanding STA can readily be seen in the 

sheer volume of studies conducted to document its modes, measure its magnitudes, and develop 

techniques to reduce its effects. As such, it has been well established that STA is a significant 

challenge that clinical motion capture laboratories must contend with. 

The central focus of this study is a relatively recent technique developed in (Solav et al., 

2014; Solav et al., 2015) to reduce the effect of STA on body segment kinematics. This method 

models segments using triangular Cosserat point elements (i.e., deformable bodies that can 

experience homogenous deformations). It characterizes STA using physiologically relevant 
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parameters and attempts to isolate rigid motion. Previous methods, like the point cluster (PC) 

method of (Andriacchi et al., 1998) and the Procrustes solution (PS) method of (Söderkvist and 

Wedin, 1993), have used mathematical optimization techniques to reduce the effect of STA. This 

triangular Cosserat point element (TCPE) method, however, uses continuum mechanics to treat 

the body segment as capable of deformation. 

The goals of this study were three-fold: 1) validate the implementation of the TCPE 

method using STA simulations with known motion, 2) apply the TCPE method to knee angle 

determination during human gait, and 3) compare the performance of the TCPE method with 

established methods. 
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Chapter 2  

METHODS 

 

2.1. Motion Capture System 

A motion capture laboratory with eight cameras, Cortex software (OWL digital camera 

system, Cortex V5.0, Motion Analysis Corp., Santa Rosa, CA, USA), walkway/force plate (AMTI, 

Watertown, MA, USA) and analog-to-digital converter (Texas Instruments, Dallas, TX, USA) were 

used. Marker data was collected at 60 Hz, interpolated (third-order spline), and filtered (4
th
-order 

Butterworth, 6 Hz cutoff). 

2.2. Marker Position Recording 

A global coordinate system was defined for the room in which experiments took place. 

This consisted of an origin and a right-handed set of three orthonormal base vectors (𝒆̂1, 𝒆̂2, and 

𝒆̂3) that functioned as coordinate axes. Each point in the room could be described by its distance 

from the origin in each component direction. The motion capture system recorded the positions of 

markers within this coordinate system 60 times every second. Each instant at which these 

positions were recorded is called a frame, in reference to the motion capture camera system’s 

framerate. 

2.3. Implementation of Algorithms 

All equations, procedures, and algorithms described in the subsequent sections were 

implemented in MATLAB software (MATLAB R2020a, The MathWorks, Inc., Natick, MA, USA), 

with the exception of a reduced form of the TCPE method used for identifying standard error in 

STA parameters which was implemented in Octave software (GNU Octave Version 6.3.0, The 

Octave Project Developers). 

2.4. TCPE Method 

A cluster of at least six markers was placed on each non-rigid body being analyzed (the 

implant, the thigh, the shank). Fewer markers were used for rigid bodies (the pendulum, the 

plate). All possible combinations of three markers were analyzed as TCPEs. The dynamics of the 

body were characterized by this group of TCPEs. 



4 

 

A reference configuration was defined and captured for each body. The selection of the 

reference configuration differed for each experiment (see relevant subsections), but the body was 

static in each case when possible. The TCPE method determined transformations that mapped 

each TCPE from its reference configuration to each frame of motion. 

2.4.1. Obtaining Strain, Rotation, and Translation 

The following equations use direct notation (in which vectors and tensors are denoted by 

a bold font) or, when additional clarity is needed, indicial notation with 𝑖, 𝑗, 𝑘, 𝐴 = 1, 2, 3 (in which 

repeated indices use the summation convention except when noted). The reference positions of 

the three markers of the TCPE under analysis are indicated by the vectors 𝑿1, 𝑿2, and 𝑿3 while 

the present positions are represented by 𝒙1, 𝒙2, and 𝒙3. All equations appear in (Solav et al., 

2014; Solav et al., 2015) or are standard. 

Directors, special vectors formulated to provide some information about deformation 

(Rubin, 1985), were determined for each TCPE in the reference configuration and in the present 

configuration. The first two directors were obtained with vector subtraction, while the third was 

obtained by normalizing the cross product of the other two through division by its magnitude. The 

vector magnitude is denoted with vertical bars as |∙|. The calculations for the present 

configuration are shown below. Those for the reference configuration follow the same formulation. 

The aforementioned usage of uppercase letters for the reference configuration and lowercase 

letters for the present configuration extends to the directors as well. 

 𝒅1 = 𝒙1 − 𝒙3 𝒅2 = 𝒙2 − 𝒙3 𝒅3 =
𝒅1 × 𝒅2

|𝒅1 × 𝒅2|
 (1) 

The reference configuration directors were then used to define reciprocal reference configuration 

directors as follows: 

 𝑫1 =
𝑫2 × 𝑫3

|𝑫1 × 𝑫2|
 𝑫2 =

𝑫3 × 𝑫1

|𝑫1 × 𝑫2|
 𝑫3 =

𝑫1 × 𝑫2

|𝑫1 × 𝑫2|
 (2) 

The reference configuration reciprocal directors and the present configuration directors then 

yielded the deformation gradient tensor as below in direct notation (in which ⨂ represents the 

tensor product) and in indicial notation: 
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𝑭 = 𝒅1⨂𝑫1 + 𝒅2⨂𝑫2 + 𝒅3⨂𝑫3 

𝐹𝑖𝐴 = 𝑑1𝑖𝐷1𝐴 + 𝑑2𝑖𝐷
2𝐴 + 𝑑3𝑖𝐷

3𝐴 

(3) 

In this equation, the first index on each director refers to the specific director. The second index 

refers to the component of the director. For example, 𝑑11, 𝑑12, and 𝑑13 are the components of 𝒅1 

in the 𝒆̂1, 𝒆̂2, and 𝒆̂3 directions respectively. The first term in the above equation multiplies the 𝑖th 

component of the first director in the present configuration with the 𝐴th component of the first 

reciprocal reference configuration director. 

This deformation gradient tensor was of critical interest as it brings the TCPE from its 

reference configuration to its present configuration. The TCPE’s rotation tensor, Lagrangian strain 

tensor, and translation vector were all derived from this deformation gradient tensor in the 

following process. 

The deformation gradient tensor was first manipulated to obtain the Right Cauchy-Green 

deformation tensor. 

 𝑪 = 𝑭𝑇𝑭 (4) 

The square root of this tensor was taken to obtain the right stretch tensor. This process utilized 

eigenvalue decomposition further detailed in Appendix A. 

 𝑼 = 𝑪
1

2⁄  (5) 

The rotation tensor describing the rotation of the TCPE was then found using the inverse of the 

Right stretch tensor. 

 𝑹 = 𝑭𝑼−1 (6) 

The Lagrangian strain tensor was then determined using the Right Cauchy-Green 

deformation tensor. In this equation, 𝑰 represents the 3 × 3 identity matrix. 

 𝑬 =
1

2
(𝑪 − 𝑰) (7) 

Translations were obtained for each TCPE using the following approach, as detailed in 

(Solav et al., 2015). The position of each TCPE’s centroid in the reference and present 

configurations was determined by taking the mean of the three component markers’ positions. 



6 

 

 𝑿̅ =
1

3
(𝑿1 + 𝑿2 + 𝑿3) 𝒙 =

1

3
(𝒙1 + 𝒙2 + 𝒙3) (8) 

The centroid’s positions were used in combination with the deformation gradient tensor to 

determine the translation of a specific key point. This key point moved rigidly with the underlying 

body and was particular to each experiment. This particular point’s position in the reference 

configuration is referred to below as 𝑿(𝐵). The translation 𝒕(𝐵) of this point from its reference to its 

present position was determined as follows: 

 𝒕(𝐵) = 𝒙 − 𝑭(𝑿̅ − 𝑿(𝐵)) − 𝑿(𝐵) (9) 

This equation allows the key point’s translation to be determined even when its position is 

not readily available in the present configuration. The validity of this expression is demonstrated 

in the short proof below which introduces the present key point position as 𝒙(𝐵). 

 

𝒕(𝐵) = 𝒙 − 𝑭(𝑿̅ − 𝑿(𝐵)) − 𝑿(𝐵) 

𝒕(𝐵) = 𝒙 − (𝒙 − 𝒙(𝐵)) − 𝑿(𝐵) 

𝒕(𝐵) = 𝒙 − 𝒙 + 𝒙(𝐵) − 𝑿(𝐵) 

𝒕(𝐵) = 𝒙(𝐵) − 𝑿(𝐵) 

(10) 

In a perfectly rigid case, multiplying the deformation gradient tensor with the position of 

the key point relative to the TCPE centroid in the reference frame generates that same relative 

position in the present frame. Thus, the centroid terms disappear and only the difference between 

the present and reference key point positions remains. 

2.4.2. TCPE Filtering Parameters and Selection 

The above process was repeated to obtain a Lagrangian strain magnitude, rotation 

tensor, and key point translation for each TCPE. Specific elements were then selected according 

to filtering parameters based on strain, rotational variation, and translational variation. 

Lagrangian strain magnitude characterized each element’s deformation. Under rigid 

motion, this parameter would be zero. It was calculated as follows for the 𝐽th TCPE, with 𝑡𝑟(∙) 

representing the matrix trace. 

 |𝑬|𝐽 = √𝑡𝑟(𝑬𝐽𝑬𝐽
𝑇) (11) 
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Rotational variations between the 𝐽th and 𝐾th TCPEs were calculated as follows. If these 

TCPEs experienced identical rotations, then this value would be zero. 

 𝜙𝐽/𝐾 = cos−1 [
1

2
{𝑡𝑟(𝑹𝐽𝑹𝐾

𝑇 ) − 1}] (12) 

This parameter was then averaged across 𝐾 to determine the average rotational variation for the 

𝐽th TCPE as follows. Note that there is no need to ignore the case where 𝐽 = 𝐾, as 𝜙𝐽/𝐽 = 0. 

 𝜙𝐽 =
1

𝑁𝑇𝐶𝑃𝐸 − 1
∑ 𝜙𝐽/𝐾

𝑁𝑇𝐶𝑃𝐸

𝐾=1

 (13) 

The method described in (Solav et al., 2014) was expanded in (Solav et al., 2015) to 

include translational variation. This was initially calculated between the 𝐽th and 𝐾th TCPEs using: 

 𝑇𝐽/𝐾 = |𝒕𝐽
(𝐵) − 𝒕𝐾

(𝐵)| (14) 

If both TCPEs determined the same translation, this value would also be zero. As with the 

rotational variation parameter, these were then averaged across 𝐾 to give each TCPE a mean 

translational variation. As before, there is no need to ignore the case in which 𝐽 = 𝐾. 

 𝑇𝐽 =
1

𝑁𝑇𝐶𝑃𝐸 − 1
∑ 𝑇𝐽/𝐾

𝑁𝑇𝐶𝑃𝐸

𝐾=1

 (15) 

The strain magnitude, rotational variation, and translational variation were each 

normalized to span the range [0, 1]. 

 𝑁𝐽
𝐸 =

|𝑬|𝐽 − |𝑬|𝑚𝑖𝑛

|𝑬|𝑚𝑎𝑥 − |𝑬|𝑚𝑖𝑛

 𝑁𝐽
Δ𝜙

=
𝜙𝐽 − 𝜙𝑚𝑖𝑛

𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛

 𝑁𝐽
Δ𝑇 =

𝑇𝐽 − 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

 (16) 

A final combined filtering parameter was then obtained by averaging the three 

parameters for each TCPE. 

 𝑁𝐽
𝑐𝑜𝑚𝑏 =

1

3
(𝑁𝐽

𝐸 + 𝑁𝐽
Δ𝜙

+ 𝑁𝐽
Δ𝑇) (17) 

This final filtering parameter dictated TCPE selection. All TCPEs with a combined filtering 

parameter less than or equal to 0.1 were selected. If fewer than three TCPEs met this criterion, 

the three TCPEs with the lowest combined filtering parameters were selected. 

The rotation tensors of the selected TCPEs were then averaged through a process 

detailed in (Markley et al., 2007) and summarized in Appendix B. Briefly, this process determined 
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an average rotation tensor minimizing the difference between each rotation matrix and this 

average, as given by the square of the Frobenius norm. This procedure differs from that which 

was employed in (Solav et al., 2014). 

 𝑹̅ = arg min
𝑹∈𝑆𝑂(3)

∑‖𝑹 − 𝑹𝑖‖𝐹
2

𝑛

𝑖=1

 (18) 

The values of |𝑬|𝐽, 𝜙𝐽, 𝑇𝐽 were recorded for each TCPE on each frame, and were 

separately averaged to create average strain, average rotational variation, and average 

translational variation for each experiment (Refer to the “Quantization of STA” subsection). 

2.5. PC and PS Methods 

Two established marker cluster-based methods were implemented for comparison: the 

point cluster (PC) method developed by (Andriacchi et al., 1998) and the Procrustes solution (PS) 

method developed by (Söderkvist and Wedin, 1993). Both of these methods determine a rigid 

body rotation while treating the cluster as effectively rigid. The PC method adjusts marker weight 

values to reduce changes to a representative inertia matrix and the PS method determines 

rotations to minimize marker position error. 

The PC method first created an inertia matrix for the cluster by assigning each marker a 

weight value, with all markers taking the same value in the reference configuration. These weight 

values were then used to formulate an inertia tensor treating each marker as a point mass. These 

individual marker weights were then adjusted at each frame to minimize changes to this inertia 

matrix, as measured by changes to its eigenvalues. The rotation matrix was then obtained by 

leveraging the eigenvectors of this inertia matrix. 

The PS method analyzed the cluster by minimizing overall marker position error. This 

error was determined by comparing the recorded position of each marker with a position 

determined through application of a single rigid body translation and rotation to the cluster’s 

reference configuration. The minimization of the sum of the squares of these errors was analyzed 

as a variation of the Procrustes problem and solved through singular value decomposition. 

The PS method was selected to provide translation results. Instability observed with the 

PC method in this study and others such as (Cereatti et al., 2006) discounted the implementation 
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of translation for this method in favor of emphasizing the comparison between the PS and TCPE 

methods. 

The PC and PS methods used the same reference configurations as the TCPE method 

when determining transformations between the reference and present configurations. 

2.6. Human Experiment Protocols 

Experimental protocols were approved by Cal Poly’s Human Subjects Committee and 

were designed to minimize risk to human participants. Participants included four healthy, male 

individuals aged 20-24 with body mass index ranging from 21.8-26.4 and no history of leg injury. 

2.7. Validation Experiments 

2.7.1. Pendulum Validation Experiment 

This experiment was conducted to validate the TCPE method in the most controlled 

physical setting possible. As in (Solav et al., 2014), a silicone implant was fixed to the end of a 

rigid pendulum simulating a system of soft tissue and rigid bone, shown in Figure 1. 

 

 

Figure 1. Pendulum apparatus fitted with implant and markers 
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The pendulum’s structure was outfitted with four markers: one on each end of the rotation 

axis, one approximately halfway down the length of the pendulum, and another at the end of the 

pendulum. The TCPE method then attempted to determine the rotation of the rigid pendulum and 

the translation of the marker at the end of the pendulum from the motion of a cluster of seven 

markers placed on the implant. The PC and PS methods also determined rotations for 

comparison; the PS method determined translations as well. Error was determined quantitatively, 

as the true motion of the pendulum was known. 

Each trial began with the pendulum at rest in its lowest position. This static position 

provided the reference configuration for the pendulum and the implant during the trial. The 

pendulum was then manually raised and released. During free swing trials, the pendulum was 

allowed to swing uninterrupted. During impact swing trials, the pendulum’s motion was 

momentarily halted as it approached its initial point of release. 

The true angle of the pendulum was first determined by defining five vectors using 

marker pairs. These vectors were then projected onto the plane of swing and compared at each 

frame with their reference configuration counterparts. This process is further detailed in Appendix 

D. The results of this vector solution were compared to angles obtained by applying the TCPE 

method to the pendulum markers. Once these had been determined to be suitably consistent, the 

TCPE-derived rigid pendulum angles were used, as in (Solav et al., 2014). 

Rotations determined by each cluster-based method were converted into axis—angle 

representation using a process detailed in Appendix C and separated into three components 

about a set of axes that rotated with the pendulum. These components were: about the 

pendulum’s axis of rotation, about the long axis of the pendulum, and about the cross product of 

the previous two. This process is further detailed in Appendix D. 

Root-mean-square (RMS) errors were determined for each method in each component of 

rotation and for translations determined by the TCPE and PS methods. 
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2.7.2. Gait Plate Validation Experiment 

 

Figure 2. Gait plate on participant fitted with extension rod, implant, and markers 

A rigid plate and extension rod assembly was affixed to a participant’s thigh, shown in 

Figure 2. This plate was then outfitted with markers to determine its true motion. Three markers 

were placed along the extension rod and another was placed below the implant, close to the 

participant’s knee. The implant was connected to the side of the plate and equipped with six 

markers. As in the pendulum experiment, the TCPE method determined the angle of the plate 

and the translation of a key point (the lower plate marker) based on the trajectories of the implant 

markers. The PC and PS methods also analyzed the implant markers to determine rotation for 

comparison, with the PS method determining key point translation as well. 

This experiment improved upon the pendulum validation through the use of gait as the 

driving motion. The pendulum experiment enabled testing each method in a controlled, one-

dimensional case. Its rotations were largely sinusoidal, with interruptions from simulated impacts. 

This plate experiment tested each method on three-dimensional physiological motion with heel 

strike induced impacts. The accuracy of each method could be directly determined as the true 

underlying motion of the plate was still known. This informed each method’s ability to process the 

complex motion of the thigh, better illustrating their ability to determine knee kinematics. 
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Dynamic trials were challenging to capture due to marker adhesion issues. As such, only 

one trial was successfully taken, featuring the participant crossing the room at a self-selected 

walking speed. This adhesion issue also prevented the successful capture of a static pose 

reference configuration. As such, one frame from this trial (just before heel strike) was used as 

the reference configuration. 

For the purposes of RMS error calculation, marker-derived and true angles were 

converted into axis–angle representation using a process detailed in Appendix C. These angles 

were decomposed as described in Appendix E. RMS errors were then calculated for each 

component on each frame. True angles were determined using three plate markers (extension 

front, extension rear, plate low) as a single TCPE. 

2.8. Standard Gait Experiments 

Standard gait experiments were conducted with three participants to compare knee 

kinematics obtained with the cluster-based marker systems. These systems used a seven-marker 

cluster on the right thigh and another seven-marker cluster on the right shank. The participants 

were also outfitted with the Helen Hayes (HH) marker set consisting of the following 19 markers 

(symmetric where relevant): toes, heels, lateral and medial malleoli, lateral and medial femoral 

condyles, anterior superior iliac spine, sacrum, and asymmetric offset markers on the thigh and 

shank. The HH marker set shared the asymmetric offset markers on the participant’s right side 

with markers from the cluster-based set. Implementation of the HH marker set allowed Cortex 

software to determine HH-derived knee kinematics for each trial, and the functional joint centers 

(FJCs) of the hip, knee, and ankle. While not used for comparison, the HH-derived kinematics 

were used to identify and isolate the gait cycle. The FJCs were used to form the basis for knee 

angle decomposition. The TCPE and PS methods also used the knee FJC location as their key 

point for translation determination. 

After a static pose capture, medially placed markers were removed so as not to interfere 

with the participant’s normal gait. The participant walked across the room many times at a self-

selected speed until at least five trials had occurred where the participant impacted the force plate 

with their right foot during a natural gait cycle. 



13 

 

Each trial was normalized to encompass one gait cycle. This cycle began with the right 

foot contacting the force plate and ended with the next right foot impact, as determined by a local 

flexion minimum in Cortex’s determined kinematics. The time-scale was then transformed to 

percent of gait cycle: from 0% (right heel strike) to 100% (next right heel strike). This 

normalization technique enabled averaging of multiple trials for the same participant and 

comparisons across participants. 

Helen Hayes marker locations acquired during the static pose capture along with Cortex-

determined functional joint centers were used to determine vectors representing the thigh and 

shank. The rotations determined by each cluster-based method were applied to these vectors, 

giving present thigh and shank orientations. Knee angles were then determined from these 

representative vectors using a method consistent with the floating axis system developed in (Wu 

and Cavanagh, 1995). The initial definition of these vectors and the details of this method are 

included in Appendix F. 

2.9. Quantization of STA 

Application of the TCPE method to each experiment generated three filtering parameters 

for each TCPE for each frame: a strain parameter, a rotational variation parameter, and a 

translational variation parameter. These filtering parameters were direct results of non-rigid 

behavior and would be zero in the presence of perfectly rigid motion. Each parameter was 

averaged across all TCPEs and all frames for each experiment, creating three metrics indicating 

the level of non-rigid behavior present in each. These metrics were then compared across 

experiments to inform the efficacy of the implant based simulation. 
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Chapter 3  

RESULTS 

 

For both validation experiments, RMS errors were very similar for the TCPE and PS 

methods. Figure 3 and Figure 4 show these errors were within less than half a degree of rotation 

or a millimeter of translation in many cases. In some translation cases, the difference was slightly 

greater than a millimeter, though neither method appears evidently superior. Rotational RMS 

errors were the lowest about the primary axis of rotation for each experiment. For the pendulum 

validation, this was about the pendulum’s swing axis. For the gait plate validation, this was about 

the motion capture system’s y-axis, which roughly corresponded to rotation within the sagittal 

plane. 

 

Figure 3. Rotational RMS error by experiment and by component 
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Figure 4. Translational RMS error by experiment and by component 

The PC method’s RMS errors were generally substantially higher. These results are 

omitted from the figures above and instead presented in Table 1. Rotational RMS errors 

associated with the TCPE and PS methods during the pendulum trial were low compared with the 

range of motion. For the TCPE method, errors about the primary axis of rotation were just 0.66% 

of the range of motion for the free swing trials and 0.78% for the impact swing trials. For the PS 

method, these values were 0.82% and 1.03%, respectively. Rotational RMS error compared with 

the range of motion was similarly low for these methods about the motion capture system’s y-axis 

during the gait simulation: 3.30% for the TCPE method and 3.62% for the PS method. Rotation 

about this axis roughly corresponded to rotation within the sagittal plane. 

Table 1. Numerical rotational RMS error for all methods 

 

Determined kinematics for the pendulum trials were similar for the TCPE and PS 

methods in the swing component, as shown in Figure 5. Results for these methods closely 

Swing Spin Yaw Swing Spin Yaw X-axis Y-axis Z-axis

TCPE 0.56 2.29 1.31 0.62 5.98 1.99 3.09 1.54 3.04

PC 2.30 3.48 3.95 3.25 7.33 6.50 10.34 11.22 34.41

PS 0.70 2.23 1.35 0.81 6.08 2.13 3.21 1.69 3.13

Free Swing Impact Swing Gait

Rotational RMS Error [degrees]
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followed the true motion. Results determined by the PC method were generally similar, but 

showed large, instantaneous deviations from the true motion, most notably during impact trials. 

 

 

 
Figure 5. Free and impact swing angles of select trials 

The TCPE and PS methods also showed similar kinematic trends for the standard gait 

experiment, shown in Figure 6 with a vertical line indicating toe-off. As with the pendulum 

experiments, the PC results were generally similar, but with large, instantaneous deviations from 

the results of the other methods. These PC results have been omitted for visual clarity. 
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Figure 6. Average gait kinematics by participant and by component 

All three of the TCPE filtering parameters (strain, rotational variation, translational 

variation) had the same order of magnitude through the validation and the standard gait 

experiments, as shown in Figure 7, Figure 8, and Figure 9. 
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Figure 7. Average TCPE strain 

 
Figure 8. Average TCPE rotational deviation 

 

Figure 9. Average TCPE translational deviation  
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Chapter 4  

DISCUSSION 

 

The first objective of this study was to validate the TCPE method’s ability to reduce STA 

in controlled applications. This objective was fulfilled by the pendulum validation, which extended 

the one-dimensional analysis of (Solav et al., 2014) to three dimensions, and the gait validation. 

The error found in both of these experiments was low compared to the range of motion about the 

primary axis of rotation. In (Cappozzo et al., 1996), the differences between true shank motion 

during walking and those determined using surface markers had RMS values from 1.0 degrees to 

3.5 degrees depending on the component and marker combination, with an average of 3.0 

degrees. The RMS errors observed with the TCPE method’s results about the swing axis of the 

pendulum and the y-axis of the motion capture system were both below this value. Therefore, the 

error introduced by the simulated STA was sufficiently mitigated to obtain reasonably accurate 

kinematics. 

The second objective was to apply the TCPE method to the determination of knee angles 

during human gait. The knee angles determined for the three participants analyzed were 

qualitatively consistent with results obtained by the PS method and those obtained in many other 

studies (Baudet et al., 2014; Rivest, 2005; Schache et al., 2006; LaFortune et al., 1992) in which 

the most consistent trend was the presence of two characteristic local flexion maxima. The first of 

these occurred during early stance. The second occurred near toe-off and was substantially 

larger. Kinematics for varus/valgus and internal/external rotations vary considerably across 

studies and participants, so drawing conclusions for these components would require more 

participants. 

The third objective was to contrast the performance of the TCPE method with the more 

established PC (Andriacchi et al., 1998) and PS (Söderkvist and Wedin, 1993) methods. This was 

done in both validations and standard gait experiments. The TCPE and PS methods had very 

similar measures of error in the validation experiments. The error present in the PC method’s 
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validation results was significantly higher. The knee kinematics in the standard gait experiments 

were also qualitatively similar for the TCPE and PS methods in all participants. 

The magnitudes of all three TCPE method filtering parameters found in the validation 

experiments had the same order of magnitude as those found in the standard gait experiments. 

This suggests that the amounts of the three modes of STA the implant experienced were 

comparable to that of the thigh and shank of the human participants. This supports the validation 

study conducted here as the implant may be taken as having adequately simulated physiological 

levels of STA in terms of resulting strain, rotational variation, and translational variation. 

Additionally, it suggests that implant-based simulations may prove to be viable alternatives to 

invasive methods for future studies focused on the effectiveness of STA reducing algorithms. 

These STA parameters are one of the most compelling aspects of the TCPE method. 

These parameters can provide many insights. Much of the data that has been gathered for gait is 

for adult male participants. As additional studies are conducted using other demographics, these 

STA parameters may help inform the differences and unique challenges of capturing kinematics 

for each group. These may also help identify the relative STA present for individuals of differing 

BMIs and during other activities, such as pitching a baseball, running, or cycling. With enough 

development, the STA parameters could potentially be used to determine rough statistical 

confidence intervals for motion capture data in lieu of gold-standard measurements for a 

particular experiment. 

While the PC method’s determined kinematics followed the same general trajectory 

during the validation and gait experiments, they contained a large amount of instantaneous angle 

variations. This occurred even during the free swinging portion of the pendulum’s motion when 

the true angle of the pendulum was changing gradually. These characteristics were likely 

indicative of numerical instability, as was observed in (Cereatti et al., 2006). More recent PC 

studies have used clusters of 10 or 11 markers (Dyrby and Andriacchi, 2004; Scanlan et al., 

2010), while the marker clusters present in this study contained seven or fewer. As a result, 

conclusions made regarding the relative accuracy of the PC method must be made with caution. 
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This may be viewed as evidence that the TCPE and PS methods are favorable in situations 

where using larger numbers of markers is not feasible. 

This study used seven markers for the gait and pendulum trials following the procedure 

outlined in (Solav et al., 2014). A future study could explore the accuracy of each method as the 

number of markers in each cluster is changed. Using greater numbers of markers would likely 

increase the quality of the determined kinematics, but the practicality of using more markers in a 

cluster depends on the application. Marker misidentification can occur if large numbers of 

markers are placed in a compact area, lengthening the amount of time needed to obtain and 

process motion capture data regardless of the method chosen. This issue led to using only six 

markers on the implant during the gait plate simulation, and obtaining only one usable trial even 

with this reduction. Knowing each method’s performance at certain marker numbers could be 

valuable information when designing an experiment. 

Given the general similarity in the quality of the PS and TCPE methods’ results, it is 

worthwhile elaborating on the differences between the two methods. The PS method is, at its 

core, a method of mathematical optimization. Despite this, it is not an iterative process and only 

entails the singular value decomposition of a 3 × 3 matrix and other more basic matrix arithmetic 

operations. The TCPE method is similarly non-iterative, primarily consisting of computationally 

inexpensive steps. Still, the TCPE method is likely more intensive as much of its algorithm must 

be repeated for each triangular element. Its analysis becomes lengthier as more markers are 

added to a cluster. The number of triangular elements within a cluster of 𝑛 markers is given by 

the number of combinations of three markers that can be formed, 𝐶3𝑛
 . This value grows rapidly as 

more markers are added. Contrasting improvements to accuracy provided by additional markers 

with the practical challenges of implementing such markers is a subject for another study, as 

previously mentioned. 

A critical difference between the PS and TCPE methods is that of optimization versus 

filtering. The PS method determines rigid transformations that, when applied to the cluster, 

minimize the difference between the observed and the determined positions of all markers. The 

TCPE method uses physiological parameters to filter out marker triangles that were more 
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significantly affected by STA, and is therefore capable of using only select markers to identify the 

final rotation and translation at each instant. A future study could use simulated marker 

trajectories to contrast each method’s performance when an intentionally erroneous marker is 

introduced. This could illuminate the TCPE method’s potential to filter out troublesome markers 

and indicate their effect on the PS method’s optimization. This contrast may prove particularly 

important when anticipating analysis of more extreme motions, such as pitching a baseball or 

running. 

The TCPE method’s physiological basis provides another significant difference. The PS 

method approaches non-rigid motion on a per-marker basis, reducing its representation to one 

that is more akin to measurement error. The TCPE method treats each triangle of three markers 

as a deformable body, characterizing its deformation and using these parameters to select 

triangles that were least affected by STA. The difference between these approaches may appear 

subtle. The TCPE method uses physiological metrics to describe the cluster’s STA, and then 

uses the most rigid portions of the cluster while the PS method assumes the entire cluster to be 

rigid and finds the most suitable transformations given this assumption. 

There are several additional ways in which this study may be expanded and improved. 

The gait plate validation presented here used only a single plate for the thigh. Thus, the rotations 

of the plate could only be interpreted in an arbitrary, non-anatomical coordinate system. 

Implementing a second plate for the shank would allow for the determination of simulated knee 

angles, deepening the understanding of the TCPE method’s ability to reduce the effect of STA on 

determined knee angles and illuminating the potentially compounding effect that the STA of the 

thigh and shank may have. The texture and size of the implant posed issues for markers, both in 

number and adhesion. Placing larger numbers of markers on this limited surface created issues 

for the motion capture system’s marker identification, and, whenever a marker lost adhesion with 

the implant’s surface, the trial had to be restarted. This was remedied by increasing the number 

of trials recorded, and by manually cleaning the data; however, a larger surface area for marker 

placement and better marker adhesion would enable obtaining more usable validation trials within 



23 

 

the period of access to the participant. These issues also posed a limitation on the number of 

markers that could be placed on the implant, prohibiting tests with larger marker clusters. 

Impact trials for the pendulum experiment had large amounts of spin about the pendulum 

itself. As the implant’s rotation around the pendulum itself was unconstrained, this likely 

represented true motion of the implant. A future implementation may consider using a circular 

piece of rigid material behind the implant to constrain this motion. Similarly, the largest 

component of rotational motion for the gait plate experiment was about the motion capture 

system’s z-axis, indicating that the plate apparatus was likely able to rotate about the participant’s 

thigh during motion. A future study may take this into consideration when developing a new 

method of attaching the plate to the participant. 

Finally, a future study could include a gold-standard method, such as MRI. (Solav et al., 

2015) only implemented bone pin markers for the thigh, so true knee angles could not be 

determined. Full implementation of gold standard derived kinematics would greatly help the 

assessment of the TCPE determined knee kinematics.  
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APPENDICES 

 

A. Right Stretch Tensor Determination 

 The square root of the right Cauchy-Green deformation tensor was required to determine 

the right stretch tensor 𝑼, repeated below.  

𝑼 = 𝑪1 2⁄  

This was carried out by employing eigenvalue decomposition, shown in the following equation. 𝐴𝑖 

represents the eigenvalues of 𝑪. 𝑽𝑖 represents the respective eigenvectors, in column format. 

 𝑼 =  (𝐴1

1
2) 𝑽1⨂𝑽1 + (𝐴2

1
2 ) 𝑽2⨂𝑽2 + (𝐴3

1
2 ) 𝑽3⨂𝑽3 (19) 

B. Rotation Averaging 

Average rotation tensors were determined using the method described in (Markley et al., 

2007), summarized here. The following procedure minimizes the sum of the squared Frobenius 

norms of the differences between each of the 𝑛 rotation tensors and the average. This 

minimization is characterized by the following equation, repeated from section 2.4.2. 

𝑹̅ = arg min
𝑹∈𝑆𝑂(3)

∑‖𝑹 − 𝑹𝑖‖𝐹
2

𝑛

𝑖=1

 

All 𝑛 rotation tensors were transformed to their quaternion representation using 

MATLAB’s built-in function (“rotm2quat”). These quaternions were expressed in column form, with 

the vector part occupying the first three components and the scalar part occupying the fourth. A 

new matrix 𝑀 was then determined with the following: 

 𝑴 = ∑ 𝒒𝑖⨂𝒒𝑖
𝑛
𝑖=1  (no summation implied for index i) (20) 

The average quaternion was then the eigenvector of 𝑀 that corresponded with the largest 

eigenvalue. This quaternion was then converted back to a rotation matrix using MATLAB’s built-in 

function (“quat2rotm”). 

C. Conversion from Rotation Matrix to Axis—Angle Representation 

The conversion from a rotation tensor 𝑹 to axis—angle representation was used 

repeatedly in the following sections. It was carried out according to the following formula, 

consistent with Rodrigues’ theorem (Belongie, 2012). 
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Axis—angle representation consists of rotation by an angle 𝜃 about an axis 𝒆. First, the 

angle was determined using the trace of the rotation tensor. 

 𝜃 = cos−1 (
1

2
(𝑡𝑟(𝑹) − 1)) (21) 

The components of the rotation axis were then determined using this angle and specific elements 

of the rotation tensor. 

 𝒆 =
1

2 sin 𝜃
[

𝑅32 − 𝑅23

𝑅13 − 𝑅31

𝑅21 − 𝑅12

] (22) 

The obtained axis and angle were used to determine the magnitudes of rotation in each 

component direction through scalar multiplication of the angle and axis. 

D. Pendulum Angle Determination and Decomposition 

D1. Vector Solution for True Pendulum Angle 

The true angle for the pendulum was preliminarily determined using a vector solution. 

First, the axis of rotation for the pendulum was determined using the markers on the front (𝒎𝑓) 

and back (𝒎𝑏) of the pendulum’s axis. 

 𝒂 = 𝒎𝑏 − 𝒎𝑓 (23) 

This value was determined for all frames of motion. In each subsequent equation in which 𝒂 

appears, it should be taken that 𝒂 was obtained using the relevant frame. 

Reference vectors were created from the first frame of the capture, prior to displacing the 

pendulum. These vectors were created between each of the following pairs of markers: the front 

of the axis to the middle of the pendulum (𝒎𝑚), the back of the axis to the middle of the 

pendulum, the front of the axis to the end of the pendulum (𝒎𝑒), the back of the axis to the end of 

the pendulum, and the middle of the pendulum to the end of the pendulum. The rejection of these 

vectors from 𝒂 was used to create vectors that were entirely in the plane of rotation. 

 𝒗𝑓−𝑚 = 𝒎𝑓 − 𝒎𝑚 −
(𝒎𝑓 − 𝒎𝑚) ∙ 𝒂

|𝒂|2
𝒂  

 𝒗𝑏−𝑚 = 𝒎𝑏 − 𝒎𝑚 −
(𝒎𝑏 − 𝒎𝑚) ∙ 𝒂

|𝒂|2
𝒂  
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 𝒗𝑓−𝑒 = 𝒎𝑓 − 𝒎𝑒 −
(𝒎𝑓 − 𝒎𝑒) ∙ 𝒂

|𝒂|2
𝒂 (24) 

 𝒗𝑏−𝑒 = 𝒎𝑏 − 𝒎𝑒 −
(𝒎𝑏 − 𝒎𝑒) ∙ 𝒂

|𝒂|2
𝒂  

 𝒗𝑚−𝑒 = 𝒎𝑚 − 𝒎𝑒 −
(𝒎𝑚 − 𝒎𝑒) ∙ 𝒂

|𝒂|2
𝒂  

These vectors were determined for each frame of motion as well, creating present 

vectors. The angle between the reference and present versions of each vector gave the angle of 

the pendulum according to the following equation. 

 𝜃 = cos−1 (
𝒗𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∙ 𝒗𝑝𝑟𝑒𝑠𝑒𝑛𝑡

|𝒗𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒||𝒗𝑝𝑟𝑒𝑠𝑒𝑛𝑡|
) (25) 

Since the pendulum swung in the yz-plane, sign was determined by comparing the y-components 

of the vector in the reference and present frames. Finally, the angles determined from each pair 

of vectors were averaged to determine the pendulum’s rigid-body angle. 

D2. Pendulum Angle Decomposition 

The pendulum rotation angles were decomposed into components according to a set of 

axes rotating with the pendulum. These axes were defined as the following: about the pendulum’s 

rotation axis (𝒂, determined in the previous section), about the pendulum itself (determined by 

averaging all variations of 𝒗 described in the previous section, taking the rejection with 𝒂, and 

then normalizing), and about the cross product of the previous axes. 

Implant derived angles were decomposed into these components on each frame. This 

was done by converting the rotation matrices derived by the cluster-based methods into axis—

angle representation. The dot product of this axis—angle representation was then taken with 

each component unit vector to determine the portion of the rotation that was in the corresponding 

direction.  

E. Gait Plate Angle Decomposition 

In lieu of anatomical context, plate angles were determined based on the room 

coordinate system. Converting each rotation into axis—angle representation allowed for swift 

decomposition according to the room’s set of three orthonormal base vectors (𝒆̂1, 𝒆̂2, and 𝒆̂3). 
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F. Knee Angles: Rotation Application and Decomposition 

F1. Representative Vector Formulation 

Vectors representing the positions of the thigh and shank were formed. The HH markers 

were used to determine the positions of the thigh and shank during the reference frame, due to 

their placement over bony prominences. Given the static nature of the reference frame, these 

marker locations were particularly accurate. The virtual FJC markers generated during the static 

trial were also employed in this process. The coordinates of the virtual marker at the hip joint 

center, 𝑯𝑐, and the coordinates of the virtual marker at the knee joint center, 𝑲𝑐, were used to 

create a unit vector defining the thigh. 

 𝑻̂ =
𝑲𝑐 − 𝑯𝑐

|𝑲𝑐 − 𝑯𝑐|
 (26) 

This one vector could not fully define the orientation of the thigh, so a perpendicular 

vector was defined. The position of the lateral femoral epicondyle, represented by 𝑬𝑙 and the 

position of the medial femoral epicondyle marker, represented by 𝑬𝑚, were used for this purpose. 

 𝑻̂𝑝 =
𝑻̂ × (𝑬𝑚 − 𝑬𝑙)

|𝑻̂ × (𝑬𝑚 − 𝑬𝑙)|
 (27) 

The same process was used to create functionally similar vectors for the shank. The 

ankle joint center, 𝑨𝑐, and the knee joint center, 𝑲𝑐, yielded the shank unit vector 𝑺̂. 

 𝑺̂ =
𝑨𝑐 − 𝑲𝑐

|𝑨𝑐 − 𝑲𝑐|
 (28) 

The shank’s perpendicular vector, 𝑺̂𝑝, was determined using the medial and lateral 

malleoli, 𝑴𝑚 and 𝑴𝑙, respectively. 

 𝑺̂𝑝 =
𝑺̂ × (𝑴𝑚 − 𝑴𝑙)

|𝑺̂ × (𝑴𝑚 − 𝑴𝑙)|
 (29) 

F2. Transformation to the Present Frame 

Cluster-based methods determined rotation matrices for each frame describing the 

transformation from the reference configuration to the present configuration for each segment. 

The thigh's rotation matrix,𝑹𝑡, and the shank's rotation matrix, 𝑹𝑠, were applied to the thigh and 
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shank vectors, 𝑻̂, 𝑻̂𝑝, 𝑺̂, and 𝑺̂𝑝, to yield unit vectors that indicated the present orientation of the 

thigh and shank. 

 𝒕̂ = 𝑹𝑡𝑻̂ (30) 

 𝒕̂𝑝 = 𝑹𝑡𝑻̂𝑝 (31) 

 𝒔̂ = 𝑹𝑠𝑺̂ (32) 

 𝒔̂𝑝 = 𝑹𝑠𝑺̂𝑝 (33) 

F3. Anatomical Knee Angle Determination 

The three anatomical knee angles, consistent with (Wu and Cavanagh, 1995), were 

determined for the standard gait experiments according to the following procedure. Of primary 

use during this analysis were the present configuration unit vectors representing the thigh and the 

shank, as well as their respective perpendicular vectors. These were obtained according to the 

procedures described in the previous appendices. Both the thigh and shank vectors pointed 

inferiorly; both the perpendicular vectors were directed anteriorly. 

These three anatomical knee angles were defined as follows: 

 Flexion was defined as the angle between the thigh and shank in the sagittal plane of 

the thigh. Flexion was positive when the shank was posterior of the thigh. 

 Varus rotation was defined as the angle between the thigh and shank in the frontal 

plane of the thigh. Varus rotation was positive when the shank was medial of the 

thigh. 

 Internal rotation was defined as the remaining rotation about the axis of the shank. 

Internal rotation was positive when the participant’s shank was rotated medially from 

its forward position. 

A brief summary of the vectors used during this procedure is shown in Table 2. Also note 

that many of the following equations include the magnitudes of unit vectors and other operations 

that do not affect the end result. These are included here to maintain consistency with general 

vector equations, and may be omitted due to their unitary values. 
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Table 2. Summary of vectors used during knee angle determination 

𝒕̂—Unit vector representing 

the thigh 

𝒓—Rejection of the shank 

onto the thigh 

𝜃𝑣—Angle of varus rotation. 

𝒔̂—Unit vector representing 

the shank 

𝒓𝑓—Projection of 𝒓 onto the 

flexion axis, 𝒇̂ 

𝜃𝑓—Angle of flexion. 

𝒕̂𝑝—Thigh’s perpendicular 

vector 

𝒓𝑝—Projection of 𝒓 onto the 

thigh’s perpendicular 

vector, 𝒕̂𝑝 

𝜃𝑖—Angle of internal rotation. 

𝒔̂𝑝—Shank’s perpendicular 

vector 

𝒕̂𝑓—Thigh that has been 

rotated by the flexion angle 

about 𝒇̂ 

𝒕̂𝑝𝑓—Perpendicular vector for 

𝒕̂𝑓 

𝒇̂—Flexion axis, defined as  

𝒇 = 𝒕̂ × 𝒕̂𝑝 

𝒔̂𝑣—Shank that has had its 

varus rotation undone. 

𝒕̂𝑝𝑓𝑣—Thigh’s perpendicular 

that has had flexion and 

varus rotations applied. Note 

𝒕̂𝑝𝑓𝑣 = 𝒕̂𝑝𝑓 

F3.1. Varus Rotation 

F3.1.1. Determining Varus Rotation Magnitude 

The rejection of one vector onto another (in this case the shank 𝒔̂ onto the thigh 𝒕̂) is 

given by: 

 𝒓 = 𝒔̂ −
𝒔̂ ∙ 𝒕̂

𝒕̂ ∙ 𝒕̂
𝒕̂ (34) 

This expression can be rewritten as: 

𝒔̂ ∙ 𝒕̂

𝒕̂ ∙ 𝒕̂
𝒕̂ = 𝒔̂ − 𝒓 

If we define two more vectors (𝒓𝑓 – the projection of 𝒓 onto the flexion axis, and 𝒓𝑝, the 

projection of 𝒓 onto the thigh’s perpendicular vector), we can see that these two vectors form a 

plane perpendicular to 𝒕̂, and thus encompass the entirety of 𝒓. So, from the first equation: 

𝒓𝑓 + 𝒓𝑝 = 𝒔̂ −
𝒔̂ ∙ 𝒕̂

𝒕̂ ∙ 𝒕̂
𝒕̂ 

𝒓𝑓 can also be expressed as a vector rejection of the shank onto a shank that has had its varus 

motion undone: 

𝒓𝑓 = 𝒔̂ − |𝒔̂| cos 𝜃𝑣 𝒔̂𝑣 

Subtracting this equation from the previous one: 
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𝒓𝑓 + 𝒓𝑝 − 𝒓𝑓 = 𝒔̂ −
𝒔̂ ∙ 𝒕̂

𝒕̂ ∙ 𝒕̂
𝒕̂ −  𝒔̂ + |𝒔̂| cos 𝜃𝑣 𝒔̂𝑣 

Simplifying: 

𝒓𝑝 = −
𝒔̂ ∙ 𝒕̂

𝒕̂ ∙ 𝒕̂
𝒕̂ + |𝒔̂| cos 𝜃𝑣 𝒔̂𝑣 

𝒓𝑝 +
𝒔̂ ∙ 𝒕̂

𝒕̂ ∙ 𝒕̂
𝒕̂ = |𝒔̂| cos 𝜃𝑣 𝒔̂𝑣 

If we rearrange the sum of rejection components: 

𝒓𝑓 + 𝒓𝑝 = 𝒔̂ −
𝒔̂ ∙ 𝒕̂

𝒕̂ ∙ 𝒕̂
𝒕̂ 

To be: 

𝒓𝑝 +
𝒔̂ ∙ 𝒕̂

𝒕̂ ∙ 𝒕̂
𝒕̂ = 𝒔̂ − 𝒓𝑓 

We can apply it as such: 

𝒔̂ − 𝒓𝑓 = |𝒔̂| cos 𝜃𝑣 𝒔̂𝑣 

Next, if we take the magnitudes of both sides: 

|𝒔̂ − 𝒓𝑓| = ||𝒔̂| cos 𝜃𝑣 𝒔̂𝑣| 

Since 𝒔̂ and 𝒔̂𝑣 are both unit vectors, the following equation for the varus angle can be obtained: 

 cos 𝜃𝑣 = |𝒔̂ − 𝒓𝑓| (35) 

Note that this requires the varus angle to be between -90 and 90 degrees. 𝒓𝑓 can be 

described using the rejection 𝒓, as well as the flexion axis 𝒇̂. 

 𝒇̂ = 𝒕̂ × 𝒕̂𝑝 (36) 

 𝒓𝑓 =
𝒓 ∙ 𝒇̂

𝒇̂ ∙ 𝒇̂
𝒇̂ (37) 

F3.1.2. Determining Varus Rotation Sign 

The arccosine function does not distinguish between positive and negative angles, so the 

sign of the varus angle must be determined in another way. Given that the flexion axis always 

points towards the participant’s right, the sign of the dot product of 𝒇̂ and 𝒓𝑓 informs us whether 

the shank was rotated medially or laterally with respect to the thigh. The sign was determined for 

the participant’s right leg as below: 
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 𝑣𝑎𝑟𝑢𝑠 𝑠𝑖𝑔𝑛 = {
−1, 𝒇̂ ∙ 𝒓𝑓 ≥ 0

+1, 𝒇̂ ∙ 𝒓𝑓 < 0
 (38) 

F3.2. Flexion 

F3.2.1. Determining Flexion Magnitude 

The equation for applying a rotation vector with an axis of 𝒕̂𝑝𝑓 and an angle of 𝜃𝑣 to a 

vector 𝒕̂𝑓 is: 

𝒔̂ =  (𝑐𝑜𝑠𝜃𝑣)𝒕̂𝑓 + (sin 𝜃𝑣)(𝒕̂𝑝𝑓 × 𝒕̂𝑓) + (1 − cos 𝜃𝑣)(𝒕̂𝑝𝑓 ∙ 𝒕̂𝑓)𝒕̂𝑝𝑓 

The angle 𝜃𝑣 is the signed varus angle found earlier. The vector 𝒕̂𝑓 undergoing rotation is the 

“flexed thigh,” obtained by rotating 𝒕̂ about 𝒇̂ by the amount of flexion present. Rotating 𝒕̂𝑝 in this 

same fashion gives the axis 𝒕̂𝑝𝑓, which effectively functions as a varus axis. 

While many of these terms are unknown, they can be described using a series of 

identities. The cross product of the “flexed” thigh and thigh perpendicular vectors is the same as 

that of the original thigh and thigh perpendicular vectors. This cross product is equivalent to the 

flexion axis, and since both 𝒕̂𝑓 and 𝒕̂𝑝𝑓 were obtained through rotation by the same angle about 

this axis, the result is the same. 

𝒕̂𝑝𝑓 × 𝒕̂𝑓 = 𝒕̂𝑝 × 𝒕̂ 

Since the “flexed” thigh and its respective perpendicular vector are perpendicular, their dot 

product is zero. 

𝒕̂𝑝𝑓 ∙ 𝒕̂𝑓 = 0 

Application of both of these identities yields: 

𝒔̂ =  (𝑐𝑜𝑠𝜃𝑣)𝒕̂𝑓 + (sin 𝜃𝑣)(𝒕̂𝑝 × 𝒕̂) 

Now we can solve for the “flexed” thigh: 

𝒔̂ − (sin 𝜃𝑣)(𝒕̂𝑝 × 𝒕̂) =  (𝑐𝑜𝑠𝜃𝑣)𝒕̂𝑓 

 𝒕̂𝑓 =  
𝒔̂ − (sin 𝜃𝑣)(𝒕̂𝑝 × 𝒕̂)

(𝑐𝑜𝑠𝜃𝑣)
 (39) 

Note that this equation becomes unstable if the varus angle approaches -90 or 90 degrees. Both 

of these extremes are far outside of what occurs during normal gait (Leardini et al., 2005; 

LaFortune et al., 1992). 
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Now, the flexion angle is simply the angle between 𝒕̂ and 𝒕̂𝑓. 

 cos 𝜃𝑓 =
𝒕̂𝑓 ∙ 𝒕̂ 

|𝒕̂𝑓||𝒕̂ |
 (40) 

F3.2.2. Determining Flexion Sign 

Consider the “flexed” thigh 𝒕̂𝑓 again. Under positive knee flexion, this vector points 

towards the rear of the body. Thus, the dot product of this vector and the thigh’s perpendicular 

vector would be negative in the presence of positive knee flexion. The sign of the flexion rotation 

is: 

 𝑓𝑙𝑒𝑥𝑖𝑜𝑛 𝑠𝑖𝑔𝑛 = {
−1, 𝒕̂𝑓 ∙ 𝒕̂𝑝 ≥ 0

+1, 𝒕̂𝑓 ∙ 𝒕̂𝑝 < 0
 (41) 

F3.3. Internal Rotation 

F3.3.1. Determining Internal Rotation Magnitude 

First apply the flexion and varus rotations to the thigh’s perpendicular vector to create 

𝒕̂𝑝𝑓𝑣. This new vector is associated with a thigh that is very nearly collinear with the shank. The 

angle between this adjusted perpendicular vector and the shank’s perpendicular vector is the 

internal rotation. 

 cos 𝜃𝑖 =
𝒕̂𝑝𝑓𝑣 ∙ 𝒔̂𝑝

|𝒕̂𝑝𝑓𝑣||𝒔̂𝑝|
 (42) 

F3.3.2. Determining Internal Rotation Sign 

Attempting to rotate 𝒕̂𝑝𝑓𝑣 about the shank should, if done correctly, give a vector very 

nearly identical to 𝒔̂𝑝. Given the downward direction of the shank vector, applying a positive angle 

rotates the vector outwards. If this makes this new perpendicular vector line up with the shank’s 

perpendicular vector, then the internal rotation’s sign is negative. If not, then the rotation’s sign is 

positive. 

 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑖𝑔𝑛 = {
− 1, |𝒕̂𝑝𝑓𝑣𝑖 − 𝒔̂𝑝| < 10−8

+1, |𝒕̂𝑝𝑓𝑣𝑖 − 𝒔̂𝑝| ≥ 10−8
 (43) 

 

 


