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ABSTRACT

Implementation and Analysis of the Entity Component System Architecture

Shawn Harris

The entity component system architecture (ECSA) is a data-oriented composition
pattern and a data-driven design pattern. Data-oriented software takes into consider-
ation generalized knowledge of hardware. Data-driven design is a methodology used
to replace inflexible code with reusable components that can be added, deleted or

modified in interactive systems and games.

This thesis explores the ECSA and its alternatives and their strengths and weak-
nesses. The paper details the creation of an ECSA and bench-marks its performance
against object oriented architectures. The hypothesis of this thesis is that the ECSA
has CPU cache performance advantages over object oriented architectures as tested

by multiple benchmarks.

The results suggest that the ECSA provides superior CPU performance. These
results could be valuable for: interactive game developers to get higher frame-rates out
of their games, mmorpg server developers to process millions of entities per second,

and mobile developers to create battery efficient apps.
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Chapter 1

INTRODUCTION

1.1 CPU Cache Performance

Around the year 1980, microprocessors were still being manufactured without
cache memory inside the microprocessor. Over the course of the next several decades
the L1, L2, and then L3 cache were invented to solve the problems caused by the
disparity between system memory speed and microprocessor computation speed. L4
caches now exist and soon L5 caches will. These cache technologies bridge the per-
formance gap between microprocessor speed and system DRAM memory speed and

have become an essential part of the microprocessor [10] [12].

* Processor vs Memory Performance
o

CPU

CPU-DRAM Gap

T fomemomrmmme s

DRAM

1980: no cache in microprocessor;
1995 2-level cache

Figure 1.1: CPU vs DRAM Performance
[10]



CPU caches are designed to store the data that is most likely to be needed in
the near future of a program. When that data isn’t present in the CPU, it has
to be loaded or fetched from memory and is referred to as a cache-miss. Cache-
misses are expensive events can cost hundreds of CPU cycles [7]. A cache-miss event
requires loading the data from the much slower system memory [16]. Software that is
created with an awareness of these issues can reduce cache-misses improve the CPU
performance, resulting in faster run-time, and in the case of mobile devices, lower

power consumption.



1.2 Memory Layouts: AoS and SoA

The terms Array of Structures, and Structure of Arrays refer to layouts for storing
data in memory. These memory layouts can directly enhance or hinder CPU cache
performance in a software program. These terms were originally documented by Intel
as methods for optimizing the performance of SIMD instructions but they also have

usefulness for reasoning about vectorizing memory and data operations in general [2].

1.2.1 Array of Structures

Array of Structures is a type of layout where data or records are organized at the
lowest level by the structure or individual record or row as they are in a database
table. This memory layout is commonly used in object oriented software because that

is how classes organize their data members by definition [18].

struct Person {
char name[32];
uint height;
uint weight;
uint age;

};

Person persons[COUNT] ;

Figure 1.2: Example AoS code with C structs.

This is an intuitive and natural way for many developers to organize code but it
may be very inefficient in the CPU when thousands or millions records are processed
such as in a game loop. Of course, this depends on the application. For example, if

some operation is performed with each field independently such as first processing the



name, then the height, and then the weight and age. If too much unrelated data is
loaded during the operation that means cache misses will happen more often. When
object oriented programming is introduced, as in Figure 1.3, then the performance

can get much worse.

class Shape {
public:
virtual uint area() = 0;

};

class Square : public Shape {

public:
virtual uint area() { return height * width; }
uint height;
uint weight;

\\ other data
};

class Circle : public Shape {

public:
virtual uint area() {return PI * radius * radius;}
uint radius:

\\ other data

Shape *shapes [COUNT];

Figure 1.3: Example AoS code with OOP classes.

Additional data is now being loaded when only the members for computing area are
requested and the object instances are polymorphic and can no longer be stored in a
contiguous array and must be stored as an array of pointers. Each pointer will have
to be loaded to find the objects memory address and then that address loaded to get

the class data into memory.



1.2.2 Structure of Arrays

The Structure of Arrays layout method is where the fields of a record or columns
are organized like the database into individual columns with each column being a
contiguous array. Figure 1.4 shows example code for the SoA style. The data is
now organized in memory in a way that will be more beneficial to CPU performance.

Actual performance will always vary based on the data and the application.

struct People {
char names [COUNT] [32];
uint heights[COUNT];
uint weights[COUNT];
uint ages[COUNT];

+;

People people;
for (int i = 0; i < COUNT; i++)

\\ do something with people.names[i]

Figure 1.4: Example SoA code.



1.3 Data Oriented Design

Data oriented design [3] [8] is the practice of designing software with some general
notion of the hardware it will execute on and organizing the code and storage layout
in a way that will perform efficiently rather than just treating the hardware as a
virtualized unknown black box and writing code with no consideration of hardware.
Software that requires high performance usually runs on hardware reasoning about
that hardware can make a non trivial difference in how well the software can perform,
or in the case of mobile software, how efficiently it uses the battery. Data oriented
code generally utilizes the SoA memory layout. Data oriented programs focus on a
separation between data and logic, and on utilizing data efficiently on the CPU. Data
oriented design is quite different from object oriented design and it is important to

understand the contrast between the paradigms.

1.3.1 Contrasting Object Oriented Design

For the purpose of this thesis, Object oriented programs [18] or OOP will be taken
to mean software that has one or more of these features:

1. Classes

2. Inheritance

3. Polymorphism

OOP programs usually use an AoS memory layout by virtue of their very nature
and can have inefficient cache performance when it comes to dealing with thousands

or millions of objects in a program. OOP programming can be very useful for some

problems but it is important to understand which of the features can effect program



performance and be able to design program structure to work around those issues and
evaluate them on a case by case basis. This thesis is not attempting to villianize OOP

and in Chapter 3, it will be shown some OOP concepts can be useful for implementing

an ECSA.

1.3.1.1 Polymorphism and Inheritance

Inheritance in and of itself does not cause performance problems in game pro-
gramming. When polymorphism is introduced the program can no longer store large
collections of object instances in contiguous arrays. Those objects will have to be
referred to by pointer. Dereferencing many pointers in a loop can cause an increase

in cache-misses in the CPU.

1.3.1.2 Virtual Functions

Virtual functions are useful but they do have a drawback, their address and exact
code can not be deduced by the compiler and therefore they are not candidates for
in-lining. This may introduce a performance problem if that function is being called
on thousands or millions of entities, 60 times per second. Performance of virtual
functions vs non virtual functions is not a focus of this thesis but are mentioned
here because they are an area where data oriented design differs from object oriented

design.



1.4 Data Driven Design

Data driven design is a methodology used in the creation of game engines and
other related software that empowers designers to create games and other content.
The core idea is to remove the schema from the code and reduce dependencies on
engineers. Modern databases are a good example of this principle. The schema of
a table is not part of the code for the database. [4]. Game engine designers have
been shifting towards data driven design and this can be easily observed by looking
at the popularity of game engines like Unity3D [19] and Unreal [14]. Game engines
have become popular tools that empower programmers and non programmers alike
to create interactive games and simulations, sometimes with no engineers and little

to no programming experience.

1.4.1 Entity Encoding as a form of Data Driven Design

What is an Entity? An entity is a general purpose simulation unit. In a game or
interactive simulation an entity is a ’thing’ that is simulated each frame. In Unity3D
engine, an entity is a game object, in Unreal Engine an entity is an actor. Examples
of entities in a video game could include: players, enemies, bullets, etc. With this
idea in mind, the general concept of an entity encoding architecture can be introduced
where the entities properties or data are known as components, and those compo-
nents can add or modify the logical behavior of an entity. The three entity encoding
architectures covered in this thesis are: Inheritance, Game Objects Architecture and

Entity Component Systems Architecture.



1.5 Inheritance Hierarchy

One way to represent entities is with objects using an object oriented language like
C++ [18]. Object oriented programming is very popular and for some people it might
even be the natural way to reason about programs because it is how they learned to
program. Consider the hypothetical made up inheritance tree in Figure 1.5. It shows
a very small set of the classes that might exist in a game. There are some problems
here. First of all, the behavior is not dynamic, code cannot be dynamically inherited
and uninherited at run-time so this is already violating the idea of data driven design.
Second, what happens when the developer wants to make a new monster that is a
skeleton and fights with both a sword and magic spells? They can make a new C++
class but not reusing code is bad software engineering and will lead to more problems
in the future. They could use multiple inheritance to get code reuse but then they
would inherit (pun intended) even more problems. Multiple inheritance is usually

considered a bad software engineering practice, and for good reason.

‘;ﬂ*ﬂrﬂﬁfﬂ’JﬂfﬂJﬂrpqﬂhﬁhﬁﬁhﬁhﬁhﬁﬁ“ﬁha_

i ™y i
Human Monster
. A . v
s N s
Flayer Skaleton
. A

/\J
Skeletal Skaletal
Fighter Mage

Figure 1.5: An example inheritance diagram.




This is a small and contrived example and the developer might be able to come
up with a solution that involves refactoring the code that would make sense. In real
games, designs are more complex and could have many hundreds if not thousands of
entities and therefore C++ classes. Large and deep inheritance trees are difficult to

maintain and hard to refactor and can become a software engineering nightmare.

10



1.6 Game Object Architecture (GOA)

At a GDC talk in 2002, Scott Bilas [4] described how the popular action RPG,
"Dungeon Siege”, was created and described a data driven design architecture based
on what we would now call game objects architecture. This was an object oriented
architecture where the core idea was to have one class with common functions that
all game entities would share and an abstract class interface called component that
would be attached to the game object using composition to create data driven code.
These components could be attached, or removed at run-time during the game and
could be created by designers without need of engineers using a supported scripting

language [5].

This type of architecture has become popular in game engines. It can now be
found in the core object component model in the Unity3D [19] and Unreal Engine
[14].

4 )

CameObject
Mesh
Components j)—(:] Velocity
RigidBody

o J

Figure 1.6: An example game object class diagram.
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class Component {
public:
virtual void Update() = 0;

b
class Game(Object
{
public:
void AddComponent (Component *c) {
components.push_back(c) ;
+
void Update() {
for (auto c : components)
c—>Update() ;
+
private:
std::vector<Component *> components;
}

Figure 1.7: Example Game Objects Code in C++

Figure 1.6 shows a class diagram for a sample game objects architecture. Note
that the game object class is mostly just a container for the components. Some game
object architecture implementations put common components like the transform into
the game object. The core idea can be understood from the example code in Figure
1.7. To implement a new component, just inherit from ’Component’ and implement
the new custom behavior. Components can interact with the game object and even
other components. Component to component access methods are not detailed here

for brevity.

Game objects architecture can meet the data oriented design requirements for
interactive flexibility and modification of behavior at run-time but unfortunately it is
not very good when it comes to CPU cache performance. GOA is an object oriented

design and uses AoS memory layout and polymorphic virtual pointers by necessity of

12



its design and cache performance will suffer when simulating thousands or millions of

entities.

13



1.7 Entity Component System Architecture

Entity Component System Architecture [13] is a data oriented software paradigm
and architecture pattern useful for encoding and processing entities and it solves
many of the problems discussed above that object oriented architectures introduce.

The ECSA software pattern has three main features:

1.7.1 Entities

In an ECSA, Entities nothing more than identifiers. Entities do not hold data
and entities implement no logic. An entity is not a ’container’. The datatype of an
entity is dependent on implementation. In this introduction, entities will be treated as
integers. The entity signature and the entity id are separate, both will be integers in
this introduction. The entity signature is a bit-set used to indicate which components

an entity has.

1.7.2 Components

In an ECSA, components only store data and never have any functions nor im-
plement any logic. Components are just data. Components can be structs or scalar
types and are stored in arrays of contiguous memory. If an entity ’has’ a component
then the entity id can be used as an index into the component array to get the value
of the component belonging to that entity. Every component has a signature value

that can be used to query against the entity signature.

14



1.7.3 Entity Component Visualization

The relationship between entities and components in an ECSA can be visualized as

shown in Figure 1.8.

COMPONENT MANAGER

Figure 1.8: An example ecsa schema.

INVENTORY

1.7.4 Systems

Systems are functions. Systems are meant to have no data or state. Systems
implement logic to mutate components, transform components, add new components,
and create or destroy entities. Every system has a unique signature and systems
can query against entities and check if an entity signature matches the system’s
own signature. Figure 1.9 provides a visual representation of the query operation.
Each entity signature is checked and if the key fits then a match is made and the
entity will be processed by the system. Any entity that matches the query can be

assumed to have valid values for the components that were queried. It is dependant

15



on the implementation but usually there is nothing to prevent code from accessing a

component value that the entity doesn’t have but if it does it will get invalid data.

SYSTEM

Figure 1.9: An example system query against an entity.
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1.8 Summary

Figure 1.10 shows pros and cons of each approach. OOP inheritance is easy to im-
plement but doesn’t have the flexibility or good cache performance. Game objects
are easy to implement and have flexibility but not good cache performance. Finally,
ECSA has flexibility and good cache performance but is harder to implement. The

requirement for this research is flexibility and good cache performance so ECSA is a

good choice.

(OOP)

(GO)

(ECSA)

FLEXIBLE

CACHE

EASY
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Figure 1.10: Entity Encoding Pros and Cons.




Chapter 2

RELATED WORKS

2.1 Open Source ECSAs

There are many interesting open source C++ ECSAs, just google, ”"open source
c¢++ entity component system”, and many will come up in the results. Since one of
the goals of this thesis was to learn and understanding how to create an ECSA, other

open source ECSAs were not thoroughly investigated.

2.2 Unity3D and Unreal Engines

Both of Unity3D and Unreal Engine have been referenced in the introduction of
this thesis [19] [14] as engines that have game object type component systems and
both of these were used as models for the simple game object architecture created for

this thesis.
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Chapter 3

IMPLEMENTATION

3.1 Zip

Zip is a set of tools and an ecsa implementation created for this thesis. Zip introduces
hybrid OOP concepts not usually found in an ecsa. These are convenience features
that could be implemented without any using OOP. Using a class with some methods
and static members makes the code more concise and does not violate any of the data

oriented rules of ecsa.

3.1.1 zipsrc

Zipsrc represents the core source files of zip, which contain generic ecsa code and
no component or system definitions. Zipsrc contains the common types of the zip
namespace and defines the type of entities, components and systems. It provides an
entity manager class for managing the entity component relationships and issuing

queries against them.

Figure 3.1 shows the class diagram of zipsrc. EntityManager has no knowledge of
components, and its only job is to manage the bit-flags of entities and provide an
API to set and clear those flags. EntityManager accepts a template parameter of En-
tityHandle type so that it can agnostically return handles to entities without knowing
how those handles work. EntityHandle type knows about all the components that
exist and provides an API for setting and getting their values and testing if an entity

has a component. World inherits from EntityManager and world knows about all
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components and systems and can be thought of as the component and system man-
ager. All components must be registered with world to set their bit and all systems
must be registered with world to establish their call order. Registering a component
or system also sets it’s signature. Component signatures are always powers of 2, with
each successive one increasing by a multiple of 2. System signatures are bit-wise or

expressions indicating which components the system wants to match.

EntityManagear

template parameter

inherits
World EntityHandle
Components Systems

Figure 3.1: zipsrc diagram.

3.1.2 Entities

Entities or Entitylds as they are called in zip are identifiers and in zip they are

unsigned 32 bit integers. Entitylds index into an existence array where each stored
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value is a 64 bit unsigned integer and each bit is used to store membership by a possible
component from the components available to the application. These existence values
are called called signatures in zip and they are important for entities, components

and systems.

using Entityld = uint32_t;
using EntitySig = uint64_t;

3.1.3 Components

Components inherit from a base template class and make use of the CRTP template

pattern [6].

Base class for the component:

template <typename T, typename V>
struct Component {
inline static Signature sig = O;
V value;

};

Figure 3.2: component base class in zip.

A component definition:

struct VelocityComponent :
public Component<VelocityComponent, glm::vec3>

{
};

Figure 3.3: example of a component in zip.

This still follows the rules of ecsa but the template base class provides some nice

conventions the rest of the code can rely on. Important to understand is that although
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the component inherits from a template, it has no logic and it is exactly the same
size as the value, in this case 12 bytes or a vec3. By using the CRTP pattern every
component gets a static member to store the component signature value, and this
value is set by the world class. The second template parameter V provides separation
between the component type and its value type and establishes a convention that
all component values can be retrieved from the value() function regardless of the

component type.
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3.1.4 Systems

Figure 3.4 provides a sample system definition and an example of using the world/en-
tity manager to query entity signatures for components by that system.

void VelocitySystem: :update(World* w, float dt) {
auto count = w->active_count();
for (EntityId i = 0; i < count; i++) {
auto eh = w->get_entity_handle(i);
// sig set elsewhere to
// PositionComponent::sig | VeloctiyComponent: :sig
if (leh.has(sig))
continue;

auto& pos = eh.position();

auto& vel = eh.velocity();

pos = glm::vec3{ pos.x + (dt * vel.x),
pos.y + (dt * vel.y),
pos.z + (dt * vel.z) };

Figure 3.4: example of a system in zip.

Using this example in Figure 3.4, all the positions and components would be stored

in contiguous arrays which are owned by the world class.

3.1.5 Zip Event Handling

Zip ecsa also has the ability to raise events when components are added, replaced,
or removed from an entity and allow the systems to query and subscribe or process
those specific events. This is handled by just creating additional signature arrays,
one for "added”, one for "replaced” and one for "removed”. This feature should be
very useful for trying to develop a functioning game but I did not find an objective

way to benchmark it in both frameworks since it was a bit of an advanced feature
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and I wanted to keep the game objects test program very simple otherwise I would
be venturing into an area of making assumptions about how programmers who use
game objects implement more advanced features. Added, replaced and removed can
be tested with the world functions has_added, has_replaced, and has_removed. These

work just like the has function shown in 3.4.

A lot of work went into getting this feature to work correctly and synchronize
across all available systems. Zip clears all flags at the end of every update cycle so
that events will only be handled once and with that default implementation only a
system downstream in the call order would be able to react to an event. This was
solved this by using 2 buffers for each of the flag arrays, one is used for queries and the
other for writes, they are synchronized at the beginning of each frame. This means
when an event is raised it does not actually get processed until the next frame but

this does allow every system to see it and respond to it.
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3.2 zipgen

In the previous examples there were specific methods for each component type. This
makes the code faster than using template meta-programming but it comes with
a software engineering cost of maintaining a lot of boilerplate code and that can
be painful to write and easy to mess up when copying and pasting. To solve this
problem a premake tool called zipgen was created. Zipgen is a tool that generates a
zip application (zipapp) from zip source code based on a configuration provided from
a YAML config file. The config file can define components and systems which are

then turned into full C++ source code files by zipgen.

Zipgen will write out all the source code, including the registration calls in the
world class, then the programmer only has to fill in the details inside the system cpp
files. zipgen also writes out a main.cpp file and it creates a visual studio solution

configured to build the newly created zipapp. A zipapp is the output of zipgen.

Zipgen uses the yaml-cpp library [11] and the YAML file type. YAML is similar
to JSON, but it is easier for humans to read and edit. A sample zipgen YAML config

file is shown in 3.5.

1 Hees:

) e YatataTara
i

max entities: 2000000

4 Hcomponents:
- — name: Velocity
6 value type: glm::vec3
8 Osystems:
Ol — name: Velocity
10 type: execute
11
o

Figure 3.5: Sample YAML config file
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Zipgen reads text templates in from a profile and uses those to generate the zipapp.
The profile and text templates allow zipgen to be very flexible and in theory it could
generate an entirely different ecsa implementation. Zipgen just has a few rules the

text templates need to follow.

Figure 3.6 shows a sample output of the zipgen tool.

03# fusr/bin/bash --login -i

test/resource/planet.fs written
test/resource/planet.vs written
test/resource/planet.mtl written
test/resource/planet.obj written
test/resource/rock.mtl written
test/resource/rock.png written
test/resource/rock.obj written
test/src/sth_image.h written
test/src/camera.h written
test/src/shader.h written
test/src/model.h written
test/src/model.cpp written
test/src/mesh.h written
test/src/transform.h written
test/src/zipapp.vcxproj written
test/src/zipapp.vcxproj.filters written
test/zipapp.sln written

54 files written to test

L Z1pC

Figure 3.6: zipgen example
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Zipgen also includes support for 'modules’ that can import prebuilt zip ecsa sys-
tems and component code. Modules also have YAML config files and can chain de-
pendencies and will automatically import other modules which they themselves are
dependant on. Several reusable are part of zip and were even used in the benchmark
results. For example, a glfw module that can be added as an option to the config file,

using the modules option as shown in Figure 3.7:

1l Heecs:

2 max entities: 2000000
4 Hcomponents:

S — name: Velocity

6 value type: glm::vec3
8 Hsystems:

O — name: Velocity

10 type: execute

NI

12 modules: [glfwWindow]

13

14

Figure 3.7: Sample YAML config file with modules option

Adding the glfw module adds a blank opengl window and sets up all of opengl to
allow rendering. Other modules include the bench-marking module that adds high
precision frame-time bench-marking and a types module that imports glm types such

as glm::vec3 and glm::mat4 that are used extensively in the result benchmarks.
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3.3 zipapp

A zipapp is just an instance of the zip ecsa that has been built by zipgen. All of
the benchmark programs used to create benchmarks in chapter 3 are zipapps created

with zipgen.
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3.4 goa test

Goa test or game objects architecture test is the name of the set of game object
test programs used to benchmark against the ecsa zipapps. Goa test programs were

created using the exact pattern and class definitions described in the introduction.

An example of a goa test class and base classes for one of the test programs:

struct Component {
Component (GameObject *_go) : go(_go) {2}
virtual void Update(float dt) {}
GameObject *go;

I

struct GameObject {
virtual void AddComponent (Component *);
virtual void Update(float dt);
TransformComponent *transform;
std: :vector<Component*> components;

};

struct TransformComponent : public Component {
TransformComponent (GameObject *_go);
virtual void Update(float dt);
glm::vec3 position;
glm: :mat4 rotation;
glm: :vec3 scale;

};

struct VelocityComponent : public Component {
VelocityComponent (GameObject *_go);
virtual void Update(float dt);
glm::vec3 velocity;

};

Some constructors, destructors omitted for brevity.
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Chapter 4

RESULTS

4.1 Performance Testing

Performance of frame-times were tested and recorded for the object-oriented game-
objects architecture and the data-oriented entity-component-system architecture. At
each benchmark setting, the frame-time was was computed from an average of sam-
ples. Each benchmark was run with increasing entity counts to generate curves as
well as individual comparison graphs. The parameters for each test will be explained
further in their respective sections. The goal of all the tests was to capture and

compare the performance differences between the different architectures approaches.

4.1.1 Hardware

All tests were performed on a PC computer with Windows 10, using the following
hardware:

1. AMD 5950X CPU

2. GIGABYTE X570 AORUS Master Motherboard

3. a Nvidia RTX 2080ti GPU

4. Corsair Vengeance RGB Pro SL 32GB (2x16GB) DDR4 3600 (PC4-28800) C18
1.35V Optimized for AMD Ryzen - Black (CMH32GX4M2Z3600C18)

5. Samsung 980 PRO SSD 2TB PCle NVMe Gen 4 Gaming M.2 Internal Solid

State Hard Drive
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4.2 Asteroids Benchmark

In this test a set of asteroids were created and assigned a random size, rotation,
and velocity. On each frame, their positions, rotations were simulated on the CPU
and based on then the asteroids were rendered to the screen using the opengl graphics
api. Instanced rendering was used so that all asteroids were drawn with a single draw

call. The zip asteroids benchmark has 3 update functions and 4 components.

Figure 4.1 is displaying an example generated by the zip asteroids benchmark with
50k instanced asteroid meshes with random positions, random scale, random rotation

angles and random velocities that are orbiting around a planet.

Figure 4.1: A close up of a planet and randomly generated asteroids.

Figure 4.2 shows a zoomed out image of 500k asteroids with with random po-
sitions, random scale, random rotation angles and random velocities, arrayed in a
radial pattern around the planet. The asteroids are simulated each frame based on

these initial random properties.
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Figure 4.2: A zoomed out scene the planet and orbiting asteroids.

4.2.1 Asteroids Summarized Results

Figure 4.3 shows the plotted curves from Table 4.1 captured at over 50 different
settings. Each point on the curve was created from an average of 1000 samples.
Lower values are better and the graph shows that over time game objects curve slope
is increasing and pulling away from the zip-ecsa curve, indicating that zip-ecsa will
scale better for higher entity counts as expected. Frame-times are given in ms for
entity totals ranging from 0 to 1e6. The frame-time is the time to draw everything
on the screen once and a lower-frame time is better and indicates better CPU cache
performance. Lower frame-times mean higher frames per second, which is important

for real time interactive video games and simulations.
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The chart shows that there is no significant performance difference at or below
50k entities. The performance differences begin to emerge around 120k entities and
the results rapidly diverge in favor of zip-ecsa for the remaining data-points. The
results also show that zip-ecsa has a growing performance advantage as entity count

goes up.

Asteroids Benchmark

175 —e— ecs

game objects
150
125

100

frametime (ms)
~
U

U1
o

N
(S,

0.0 0.2 0.4 0.6 0.8 1.0
entities le6

Figure 4.3: Rendered Asteroids Benchmark
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Table 4.1: Asteroids Rendered Benchmark

entities zip ecsa (ms) game objects oop (ms)
1.0E+03 0.244544 0.234700
2.0E+04 1.736320 1.620400
4.0E+04 3.429650 3.207110
6.0E+04 4.913530 4.639920
8.0E+04 7.122280 6.280420
1.0E4-05 9.986110 7.693620
1.2E4-05 12.592700 9.154030
1.4E4-05 15.230600 10.806800
1.6E+05 18.067200 12.152000
1.8E4-05 20.894600 13.664800
2.0E+05 23.087400 15.606800
2.2E+05 25.209100 17.722800
2.4E+05 27.610000 18.522900
2.6E+05 29.875000 19.941300
2.8E+05 32.129400 21.607700
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Table 4.1: Asteroids Rendered Benchmark

entities zip ecsa (ms) game objects oop (ms)
3.0E+05 34.790300 22.994900
3.2E+05 36.508800 24.609000
3.4E+05 37.882700 26.550300
3.6E+05 41.393300 28.623400
3.8E+05 43.990700 29.738200
4.0E+05 46.342800 31.066200
4.2E+05 47.529500 32.464100
4.4E+05 49.642700 34.008800
4.6E+05 50.463600 35.838000
4.8E+05 51.154700 37.199900
5.0E+05 52.050900 38.707600
5.2E+05 53.466300 40.397800
5.4E+05 54.874600 41.939600
5.6E+05 55.932000 43.477100
5.8E+05 56.600800 45.101200
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Table 4.1: Asteroids Rendered Benchmark

entities zip ecsa (ms) game objects oop (ms)
6.0E+05 58.642000 46.677100
6.2E+05 60.312900 49.366300
6.4E+05 61.219600 50.451600
6.6E+05 62.616000 51.351300
6.8E+05 63.971400 53.800200
7.0E+05 65.580900 54.283500
7.2E+05 67.820000 95.833000
7.4E+05 71.068100 60.301900
7.6E4-05 72.100100 60.349600
7.8E+05 74.554300 61.205300
8.0E+05 76.350400 63.308800
8.2E+05 77.127000 64.684200
8.4E+05 79.367300 66.306900
8.6E+05 80.892000 67.639500
8.8E+05 82.554900 69.654200
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Table 4.1: Asteroids Rendered Benchmark

entities zip ecsa (ms) game objects oop (ms)
9.0E+05 84.322000 71.180100
9.2E+05 86.932000 72.655400
9.4E+05 87.824600 74.246400
9.6E+05 89.846300 75.777400
9.8E+05 90.983700 77.072500
1.0E4-06 93.053000 78.392300
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4.2.2 Asteroids Rendering Disabled

Figure 4.4 shows the results from the previous Figure 4.3 by plotting Tables 4.1
and 4.2. The non-rendered results are overlaid onto the previous graph. These results
were gathered by modifying the code to disable the rendering for the asteroids and
represent CPU only performance. The game-objects architecture results show that
the non-rendered results begin to diverge from the rendered results showing that the

CPU is not performing fast enough to let the GPU render at its full speed.

Asteroids Benchmark (Combined)

175 —e— ecs
—e— ecs - not rendered
150 —*— game objects
game objects - not rendered
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100

frametime (ms)
~N
(0]

(O,
o

N
()]

0.0 0.2 0.4 0.6 0.8 1.0
entities le6

Figure 4.4: Not Rendered Asteroids Benchmark
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The zip results show that the non-rendered results and rendered results have a
similar slope to their curves, which means the CPU is performing at a level that does
not hinder the GPU performance and is not diverging from it. The results show that
zip has a clear performance advantage as entity count grows. As entity counts grow,

goa test caused an increasing bottleneck to available GPU performance.

Table 4.2: Asteroids Data Not Rendered

entities zip ecsa (ms) game objects oop (ms)
1.0E+03 0.233000 0.242000
5.0E+03 0.716000 0.820000
1.0E4-04 0.892000 1.158000
2.0E+04 2.652000 2.243000
5.0E+04 4.379000 7.606000
1.0E4-05 10.220000 20.920000
2.0E+05 17.690000 42.062000
3.0E+05 26.610000 62.886000
4.0E+05 35.850000 83.328000
5.0E+05 43.700000 102.912000
6.0E+05 52.280000 123.367000
7.0E+05 63.509000 143.260000
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Table 4.2: Asteroids Data Not Rendered

entities zip ecsa (ms) game objects oop (ms)
8.0E+05 74.774000 164.063000
9.0E+05 79.883000 184.569000
1.0E4-06 87.369000 202.423000
2.0E+06 168.651000 407.221000
5.0E+06 434.466000 1013.365000
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4.2.3 Individual Asteroids Benchmarks

Frame-times were recorded the for entity counts ranging from le3 to 10e6 entities
plotted from Table 4.3. Individual benchmarks are shown in Figures 4.5, 4.6, 4.7, 4.8,
4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15. These are settings that are orders of magnitude

in difference of entity count and they show the evolution of the performance changes.

Table 4.3: Asteroids Individual Benchmarks

entities zip ecsa (ms) game objects oop (ms)
1.0E4-03 0.235325 0.244544
1.0E4-04 1.257210 1.684180
2.5E+04 2.955950 4.176110
5.0E+04 4.070500 7.589860
1.0E4-05 9.874400 17.121500
2.5E+05 25.835100 45.485600
5.0E+05 45.010100 89.211200
1.0E+06 87.395500 177.428000
2.5E+06 215.952000 446.873000
5.0E+06 430.308000 891.846000
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runtime (ms)

Table 4.3: Asteroids Individual Benchmarks

entities zip ecsa (ms) game objects oop (ms)

1.0E+07 864.655000 1805.270000

Simulate 1000 Asteroids
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Figure 4.5: 1e3 Asteroids zip ecsa vs game objects oop.
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Figure 4.6: led Asteroids zip ecsa vs game objects oop.
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Figure 4.7: 2.5¢4 Asteroids zip ecsa vs game objects oop.
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Figure 4.8: 5e4 Asteroids zip ecsa vs game objects oop.
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Figure 4.9: 1leb5 Asteroids zip ecsa vs game objects oop.
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Figure 4.10: 2.5e5 Asteroids zip ecsa vs game objects oop.
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Figure 4.11: 5e5 Asteroids zip ecsa vs game objects oop.
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Figure 4.12: 1e6 Asteroids zip ecsa vs game objects oop.
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Figure 4.13: 2.5¢6 Asteroids zip ecsa vs game objects oop.
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Figure 4.14: 5e6 Asteroids zip ecsa vs game objects oop.
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Figure 4.15: 10e6 Asteroids zip ecsa vs game objects oop.
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4.2.4 Gravity O(n?) Benchmark

In this test, a nested loop was run and each asteroid visited every other aster-
oid and added up simple total and then accumulated and stored that value into a
component. The purpose of this test was to measure any cache performance differ-
ence between the architectures when using O(n?) complexity algorithms. The gravity

benchmark consists of 4 update functions and 5 components.

4.2.4.1 Combined Benchmark

Figure 4.16 shows the results of plotting data from Table 4.4. The test applied
the nested loop to every asteroid for the two architectures. In practical terms this
means a nested loop where as each asteroid was processed, it then looped all asteroids
again and added up a total based on their positions. The type of operation was
kept relatively simple so that CPU-cache performance would be the main cause of
performance degradation and not due to complex instructions performed for each

visited asteroid.

It is worth noting that both architectures suffered performance degradation and
for the combined benchmark the maximum entities used was 5k asteroids and at that
count, zip ecsa was still performing at 60 frames per second but the game-objects
architecture was not and fell to 15 frames per second at 5k asteroids which is not
quite good enough for an interactive game. Although both suffered a performance
decrease from adding the O(n?) operation, zip ecsa displayed a clear and significant

performance advantage in measured frame-times.
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Figure 4.16: Gravity O(n?) Combined Benchmark

Table 4.4: Gravity O(n?) Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
1.0E+4-02 0.263950 0.290261
2.0E+02 0.281250 0.263624
3.0E+02 0.270220 0.383806
4.0E+02 0.281640 0.572949
5.0E+02 0.337940 0.826125
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Table 4.4: Gravity O(n?) Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
6.0E+02 0.400310 1.127010
7.0E+02 0.497120 1.465680
8.0E+02 0.598850 1.872050
9.0E+02 0.726720 2.296750
1.0E4-03 0.864740 2.802760
1.1E4-03 1.003410 3.421730
1.2E4-03 1.176020 4.018960
1.3E+4-03 1.347040 4.736020
1.4E4-03 1.528150 5.472040
1.5E4-03 1.750300 6.427430
1.6E4-03 1.963220 7.275630
1.7E4-03 2.179350 8.112870
1.8E4-03 2.420840 9.028960
1.9E4-03 2.669230 10.018400
2.0E+03 3.066830 10.923400
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Table 4.4: Gravity O(n?) Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
2.1E+03 3.234740 11.968400
2.2E+03 3.534870 12.994100
2.3E+03 3.838300 14.178200
2.4E+03 4.158470 15.315500
2.5E+03 4.482860 16.552800
2.6E+03 4.819530 17.984000
2.7E+03 5.217910 19.206900
2.8E+03 5.617380 20.616600
2.9E+03 6.074250 22.138200
3.0E+03 6.489130 23.542500
3.1E+03 6.958960 25.081200
3.2E+03 7.337990 26.824300
3.3E+03 7.785070 28.394400
3.4E+03 8.202750 30.023400
3.5E+03 8.569390 31.942900
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Table 4.4: Gravity O(n?) Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
3.6E+03 9.086520 33.818100
3.7TE+03 9.590650 35.549200
3.8E+03 10.023000 37.344500
3.9E+03 10.517700 39.590000
4.0E+03 10.988400 41.765200
4.1E+03 11.635100 43.636200
4.2E+03 12.087200 45.860500
4.3E+03 12.660600 47.828900
4.4E+03 13.301900 50.390200
4.5E+03 13.820600 52.402300
4.6E+03 14.408100 54.480400
4.7TE+03 15.001100 56.898900
4.8E+03 15.604900 59.486500
4.9E+03 16.268300 61.909500
5.0E+03 16.874500 64.494000
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4.2.4.2 Individual Benchmarks

The individual benchmarks show frame-times in ms from Table 4.5 for zip ecsa
compared to goa test. Lower times are better. The percentage % label is automati-

cally generated and indicates which architecture performed with a faster time and by

how much.

The individual benchmarks use a lower maximum entity count than the previous
asteroids benchmark because the frame-times accelerated to unacceptable levels even
for bench-marking if the entity count went beyond 100k asteroids and began to get

into the region of minutes per rendered frame for the object-oriented game-objects

architecture.

Table 4.5: Gravity O(n?) Individual Benchmarks

entities

zip ecsa (ms)

game objects oop (ms)

1.0E4-02

5.0E+02

1.0E+03

5.0E+03

1.0E+4-04

5.0E+4-04

1.0E+05

0.256890

0.303340

0.828230

16.539700

64.492700

1594.830000

6422.370000

0.256120

0.785240

2.697810

63.974900

255.792000

6312.490000

25398.600000
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Figure 4.17: Gravity O(n?) Benchmark for 100 asteroids comparing the frame-time(s) in
ms.
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Figure 4.18: Gravity O(n?) Benchmark for 500 asteroids comparing the frame-time(s) in
ms.
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Figure 4.19: O(n?) Benchmark for 1k asteroids. Lower is better.
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Figure 4.20: Gravity O(n?) Benchmark for 5k asteroids comparing the frame-time(s) in
ms.
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Figure 4.21: Gravity O(n?) Benchmark for 10k asteroids comparing the frame-time(s) in
ms.
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Figure 4.22: Gravity O(n?) Benchmark for 50k asteroids comparing the frame-time(s) in
ms.
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Figure 4.23: Gravity O(n?) Benchmark for 100k asteroids
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4.3 Update x1 System Benchmark

This benchmark ran a CPU only update of a single update function with two
components. The components are position and velocity, which are both vec3s and
are 3 floats with a size of 12 bytes each. The update system updated the position based
on the velocity and delta time each call. There was no rendering in this benchmark
and the focus is on pure CPU performance and relevant to servers that simulate
entities with large game worlds that would need to process thousands or millions of
entities.

Example component:

struct PositionComponent

{
float x;
float y;
float z;
};

4.3.1 Combined Results

The combined results show individual tests plotted as curves for both the data-
oriented zip ecsa and goa test. The y axis shows run-time in ms and lower is better.
Each test result was averaged from 100 trials at the respective setting. The curve for
game-objects is so steep that zip ecsa curve almost looks like a flat line in comparison.

The values plotted from data in Table 4.6.
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Figure 4.24: Combined Update x1 Benchmark.
Table 4.6: Update x1 Combined Benchmark
entities zip ecsa (ms) game objects oop (ms)
1.0E4-03 0.001600 0.005600
1.0E+4-04 0.019300 0.081900
5.0E+04 0.080700 0.396400
1.0E4-05 0.159800 0.869700
2.0E+05 0.197740 3.672300
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Table 4.6: Update x1 Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
4.0E+05 0.379300 8.812800
6.0E+05 0.555830 14.148200
8.0E+05 0.779990 19.414100
1.0E4-06 1.072680 24.765400
1.2E4-06 1.304650 31.863700
1.4E4-06 1.652970 35.911500
1.6E4-06 2.048380 40.395300
1.8E4-06 2.092240 45.585500
2.0E+-06 2.320940 51.610800
2.2E+06 2.593760 55.997300
2.4E4-06 2.948610 61.014100
2.6E+06 3.124950 67.047900
2.8E+06 3.843160 71.844000
3.0E+06 3.914960 76.820800
3.2E+06 3.973800 82.089900
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Table 4.6: Update x1 Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
3.4E+06 4.275340 86.996200
3.6E+06 4.537840 94.692000
3.8E+06 4.825090 97.679400
4.0E+06 5.053870 105.250000
4.2E+06 5.384280 107.293000
4.4E+06 5.678140 112.315000
4.6E+06 5.914630 117.906000
4.8E+06 6.111090 123.023000
5.0E+06 6.468350 127.156000
5.2E+06 6.727520 141.622000
5.4E+06 6.938540 147.647000
5.6E+06 7.309170 150.857000
5.8E+06 7.473480 151.591000
6.0E+06 7.795460 156.046000
6.2E+06 7.941150 163.373000
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Table 4.6: Update x1 Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
6.4E+06 8.183430 164.573000
6.6E+06 8.425410 169.615000
6.8E+06 8.699960 176.619000
7.0E+06 8.999300 181.054000
7.2E+06 9.247990 185.819000
7.4E+06 9.579510 193.031000
7.6E+06 9.731730 195.357000
7.8E+06 10.032000 202.889000
8.0E+06 10.283000 206.675000
8.2E+06 10.600700 219.640000
8.4E+06 10.829600 221.461000
8.6E+06 11.164100 226.826000
8.8E+06 11.360800 228.621000
9.0E+06 11.618900 242.682000
9.2E+06 11.887000 241.843000

62



Table 4.6: Update x1 Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
9.4E+06 12.201300 246.175000
9.6E+06 12.399200 251.641000
9.8E+06 12.729100 252.396000
1.0E4-07 13.028000 256.675000
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4.3.2 Individual Benchmarks

The following individual benchmarks show the time for both the entity-component
system and game-objects architectures to perform a single update with one system.
Individual graphs are plotted from Table 4.7. The hypothesis was that the results

would be similar to asteroids benchmark.

Table 4.7: Update x1 Individual Benchmarks

entities zip ecsa (ms) game objects oop (ms)
1.0E+4-03 0.001600 0.005400
1.0E4-04 0.018300 0.067200
2.5E+04 0.042500 0.225200
5.0E+04 0.085200 0.390300
1.0E4-05 0.163100 0.853400
2.5E+05 0.380900 4.379000
5.0E+05 0.598700 11.381400
1.0E4-06 1.299300 24.816800
2.5E+06 3.648100 64.257100
5.0E+06 7.361600 128.027000
1.0E4-07 14.722200 258.056000
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4.3.3 Individual Results Analysis

Zip ecsa performance is faster than expected. The ecsa was significantly faster
even for 1k entities which shows that the it is useful even for smaller games and
simulations and this was unexpected. It was not expected to not pull in performance
until higher numbers of entities were tested. The performance lead levels and stays
consistent at around 1M entities with a 1650% increase over goa test from that point
on. Something interesting is that it took less than 5ms to update 1M entities and
that means a game using this architecture could possibly simulate (depending on the
game systems) a very high number of entities and still maintain 60 frames per second
or higher as long as it was not trying to render too many entities at once. Rendering
thousands or millions of entities is a different class of problem and depends heavily

on the GPU hardware and graphics code used.

Many of the run-times recorded showed sub 1ms timings for both architectures

which is so fast that it may not matter that one was faster.
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Figure 4.25: Update x1 Benchmark 1k entities.
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Figure 4.26: Update x1 Benchmark 10k entities.



runtime (ms)

runtime (ms)

0.20

0.15

0.10

0.05

0.00

0.40

0.35

0.30

0.25

o
N
o

o
=
]

o
=
o

0.05

0.00

Update x1 25000 Entities

ecs go

architecture

Figure 4.27: Update x1 Benchmark 25k entities.
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Figure 4.28: Update x1 Benchmark 50k entities.
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Figure 4.29: Update x1 Benchmark 100k entities.
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Figure 4.30: Update x1 Benchmark 250k entities.
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Figure 4.31: Update x1 Benchmark 500k entities.
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Figure 4.32: Update x1 Benchmark 1M entities.
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Figure 4.33: Update x1 Benchmark 2.5M entities.
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Figure 4.34: Update x1 Benchmark 5M entities.
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Figure 4.35: Update x1 Benchmark 10M entities.
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4.4 Create and Destroy Benchmark

This benchmark creates and then destroys entities using both architectures. The
expected result is that zip ecsa will be much faster because it does not have to
allocate or free any memory and game objects architecture does. Only the creation
and deletion API calls were measured and since zip entities are just integers in an

array there is really nothing to create or destroy just some flags to clear and so it

should be much faster.

Create Destroy Combined Benchmark
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Figure 4.36: Combined Create Destroy Benchmark.
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4.4.1 Combined Results

The combined results show individual tests plotted as curves for both the data-
oriented zip ecsa and goa test. The y axis shows run-time in ms and lower is better.
Each test result was averaged from 100 trials at the respective setting. The values
were plotted from Table 4.8. As expected, looking at the curve, zip ecsa is at least
an order of magnitude faster. It is worth mentioning that it should be possible to
reuse game objects and components and speed up this benchmark for game objects
but that is a non trivial thing to implement with polymorphic objects and the idea
of this benchmark was just to compare the two naive implementations since that is

what many developers do use.

Table 4.8: Create and Destroy Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
1.0E4-03 0.000110 0.001670
1.0E+404 0.001750 0.016080
2.5E+04 0.005120 0.034970
5.0E+04 0.005930 0.084240
1.0E4-05 0.013550 0.158770
2.0E+05 0.029630 0.300630
4.0E+05 0.051660 0.595150
6.0E+05 0.081550 0.898610
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Table 4.8: Create and Destroy Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
8.0E+05 0.102120 1.300750
1.0E4-06 0.137950 1.518690
1.2E4-06 0.302710 1.894160
1.4E4-06 0.177750 2.158540
1.6E4-06 0.242870 2.633620
1.8E4-06 0.308490 3.487890
2.0E+06 0.322910 3.185880
2.2E+06 0.364990 3.794050
2.4E+06 0.582080 4.145460
2.6E+06 0.475700 4.315440
2.8E+06 0.454470 4.848140
3.0E+06 0.550490 5.272220
3.2E+06 0.621430 5.658440
3.4E+06 0.592560 5.824920
3.6E+06 0.589440 6.117080
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Table 4.8: Create and Destroy Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
3.8E+06 0.640770 6.674990
4.0E+06 0.787370 7.022290
4.2E+06 1.025500 7.630580
4.4E+06 0.764820 7.623050
4.6E+06 0.810100 7.747310
4.8E+06 0.862530 8.308010
5.0E+06 1.016460 8.569810
5.2E+06 0.821530 9.439880
5.4E+06 0.866260 9.540220
5.6E+06 0.903280 10.153600
5.8E+06 1.036540 10.326600
6.0E+06 1.127170 10.258900
6.2E+06 1.136130 10.814500
6.4E4-06 1.182130 11.102200
6.6E+06 1.238240 12.160600
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Table 4.8: Create and Destroy Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
6.8E+06 1.247310 12.355100
7.0E+06 1.384140 12.738200
7.2E+06 1.294580 12.550100
7.4E+06 1.469200 13.615000
7.6E+06 1.234640 15.610900
7.8E+06 1.503580 14.190300
8.0E+06 1.413850 14.302200
8.2E4-06 1.471820 15.016900
8.4E+06 1.594440 14.827200
8.6E+06 1.549690 15.534300
8.8E+06 1.808150 16.002800
9.0E+06 1.705790 16.036800
9.2E+06 1.617350 16.837900
9.4E+06 1.591330 17.597400
9.6E+06 1.362170 17.721800
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Table 4.8: Create and Destroy Combined Benchmark

entities zip ecsa (ms) game objects oop (ms)
9.8E+06 1.724580 18.432700
1.0E4-07 1.891340 18.303000
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4.4.2 Individual Benchmarks

The following individual benchmarks show the time for both the entity-component
system and game-objects architectures to perform a single update with one system.
Table 4.9 was used to create the individual plots. The graphs shown focus data with
order of magnitude differences in entity counts and how the performance scales based

on total entities.

4.4.3 Individual Results Analysis

Zip ecsa was expected to be faster, and it was, but the scaling was not expected.
It appears there is no scaling and every individual test had similar performance dif-

ferences within some variance all the way up to 10M entities.

Table 4.9: Create and Destroy Individual Benchmarks

entities zip ecsa (ms) game objects oop (ms)
1.0E+4-03 0.000180 0.001610
1.0E+04 0.003450 0.015690
2.5E+04 0.004390 0.038030
5.0E+04 0.008040 0.080760
1.0E405 0.016700 0.153380
2.5E+05 0.038340 0.384770
5.0E+05 0.083180 0.762330
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Table 4.9: Create and Destroy Individual Benchmarks

entities zip ecsa (ms) game objects oop (ms)
1.0E+06 0.122860 1.508810
2.5E+06 0.492690 3.880730
5.0E+06 0.945900 8.357360
1.0E+4-07 1.692870 18.261600
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Figure 4.37: Create Destroy Benchmark 1k entities.
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Figure 4.38: Create Destroy Benchmark 10k entities.
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Figure 4.39: Create Destroy Benchmark 25k entities.
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Figure 4.40: Create Destroy Benchmark 50k entities.
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Figure 4.41: Create Destroy Benchmark 100k entities.
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Figure 4.42: Create Destroy Benchmark 250k entities.
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Figure 4.43: Create Destroy Benchmark 500k entities.
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Figure 4.44: Create Destroy Benchmark 1M entities.
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Figure 4.45: Create Destroy Benchmark 2.5M entities.
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Figure 4.46: Create Destroy Benchmark 5M entities.
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Figure 4.47: Create Destroy Benchmark 10M entities.
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4.5 Locality of Reference Benchmark

In this benchmark, two versions of zip ecsa were tested against each other to test the
effect of how efficient memory layout effects performance. The Update x1 test was

reused but with 2 variations:

1. Version 1 - the transform type only contains a vec3 for the position.

2. Version 2 - the transform also contains a vec3 for scale, and 3 vec3’s for x, vy,
z rotation. These are common data that might be stored in a transform data
structure. In this test they wont hold any values and they won’t be updated
but the benchmark recorded the effect of having an additional 12 floats in the

transform data structure.

4.5.1 Combined Results

The combined results show individual tests plotted as curves based on data from
Table 4.10 for both zip verl ecsa and zip ver2 ecsa. The y axis shows run-time in ms
and lower is better. Each test result was averaged from 100 trials at the respective
setting. As expected, zip v1 with 12 less floats per record was significantly faster for

high entity counts.
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Table 4.10: Locality of Reference Combined Results

entities zip ecsa verl (ms) zip ecsa ver2 (ms)
1.0E+4-03 0.001370 0.001800
1.0E4-04 0.014640 0.016300
2.5E+04 0.032160 0.033120
5.0E+04 0.055090 0.066780
1.0E4-05 0.106080 0.125920
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Table 4.10: Locality of Reference Combined Results

entities zip ecsa verl (ms) zip ecsa ver2 (ms)
2.0E4-05 0.193580 0.230760
4.0E+05 0.375440 0.748770
6.0E+05 0.543760 1.726830
8.0E+05 0.779770 2.721760
1.0E4-06 0.990580 3.513080
1.2E+06 1.241220 4.494940
1.4E4-06 1.490230 2.277230
1.6E+4-06 1.770750 6.225330
1.8E+06 2.111400 7.163480
2.0E+06 2.304680 8.175450
2.2E+06 2.592570 8.877330
2.4E+06 2.944780 9.833970
2.6E+06 3.140440 10.669300
2.8E+06 3.405860 11.501000
3.0E+06 3.866230 12.435300
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Table 4.10: Locality of Reference Combined Results

entities zip ecsa verl (ms) zip ecsa ver2 (ms)
3.2E+06 4.015200 13.207200
3.4E+06 4.297880 14.113600
3.6E+06 4.536580 14.926500
3.8E+06 4.822360 15.825800
4.0E+06 5.099370 16.890100
4.2E+06 2.375420 17.577100
4.4E+06 5.716250 18.294500
4.6E+06 5.986780 19.969900
4.8E+06 6.172700 20.059400
5.0E+06 6.464710 20.930800
5.2E+06 6.661400 21.800100
5.4E+06 7.010530 22.554000
5.6E+06 7.261670 23.247900
5.8E+06 7.533730 24.337000
6.0E+06 7.880040 25.156900
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Table 4.10: Locality of Reference Combined Results

entities zip ecsa verl (ms) zip ecsa ver2 (ms)
6.2E+06 8.195060 25.968500
6.4E+06 8.296690 28.509600
6.6E+06 8.557360 27.747100
6.8E+06 8.852270 28.452000
7.0E+06 9.183500 29.795500
7.2E+06 9.542500 30.317600
7.4E+06 9.732200 31.072400
7.6E+06 10.012500 31.818100
7.8E4-06 10.313300 33.660100
8.0E+06 10.628100 33.501000
8.2E+06 10.867600 34.391800
8.4E+06 11.085800 35.068200
8.6E+06 12.480300 35.987600
8.8E+06 11.714700 36.997900
9.0E+06 11.872700 37.720900

89



Table 4.10: Locality of Reference Combined Results

entities zip ecsa verl (ms) zip ecsa ver2 (ms)
9.2E+06 12.208900 38.559400
9.4E+06 12.764900 39.969700
9.6E+06 13.058600 42.624700
9.8E+06 14.643500 41.447500
1.0E4-07 13.256200 42.513000

4.5.2 Individual Benchmarks

The individual benchmarks show the time for both zip v1 ecsa and zip v2 ecsa based
on plots of the data from Table 4.11. The hypothesis was that version 1 would be

faster with 12 floats in all cases.

4.5.3 Individual Results Analysis

The hypothesis was proven correct across the board although at the lower entity
counts the performance difference fluctuated between 5% and 50%. At higher entity

counts the difference stabilized at around 200%.

90



Table 4.11: Locality of Reference Individual Tests

entities zip ecsa verl (ms) zip ecsa ver2 (ms)
1.0E+03 0.001380 0.001380
1.0E4-04 0.015960 0.015960
2.5E+04 0.028600 0.028600
5.0E+04 0.057230 0.057230
1.0E4-05 0.102570 0.102570
2.5E+05 0.236280 0.236280
5.0E+05 0.458310 0.458310
1.0E+4-06 1.013620 1.013620
2.5E4-06 2.982550 2.982550
5.0E+06 6.515930 6.515930
1.0E4-07 13.270900 13.270900
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Figure 4.49: Memory Locality Benchmark 1% entities.
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Figure 4.50: Memory Locality Benchmark 10k entities.
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Figure 4.51: Memory Locality Benchmark 25k entities.
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Figure 4.52: Memory Locality Benchmark 50k entities.
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Figure 4.53: Memory Locality Benchmark 100k entities.
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Figure 4.54: Memory Locality Benchmark 250k entities.
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Figure 4.55: Memory Locality Benchmark 500k entities.
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Figure 4.56: Memory Locality Benchmark 1M entities.
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Figure 4.57: Memory Locality Benchmark 2.5M entities.
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Figure 4.58: Memory Locality Benchmark 5M entities.
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Figure 4.59: Memory Locality Benchmark 10M entities.
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Chapter 5

CONCLUSION

5.1 Conclusion

Based on the research, implementation and results it can be concluded that ECSA
is flexible enough to be used in the same data driven context as object oriented
programming and it is suitable for use in real time interactive games. The research
showed that ECSA had a significant performance advantage at large entity counts and
equivalent performance at lower entity counts. It showed results that were expected

but the magnitude of those results were impressive.

The implementation used in zip-ecsa was a naive one and making more specific
optimization choices would require a non trivial application and more tests to be
evaluated on a case by case basis. This thesis showed that the tools to make that
evaluation exist and could be customized for an application to allow the software
developers to test different scenarios and evaluate them for the best performance

outcomes.
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Chapter 6

FUTURE WORKS

6.1 Multi-Threading

This research focused on optimizing single threaded performance. Multi-threading
in this type of workload is non trivial since threads will generally need to be kept
running and synchronize data workloads with the main thread and there are issues
of cache coherency between threads to research and solve. Once a multi-threading
strategy is found that is effective, it could be built into the to intelligence of the
premake zipgen tool so that cpp files for systems in the ECSA could have the multi-

threading code automatically generated based on the config YAML file.

Multi-threading would be applied to the systems and would be broken down into two

categories:

1. Outer Parallelism - this means parallelism at the world call level, or allowing the
world to execute more than one system in parallel. Allowing this would require
some kind of dependency information between the systems so we could know
which systems need to be executed serially and which do not. That decision
might be based wholly or in part on what components each system modifies
since synchronising writes to components between systems in different threads

could be very complicated and reduce performance if not handled well.

2. Inner Parallelism - this means parallelism inside the system. Consider the ve-
locity example shown earlier, each velocity is updating 1 position that is on the

same entity index and so that should be a highly parallelism operation. On the
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surface, this seems straight forward but performance would be bad if we tried
to create and destroy threads 60x per second so we need some kind of reusable
thread pool or job queue to push work from the system into worker threads and

we may need synchronization when modifying component data.

More tests and benchmarks would have to be done to study if adding more threads
scales and by how much, or if it causes unexpected issues because of how memory

cache is shared between cores.
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