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Abstract—Scene understanding plays a crucial role in au-
tonomous driving by utilizing sensory data for contextual in-
formation extraction and decision making. Beyond modeling
advances, the enabler for vehicles to become aware of their
surroundings is the availability of visual sensory data, which
expand the vehicular perception and realizes vehicular contextual
awareness in real-world environments. Research directions for
scene understanding pursued by related studies include per-
son/vehicle detection and segmentation, their transition anal-
ysis, lane change, and turns detection, among many others.
Unfortunately, these tasks seem insufficient to completely de-
velop fully-autonomous vehicles i.e., achieving level-5 autonomy,
travelling just like human-controlled cars. This latter statement
is among the conclusions drawn from this review paper: scene
understanding for autonomous driving cars using vision sensors
still requires significant improvements. With this motivation, this
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survey defines, analyzes, and reviews the current achievements
of the scene understanding research area that mostly rely on
computationally complex deep learning models. Furthermore, it
covers the generic scene understanding pipeline, investigates the
performance reported by the state-of-the-art, informs about the
time complexity analysis of avant garde modeling choices, and
highlights major triumphs and noted limitations encountered by
current research efforts. The survey also includes a comprehen-
sive discussion on the available datasets, and the challenges that,
even if lately confronted by researchers, still remain open to date.
Finally, our work outlines future research directions to welcome
researchers and practitioners to this exciting domain.

Index Terms—Autonomous Driving, Autonomous Vehicles,
Context Prediction, Deep Learning, Scene Understanding, Se-
mantic Segmentation.

I. INTRODUCTION

A
UTONOMOUS Driving (AD) relies on processed infor-

mation from numerous sensors installed over the vehicle,

perceiving the surroundings, helping to understand the traffic

scenes and control the movements of the vehicle [1], and

hence playing a role of its eyes and ears. These sensors mostly

include high resolution cameras, radar, and Light Imaging

Detection and Ranging (LiDAR) [2] to classify the objects via

feature extraction and to measure the distance to surrounding

objects via radio waves and illumination, so as to eventually

yield a 3D view of the environment. To avoid collision with

on-road obstacles, various types of other sensors have also

been deployed for autonomous vehicles, which include infra-

red, sonar, micro radar, ultrasonic, and short distance sensors.

Similarly, vision sensors are used to equip autonomous vehi-

cles with the ability to understand the visuals of surrounding

environment, which include road lanes detection, traffic light

analysis, road sign detection and recognition, vehicle detection

and tracking, pedestrian detection (both on-road and off-road),

and short-term traffic prediction [3]. Visual scene represen-

tation and understanding for AD include lanes detection,

traffic lights analysis, traffic signs, surrounding pedestrian and

cars detection, and many other tasks. Accumulating these

information provide more enhanced and safer instructions for

automated actions of the vehicle, such as turning manoeuvres,

lane changing, or braking [4].
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(a) Instance segmentation (b) Semantic segmentation

Fig. 1: Sample segmented images for an autonomous vehicle, helping
in scene parsing: (a) exemplifies instance segmentation, where each
object from similar classes is segmented into different color with its
own boundary pixels; (b) depicts a semantically segmented image,
where objects of similar classes are highlighted in an individual color,
without any differentiation.

Among the various sources of information gathered for

vehicular decision making, vision sensors data [5] are arguably

considered as the most reliable ones [6]. Therefore, this re-

search domain has been extensively studied and widely applied

in Intelligent Transportation Systems (ITSs) [7], mostly from

a machine learning perspective and by resorting to deep Con-

volutional Neural Networks (CNNs). Deep CNNs embody a

special flavor of neural networks with several functional layers

suitable to process images by repetitively extracting model

features from the input image, towards optimally achieving

better representations. Scene understanding from vision data

operates likewise, applying a deep CNN over real-time frames

to e.g. interpret a pedestrian location and its distance from

the autonomous car. Beyond this simplified generic computer

vision-based scene understanding, complex models proposed

nowadays are able to generate multiple labelled outputs (e.g.

pedestrians and vehicles), as well as their localization.

Scene understanding primarily refers to context extraction

from visual data that is based on different features such as

shapes of objects, their distance from the vehicle, and many

other clues including size of the objects and their approaching

speed. A scene analysis can be achieved by accumulating

these information and building a complete scenario of the

scene around the vehicle, so that vehicular systems can be

informed of e.g. the presence of humans in front of the car and

their distance from the autonomous vehicle. When assessed

together, this information helps in actions being taken by

the autonomous vehicle, where the distinction among various

humans, vehicles, buildings, traffic signs, turns etc. is essential

for proper decision making, as visualized in Figure 1. Tradi-

tionally, these information streams are extracted in isolation

using separate computer vision algorithms [11], which are re-

cently replaced by CNNs-based segmentation mechanisms. A

segmentation mechanism annotates the boundaries of various

types of objects and assigns different colors to each pixel

identified to belong to different objects. Pixel-level labeling

may refer to semantic or instance segmentation as shown in

Figure 1, where instance-level segmentation assigns different

colors to each object, even in the same class (e.g. vehicles),

whereas pixel-level semantic segmentation assigns the same

color labels for the same class of objects. Among many

traditional segmentation strategies [12], the most widely used

category is semantic segmentation using deep CNNs, which

partitions an ongoing scene into different meaningful elements

such as road, cars, pedestrians, trees, besides other elements

present in the vehicular context.

A. Background and Related Works

Semantic segmentation is widely used in AD applications

until proper scene understanding [13] demands a clear

distinction between two identical objects. For example, sur-

rounding cars pose a similar label in semantic segmentation

networks, and convey a clear understanding of the scene for

further decision making. However, at some point, AD needs

instance-level segmentation to deal with various types of traffic

stakeholders and their levels of engagement. Traditionally,

there are three representative types of semantic segmentation

networks represented in Figure 2: fully convolutional networks

(FCNs), deep fully convolutional neural network architecture

for semantic pixel-wise segmentation known as (SegNet), and

the so-called DeepLab strategy [14], which we briefly revisit

next towards arriving at the purpose of this manuscript.

To begin with, the FCNs [8] architecture is structured

in encoder-decoder formation to extract deep discriminative

features for later instance localization and segmentation task.

The encoder part comprises of standard convolutional and

down-sampling layers typically used in CNNs for classification

problems, where the decoder part used transposed convo-

lutional layer to up-sample the coarse output feature maps

from the bottleneck layers of the architecture as shown in

Figure 2(a). The up-sampling process can be achieved at

coarse and finer level of FCNs i.e., instead of the traditional

last layer output, it can be passed through transposed con-

volution layer(s), that help produce prediction maps of the

same size as the input frame. On the other hand, SegNet is

built upon a series of deconvolutional layers that transform

the extracted features into class score prediction maps as an

output with identical frame size as that of the input. A SegNet

network comprises two functional modules, where the first

extracts features from the input frame using a CNN and the

prediction maps with class scores are constructed via a series

of transposed convolutions and un-pooling layers in the second

module [15], ultimately producing instance-level segmentation

results. This kind of segmentation strategy is also known as

encoder-decoder strategy. Finally, the DeepLab strategy for

semantic segmentation utilizes convolutional layers with an

up-sampled filter, known as atrous convolutions, with bilinear

interpolation to obtain prediction maps of identical size as an

input frame.

Recently a plethora of new semantic segmentation methods

[16]–[24] for visual scene understanding has emerged in

the literature, eliciting impressive results. For instance, Nesti

et al. [19] presented a method that evaluates the robust-

ness of semantic segmentation approaches for autonomous

vehicles. They introduced a novel loss function to analyze

the effectiveness of existing semantic segmentation methods

against real-world adversarial attacks in autonomous driving

environments. Natan et al. [21] proposed a compact yet

efficient multi-task learning semantic segmentation method

to deal with different modes of data. Their method has the
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(a) FCN [8] (b) SegNet [9]

(c) DeepLab [10]

Fig. 2: Various segmentation network architectures, adopted by mainstream research in segmentation as baseline strategies.

ability to perform various tasks in a unified approach that

includes depth estimation, semantic segmentation, ranging

(LiDAR data) segmentation, and light detection. To analyze

the model uncertainty problem for semantic segmentation,

Zhao et al. [22] presented a pyramid bayesian approach, which

evaluates the uncertainity of semantic segmentation model

for autonomous driving. They examined the performance of

semantic segmentation model (SegNet) by replacing dropout

layers with pyramid pooling layer and claimed improvement

in their model’s performance. Baran et al. [24] introduced a

unique approach for understanding the road view semantics

through onboard Bird’s Eye View (BEV) camera visuals.

They have analyzed the understating of road scenery in three

different perspectives that include image-level, BEV level, and

aggregated temporal road scene understanding. Traditionally,

neural networks are trained using powerful graphics processing

units (GPUs) and huge server computers, whereas inference is

performed over embedded systems in self-driving cars. Lately

the computational complexity has been reduced significantly

by some deep models such as SqueezeNet [25], which achieves

AlexNet level accuracy with 50 times less number of param-

eters. Following SqueezeNet, ENet [26] achieved real-time

semantic segmentation over embedded devices. More recently,

semantic segmentation achieved significant milestones from

the perspective of time complexity, as reported in [27], [28].

For the better understanding of readers, the graphical overview

of the major architectures distribution of the semantic segmen-

tation driven scene understanding literature for autonomous

driving is depicted in Figure 2.

B. Challenges and Motivation

Self-driving cars have to react instantly according to the

surroundings, where in real-world circumstances there are

higher chances to encounter new type of events, putting the

car in tangle situation. Furthermore, the inherent uncertainty

associated to unknown situation increases the probability of

the model to issue erroneous decisions, putting the lives of pas-

sengers and other counterparts nearby in danger. The inference

of a trained model installed in self-driving cars needs to be

dynamic in nature, perceiving real-time decisions, aware of the

confidence in its own outputs, learning from new events, and

updating the parameters of their model. Similarly, decisions

made by self-driving cars are mostly generated by black-

box neural models, leaving a manifold of open questions for

explainable and accountable decisions made by an autonomous

car. Moreover, future location perception of pedestrians and

vehicles with truly actionable accuracy is still to be achieved

in AD. Similarly, complex driving scene understanding and

visual scene perceptions in adverse weather conditions are

also open challenges yet to be covered in AD domain. All

these challenges are of utmost necessity to see driver-less

cars moving safely in urban areas. Unfortunately, despite prior

efforts [29], [30], the community lacks a consolidated, unified,

single point of reference for ascertaining the current level of

maturity of semantic segmentation techniques for vehicular

scene understanding.

Considering the aforementioned challenges and importance

of vision sensors-based semantic segmentation in accurate

scene understanding and parsing, we accumulate the existing

research contributions and outcomes in this survey. The main

research questions that are highlighted in this survey are given

as follows. 1) Do the available datasets possess generalization

potentials for scene understanding in complex visual scenes?

2) Can the current methods segment complex visual scenes

containing uncertainties such as fog and rain, and segment
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the unstructured information including rough roads and non-

smooth pathways for pedestrians? 3) Do the current methods

attentively learn from the ongoing scenes and contain events-

based scene understanding potentials?

C. Contributions

This survey takes a step ahead in this regard by critically

examining the recent state-of-the-art in visual scene under-

standing using segmentation techniques, with the following

main contributions to the ITS community:

1) A thorough introduction to scene understanding, which

defines the generic pipeline and explains each of its steps

individually. This helps newcomers to the field grasp prior

knowledge from all aspects of scene understanding for AD.

2) A discussion and critical analysis of the most relevant pa-

pers and datasets arising from the notable research activity

on scene understanding witnessed during the last decade.

3) A performance study of current state-of-the-art methods by

considering their consumed computational resources and

the platforms for which these methods are developed. In the

existing literature, some contributions provide their open-

source implementations. This review leverages them by ex-

ecuting, analyzing, and comparing the resources consumed

by each method. This study allows expanding the target

audience of this review towards industrialists with interest

in better scene understanding strategies that are functional

in real-world environments.

4) A reasoned derivation of future research guidelines based

on the analyzed literature, identifying open problems and

challenges in this domain, as well as research opportunities

that can be explored to address them effectively.

D. Review Methodology

The research articles discussed in our position survey are re-

trieved using different keywords such as scene understanding

in autonomous vehicles, vision-based semantic segmentation

in autonomous vehicles, and multi-class scene understanding

in autonomous driving. Most of the articles retrieved were

purely relevant with some exceptions for multi-modalities

methods [31], [32], weak relevance to the investigated topic,

for instance, point cloud systems [33], and some outdated arti-

cles with relatively old deep learning strategies [34]. Further-

more, the aforementioned keywords are searched in multiple

repositories including the Web of Science and Google Scholar

to ensure the retrieval of relevant contents. The inclusion

criteria ensures that a paper is recognized among the AD

experts i.e., the number of citations, where we also analyzed

the Use in the Web of Science and the classification of citations

such as checking whether the concerned paper is cited in

most of the articles as a support or in background or general

discussion. In Figure 3, the overall distribution is provided,

where the statistics indicate that the trending publisher in ITS

domain from semantic segmentation understanding perspec-

tive is IEEE, followed by non-reviewed pre-prints in ArXiv

repositories.

The rest of the manuscript is split into five main sections.

Section II highlights the role of segmentation for AD, and

explains some featured methods from related literature. Sec-

tion III explains evaluation metrics in use for segmentation

tasks, several loss functions designed for special purposes, and

a time complexity analysis of representative methods from the

segmentation literature. A list of widely used segmentation

datasets are enumerated and described in Section IV, along

with an explanatory discussion on the drawbacks and the

challenges posed by them. Section V exposes open challenges

for scene understanding methods in the AD domain using

segmentation modules, and outlines research directions to

address them. Finally, in Section VI, we conclude this review

with derivations of the whole article and an outlook.

II. SEMANTIC SEGMENTATION FOR SCENE

UNDERSTANDING IN AD

The primary objective of semantic segmentation is to an-

notate each pixel of an input image within a range of prede-

fined classes used while training i.e., defining boundaries of

individual entities inside an ongoing scene, assisting in many

applications [45]. The dictionary of possible classes varies

depending on the dataset and the segmentation task under

consideration. Nevertheless, basic objects that are common in

most databases used in semantic segmentation literature for

AD include humans/pedestrians, different types of vehicles

(car, bike, etc.), traffic lights, and many more, [46], [47].

Segmenting different types of objects assists the autonomous

vehicle decision making. For instance, if a nearby pedestrian

is accurately segmented by a deep neural model, it instantly

initiates the brake pressing mechanism by considering the

distance between vehicle and the pedestrian. This is easily

doable using accurate segmentation technique that draws clear

boundaries of pedestrian against other objects, contributing to

real-time decision making.

Semantic segmentation for scene understanding is mostly

performed via RGB cameras. More recently, LiDAR sensors-

based methods have achieved significant results in segmenting

an outdoor scene for autonomous vehicles [36]. There are

major fusion-based techniques that allow RGB data and Li-

DAR point clouds to interact in a single network for semantic

segmentation [40]. However, in this article we specifically

focus on RGB sensors-based semantic segmentation methods

due to their lower computation cost, high level of applicability,

and large field of view. A concise summary about the literature

on LiDAR and multi-modalities semantic segmentation is

given in Table I. Furthermore, interested readers can refer

to a very recent survey on 3D LiDAR data for semantic

segmentation available in [48].

We now discuss some prominent segmentation methods

featured for AD. Segmentation is widely used in scene parsing,

whereas some methods only focus on specific kind of objects

such as pedestrian, cars, bicyclist, and lane to incorporate

their importance for AD in streets. In order to attribute the

desired level of importance to such objects, RAPNet [73]

contains importance-aware features selection method to auto-

matically nominate important features for the predicted labels.

By contrast, other mainstream methods [60], [65] focus on

general objects’ segmentation without granting any importance
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IEEE [60.56%]

ArXiv [21.12%]

Springer [11.26%]

Elsevier[4.22%]

MDPI [2.11%]

ACM [0.70%]

(a)

Journals

45.45%

Conferences

35.07%

Others

19.48%

(b)

Fig. 3: The overall literature distribution of semantic segmentation driven scene understanding methods for AD. (a) Publisher-wise literature
distribution of scene understanding for autonomous driving. (b) Research article type based literature distribution of scene understanding for
AD.

TABLE I: Comprehensive data table of existing literature on semantic segmentation using LiDAR sensory data or fusion of RGB and LiDARs.
Herein, featured methods are provided and are selected based on their endorsement among scene understanding research community for AD.

Ref. Main Theme Functions and Horizon Remarks

[35]
Stabilization and validation process of the mea-
sured position of objects

Multi-Object Tracking, Sensor Fusion, and Mo-
tion Compensation

Centered towards multi-target tracking and data association,
sensor fusion, white, and black box sensor fusion methods

[36]
Sequential fusion-based 3D pedestrian detection
using LiDAR point Cloud and semantic seg-
mentation in automated driving vehicles

Point Painting, Semantic Segmentation Net-
work, Semantic Augmentation, Semantic Fea-
tures, and Geometric Features

Over-viewed 3D pedestrian detection, semantic segmentation,
point cloud augmentation, feature encoding, and fusion schemes

[37]
Inferring semantic information towards an un-
derstanding of the surrounding environment for
autonomous vehicles

Adaptation models, Laser radar, and Data mod-
els

Studied various point cloud semantic segmentation methods for
autonomous driving using semantic mapping, domain adaption,
semi-synthetic scan simulation, and geodesic correlation align-
ment

[38]
A deep learning approach for 3D semantic seg-
mentation of LiDAR point clouds

Image segmentation, Three-dimensional dis-
plays, Laser radar, Semantics, Cameras, and
Feature extraction

A general idea about 2D and 3D semantic segmentation, multi-
model 3D semantic segmentation, feature transformation, and
fusion

[39]
Focusing on autonomous cars equipped with
RGB cameras and LiDAR

Auto-Driving, Robotics, Multi-Sensor Fusion,
Perceptual Information, and Spatio-Depth Infor-
mation

Discussion on a collaborative fusion scheme for autonomous
cars equipped with LiDAR and RGB cameras, methods using
only RGB camera LiDAR sensor

[40]
Using camera and 3D LiDAR as indispensable
devices in modern AD vehicles

AD Vehicles, LiDAR and Camera, LiDAR Seg-
mentation, Contextual Information, and Weak
Spatiotemporal Synchronization

An overview of different deep learning approaches using 3D
point clouds, LiDAR point cloud semantic segmentation, camera
semantic segmentation, and LiDAR and camera fusion semantic
segmentation

[41]
Integrating multi-modal perception system for
AD

Solid modeling, Laser radar, Three-dimensional
displays, and Computational modeling

A debate on approaches using semantic and instance segmen-
tation on RGB images, semantic segmentation on point clouds,
spherical projection, and DenseFuseNet framework

[42]
The fusion of LiDAR and camera data for
semantic segmentation using a semi-supervised
learning technique

Sensors Fusion, Semi-Supervised Learning, and
Semantic Segmentation

Centered towards semi-supervised learning, task of AD, fusion
techniques, point cloud projection, and sparse semantic masks
from 3D bounding boxes

[43]
The autonomous systems can capture and pro-
cess complementary perceptual information for
better detection and classifying objects

Multi-Class 3D Object Detection, LiDAR-
Camera Fusion, Multiple Fusion Stages, Point-
Wise Fusion, and ROI-Based Feature Pooling

Discussion on LiDAR and multi-sensor based 3D object de-
tection, Point-wise semantic information fusion, Local region
fusion, and Multi-label prediction auxiliary regularization.

[44]
An iterative deep fusion architecture for seman-
tic segmentation of 3D point clouds

3D Semantic Segmentation, 2D Semantic Seg-
mentation, Deep Fusion, Convolutional Neural
Networks, Point Clouds, and Sensor Fusion

An overview of an iterative deep fusion architecture, semantic
segmentation of 3D point clouds, fusion strategies, LiDAR, and
camera segmentation
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TABLE II: Comprehensive analysis of existing literature on scene understanding methods functional for autonomous driving. Herein, featured
methods are provided and are selected based on their endorsement among scene understanding research community for AD.

Ref. Method Dataset/Availability Implementation Remarks
Traffic flow/Scenario

High Moderate Speed

[49]
Encoder with parallel dilated convolutions
and decoder using transposed convolutions

Cityscapes [50] N/A Yes/ Controlled

[51]
Two stages i.e., semantic labelling and
points re-projection for scene understanding

Semantickitti [47], KITTI
[52], and [46]

N/A
Yes/Semantically segment the scene
and combine with LiDAR point data to
obtain (segment) drivable space

Controlled

[53] A benchmark dataset
Data from autonomous
vehicle sensors suite

–

Yes/A very large scale data with 7x as
many annotation and 100x as many im-
ages as the pioneering KITTI datasets
[52], [46]

Controlled

[54]
Deep reinforcement learning algorithm that
takes transitions of all vehicles in sensors’
range to have a global reward function

HidghD dataset [55] N/A
Indirectly related/Focused on driver’s
change in lane detection behavior

High
(highways/
countryside
area)

[56]
A pedestrian location perception model for
complex driving scenes

CityScapes dataset [50]
https://github.com/espci/
p_spn/blob/master

Indirectly related/ Focused on pedes-
trian location information for scene un-
derstanding

Controlled

[57]
Geometry (depth) and motion (optical flow)
with semantics learning

KITTI and CityScapes
[50] datasets [52]

https://github.com/
CVLAB-Unibo/omeganet

Yes/The system is analyzed using GPU
and lower-power embedded system.

Variable
(urban
roads/
highways)

[58]
Simple Unet inspired architecture for occu-
pancy grid computation using radar data

Nuscenes [53]
https://github.com/liat-s/
radar_occupancy_grid/
(code not uploaded yet)

No/Different type of data, not RGB
camera data

Controlled

[59]
Three levels of outputs: semantic, instance
labels, and depth image

CityScapes [50] N/A Yes/Three type of losses are combined. Controlled

[60]
Future semantics, geometry, and motion in-
side scene to control autonomous vehicle

CityScapes [50], Mapil-
lary Vistas [61], Apol-
loScape [62], and Berkely
Deep Drive [63]

No/Project page:
https://wayve.ai/blog/
predicting-the-future/

Yes/Their method predicts future se-
mantics.

Variable
(urban
roads/
highways)

[64]
Focused on detecting free drivable seg-
mented area, objects’ distance from camera
and orientation

Own dataset/No N/A
Yes/Identifies closest obstacle in each
direction and free drivable area delimi-
tation

Controlled

[65]
Scene understanding using joint object de-
tection and semantic segmentation

COCO [66], VOC 2007
[67], and VOC 2012 [68]
/Yes

https://github.com/
dvornikita/blitznet

Yes/Identifies closest obstacle in each
direction and free drivable area delimi-
tation

Controlled

[69]
Honda Research Institute Driving dataset
and a novel driver behavior understanding
annotation method

N/A /Yes
https://usa.honda-ri.com/
HDD

No/Driver behavior reasoning Controlled

[70]
Formed DNN based clustering tags of image
regions with common appearance and using
tags for optimal segmentation

CityScapes [50] and
CamVid [71]/Yes

N/A
Yes/Efficient semantic segmentation
for AD

Controlled

[72]
A multi-label model for diverse scenes
recognition

New dataset, [68]/Yes N/A
Yes/Efficient semantic segmentation
for AD

Variable
(urban
roads/
highways)

[73]
Streets scene understanding model that fo-
cuses on common objects using importance-
aware feature selection mechanism

CityScapes [50] and
CamVid [71]/Yes

N/A
Yes/Segmentation focused on street
scenes aware objects

Variable
(urban
roads/
highways)

to objects on road or zebra crossing areas. Scene understanding

in some methods is performed using segmentation techniques

functional in diverse environments with unstructured roads

[74], challenging weather [75], outdoor complex conditions

[76], and varying illumination [77]. A detailed description of

features segmentation methods is given in Table II.

There exists several survey contributions of computer vision

research community to cover various major challenges, pro-

vide tutorials, and offer future research directions in various

subdomains of AD. These surveys are summarized in Table

III. As can be observed in this table, scene understanding

is not specifically considered to the level of its importance

in AD, and there exist very scarce surveys related to scene

segmentation. For instance, Xue et al. covered scene under-

standing methods based on events reasoning in their baseline

survey [29]. This is the most related survey to our topic,

but it is concentrated on events and intention prediction of

pedestrians and vehicles rather than on scene parsing and

related paradigms. Another recent survey broadly covers road

segmentation methods, but without any focus on their con-

cerned challenges with future research directions in the AD

domain [78]. To the best of our knowledge, this survey is novel

of its kind in the AD literature and is a need of the community

working on autonomous vehicles, given the acknowledged

importance of scene parsing in this domain.

III. PERFORMANCE EVALUATION OF SEMANTIC

SEGMENTATION

The performance evaluation of different semantic segmenta-

tion models used in AD domain are discussed in this section.

Herein, we explain the evaluation metrics, different types of

objective functions, analyze the computational complexity, and

finally provide quantitative comparisons of deep models. The

nomenclature of the used variables is given in Table IV.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.X , NO.X , 2022 7

TABLE III: Detailed descriptions of some representative surveys in the ITS literature, sorted in terms of their relevancy to the present survey.

Ref. Year Main theme Domain Remarks

[79] 2015
Focusing on motion planning
techniques and navigation

Graph search-based planners, sampling-
based planners, interpolating curve
planners, and numerical optimization
approaches

Studied various motion planning methods for self-driving
vehicles, highlighted motion planning, and path selection
methods for autonomous urban vehicles

[80] 2016
Motion planning and control
techniques for autonomous
urban vehicles

Route planning, behavioral decision
making, motion planning, and vehicle
control

Over-viewed only traditional approaches for motion planning
and briefly discussed the major challenges with recommen-
dations in future work section

[81] 2017

Simultaneous localization
and mapping survey,
focusing on current trends
for autonomous vehicles

Evaluation of SLAM technology in
autonomous driving, single-vehicle
SLAM, multi-vehicle slam, centralized
SLAM, and decentralized SLAM

Discussed conventional hand-crafted methods and few deep
learning techniques, and Deep learning-based methods are
recommended over handcrafted methods

[29] 2018
Events reasoning based
scene understanding survey

Scene representation, events detection,
intention prediction for AD

Centered towards events reasoning (pedestrian and vehicle
events), traffic saliency detection, and intention prediction
(long- and short-term). Events and intentions’ prediction
evaluation discussion is provided. Not specific towards the
recent advancement of deep models for scene understanding.
Comparatively old literature is studied in this survey.

[82] 2018

Coverage of intra- and inter-
vehicle networking and com-
munication technologies in
AD

Vehicle identification, emergency warn-
ing, distance control, road hazard warn-
ing, and cooperative precise localiza-
tion

Highlighted the importance of wired and wireless communi-
cation technologies for reliable autonomous driving, and new
trends of networking technologies in autonomous vehicles

[83] 2018
Investigation of state-of-the-
art vehicle localization tech-
niques for AD

GPS/IMU-, camera-, radar-, LiDAR-,
ultrasonic-based vehicle localization

Over-viewed conventional sensors- and vision-based vehicle
localization and various challenges are highlighted with rec-
ommended solution

[84] 2019

Interaction between
autonomous vehicles and
pedestrians, recognizing the
pedestrian’s intention, and
behavior

Pedestrian detection and tracking,
pedestrians intention estimation,
pedestrians decision and behavior
prediction

Discussed the importance of practical approaches for com-
municating with pedestrians, understanding the pedestrian’s
behavior, intention, and decision based on traffic characteris-
tics

[85] 2019
The applications of radar sig-
nals for road safety in au-
tonomous driving

Range estimation, velocity estimation,
angle estimation between two cars or
between car and pedestrian towards safe
AD

Presented state-of-the-art techniques, phase noise estimation
methods, and investigated the performance of radar in envi-
ronmental phase noise.

[86] 2019

Efficiency of radar signals
for the detection of far-small
and close-large objects in au-
tonomous vehicles

Extended target detection, multi-path
mitigation, angular super-resolution,
clustering, and multiple target tracking

Discussed the traditional signal processing approaches for
AD and future research directions of signal processing for
practical roadway scenarios

[87] 2019
3D object detection methods
for AD applications

Predictions of 3D object bounding
boxes, 2D bounding boxes prediction
on the image plane, and projection of
point clouds into a 2D images

Over-viewed the object detection methods, the commonly
used sensors, datasets, the type of depth data user for 3D
road objects detection, and detailed comparative analysis of
2D and 3D object detection for autonomous driving

[78] 2020
Investigated the current chal-
lenges and future directions
for safe AD

Road segmentation, pedestrian detec-
tion, lane segmentation, drowsiness de-
tection, collision avoidance, and traffic
sign detection for driving safety in au-
tonomous vehicles

Covered only the most recent deep learning approaches
for safe autonomous driving, detailed analysis, experimental
evaluation, key findings, major challenges, and their recom-
mended solutions

[88] 2020
A comprehensive survey of
computer vision based au-
tonomous vehicles

Benchmark AD datasets, object detec-
tion, object tracking, semantic segmen-
tation, and semantic instance segmenta-
tion

Presented numerous computer vision-based solutions for AD,
highlighted the current challenges in various domains of com-
puter vision-based approaches including motion estimation,
object tracking, and end-to-end object segmentation

Ours 2022

A study of deep learning
models based scene
understanding/segmentation
methods

Scene segmentation models, datasets,
evaluation, and loss functions for AD

We introduce scene segmentation, their open challenges,
discuss its role for AD, and explain future directions with
respect to scene understanding.

A. Evaluation Metrics

Building only a predictive deep segmentation model is not

a wise and trustworthy decision for safe AD unless it is tested

on unseen data. Most models evaluate their performance on

a disjoint set of the same dataset that is used for training,

but still the test data are totally new for the trained model.

Recently, deep models are being developed with more gen-

eralized potentials for unseen data [89]. Deep models for

segmentation are evaluated using some common metrics to

assess the optimal results against ground truth. Based on

the difference between instance and semantic segmentation,

different types of evaluation metrics can be used for these

tasks, which we review next as follows.

1) Intersection over Union (IoU): The IoU metric [90],

[91] computes the overlapping regions between the predicted
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TABLE IV: List of used variables.

Variable Description

IoU Intersection over union

predMaskinput Predicted mask label per pixel of an input image

GT Ground truth segmentation mask

PixelAcc
Pixel accuracy metric, estimating pixel

level accuracy for semantic segmentation

ℓ lth pixel of segmentation mask, 0 or 1 value

TP True positive

TN True negative

FP False positive

FN False negative

BCE Binary cross entropy

β
Balancing factor for unbiased trade-off

between false positive and false negative

y The ground truth segmented pixel

ŷ The predicted segmented pixel

w Weight value (having values 0 or 1)

FL Focal loss

Pt Probability of segmentation model for GT

αt
Parameter with 0 or 1 output,

predicts class imbalance

Mean IoU Averaged intersection over union

mAP Mean average precision

model’s results predMaskinput and the ground truth mask

GT . It is the simplest metric that essentially counts the

number of common pixels using intersection and union as per

Equation (1).

IoU(predMaskinput, GT ) =
predMaskinput ∩GT

predMaskinput ∪GT
, (1)

where predMaskinput is the mask of labels predicted for each

pixel of the input image, and GT is the ground truth mask that

should be predicted by an ideal segmentation model. In case

of multiple classes (as it often occurs in the related literature),

the IoU score is computed for each class individually followed

by its global average over all classes, giving rise to the so-

called mean IoU. As this method is based on Jaccard and

Dice coefficients, it is also referred to as Jaccard Index.

Computing IoU over the output of instance segmentation

models is complicated, as it produces multiple masks for each

object inside an input image. Therefore, it becomes similar

to object detection evaluation with the only difference being

the bounding boxes comparison in the object detection prob-

lem, which is replaced by the masks comparison in instance

segmentation.

2) Pixel Accuracy for Semantic Segmentation: Another

commonly used metric is the pixel accuracy PixelAcc [57],

which reports the percentage of correctly classified pixels in

an input image when correspondingly compared to the ground

truth mask, as formulated in Equation (2).

PixelAcc(ℓ) =
TP (ℓ) + TN(ℓ)

TP (ℓ) + TN(ℓ) + FP (ℓ) + FN(ℓ)
, (2)

where TP (ℓ), TN(ℓ), FP (ℓ), and FN(ℓ) respectively denote

the number of true positives, true negatives, false positives, and

false negatives measured over the image, assuming that pixels

of label ℓ are given value 1 and 0 otherwise. As in IoU, it is

also computed individually for every class, and globally for

all classes of a given dataset. For a single-class representation

with comparatively smaller coverage in an image, this metric

is biased as it only reports on the identification of pixels in an

image where a class (positive class) is not present.

B. Special Loss Functions for Semantic Segmentation

In general, various factors may affect the learning potentials

of a certain Machine Learning model. The loss function is

among the most important ones in neural computation, as it

quantitatively evaluates the model’s predictions during training

and improves the performance via gradient updates and back

propagation until the the specified number of epochs. There are

multiple loss functions for segmentation tasks. Furthermore,

some research works have hitherto proposed to improve the

segmentation performance further by defining modified/hybrid

versions of these loss functions. Common loss functions can

be found in [92], whereas advanced type of loss functions are

given below with their respective mathematical definitions:

1) Weighted binary cross entropy: It is a variant of cross

entropy loss function that is widely used in many computer

vision problems. It is defined as the difference measure of

two probability distributions (y and ŷ) of corresponding inputs

[93], [94]. In this case, β is used for balancing among false

positives and negatives.

wBCE(y, ŷ) = −β · y log(ŷ) + (1− y) log(1− ŷ), (3)

where ŷ is the output of the segmentation network for a given

pixel, and y is its ground truth, and the images and labels

weights are computed using zeros and ones.

2) Balanced cross entropy: In this alternative formulation

of the loss function [95], [96], positive and negative samples

are weighted as follows:

wbBCE(y, ŷ) = −β·y log(ŷ)+(1−β)·(1−y) log(1−ŷ), (4)

hence inserting a complementary weight for negative samples.

3) Focal loss: Focal loss FL is a well-established loss func-

tion that can be used in case of imbalanced data [97], which

also occurs frequently in segmentation problems. Following

the previous notation, the focal loss is given by:

FL(pt) = −αt · (1− pt)
γ log(pt), (5)

where pt is the probability that the model predicts for the

ground truth object, γ > 0 is an parameter that permits to

grant more or less relative weight to misclassified examples,

and αt ∈ [0, 1] is set to account for the presence of class

imbalance or instead, tuned as another hyper-parameter of the

overall model.

4) Others: There are many other types of loss functions1

used in specific cases for segmentation problems, such as

region-based losses [98]. Among them we underscore the

prevalence of studies using the Dice loss, which gets inspired

by the Sørensen–Dice coefficient (namely, a measure of sim-

ilarity between images); the Tversky loss, which extends the

Dice loss with a β coefficient to weight differently false nega-

tives and positives; the shape-aware loss for better address-

ing the segmentation of challenging objects; the Hausdorff

distance loss [99], [100]; and the combo loss, which blends

1https://cnvrg.io/semantic-segmentation/ (accessed on April 21st, 2021).
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TABLE V: Performance and time complexity analysis of featured
segmentation models. An upward arrow denotes that the higher the
value, the better the model (and vice versa for the downward arrow).

Model
Mean IoU (↑)

Size (MB) (↓)
FPS (↑)

Time (ms) (↓)

Pascal CityScapes KITTI CPU GPU

[57] - 82.95 75.84 118 3 57.4 -
[10] 79.70 70.42 - 439 2.5 30 -

[107] - 80.35 56.43 165 - - 166
[65] 75.72 - - 705 - 24 200

[108] 64.86 - - 213 - 24 -
[109] - 50.73 - 171 - - 10.43
[102] - 71.31 - 11.9 - 81.9 -
[110] 69.14 - 705 - 24 -
[111] - 72.0 - 8.5 - 51.7 -
[112] - 75.23 - 2.43 - - 136

together the binary cross-entropy loss for curves smoothing

effect and the Dice loss for class balancing problems. We again

refer to [92] for a detailed mathematical compendium of these

loss functions.

C. Time Complexity Analysis

In order to illustrate the current performance levels of

segmentation models used for AD, we now report the results

of some featured deep segmentation models. The overall

report of running time of these models is given in Table V.

Some of the model’s time complexity indicators are reported

from their methods, whereas in other cases we have run

the reported models from their publicly available repositories

using our experimental resources. The system’s configuration

for CPU includes an Intel(R) Core i7-7700 CPU@3.60 GHz

processor running on Windows 10 operating system, while

the GPU used in experimentation is a NVIDIA GeForce GTX

1060 with 6 GB graphics memory. Table V also shows the

predictive performance of the models (when available) over

three different datasets, as well as the size of the trained

models (measured in MB).

The world’s leading AV chips including Intel Ponte Vec-

chio, NVIDIA A100, Tesla D1, Huawei Ascend 910, and

Google TPU (v1, v2, v3), have achieved mass production for

applications such as 2D/3D fusion annotation and semantic

segmentation training [101]; however, the time complexity

of the analyzed methods running over CPU indicates that the

current neural architectures still need to focus on lowering

the time complexity and energy consumption. The highest

frames per second (FPS) among these methods is achieved

by [57], that is 3 frames per second for CPU. When deployed

over a GPU, the best FPS score is 81.9 frames per second

achieved by [102]. In real-world environments [103], devices

are severely resource-restricted [104], such as Raspberry-pi,

Jetson Nano, and Google Board. Executing such huge models

over these devices is a challenging task. Therefore, much

attention is required in terms of time complexity towards

enabling the execution of these models over energy-limited

devices functional in Internet of Things setups [105], [106].

D. Quantitative Analysis of Scene Segmentation Methods for

AD

This section elaborates on the quantitative empirical analysis

of road scene segmentation methods surveyed in this paper

TABLE VI: Quantitative analysis

Ref. IoU/mIoU
Pixel

Accuracy
mAP FPS Settings

CityScapes
[50]

[9] 79.4 - - 3.5 Nvidia Titan X
[26] 80.4 - - 46.8 Nvidia Titan X
[27] 74.4 - - 65.5 Nvidia Titan Xp
[28] 67.70 - - 30.3 Maxwell Titan X
[49] 59.8 - - 16.7 Nvidia Tegra X1
[56] 0.68 - - 22 Nvidia GTX1080Ti
[57] 82.92 92.50 - 15 NVIDIA Titan Xp
[59] 80.40 - - 21 Pascal Titanx
[60] 0.464 - - - -
[70] 53.70 - - - -
[73] 92.30 - - 8.5 NVIDIA Titan X

[102] 70.3 - - 100 NVIDIA Titan X
[107] 82.10 - 83.80 - -
[110] 67.40 - - 45.1 Single 1080Ti
[111] 70.5 - - 51.7 NVIDIA GTX 1080Ti

CamVid17
[71]

[27] 68.70 - - 65.5 Maxwell Titan X
[28] 67.10 - - 27.8 Maxwell Titan X
[70] 30.40 - - - -
[102] 64.70 - - 120 NVIDIA Titan X
[110] 65.0 - - 38.7 Single 1080Ti

COCO [66]
[27] 31.30 65.50 - 65.5 NVIDIA Titan Xp
[28] 29.10 - - 35.7 Maxwell Titan X
[65] 53.50 - 34.10 - -

S.KITTI [47] [51] 52.20 - - 92 NVIDIA Drive AGX

VOC07,12
[113]

[65] 75.70 - 83.60 19.5 Maxwell Titan X
[107] 64.86 91.20 - - -

and that empower the automation of AD. For the quantitative

assessment, we inspect the performance of every method

for road scene segmentation using three evaluation metrics:

Mean Intersection over Union (mIoU), Pixel Accuracy, and

Mean Average Precision (mAP). Furthermore, computational

efficiency is accounted for by reporting the FPS achievable

by each method in inference time. The detailed quantitative

results in terms of the aforementioned metrics are given in

Table VI. Results across different scene segmentation datasets

(including Cityscapes, CamVid17, COCO, SemanticKITTI,

and VOC) are reported from the literature and compared based

on their results.

From the reported results in Table VI, it can be noticed that,

among all methods evaluated over the Cityscapes dataset, the

approaches proposed in [26], [27], and [102] attain a balanced

trade-off between accuracy (in terms of mIoU, Pixel Accuracy,

and mAP) and efficiency for real-time applications (in terms

of FPS). By contrast the reported results over the CamVid17

dataset evince a better segmentation performance of the

methods contributed in [27] and [102]. Among these three

focused methods, [27] scores best in terms of mIoU and mAP

values, with superior FPS, which are 31.30, 65.50, and 65.5,

respectively. The reported results over the SemanticKITTI

dataset indicate a better performance of the method in [51],

achieving well-balanced mIoU and FPS scores, i.e., 52.20

and 92, respectively. Finally, the method in [65] performs

comparatively better than the one in [107], by offering best

values of the mIoU, mAP, and FPS scores (75.70, 83.60, and

19.5, respectively).

IV. DATASETS

Many datasets are nowadays available for segmentation

tasks, where some of them are related to semantic segmenta-

tion and others are introduced for instance segmentation. Rep-

resentative datasets in the segmentation literature particularly

those designed for AD are discussed in detail in the subsequent

sections and their detailed statistics are given Table VII.
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TABLE VII: Statistical overview of the scene understanding datasets
used for autonomous driving. * represents a dataset with adverse
weather conditions.

Dataset Year No. of Scans Resolution
Data format

Classes Horizon

2D-Object 3D-Scan

VOC (2007 and 2012) 2010 22,531 - 20 Detection

KITTI 2012 14,999 1240×376 28 Segmentation

COCO 2014 330,000 640×480 80 Detection

CityScapes 2016 5000 1024×2048 30 Segmentation

Mapillary Vistas 2017 25,000 1920×1080 66 Segmentation

HighD 2018 1,530,000 4096×2160 - Detection

ApolloScape 2019 143,906 3384×2710 - Segmentation

SemanticKITTI 2019 43,552 - 28 Detection

NuScenes 2020 4000 1600×900 23 Detection

Barkely Deep Drive 2020 10,000 - - Segmentation

ACDC* 2021 4006 - 19 Segmentation

A. KITTI

KITTI [46] is a 3D vision benchmark data containing

outdoor stereo images of road scenery along with its cor-

responding 3D laser scans. The 3D image data is acquired

by two high resolution stereo cameras (gray scale and color),

advanced OXTS RT 3003 localization system that combines

global positiong system (GPS), global navigation satellite

system (GLONASS), inertial measurement unit (IMU), and

real time kinematic (RTK) correction signals. It also contains

Velodyne HDL-64E laser scanner, mounted on the top vehicle

to produce 3D points for the captured scenes in real time.

The deployed stereo cameras are first calibrated and then

synchronized with a localization system and a laser scanner

to generate accurate ground truth data.

The dataset comprises a total of 14999 RGB stereo image

pairs (including both image and its corresponding ground

truth), with a resolution of 1240 × 376 pixels. The entire

dataset is partitioned into a training (7841 samples) and a

test set (7518 samples). The training set is further split into

two subsets, namely, train (3712 samples) and test set (3769

samples), and the latter is used mainly for validation purposes.

B. SemanticKITTI

SemanticKITTI [47] is a large-scale outdoor scene dataset

constructed for point cloud semantic and panoptic segmen-

tation of road scenery, including residential area, city traffic,

and highways. It comprises a total of 43552 point-wise re-

annotated 3D scans generated with automotive LiDAR sensor

for the KITTI Vision Odometry Benchmark dataset [46]. This

dataset has a total of 22 distinct sequences split into training-

validation and test subsets. The training-validation set consists

of 23,201 3D scans from sequences 0 to 10, while the test set

comprises of 20,351 3D scans from sequences 11 to 21.

Unlike Paris-Lille-3D [114] and Wachtberg [115] datasets,

which only contain the aggregated 3D scans of the com-

plete sequence captured with the same type of sensors,

SemanticKITTI provides the individual point cloud of the

entire captured sequence of road scenery. Thus, it enables

the performance evaluation of semantic segmentation based

on multiple consecutive scans.

C. HighD

The HighD dataset [116] contains around 110,000 refined

trajectories of different vehicles, including cars and trucks.

Those trajectories are captured from drone videos recorded

at a resolution of 4096 × 2160 pixels and 25 FPS over

German highways. For each particular vehicle trajectory, the

dataset provides trajectory ID, speed, acceleration, longitudinal

coordinate, distance to the leader, and ID of the current leader.

These trajectories are widely used to analyze the driving

behavior of car-following drivers using computer vision al-

gorithms. The dataset includes 60 videos of 17 minutes on

average captured in 6 different locations, depicting a road

portion of around 420 meters in length. All videos are captured

in sunny and clear weather conditions, from 8 AM to 5 PM,

thereby minimizing the efforts required for video stabilization

and other post-processing operations.

The dataset includes four different files for each captured

video, including three CSV files and the visual aerial view

of the highway. The first file contains the information about

traffic signs, driving lanes, speed limit on each specific lane,

and location of the site. The vehicle class, vehicle dimensions,

mean speed, and driving direction is given in the second

file. The third file provides the detailed information such as

speeds, lane position, accelerations, and description of adjacent

vehicles per frame.

D. CityScapes

CityScapes [117] is a high-quality pixel-level semantic

segmentation dataset for urban street scene understanding,

collected in around 50 cities in Germany and neighboring

countries. The dataset provides 5,000 pixel-level annotated

images of resolution 1024 × 2048, depicting complex urban

scenes captured in different weather conditions, varying back-

ground, and scene layout. As compared to other benchmark

datasets for street scene understanding [46] [47] [116], the

CityScapes dataset surpasses the previous efforts in terms of

variety, size, scene complexity, and annotation richness.

To discriminate the semantic representation of each par-

ticular object in the captured image, data is annotated with

30 different categories. For semantic segmentation task, the

entire dataset is split into four separate subsets including 2,993

training images, 503 validation images, 1,531 test images,

and 20,021 auxiliary images. The training, validation, and

test image sets have high-level refined annotations, while the

auxiliary set of images contains coarse annotations.

E. Nuscenes

NuScenes [118] is a large-scale 3D object detection dataset

recently introduced for driving scene understanding in AD.

The dataset is collected in Boston (South Boston and Seaport)

and Singapore (Holland Village, Queenstown, and One North)

using moving car equipped with a suite of specially designed

sensors. The car-mounted suite includes 13 sensors: 6 RGB

cameras with 1600 × 900 resolution and 12Hz capture fre-

quency, 5 long-range radar sensors operating at 77 GHZ with

13Hz capture frequency, 1 LiDAR sensor with 20Hz capture

frequency, and an IMU sensor. All sensors are precisely

synchronized with each other to obtain high-quality data and

better cross-modality between visual and sequential data.
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The dataset consists of 1000 driving sequences, where each

sequence is 20 seconds long. Data are annotated by experts

into 23 object classes (i.e., Car, Truck, Human, and Bicycle

etc.), where each object class is further categorized into 10

different sequence classes based on the semantic differences

between the sequences. For training and inference, the dataset

is divided into 700, 150, and 150 annotated sequences for

training, validation, and testing, respectively. Each sequence

comprises 40 frames, offering a 360o view of the surrounding

scenery.

F. Mapillary Vistas

The Mapillary Vistas [119] is one of the largest and chal-

lenging street-level scene segmentation datasets for pedestrian

and traffic-related scene analysis. The dataset contains 25,000

high quality (8.6 Pixels) outdoor scene images of resolution

1920 × 1080 captured from all over the world at different

conditions concerning lightning, season, weather, and daytime.

Images are captured by the sidewalk pedestrians as well as

from the moving cars with various image acquisition devices

including smart phone cameras, action cameras, tablets, and

professional cameras. To prepare the data for supervised

learning-based scene segmentation, data are annotated into

66 distinct object categories with additional 37 classes with

instance-specific labels.

The Mapillary Vistas dataset is 5 times larger than the

benchmark CityScapes dataset [117], providing fine-grained

annotated data generated by 69 expert annotators with poly-

gon style for delineating each specific object in the image.

For semantic segmentation learning task, the dataset is split

into three subsets of images namely training, validation, and

testing, having a total of 18,000, 2,000, and 5,000 annotated

images, respectively.

G. ApolloScape

ApolloScape [120] is an extensive street-level road scene

dataset recently released for a variety of self-driving applica-

tions including car instance segmentation, 3D map construc-

tion self-location, scene parsing, lane segmentation, scene tra-

jectories, and detection-tracking. The dataset contains 143,906

frames of resolution 3384 × 2710 pixels, with good quality

ground-truth data, comprising pixel-level semantic segmen-

tation, pose information, and 3D point clouds of captured

scene. Compared to the existing publicly available datasets

(i.e., KITTI [46] or the Mapillary Vistas [119]), ApolloScape

comprises almost 15 times more data with rich labeling in

terms of holistic semantic dense point for each scene.

The images and depth data in the dataset are acquired with

car-mounted sensors deployed over various cities of China

under different weather (cloudy and sunny), lightning (day,

night, noon), and traffic conditions (rush and non-rush hours

traffic with pair of stereo images). The suite of car-mounted

sensors includes one VMX-CS6 camera system with two front

cameras having a resolution of 3384 × 2710 pixels, two

VUX-1HA laser scanners with range of 1.2m to 420m and

360o FOV, a measuring head device with IMU/GNSS (heading

accuracy 0.015o, position accuracy 20∼ 50%, and roll and

pitch accuracy 0.005o). During data recording, the vehicle

drives with a speed of 30 km per hour, whereas the mounted

cameras are triggered every 1 meter.

H. Berkely Deep Drive

The Berkely Deep Drive dataset [121] is a large-scale

dataset composed by diverse driving videos and GPS/IMU

data for road scene understanding including drive-able area

segmentation, road objects detection, instance segmentation,

and lane mark detection. The dataset includes around 10,000

hours of driving stream depicting visuals of towns, highways,

and rural areas of San Francisco Bay Area, New York,

and other cities of USA in varying weather and lightning

conditions. Besides the video data, the dataset also provides

GPS/IMU driving trajectories for location tracking, recorded

with GPS, IMU, gyroscope, and magnetometer sensors. The

dataset provides image-level annotations for a variety of driv-

ing scene understanding tasks. Object detection annotations

include traffic light, traffic sign, bus, person, motor, bike, truck,

car, train, and rider. The instance segmentation annotations

contain car, road, pedestrian, person, footpath, and traffic

boards etc.

I. COCO

The Common Objects in Context (COCO) dataset [122]

is one of the predominant databases released by Microsoft,

widely used for object detection, semantic and object instance

segmentation, and object captioning. The dataset embeds

330,000 images with more than 200,000 labeled instances,

250,000 persons with key points, human pose estimation, and

1,500,000 object instances categorized in 80 distinct classes.

The image data is collected from different sources including

relevant object images from the PASCAL VOC dataset [113]

and the Flickr site uploaded by amateur photographers with

search-able keywords. The entire dataset is collected and

annotated for object detection, instance segmentation, and

image captioning using an interface specifically designed for

hired expert annotators.

Originally the COCO dataset is released into two parts: the

first part of the dataset was released in 2014, where the second

part of the dataset was introduced in 2015. The first part

comprises three subsets of images including 82,783 training,

40,504 validation, and 40,775 testing images. Likewise, the

second release of the dataset comprises 165,482, 81,208, and

81,434 images for training, validation, and testing, respec-

tively.

J. VOC (2007 and 2012)

The PASCAL VOC (Visual Object Classes) [113] is one

of the most challenging datasets publicly available and is

used for image classification, object detection, and image

segmentation. Similar to the COCO [122] dataset, the VOC

dataset is released into two parts: VOC 2007 and VOC 2012.

The VOC 2007 release contains a total of 9,962 images

and their corresponding annotations split into three subsets:

2501 training, 2510 validation, and 4951 testing images. The
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VOC 2012 release includes 22,531 images divided into three

subsets of 5,717, 5,823, and 10,991 images for training,

validation, and testing, respectively. The dataset is captured

from two different sources (flickr photo-sharing website and

the Microsoft Research Cambridge database).

All images of the VOC 2007 and VOC 2012 datasets

are annotated with two distinct attributes, i.e., object class

and bounding box, which denote the object type and the

coordinates of the object location. Both datasets contain 20

classes, where each class contains a varying number of images.

However, each class contains at least 500 images, depicting

common objects such as cat, dog, person, car, and bike. For

each of these categories, a comprehensive set of images is

supplied, each having semantic richness and significant vari-

ability concerning to object size, illumination, pose, occlusion,

orientation, and position.

V. SCENE UNDERSTANDING IN AD: CHALLENGES AND

DIRECTIONS

The datasets introduced above possess a wide variety of ob-

jects, with some of them posing least importance towards deci-

sion making of an autonomous vehicle such as sky and build-

ings. Mainstream research contributed nowadays is centered

towards favorable daytime scenes for semantic segmentation,

with sufficient illumination and supportive weather conditions.

Many car companies and Original Equipment Manufacturer

in industry have access to a high volume of data; however,

they are not keen to share their data publicly, mainly due

to IP, industrial competitions, and General Data Protection

Regulations (GDPR) concerns. Consequently, lack of sufficient

labelled data for accurate scene understanding in dynamic

weather conditions with varied illumination conditions, such

as night time [123], smoggy situations, and edge cases remains

a challenging task for AD research.

This research niche is among the challenges that are still

insufficiently addressed by the community to date. In this

section we offer our critical views on the current status of

scene understanding in AD, summarizing them in a set of

challenges together with a prescription of the research direc-

tions that can help the community step further and overcome

them effectively.

A. Open Challenges

Although significant research has been done and AD indus-

try is widely growing but still there are several open challenges

to achieve perfectly intelligent AD, demanding researchers’

attention. These challenges are discussed individually with

supported references from the related literature.

1) Salient Objects Consideration: While much work has

been done in the field of segmentation, very less attention

has been paid to objects’ distinction based on safety levels or

priorities. For instance, a segmentation model only segments

humans in an ongoing scene without any consideration of their

location or their movement speed, which can be useful to

control the autonomous vehicle and avoid accidents. There

are various challenges while considering an object’s location

during segmentation. For instance, the distance of the object

from the autonomous vehicle, where the closest distance

can be segmented as the highest risky level and the vehicle

needs to take actions accordingly. Similarly, an object using

zebra crossing and another one walking on roadside can be

prioritized differently [73]. Furthermore, motion of the objects

[124] from or towards the autonomous vehicle is also an

open issue to be faced by future deep learning models for

scene segmentation. Object’s motion towards the autonomous

vehicle with higher speed segmentation map needs quicker

actions and vice versa.

2) Coarse-Structured Information: Most of the datasets in-

troduced in AD literature for segmentation are recorded in nor-

mal and well-structured infrastructures of advanced cities. The

currently developed deep learning models may achieve best

results2 over structured datasets [50], but generalize poorly in

many unstructured environments, as given in a sample scenario

in Figure 4. For instance, an online challenge NCVPRIPG-

2019 focused on unstructured road data recorded in India3. The

highest mean IoU achieved so far in this competition is 0.6276

over the testing set, which reflects the enormous difficulty

of achieving models with good generalization properties in

complex scenes. This aspect of AD demands further attention

in terms of data collection, as well as the inclusion of new and

effective representation mechanisms in deep learning models.

3) Uncertainty-aware Decisions: A largely overseen aspect

of scene understanding and AD decision making thereof is the

confidence under which models elicit their predictions over

the input data. The fact that the vehicular surroundings are

inherently uncertain ecosystems seem not to have persuaded

the community to delve into this matter, stepping aside cur-

rent methodological trends centered exclusively on predictive

scores. Fortunately, confidence estimation has grasped the

attention of the community recently (see e.g. [125]–[127]

and references therein included). Nevertheless, elements from

evidential deep learning [128], Bayesian formulations of deep

neural networks [129], simpler mechanisms to approximate

the output confidence of neural networks (e.g. Monte Carlo

dropout [130] or ensembles [131]) and other assorted methods

for uncertainty quantification [132] should be progressively

incorporated as an additional yet crucial criterion for deci-

sion making. This is specially important when dealing with

complex environments, in which the lack of data that can

fully represent any possible scene induces a large amount

of epistemic uncertainty in the output of the model. Without

confidence being considered as an additional factor for AD,

or with current studies focused solely on predictive and/or

computational efficiency aspects, there will be no guarantees

that new scene segmentation models upsurging in the scientific

community are of practical use and can be transferred to

industry.
B. Future Directions

The aforementioned challenges and our literature analy-

sis suggest a number of research opportunities for advanc-

ing over the current state-of-the-art in vision-based semantic

2https://www.cityscapes-dataset.com/benchmarks (access: April 8th, 2021)
3https://cvit.iiit.ac.in/ncvpripg19/idd-challenge/ (access: April 8th, 2021)
4CVPR 2018 WAD Video Segmentation Challenge, https://www.kaggle.

com/c/cvpr-2018-autonomous-driving (accessed: April 15th, 2021)



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.X , NO.X , 2022 13

(a) A road without any specific boundaries or lanes.

(b) An unstructured road with groceries and food items over the main lane.
Pedestrians seem walking without any zebra cross or traffic lights.

(c) Sample segmentation ground truth image of a well structured road.

Fig. 4: Sample images with segmentation ground truth from coarse-
structured road of India Driving Lite Dataset [74] and CVPR-2018
autonomous driving challenge dataset4. The images in (a) and (b)
unleash several challenges for a deep learning segmentation model,
whereas the image in (c) seems to be easily segmented for scene
understanding.

segmentation-assisted scene understanding for AD. We herein

offer our envisioned directions:

1) Explainable AD: Deep segmentation models emerging

from the AD literature generate their output without eliciting

any explanations of how it applied an action during the drive,

associating the model’s decision with certain complications. If

a certain non-explanatory decision of an autonomous vehicle

led to an erroneous behavior, causing accidents and traffic

irregularities would be problematic from the legal perspective.

Explanations of the model’s decision are necessary for AI-

based decisions to be verified, interpretable, and accountable.

Recently, many deep models are there to explain the gen-

erated output [133], that could be applied in AD domain to

explain the contributions of a model in a driving decision.

Considering achievements so far in explainable Artificial In-

telligence (XAI, [134]), AD can harness the myriad of post-

hoc XAI techniques available for generating explanations.

However, such produced explanations may not suffice in

practice as their limited scope may not demonstrate the overall

interpretation of a model, but rather provide a correspondence

between what the model observes in an input to predict their

output. Further research is extensively needed in this direction

to produce an enriched narrative connecting vehicular percep-

tion to automated actions, as we elevate gradually towards

realizing the highest level of AD.

2) Towards Video Segmentation for AD: Semantic seg-

mentation using frame-based visual data has achieved con-

siderable attention, with major improvements in the last two

years. Although there are significantly robust techniques for

frame-level segmentation, they are still mostly designed for

achieving better accuracy levels, compromising their compu-

tation efficiency. Therefore, when image-based segmentation

is employed in AD, it results in large processing latencies

that are unaffordable for their adoption in real vehicular on-

board hardware. Despite this noted issue, more generally

there are some scenes encountered while driving which have

overlap and occlusion during consecutive frames, paralysing

the frame-based segmentation for scene understanding. Video-

based segmentation is a contemporary option in this regard,

which should ensure faster processing and a better practicality

for AD applications.

3) Object’s Predicted Locations Segmentation: A signif-

icantly vibrant research activity can be lately noted around

the estimation of the future location of pedestrians and other

moving objects in the scene, such as vehicles [60]. Notwith-

standing its highly challenging nature, the task of future

location estimation assists decision making of autonomous

vehicle, providing estimated future trajectories of persons and

vehicles. Unfortunately, research revolving on segmenting fu-

ture locations is scarce and to the best of our knowledge there

is not a single research segmenting or drawing segmentation

maps of pedestrian or other objects’ future locations. This

area is very challenging though, but not far to be achieved

for scene understanding. Recently, many methods [135], [136]

have achieved accurate bounding-boxes prediction of pedes-

trians for upcoming 10 to 15 frames. These methods can be

considered as the baseline for future research in this valuable

direction.

4) Hybrid Methods and Multi-Modalities: Besides the

broader coverage of RGB data generated by vision sensors,

there are some other modalities [137] and sensors with quite

informative patterns and points for scene analysis and under-

standing. For instance, point clouds [138], [139], meshes [140]

and depth data [141] together with RGB data can generate

an increased 3D scene understanding for an autonomous

vehicle [142]. These data are generated from various sensors,

including LiDAR among many other options. Hybrid models

are widely used in many domains [143], [144] with successful

results in terms of vulnerability and can be implemented in ITS

domain as well. As vehicles are equipped with more sensors,

we envision many opportunities for research on multi-modal

information fusion, further stimulated by other non-embarked

sources of related information (e.g. floating car data – wherein

cell phones of drivers and passengers act as additional traffic

probes – or social network data).
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Fig. 5: Visual segmentation results of various deep segmentation models over input images having variable weather conditions such as snow
and fog. The segmented maps of DeepLab and OmegaNet are not trustworthy for an autonomous vehicle’s scene understanding.

5) Active and Incremental Learning: Active learning [145]

in machine learning refers to self-adaptability and learning

of a model with respect to time and new data encountered

during testing phase even after its deployment stage [146]. In

real-world environments, dynamic scenes with rarely occurring

living species or objects such as kangaroo or a self-engineered

dump and cargo truck may be encountered by a vehicle, which

may rely on AI’s model decision for further actions such

as applying brake or increasing acceleration. Thus, a scene

understanding AI based mechanism should interactively allow

processing queries of every type of data and its structures

in the form of unlabeled data instances labeled by a human

annotator during the process, involving human in the train-

ing loop [147]. There are different types of active learning

techniques, such as membership query synthesis [148], where

synthetic data is generated and the parameters of synthetic

data can be tuned [149] based on structure of objects, derived

from base species of the dataset. On the other hand, the

capability of segmentation models to update their captured

knowledge with new data in an incremental fashion is a key for

their sustainability and continuous improvement. We foresee

that these two capabilities of segmentation models for scene
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understanding will grow in importance in prospective studies.

6) Complex Driving Scenes Understanding: Semantic seg-

mentation with applications to scene understanding primarily

focuses on objects in a single category without any consid-

eration to the importance of their location. For instance, a

pedestrian walking through a sidewalk is classified simply

as a pedestrian. There are some disadvantages associated to

this approach: the extra time involved by an algorithm to

verify its location; and let the vehicle decide actions, there is

no specific safety levels of pedestrians (relate-able to cyclist

and other objects), treating all objects as belonging to a

similar safety level. Therefore, for complex driving scenes

with abundant human subjects, there is a need for priority-

driven systems to segment the pedestrians on vehicular lanes

in a different category, and conversely, for the pedestrian

with huge distance or ones on side walk. A baseline research

dealing with this problem recently introduced a pedestrian

location perception network with location inference of each

semantic map corresponding to the human [56]. This work

can be advanced in terms of more objects identified in scenes

characterized by a higher complexity and diversity.

7) Adverse Weather Conditions: When operative in real-

world environments, autonomous vehicles may encounter ad-

verse weather conditions such as snow, fog, rain or dark

areas, among other phenomena [150], [151]. Existing models

are highly accurate for normal cases with sufficient illu-

mination and other favorable conditions. However, models

need to be adaptable to non-favorable weather scenarios. For

instance, a dataset for night-time segmentation is introduced by

Xin et al. in [152]. Furthermore, preprocessing techniques for

haze [153] and fog [154] removal ensure effective semantic

segmentation. But at the same time, if deep segmentation

models are designed with built-in capabilities to account for

weather-related uncertainties, or they prove to be effective in

such cases, would decrease the computation time required for

the aforementioned preprocessing steps. Some representative

results of existing models over weather uncertainties are tested

and reported in Figure 5, whereas a baseline research for

scene understanding has developed a deep model and a Foggy

Cityscapes dataset [155]. The segmentation maps generated by

these models clearly outline a long road ahead in this direction.

The current models seem to have insufficient generalization

potentials towards challenging scenarios such as rainy envi-

ronment, snow, and cloudy scenarios. Despite the presence of

some challenging datasets in adverse weather conditions such

as Fog [156], [157], night time and dark scenarios [158], [159],

wild [160], etc., the current methods still lack focusing on

end-to-end deep models to handle complex weather scenarios

effectively. There also exists some generalized datasets with

multiple challenges [161], [162], but the amount of data

labelled for semantic segmentation in most of these datasets

are very limited i.e., number of annotated instances ranging

from 40 [157] to maximum 4006 [161] samples.

Utilization of advanced driving simulators such as VituoC-

ity [163] to create photo-realistic synthetic dataset without

needing expensive and high-risk driving in real-world is also

among the current approaches to compensate experiments in

adverse weather conditions.

8) Events-based Scene Understanding: So far, scene under-

standing has been primarily approached by using segmentation

techniques. Nonetheless, the focus can be diverted towards

higher levels of vehicular cognition, such as events based

scene understanding [164]. For instance, analyzing the events

for scene parsing is a promising direction, where surrounding

events such as bicyclist on the vehicle lane, pedestrian crossing

the road, among many other common events can better support

and favor more informed decision making of autonomous

vehicles [165]. The main point here is to not rely only on

segmentation for scene understanding, but rather to explore

other metrics and to discover relationships between identified

objects over space and time [166]. It is our belief that this

augmented contextual awareness will be a major breakthrough

towards the accountability of decisions made by autonomous

vehicles.

9) Replacing CNNs with Vision Transformers: Dense pre-

diction models, such as semantic segmentation and saliency

detection, are mostly inspired by convolutional architectures.

Particularly, backbones of semantic segmentation methods

mainly rely on convolutional operations. It is true that these

networks progressively downsample input images and acquire

features at multiple scales, thus allowing for increased re-

ceptive fields. These mechanisms for feature refining, i.e.,

for transitioning from low-level to high-level descriptors, are

computationally complex and have certain limitations for

many computer vision tasks, particularly for dense predic-

tion tasks. For instance, the granularity of the features, as

well as their resolution, are lost gradually as the layers go

deeper and deeper, by producing inadequate representations

for subsequent decoder layers, and by loosing information that

cannot be recovered during the decoding procedure. Training

at higher input resolutions demands higher computational

budget, whereas the use of dilated convolutions increases

receptive fields quickly without downsampling. Other similar

techniques can be applied to mitigate the loss of feature

granularity. Unfortunately, such techniques still suffer from

bottlenecks due to the involvement of convolutional operations

over the hierarchical neural structure of the model.

In contrast, transformers (as encoders) have better im-

age representation capabilities [167], which mainly hinge

on representing images as bag-of-words, and passing them

through various transformer layers to extract features at several

resolutions. Then, they progressively integrate these multi-

resolution representations to finally attain the concerned dense

prediction task. When trained over large-scale datasets, vision

transformers [168]–[175] perform well for dense prediction

tasks. For instance, Ranftl et al. [168] establish an unprece-

dented state-of-the-art level of performance by introducing

vision transformers in a semantic segmentation domain. A

similar approach is observable for the saliency detection

domain, where the authors in [169] applied vision transformers

with multi-level tokens fusion and a new token upsampling

strategy based on transformers. Liu et al., [171] introduced

a transformer-based weakly supervised semantic segmenta-

tion method named WegFormer, which encapsulated three

different components to generate high-quality segmentation

masks. Their presented WegFormer first generates attention
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maps using deep taylor decomposition (DTD) and then used

a soft erasing mechanism to smooth computed attention

maps. Finaly, they have filtered the noisy activation maps

using their proposed efficient potential object mining strategy.

Ruiping et al., [172] presented knowledge distillation driven

transformer for efficient semantic segmentation of road scenes.

They have retrained a shallow transformer by transferring the

learned knowledge from large transformer network trained

on large volume of image data. The knowledge distillation

strategy allowed their method to achieve the same level of

segmentation performance and faster inference time due to

reduced computational complexity. Lin et al., [174] proposed

a multi-scale transformer for efficient semantic segmentation,

which extracts multi-level features from an image and then

aggregates the extracted features using a feature selection

technique. The aggregated features are then used to determine

the salient regions of the given image, resulting a fine quality

semantic segmentation. So far, these methods have achieved

unrivaled performance levels in these specific domains, un-

leashing manifold future research directions and opportunities

for semantic segmentation tasks.

10) Towards more Accurate and Efficient Semantic Segmen-

tation Methods for AD: The qualitative performance of cur-

rently employed semantic segmentation techniques is shown in

Table VI, where we notice that only a few methods are able to

balance the trade-off between accuracy and inference latency

of their model. The experimental results reported for these

methods indicate that they require further work to alleviate

their computational burden while maintaining their unpar-

alleled performance. Furthermore, we test most well-known

semantic segmentation models in a few challenging scenarios,

as reported in Figure 5. We have found that these models

should also be evaluated in terms of knowledge transferability

and generalization accross different datasets [89]. Furthermore,

the time complexity reported in Table VI suggests that some

of these methods are functional in real time when deployed on

GPU devices. In any case, the focus of semantic segmentation

methods should also be diverted towards computational com-

plexity, given the stringently limited computational resources

available in today’s AD in-vehicle telematics.

VI. CONCLUDING REMARKS AND OUTLOOK

Vision sensors’ data are a key component of autonomous

vehicles, playing a significant role in an autonomous vehicle’s

decision making. Vision sensory data are analyzed using Com-

putational Intelligence techniques for effective outputs such as

sign board detection, drivable area selection, and traffic lights

perception. In doing so, an autonomous vehicle senses the

surroundings using vision sensory data. Segmentation extracts

pixel values of various objects inside an input image and

individuates them from one another using distinct colors. The

segmentation of various objects into their respective classes

helps dramatically in parsing scene information for the vehicle.

Although complementary options can be found to derive data

from other sensors for decision making, vision sensors have

undoubtedly a major role in the current vehicular panorama.

Segmentation for scene understanding of autonomous ve-

hicles has been in play for many years, but a consolidated,

summarized analysis is absent from the existing literature. In

this survey we have discussed on the strengths of existing seg-

mentation methods in clear environments and their weaknesses

when facing challenging scenarios. Our main conclusion is that

the scene understanding literature has not achieved perfection

yet, as many limitations remain in the current methods that we

have thoroughly covered in our review, followed by relevant

suggestions and outlooks in a detailed manner. We have cov-

ered baseline works dealing with deep learning models, their

hierarchy for segmentation tasks and the challenges associated

to each model category. Furthermore, performance evaluation

strategies suited for segmentation models, special loss func-

tions, and datasets widely used in AD domain have been also

tackled in depth. We have rounded up the work by exposing

open challenges for scene understanding, together with future

research directions with stimulating baseline references from

the recent literature.

On a closing note, it is undeniable that experts from the

ITS community are continuously struggling towards better

scene understanding strategies to utilize the vision sensors’

data effectively. Mainstream research is gravitated towards

improving the model’s accuracy through the capabilities of

its neural layers. However, there exist other challenges to be

covered in order to achieve reliable, trustworthy and safe AD.

Challenges from the scene understanding perspective demand

robust models with prioritization levels for segmented ob-

jects, coarse-structure information processing capabilities, and

risk categorization. Furthermore, current deep segmentation

models are confied to handle a single information modality,

while recently point cloud data [139], [176] have been studied

extensively for complex tasks related to AD. These are open

opportunities to utilize multi-modal data such as 3D LiDAR

[177] and vision sensors, and to transcend from single deep

neural network to more elaborated fusion models, capable

of accomplishing complicated yet more informative learning

tasks for autonomous vehicles. These opportunities (if well

and timely leveraged) can advance the ITS research and bring

scene segmentation to a new level, where driver-less vehicles

can be deployed in real-world environments and support safer

and reliable travel services.
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[80] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33–55,
2016.

[81] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localiza-
tion and mapping: A survey of current trends in autonomous driving,”
IEEE Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194–220,
2017.

[82] J. Wang, J. Liu, and N. Kato, “Networking and communications in
autonomous driving: A survey,” IEEE Communications Surveys &

Tutorials, vol. 21, no. 2, pp. 1243–1274, 2018.

[83] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localization techniques
and their potentials for autonomous vehicle applications,” IEEE Inter-

net of Things Journal, vol. 5, no. 2, pp. 829–846, 2018.

[84] A. Rasouli and J. K. Tsotsos, “Autonomous vehicles that interact with
pedestrians: A survey of theory and practice,” IEEE transactions on

intelligent transportation systems, vol. 21, no. 3, pp. 900–918, 2019.

[85] M. Gerstmair, A. Melzer, A. Onic, and M. Huemer, “On the safe road
toward autonomous driving: Phase noise monitoring in radar sensors
for functional safety compliance,” IEEE Signal Processing Magazine,
vol. 36, no. 5, pp. 60–70, 2019.

[86] I. Bilik, O. Longman, S. Villeval, and J. Tabrikian, “The rise of radar for
autonomous vehicles: Signal processing solutions and future research
directions,” IEEE signal processing Magazine, vol. 36, no. 5, pp. 20–
31, 2019.

[87] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby,
and A. Mouzakitis, “A survey on 3d object detection methods for
autonomous driving applications,” IEEE Transactions on Intelligent

Transportation Systems, vol. 20, no. 10, pp. 3782–3795, 2019.

[88] J. Janai, F. Güney, A. Behl, A. Geiger et al., “Computer vision
for autonomous vehicles: Problems, datasets and state of the art,”
Foundations and Trends® in Computer Graphics and Vision, vol. 12,
no. 1–3, pp. 1–308, 2020.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.X , NO.X , 2022 19

[89] T. Hussain, S. Anwar, A. Ullah, K. Muhammad, and S. W. Baik,
“Densely deformable efficient salient object detection network,” arXiv

preprint arXiv:2102.06407, 2021.

[90] M. A. Rahman and Y. Wang, “Optimizing intersection-over-union
in deep neural networks for image segmentation,” in International

symposium on visual computing. Springer, 2016, pp. 234–244.

[91] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and
S. Savarese, “Generalized intersection over union: A metric and a
loss for bounding box regression,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp.
658–666.

[92] S. Jadon, “A survey of loss functions for semantic segmentation,” in
2020 IEEE Conference on Computational Intelligence in Bioinformat-

ics and Computational Biology (CIBCB). IEEE, 2020, pp. 1–7.

[93] Y. S. Aurelio, G. M. de Almeida, C. L. de Castro, and A. P. Braga,
“Learning from imbalanced data sets with weighted cross-entropy
function,” Neural Processing Letters, vol. 50, no. 2, pp. 1937–1949,
2019.

[94] Y. Ho and S. Wookey, “The real-world-weight cross-entropy loss
function: Modeling the costs of mislabeling,” IEEE Access, vol. 8, pp.
4806–4813, 2019.

[95] S. Pan, W. Zhang, W. Zhang, L. Xu, G. Fan, J. Gong, B. Zhang, and
H. Gu, “Diagnostic model of coronary microvascular disease combined
with full convolution deep network with balanced cross-entropy cost
function,” IEEE Access, vol. 7, pp. 177 997–178 006, 2019.

[96] K. Hu, Z. Zhang, X. Niu, Y. Zhang, C. Cao, F. Xiao, and X. Gao,
“Retinal vessel segmentation of color fundus images using multiscale
convolutional neural network with an improved cross-entropy loss
function,” Neurocomputing, vol. 309, pp. 179–191, 2018.

[97] N. Abraham and N. M. Khan, “A novel focal tversky loss function with
improved attention u-net for lesion segmentation,” in 2019 IEEE 16th

International Symposium on Biomedical Imaging (ISBI 2019). IEEE,
2019, pp. 683–687.

[98] H. Caesar, J. Uijlings, and V. Ferrari, “Region-based semantic segmen-
tation with end-to-end training,” in European Conference on Computer

Vision. Springer, 2016, pp. 381–397.

[99] M.-P. Dubuisson and A. K. Jain, “A modified hausdorff distance for
object matching,” in Proceedings of 12th international conference on

pattern recognition, vol. 1. IEEE, 1994, pp. 566–568.

[100] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh: Measuring errors
between surfaces using the hausdorff distance,” in Proceedings. IEEE

international conference on multimedia and expo, vol. 1. IEEE, 2002,
pp. 705–708.

[101] S. Wonneberger and S. Balci, “Reliable validation of highly automated
driving functions by increasing the virtualization level of high perfor-
mance computing platforms and smart sensors,” ELIV 2021, 2021.

[102] H. Li, P. Xiong, H. Fan, and J. Sun, “Dfanet: Deep feature aggregation
for real-time semantic segmentation,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp.
9522–9531.

[103] N. Khan, A. Ullah, I. U. Haq, V. G. Menon, and S. W. Baik, “SD-Net:
Understanding overcrowded scenes in real-time via an efficient dilated
convolutional neural network,” Journal of Real-Time Image Processing,
pp. 1–15, 2020.

[104] N. Dilshad, J. Hwang, J. Song, and N. Sung, “Applications and
challenges in video surveillance via drone: A brief survey,” in 2020

International Conference on Information and Communication Technol-

ogy Convergence (ICTC). IEEE, 2020, pp. 728–732.

[105] K. Muhammad, T. Hussain, J. J. Rodrigues, P. Bellavista, A. R. L.
de Macedo, and V. H. C. de Albuquerque, “Efficient and privacy
preserving video transmission in 5g-enabled iot surveillance networks:
Current challenges and future directions,” IEEE Network, 2020.

[106] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on iot security: application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82 721–82 743, 2019.

[107] R. Mohan and A. Valada, “Efficientps: Efficient panoptic segmenta-
tion,” International Journal of Computer Vision, pp. 1–29, 2021.

[108] S. A. Kamran and A. S. Sabbir, “Efficient yet deep convolutional neural
networks for semantic segmentation,” in 2018 International Symposium

on Advanced Intelligent Informatics (SAIN). IEEE, 2018, pp. 123–130.

[109] S. Choi, S. Jung, H. Yun, J. Kim, S. Kim, and J. Choo, “Robustnet:
Improving domain generalization in urban-scene segmentation via
instance selective whitening,” arXiv preprint arXiv:2103.15597, 2021.

[110] P.-R. Chen, H.-M. Hang, S.-W. Chan, and J.-J. Lin, “Dsnet: An efficient
cnn for road scene segmentation,” APSIPA Transactions on Signal and

Information Processing, vol. 9, 2020.

[111] Q. Lv, X. Sun, C. Chen, J. Dong, and H. Zhou, “Parallel complement
network for real-time semantic segmentation of road scenes,” IEEE

Transactions on Intelligent Transportation Systems, 2021.
[112] J. Fu, J. Liu, J. Jiang, Y. Li, Y. Bao, and H. Lu, “Scene segmentation

with dual relation-aware attention network,” IEEE Transactions on

Neural Networks and Learning Systems, 2020.
[113] M. Everingham, L. V. Gool, C. K.I. Williams, J. Winn, and A. Zisser-

man, “The PASCAL Visual Object Classes (VOC) Challenge,” 2010,
pp. 303–338.

[114] X. Roynard, J.-E. Deschaud, and F. Goulette, “Paris-lille-3d: A large
and high-quality ground-truth urban point cloud dataset for automatic
segmentation and classification,” The International Journal of Robotics

Research, 2018.
[115] J. Behley, V. Steinhage, and A. B. Cremers, “Performance of histogram

descriptors for the classification of 3d laser range data in urban
environments,” in IEEE International Conference on Robotics and

Automation, 2012, pp. 4391–4398.
[116] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highd dataset:

A drone dataset of naturalistic vehicle trajectories on german highways
for validation of highly automated driving systems,” in International

Conference on Intelligent Transportation, 2018, pp. 2118–2125.
[117] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-

nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2016,
pp. 3213–3223.

[118] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. Erin Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11 621–11 631.

[119] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The
mapillary vistas dataset for semantic understanding of street scenes,”
in in Proceedings of the IEEE International Conference on Computer

Vision, 2017, pp. 4990–4999.
[120] X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang, “The

apolloscape open dataset for autonomous driving and its application,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.
2702–2719, 2019.

[121] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in in Proceedings of the IEEE International Con-

ference on Computer Vision, 2020, pp. 2636–2645.
[122] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,

P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar, “Microsoft coco:
Common objects in context,” in European Conference on Computer

Vision, 2014, pp. 740–755.
[123] X. Wu, Z. Wu, H. Guo, L. Ju, and S. Wang, “DANNet: A one-

stage domain adaptation network for unsupervised nighttime semantic
segmentation,” arXiv preprint arXiv:2104.10834, 2021.

[124] M. Siam, H. Mahgoub, M. Zahran, S. Yogamani, M. Jagersand, and
A. El-Sallab, “Modnet: Motion and appearance based moving object
detection network for autonomous driving,” in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018,
pp. 2859–2864.

[125] F. Arnez, H. Espinoza, A. Radermacher, and F. Terrier, “A comparison
of uncertainty estimation approaches in deep learning components for
autonomous vehicle applications,” arXiv preprint arXiv:2006.15172,
2020.

[126] T. Cortinhal, G. Tzelepis, and E. E. Aksoy, “Salsanext: Fast,
uncertainty-aware semantic segmentation of lidar point clouds for
autonomous driving,” arXiv preprint arXiv:2003.03653, 2020.

[127] R. Michelmore, M. Kwiatkowska, and Y. Gal, “Evaluating uncer-
tainty quantification in end-to-end autonomous driving control,” arXiv

preprint arXiv:1811.06817, 2018.
[128] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning to

quantify classification uncertainty,” arXiv preprint arXiv:1806.01768,
2018.

[129] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” in Advances in Neural Information

Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

[130] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international

conference on machine learning. PMLR, 2016, pp. 1050–1059.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.X , NO.X , 2022 20

[131] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Proceed-

ings of the 31st International Conference on Neural Information

Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran
Associates Inc., 2017, p. 6405–6416.

[132] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. Fieguth, A. Khosravi, U. R. Acharya,
V. Makarenkov et al., “A review of uncertainty quantification in
deep learning: Techniques, applications and challenges,” arXiv preprint

arXiv:2011.06225, 2020.

[133] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in International Conference on Machine Learning. PMLR,
2017, pp. 3319–3328.

[134] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable artificial intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible
AI,” Information Fusion, vol. 58, pp. 82–115, 2020.

[135] K. Mangalam, E. Adeli, K.-H. Lee, A. Gaidon, and J. C. Niebles,
“Disentangling human dynamics for pedestrian locomotion forecasting
with noisy supervision,” in Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, 2020, pp. 2784–2793.

[136] O. Styles, V. Sanchez, and T. Guha, “Multiple object forecasting: Pre-
dicting future object locations in diverse environments,” in Proceedings

of the IEEE/CVF Winter Conference on Applications of Computer

Vision, 2020, pp. 690–699.

[137] S. P. Sotiroudis, P. Sarigiannidis, S. K. Goudos, and K. Siakavara,
“Fusing diverse input modalities for path loss prediction: A deep
learning approach,” IEEE Access, vol. 9, pp. 30 441–30 451, 2021.

[138] F. Zhang, C. Guan, J. Fang, S. Bai, R. Yang, P. H. Torr, and
V. Prisacariu, “Instance segmentation of lidar point clouds,” in 2020

IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 9448–9455.

[139] Y. Cui, R. Chen, W. Chu, L. Chen, D. Tian, Y. Li, and D. Cao, “Deep
learning for image and point cloud fusion in autonomous driving:
A review,” IEEE Transactions on Intelligent Transportation Systems,
2021.

[140] S. Liu, J.-L. He, and S.-H. Liao, “Automatic detection of anatomical
landmarks on geometric mesh data using deep semantic segmentation,”
in 2020 IEEE International Conference on Multimedia and Expo

(ICME). IEEE, 2020, pp. 1–6.

[141] A. Ahmed, A. Jalal, and K. Kim, “Rgb-d images for object seg-
mentation, localization and recognition in indoor scenes using feature
descriptor and hough voting,” in 2020 17th International Bhurban

Conference on Applied Sciences and Technology (IBCAST). IEEE,
2020, pp. 290–295.

[142] G. Krispel, M. Opitz, G. Waltner, H. Possegger, and H. Bischof,
“Fuseseg: Lidar point cloud segmentation fusing multi-modal data,”
in Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision, 2020, pp. 1874–1883.

[143] A. Ur-Rehman, I. Gondal, J. Kamruzzaman, and A. Jolfaei, “Vulnera-
bility modelling for hybrid industrial control system networks,” Journal

of Grid Computing, vol. 18, no. 4, pp. 863–878, 2020.

[144] A. Ur-Rehman, I. Gondal, J. Kamruzzuman, and A. Jolfaei, “Vulner-
ability modelling for hybrid it systems,” in 2019 IEEE International

Conference on Industrial Technology (ICIT). IEEE, 2019, pp. 1186–
1191.

[145] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
“A survey of deep active learning,” arXiv preprint arXiv:2009.00236,
2020.

[146] S. Budd, E. C. Robinson, and B. Kainz, “A survey on active learning
and human-in-the-loop deep learning for medical image analysis,”
Medical Image Analysis, p. 102062, 2021.

[147] A. Khan, I. U. Haq, T. Hussain, K. Muhammad, M. Hijji, M. Sajjad,
V. H. C. De Albuquerque, and S. W. Baik, “Pmal: A proxy model
active learning approach for vision based industrial applications,”
ACM Transactions on Multimidia Computing Communications and

Applications, 2022.

[148] O. Kelner, “Learning halfspaces with membership queries,” arXiv

preprint arXiv:2012.10985, 2020.

[149] M. Ahmed, S. Usman, N. A. Shah, M. U. Ashraf, A. M. Alghamdi,
A. A. Bahadded, and K. A. Almarhabi, “Aaqal: A machine learning-
based tool for performance optimization of parallel spmv computations
using block csr,” Applied Sciences, vol. 12, no. 14, 2022. [Online].
Available: https://www.mdpi.com/2076-3417/12/14/7073

[150] J. Vertens, J. Zürn, and W. Burgard, “Heatnet: Bridging the day-night
domain gap in semantic segmentation with thermal images,” arXiv

preprint arXiv:2003.04645, 2020.
[151] M. Hassaballah, M. A. Kenk, K. Muhammad, and S. Minaee, “Vehicle

detection and tracking in adverse weather using a deep learning
framework,” IEEE transactions on intelligent transportation systems,
vol. 22, no. 7, pp. 4230–4242, 2020.

[152] X. Tan, Y. Zhang, Y. Cao, L. Ma, and R. W. Lau, “Night-time
semantic segmentation with a large real dataset,” arXiv preprint

arXiv:2003.06883, 2020.
[153] H. Ullah, K. Muhammad, M. Irfan, S. Anwar, M. Sajjad, A. S. Imran,

and V. H. C. de Albuquerque, “Light-dehazenet: A novel lightweight
cnn architecture for single image dehazing,” IEEE Transactions on

Image Processing, vol. 30, pp. 8968–8982, 2021.
[154] T. Hussain, K. Muhammad, A. Ullah, J. Del Ser, A. H. Gandomi,

M. Sajjad, S. W. Baik, and V. H. C. de Albuquerque, “Multi-view
summarization and activity recognition meet edge computing in iot
environments,” IEEE Internet of Things Journal, 2020.

[155] D. Dai, C. Sakaridis, S. Hecker, and L. Van Gool, “Curriculum model
adaptation with synthetic and real data for semantic foggy scene
understanding,” International Journal of Computer Vision, vol. 128,
no. 5, pp. 1182–1204, 2020.

[156] C. Sakaridis, D. Dai, and L. Van Gool, “Semantic foggy scene
understanding with synthetic data,” International Journal of Computer

Vision, vol. 126, no. 9, pp. 973–992, 2018.
[157] C. Sakaridis, D. Dai, S. Hecker, and L. Van Gool, “Model adaptation

with synthetic and real data for semantic dense foggy scene under-
standing,” in Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 687–704.
[158] D. Dai and L. Van Gool, “Dark model adaptation: Semantic image

segmentation from daytime to nighttime,” in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018,
pp. 3819–3824.

[159] C. Sakaridis, D. Dai, and L. Van Gool, “Map-guided curriculum domain
adaptation and uncertainty-aware evaluation for semantic nighttime
image segmentation,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2020.
[160] O. Zendel, K. Honauer, M. Murschitz, D. Steininger, and G. F.

Dominguez, “Wilddash-creating hazard-aware benchmarks,” in Pro-

ceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 402–416.

[161] C. Sakaridis, D. Dai, and L. Van Gool, “Acdc: The adverse conditions
dataset with correspondences for semantic driving scene understand-
ing,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2021, pp. 10 765–10 775.
[162] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,

and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2020, pp. 2636–2645.
[163] E. Sadraei, R. Romano, N. Merat, J. G. de Pedro, Y. M. Lee, R. Madi-

gan, C. Uzondu, W. Lyu, and A. Tomlinson, “Vehicle-pedestrian
interaction: A distributed simulation study,” in Proceedings of the

driving simulation conference. Antibes, France, 2020.
[164] J. Zhang, K. Yang, and R. Stiefelhagen, “Issafe: Improving semantic

segmentation in accidents by fusing event-based data,” arXiv preprint

arXiv:2008.08974, 2020.
[165] G. Chen, H. Cao, J. Conradt, H. Tang, F. Rohrbein, and A. Knoll,

“Event-based neuromorphic vision for autonomous driving: a paradigm
shift for bio-inspired visual sensing and perception,” IEEE Signal

Processing Magazine, vol. 37, no. 4, pp. 34–49, 2020.
[166] A. Ullah, K. Muhammad, T. Hussain, M. Lee, and S. W. Baik,

“Deep lstm-based sequence learning approaches for action and activity
recognition,” in Deep Learning in Computer Vision. CRC Press, 2020,
pp. 127–150.

[167] A. Hussain, T. Hussain, W. Ullah, and S. W. Baik, “Vision transformer
and deep sequence learning for human activity recognition in surveil-
lance videos,” Computational Intelligence and Neuroscience, vol. 2022,
2022.

[168] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for
dense prediction,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2021, pp. 12 179–12 188.
[169] N. Liu, N. Zhang, K. Wan, L. Shao, and J. Han, “Visual saliency trans-

former,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2021, pp. 4722–4732.
[170] R. Chen, Y. Rong, S. Guo, J. Han, F. Sun, T. Xu, and W. Huang,

“Smoothing matters: Momentum transformer for domain adaptive
semantic segmentation,” arXiv preprint arXiv:2203.07988, 2022.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.X , NO.X , 2022 21

[171] C. Liu, E. Xie, W. Wang, W. Wang, G. Li, and P. Luo, “Wegformer:
Transformers for weakly supervised semantic segmentation,” arXiv

preprint arXiv:2203.08421, 2022.

[172] R. Liu, K. Yang, H. Liu, J. Zhang, K. Peng, and R. Stiefelhagen,
“Transformer-based knowledge distillation for efficient semantic seg-
mentation of road-driving scenes,” arXiv preprint arXiv:2202.13393,
2022.

[173] Z. Qin, J. Liu, X. Zhang, M. Tian, A. Zhou, S. Yi, and H. Li, “Pyra-
mid fusion transformer for semantic segmentation,” arXiv preprint

arXiv:2201.04019, 2022.

[174] F. Lin, T. Wu, S. Wu, S. Tian, and G. Guo, “Feature selec-
tive transformer for semantic image segmentation,” arXiv preprint

arXiv:2203.14124, 2022.

[175] T. Hussain, A. Anwar, S. Anwar, L. Petersson, and S. W. Baik,
“Pyramidal attention for saliency detection,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, June 2022, pp. 2878–2888.

[176] D. Feng, C. Haase-Schuetz, L. Rosenbaum, H. Hertlein, C. Glaeser,
F. Timm, W. Wiesbeck, and K. Dietmayer, “Deep multi-modal object
detection and semantic segmentation for autonomous driving: Datasets,
methods, and challenges,” IEEE Transactions on Intelligent Trans-

portation Systems, 2020.

[177] Y. Zhang, J. Wang, X. Wang, and J. M. Dolan, “Road-segmentation-
based curb detection method for self-driving via a 3d-lidar sensor,”
IEEE transactions on intelligent transportation systems, vol. 19, no. 12,
pp. 3981–3991, 2018.

Khan Muhammad [S’16, M’18, SM’22] received
his Ph.D. degree in Digital Contents from Sejong
University, Republic of Korea in February 2019. He
was an Assistant Professor in the Department of
Software, Sejong University from March 2019 to
February 2022. He is currently the director of Visual
Analytics for Knowledge Laboratory (VIS2KNOW
Lab) and an Assistant Professor (Tenure-Track) with
the Department of Applied AI, School of Con-
vergence, College of Computing and Informatics,
Sungkyunkwan University, Seoul, Republic of Ko-

rea. His research interests include intelligent video surveillance, medical image
analysis, information security, video summarization, multimedia data analysis,
computer vision, IoT/IoMT, and smart cities. He has registered 10 patents and
contributed 220+ papers in peer-reviewed journals and conference proceedings
in his research areas. He is an Associate Editor/Editorial Board Member for
more than 14 journals. He is among the most highly cited researchers in 2021,
according to the Web of Science.

Tanveer Hussain [S’16] acknowledged his Bache-
lor’s degree in Computer Science from the Islamia
College Peshawar, Peshawar, Pakistan in 2017, with
Gold Medal distinction and his Master leading to
PhD degree from Sejong University in Aug 2022.
Currently, he is serving as a Research Coordinator
at Intelligent Media Laboratory (IM Lab), Sejong
University, South Korea. His major research domains
are video analytics, image processing, pattern recog-
nition, saliency detection, medical image analysis,
multimedia data retrieval, deep learning for multime-

dia data understanding, single/multi-view video summarization, IoT, IIoT, and
resource-constrained programming. He has filed/published several patents and
articles in peer-reviewed journals and conferences in reputed venues including
IEEE Transactions on Industrial Informatics, Internet of Things Journal,
Network Magazine, Elsevier Pattern Recognition, Neurocomputing, Pattern
Recognition Letters, ACM Computing Surveys, Wiley International Journal
of Energy Research and International Journal of Distributed Sensors Networks,
and Springer Multimedia Tools and Applications. He is providing professional
review services in various reputed journals such as IEEE Transactions on
Cybernetics and IEEE Transactions on Industrial Informatics. He is serving as
an Associate Editor for the Journal of Biomedical and Biological Sciences, an
editorial board member for the Journal of Artificial Intelligence and Systems,
and an area editor at MDPI Electronics Journal.

Hayat Ullah (Student Member, IEEE) received
his Bachelor’s degree in Computer Science from
Islamia College Peshawar, Peshawar, Pakistan, in
2018, and his Master’s degree in Computer Science
from Sejong University, Seoul, Republic of Korea, in
2021. He is currently pursing his Ph.D. in Computer
Scicene at Kansas State University, Mahattan, KS,
USA. He is also a Research Assistant with the In-
telligent Systems, Computer Architecture, Analytics,
and Security (ISCAAS) Laboratory, Kansas State
University, exclusively working on multi-model hu-

man actions modeling and activity recognition. He has published several
articles in well-reputed journals, that include IEEE Internet of Things Journal
and IEEE Transactions on Image Processing. His research interests include
image processing, video analytics, deep learning applications in surveillance,
applied computer vision, image enhancement, deep reinforcement learning,
and image/video quality assessment.

Javier Del Ser [M’07, SM’12] received his
first PhD in Telecommunication Engineering (Cum
Laude) from the University of Navarra, Spain, in
2006, and a second PhD in Computational Intel-
ligence (Summa Cum Laude, Extraordinary Prize)
from the University of Alcala, Spain, in 2013. He
has held several positions as a Professor and a
Researcher at different institutions of the Basque
Research Network (including the University of Mon-
dragon, CEIT and Robotiker). Currently he is a
Research Professor in Data Analytics and Optimiza-

tion at TECNALIA (Spain) and an adjunct professor at the University of
the Basque Country (UPV/EHU). His research interests gravitate on the
use of descriptive, predictive and prescriptive algorithms for data mining
and optimization in a diverse range of application fields such as Energy,
Transport, Telecommunications, Health and Industry, among others. In these
fields he has published more than 360 scientific articles, co-supervised 14
Ph.D. thesis, edited 6 books, co-authored 9 patents and participated/led more
than 50 research projects. He has also been involved in the organization of
various national and international conferences, has chaired three international
workshops, and serves as an associate editor in a number of indexed journals,
including Information Fusion, Swarm and Evolutionary Computation and
IEEE Transactions on Intelligent Transportation Systems.

Mahdi Rezaei (Member, IEEE) received his PhD
degree in Computer Science with the Best Thesis
Award 2014, from the University of Auckland, New
Zealand. Currently, he is an Assistant Professor and
University Academic Fellow (UAF) at the Institute
for Transport Studies, University of Leeds. He has
15 years of experience in academia and industry
and his primary area of expertise and research in-
terests are in Computer Vision, Machine Learning,
and Deep Learning. His research mainly focuses
on real-world applications in Autonomous Driving

and smart cars, driver behaviour monitoring, road/traffic perception, object
detection and tracking, human factors, and safety. He has published more than
50 journal articles and conference papers, a monograph book with Springer,
and 3 Best Paper Awards.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL.X , NO.X , 2022 22

Neeraj Kumar [M’16, SM’17] is working as a Full
Professor in the Department of Computer Science
and Engineering, Thapar Institute of Engineering
and Technology (Deemed to be University), Patiala
(Pb.), India. He is also an adjunct professor at Asia
University, Taiwan, King Abdul Aziz University,
Jeddah, Saudi Arabia, and Newcastle University,
UK. He has published more than 500 technical
research papers in top-cited journals and conferences
which are cited more than 31512 times with cur-
rent h-index of 98. His broad research areas are

Green computing and Network management, IoT, Big Data Analytics, Deep
learning, and cyber-security. He has also edited/authored 10 books with
International/National Publishers like IET, Springer, Elsevier, CRC etc. He
is serving as editor of ACM Computing Survey, IEEE Transactions on
Sustainable Computing, IEEE TNSM, Elsevier Computer Communication,
and Wiley International Journal of Communication Systems. Also, he has
organized various special issues of journals of repute from IEEE, Elsevier,
and Springer. Moreover, He won the best researcher award from parent
organization every year from last eight consecutive years.

Mohammad Hijji [M’21] received his PhD degree
in Computing from Coventry University, UK, in July
2017. He was the Chairman of Computer Science
Department, Faculty of Computers, and Information
Technology (FCIT), University of Tabuk, Saudi Ara-
bia, from 2020 to 2022. He is currently the Vice
Dean for Development and Quality, FCIT, University
of Tabuk, Saudi Arabia. His research interests in-
clude Artificial Intelligence, Cyber Security, Internet
of Things (IoT), Smart City, Energy Optimization,
Disaster, and Emergency Management.

Paolo Bellavista [SM’06] received his M.Sc. and
Ph.D. degrees in computer science engineering from
the University of Bologna, Italy. He is currently a
Full Professor of distributed and mobile systems
with the University of Bologna. His research in-
terests span from pervasive wireless computing to
online big data processing under quality constraints
and from edge cloud computing to middleware for
industry 4.0 applications. He serves on several edi-
torial boards, including IEEE COMMUNICATIONS
SURVEYS AND TUTORIALS (Associate EiC),

ACM CSUR, JNCA (Elsevier), and PMC (Elsevier). He is the Scientific
Coordinator of the H2020 BigData Project IoTwins.

Victor Hugo C. de Albuquerque [M’17, SM’19]

is a full professor and senior researcher at the
University of Fortaleza, UNIFOR. He has a Ph.D in
Mechanical Engineering from the Federal University
of Paraíba, an MSc in Teleinformatics Engineering
from the Federal University of Ceará and Bache-
lor in Mechatronics Engineering from the Federal
Center of Technological Education of Ceará. He
leads the Graduate Program in Applied Informatics
and Electronics and Health Research Group (CNPq).
He mainly researches IoT, Machine/Deep Learning,

Pattern Recognition, and Robotics


	Introduction
	Background and Related Works
	Challenges and Motivation
	Contributions
	Review Methodology

	Semantic Segmentation for Scene Understanding in AD
	Performance Evaluation of Semantic Segmentation
	Evaluation Metrics
	Intersection over Union (IoU)
	Pixel Accuracy for Semantic Segmentation

	Special Loss Functions for Semantic Segmentation
	Weighted binary cross entropy
	Balanced cross entropy
	Focal loss
	Others

	Time Complexity Analysis
	Quantitative Analysis of Scene Segmentation Methods for AD

	Datasets
	KITTI
	SemanticKITTI
	HighD
	CityScapes
	Nuscenes
	Mapillary Vistas
	ApolloScape
	Berkely Deep Drive
	COCO
	VOC (2007 and 2012)

	Scene Understanding in AD: Challenges and Directions
	Open Challenges
	Salient Objects Consideration
	Coarse-Structured Information
	Uncertainty-aware Decisions

	Future Directions
	Explainable AD
	Towards Video Segmentation for AD
	Object's Predicted Locations Segmentation
	Hybrid Methods and Multi-Modalities
	Active and Incremental Learning
	Complex Driving Scenes Understanding
	Adverse Weather Conditions
	Events-based Scene Understanding
	Replacing CNNs with Vision Transformers
	Towards more Accurate and Efficient Semantic Segmentation Methods for AD


	Concluding Remarks and Outlook
	References
	Biographies
	Khan Muhammad [S’16, M’18, SM'22]
	Tanveer Hussain [S'16]
	Hayat Ullah
	Javier Del Ser [M’07, SM’12]
	Mahdi Rezaei
	Neeraj Kumar [M’16, SM’17]
	Mohammad Hijji [M’21]
	Paolo Bellavista [SM’06]
	Victor Hugo C. de Albuquerque [M’17, SM’19]


