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Abstract

The ability to accurately predict the time evolution of precipitate size distribu-

tions is fundamental to optimising heat treatments and mechanical properties

of engineering alloys. Mean-field models of the particle growth rates assume

that diffusion fields between neighbouring particles are weakly coupled reduc-

ing the problem to a single particle embedded in an effective medium. This

regime of behaviour is expected to be satisfied for low volume fraction alloys.

However, these assumptions are not fulfilled in many applications of inter-

est where strong interactions between precipitates holds. Correction factors

are often introduced to account for the accelerated rate of diffusion caused

by the overlapping of diffusion fields between neighbouring precipitates. This

paper applies the Wang–Glicksman–Rajan–Voorhees (WGRV) discrete point-

source/sinkmodel to compare descriptions of competitive growth. This includes

assessing correction factors to the mean-field particle growth rate derived by

Ardell,Marqusee and Ross, and Svoboda and Fischer in addition to Di Nunzio’s

pairwise interaction model. The WGRV model is used as a benchmark to

compare different approximations of competitive growth that apply similar

assumptions. This is followed by the application of the models to simulate pre-

cipitation kinetics during long term aging kinetics observed in the nickel-based
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superalloys IN738LC and RR1000. It is shown that the competitive growth cor-

rection factors are accurate for volume fractions of 20% and under-predict the

acceleration of precipitate kinetics predicted at 40%. The WGRV model is able

to capture the coarsening kinetics observed in both IN738LC and RR1000 with

reasonable accuracy. The WGRV model determines particle growth rates as a

function of the immediate neighbourhood and provides an improved prediction

of the coarsening behaviour of tertiary particles in RR1000 in comparison to

the mean-field approximation, however over-estimates the growth rate of the

tertiary particles compared to experimental data.

Keywords: mean-field modelling, precipitation, nickel superalloys, competitive

growth, particle coarsening, transient Ostwald ripening

(Some figures may appear in colour only in the online journal)

1. Introduction

Plastic deformation of nickel-based superalloys is sensitive to the size, volume fraction,

and spatial arrangement of strengthening precipitates. In the turbine-disc nickel-superalloys

RR1000 and IN738LC, the intermetallic γ′ phase is the strengthening precipitate with an

equilibriumvolume fractions of approximately 45% in the as-heat treated condition.Heat treat-

ments in these alloys are carefully designed to generate multi-modal γ ′ dispersions to optimise

in-service creep and fatigue performance. However, under in-service conditions these alloys

are exposed to temperatures sufficient to continue the coarsening of the precipitate dispersion,

impacting properties and component performance. It is often possible to predict qualitative

mechanical behaviour utilising statistical models of precipitation assuming that kinetics are

driven solely by Ostwald ripening, where precipitates grow to minimise the Gibbs free energy

of the system by reducing the total surface area of the dispersion [1, 2]. These approaches use

mean-field descriptions of the precipitate growth rate for predicting the evolution of the par-

ticle size distribution, where the many-particle problem is reduced to a one-particle problem

embedded in an effective medium. These methods are attractive in that they reduce the com-

plexities of solving mass transport and mechanical filed equations governing interactions

between multi-component diffusion and mechanical fields. They simulate the evolution of the

size distribution of precipitates, providing information regarding the volume fraction and mean

radius which may be used to approximate inter-particle spacing and mechanical properties

[3, 4]. However, limitations arising from the simplifying assumptions made in the derivation

of these models impacts the ability to make quantitatively accurate predictions. To over-

come these limitations, mean-field descriptions need to be extended with additional physics

that justifies their application to regimes were weak coupling of diffusion fields is no longer

applicable.

The nucleation, growth, coarsening, and dissolution of precipitates in nickel superalloys

can be rationalised through energy minimisation and the kinetics of diffusion of the pre-

cipitate forming species. Ostwald ripening refers to coarsening behaviour driven by inter-

facial energy minimisation of the precipitates. Greenwood [5], Lifshitz and Slyozov [6],

and Wagner [7] developed the first descriptions of mean-field particle coarsening for dilute

concentration binary alloys. In their treatment, a number of simplifying assumptions are

made and include: spherical particles, no interactions between the diffusion and elastic fields

between precipitates, no coalescence and negligible spatial variation of composition within

2
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the alloy. In non-dilute alloys, the diffusion fields surrounding precipitates overlap, increas-

ing the spatial concentration gradient of the solute, and thus accelerates diffusion and par-

ticle growth kinetics. Correction factors have been introduced to the particle growth rate to

better account for finite size particles and interactions though their diffusion fields. This is

referred to as competitive growth and is the focus of this paper which verifies the self-validity

of several correction factors and then assesses to what extent capturing competitive growth

improves accuracy when modelling isothermal aging in multi-modal engineering Ni-based

superalloys.

Ardell [8] proposed a correction factor to the Lifshitz–Slyozov–Wagner (LSW) particle

growth rate by considering a diffusion screening length that was approximated by half of

the mean particle spacing. Tsumuraya and Miyata [9] and Wang et al [10] explored different

approximations of the diffusion screening length with recent contributions from Glicksman

et al [11] and Svoboda and Fischer [12]. Di Nunzio [13] has derived a statistical parti-

cle growth model to capture competitive growth more accurately by considering pairwise

interactions between particles of different size classes. The formofDi Nunzio’s particle growth

rate differs from the conventional LSW particle growth rate, deriving an integro-differential

equation for the particle growth rate.

Marqusee and Ross (MR) [14], Voorhees and Glicksman [15], and Hayakawa and Family

[16] approached the multiple-particle diffusion problem by treating a discrete set of par-

ticles as point sources or sinks of solute within a quasi-static diffusion field, and derived

correction factors for the LSW particle growth rate. These discrete particle descriptions

capture the impact of the overlap in diffusion fields as a function of the size and spatial

arrangement of the particles. Wang et al [17] have developed a discrete particle coarsening

model which builds upon the work of Voorhees and Glicksman [15]. This model is referred

to as the Wang–Glicksman–Rajan–Voorhees (WGRV) model. The WGRV model has been

applied to test different statistical approximations of competitive growth and predict particle

coarsening in amulti-modal particle system. The comparison verifies the suitability of the com-

petitive growth correction factors to models derived using the same assumptions regarding the

diffusion fields and particle morphology.

Mean-field models of precipitation predict that any starting dispersion will evolve towards

an attractor state, where the shape of the particle size distribution remains invariant with time.

Upon reaching the attractor state, scaling laws emerge that describe the continued coars-

ening of the dispersion. Chen and Voorhees [18] describe these regimes as the transient

and steady-state regimes of Ostwald ripening. Previous studies have focused on developing

improved descriptions of competitive growth during the steady-state coarsening regime of sys-

tem with finite volume fractions of precipitates [12, 13, 17]. These studies provide valuable

insights into coarsening behaviour at long time scales, however, in the nickel-based superal-

loys of interest the dispersions would be over-aged once they reach the steady-state regime.

This work focuses on studying competitive growth behaviour during the transient coarsen-

ing regime where the dispersions provide optimum mechanical properties and kinetics are of

most importance considering component performance. The mean-field and WGRV models

have been applied to study their ability to predict coarsening kinetics in the multi-component

nickel-based superalloys IN738LC [19] and RR1000 [20]. The paper provides the following

contributions;

• An assessment of statistical approximations of competitive growth.

• An evaluation of the WGRV model to predict coarsening kinetics of multi-modal precip-

itate dispersions in nickel-based superalloys.
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• An algorithm for quickly generating high volume fraction polydisperse non-penetrating

systems of spherical particles.

The paper is structured so that the next section introduces the models evaluated in the

paper. The following section describes how they have been implemented. The model results

are presented in section 4, evaluating descriptions of competitive growth, and then applying the

models to predict kinetics in two nickel-based superalloys. The paper ends with discussion and

conclusions, showing that the correction factors can predict similar behaviourwhen the volume

fraction of the particle dispersion is less than 20%, and that the multi-particle WGRV model

does improve the ability to accurately capture the evolution of multi-modal size distributions

observed in aged IN738LC and RR1000.

2. Model formulation

Particles are treated as spherical with their growth rate a function of the particle size and com-

position. The particle dispersion is described by the particle radius distribution (PRD) function

F (R, t)dR, which describes the number of particles of size R in the interval R+ dR per volume

at a given time, t. The dispersion parameters of interest are calculated frommoments of F(R, t).

By definition, the Dth moment of F (R, t)dR is given by

M(D) =

∫ ∞

0

F (R, t)R(D) dR. (1)

The particle concentration Nv(t), mean radius 〈R(t)〉 and volume fraction φ(t) are related to

these moments as follows

Nv(t) = M(0)

〈R(t)〉 = M(1)/M(0)

φ(t) =
4π

3
M(3)

(2)

The evolution of the particle distribution is determined by the continuity equation

∂F (R, t)

∂t
+

∂F (R, t)V(R, t)

∂R
= F+(R, t)−F−(R, t), (3)

where the terms F+(R, t) and F−(R, t) refer to source and sink rate terms. F+(R, t) includes

particle nucleation, andF−(R, t) describes the removal of particles through dissolution. During

coarsening it is assumed that F+(R, t) = 0. The particle growth rate is given by V(R, t), where

LSW style growth rates have the following general form [21]

V(R, t) =
A(t)

R

(

1

Rc(t)
− 1

R

)

z(R, t), (4)

where A(t) includes information on diffusion mobilities of alloying elements at the particle-

matrix interface. The approximation for A(t) in binary alloys is given by

A(t) =
DγVmc0

RgT
, (5)

where D is the diffusivity of the precipitate forming solute, Vm is the molar volume, c0 is

the equilibrium molar concentration of solute in the matrix, Rt is the gas constant, and T is

4
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the absolute temperature. The term Rc(t) is a critical particle radius, such that particles with a

smaller radius than this value will dissolve and larger ones will grow. During coarsening, Rc(t)

is given by [20]

Rc =

∫∞
0
F R z dR

∫∞
0
F z dR

(6)

The z(R, t) term in equation (4), is a correction factor accounting for the impact of the

overlap of diffusion fields between neighbouring particles which accelerate particle growth

kinetics. Many authors have developed approximations for the z(R, t) factor [8, 9, 11, 12,

14–16, 22]. Ardell [8] approached the problem by considering a diffusion screening dis-

tance R0(t) based upon the Dirichlet region surrounding a particle and arrived at the following

approximation

z(R, t) = 1+
R

R0(t)
(7)

Ardell [8] approximated this distance by half of the mean particle spacing. The mean centre to

centre distance between particles can be approximated by 1/N
1/3
v . The problem can be simpli-

fied to a monodisperse system with the particle radius approximated by 〈R〉. The mean particle

spacing 〈λ〉 within the matrix is thus

〈λ〉 = 1/N1/3
v − 2〈R〉 (8)

Continuing with the monodisperse approximation, the particle number concentration can be

approximated by (3φ)/(4π〈R〉3), allowing for the mean matrix spacing to be given by

〈λ〉 = 〈R〉
(

(

4π

3φ

)1/3

− 2

)

(9)

Wang et al [10] tested several approximations of the particle spacing to spacings calculated

fromnumerically generated dispersions and found that Bansal andArdell’s [23] approximation

was most accurate. This work finds Lu and Torquato’s [24] nearest neighbour distribution

function a better description of the nearest particle spacing. Bansal and Ardell’s [23] particle

spacing calculation is

〈λ〉 = 〈R〉
(

2+
exp(8φ)

3φ1/3
Γ

(

1

3
, 8φ

))

, (10)

where Γ is the incomplete gamma function. Several particle spacing descriptions have been

evaluated, finding that Lu and Torquato’s [24] nearest neighbour distribution functions best

reproduces particle spacings and the kinetics predicted by theWGRVmodel.More information

regarding Lu and Torquato’s spacing calculation is given in section 6 of the appendix.

Glicksman et al [11] offer the following description for R0(t)

R0(t) =
1√
3

(

M3(t)

M1(t)
,

)1/2

φ−1/2(t), (11)

5
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where Mn is the nth moment of the PRD function. When equation (11) is used within

equation (7), the result is mathematically equivalent to that of MR [14], who derived the

following z factor expression after treating the particles as point sources and sinks with a

quasi-static diffusion field,

z(R, t) = 1+ R
√
4πM1 (12)

Svoboda and Fischer [12] and Wang and Glicksman [25] propose the following form for the

z(R, t) factor:

z(R, t) =

(

1− R

R0(t)

)−1

(13)

with the following approximation for R0(t) [12]:

R0(t) =
kRc(t)

φ1/3(t)
, (14)

where the physical origin of k is the ratio of the lattice parameter and the Madelung constant.

The z(R, t) factors which share the form shown in equation (13) are suitable for describ-

ing coarsening kinetics during steady state coarsening regimes. These approximations suffer

from numerical instability when applied to certain particle size distributions observed dur-

ing transient coarsening kinetics as they cannot be applied to a particle of radius greater

than R0. This prohibits the use of Wang and Glicksman’s z factor [25] to the multi-modal

particle dispersions of interest in this work. Svoboda and Fischer’s approximation may be

used if the k term is chosen to ensure R0 is greater than the largest particle present in the

dispersion.

Di Nunzio [13] derived a model of competitive growth considering pair-wise interactions

between the precipitate size classes presentwithin the dispersion that has a different form to that

shown in equation (4). Di Nunzio’s particle growth rate may be reformulated to be expressed in

terms of the PRD functionF (R, t) following the steps outlined in the appendix A. This results

in the following integro-differential equation

V(Ri, t) =
A∗(t,Ri)

R2
i

∫ ∞

0

b̃(R j)F (R j, t)

(

1

R j

− 1

Ri

)

dR j

b̃(Ri) =
ṽ(Ri)

∫∞
0
F(R)ṽ(R)dR

ṽ(Ri) = 1+ α2M0 R
2
i

M2

1

φ2/3

A∗(t,Ri) = A(t)b̃(Ri)
φ1/3

1− φ1/3

M2

M1
M0

(15)

The termα is a characteristic parameter that defines the average effective inter-particle distance

and has a value of 2.56828.Note that the particle growth rate is proportionate to 1/R3 compared

to the 1/R2 behaviour LSW style growth rates that share the form of equation (4).

2.1. The WGRV multi-particle model

The discrete particle WGRV model [17] calculates the concentration gradients explicitly and

offers a more accurate description of competitive growth. It assumes a periodic ensemble of n

6
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spherical particles, with centres located at ri for i = 1, 2, . . . , n. The model considers a binary

alloy where c(r) is the concentration of particle forming atoms at location r. The equilibrium

molar solute concentration of precipitate forming species in the matrix of the binary alloy is

given by c0. The local solute concentration is described using the following dimensionless

diffusion potential

ϕ(r) =
c(r) − c0

c0
(16)

The spatial and temporal dimensions are normalised by the capillary length lc and τ respec-

tively, which are given by lc = (2γVm)/(RgT) and τ = l2c/(Dc0Vm). By treating the particles as

fixed-point sources or sinks, a form of Poisson’s equationmay be used to describe the evolution

of a quasi-static approximation of the diffusion field

∇2ϕ(r) =

m
∑

i=1

− 4πBiδ(r− ri), (17)

where 4πBi is the total volume flux of the ith particle. Voorhees and Glicksman [15] explored

the following solution to equation (17) representing a distribution of point sources and sinks:

ϕ(−→r ) =
n

∑

i=1

Bi

|−→r − ri|
+ ϕ∞, (18)

where ϕ∞ is the far-field diffusion potential. It is assumed that during particle coarsening the

volume fraction of particles is conserved such that
∑

Bi = 0. The boundary conditionϕ(Ri) =
1/Ri may be applied to equation (18), and Bi may be separated from the summation to obtain

the following,

1

Ri
=
Bi

Ri
+

n
∑

k 
=i

Bk

|ri − rk|
+ ϕ∞ (19)

Through some algebra, it is possible to arrive at the following linear system of equations [22],

n
∑

k=1

Bk

⎡

⎣

1

|ri − rk|
− 1

n〈R〉

n
∑

i 
=k

Ri

|ri − rk|

⎤

⎦ =
1

Ri
− 1

〈R〉 (20)

The evolution of a particle dispersion may be calculated by solving equation (20) for B and

then evolving the particle radius through the system of ordinary differential equations given

by Ṙi = −Bi/R2
i .

3. Numerical implementation

The statistical precipitation models that solve kinetics through evolving the PRD function have

been implemented by following the procedure described by Anderson et al [26], normalising

both spatial and temporal dimensions, and then applying a volume fraction reformulation.

The continuity equation shown in equation (3) is solved using a Hamilton–Jacobi ENO3

scheme [27].

The method described by Wang et al [17] has been followed to solve the discrete particle

WGRV model. This involves solving the linear set of equations given in equation (20) using

the Gauss–Seidel method and using Runge–Kutta to approximate the particle growth rate.

7
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Figure 1. A flowchart describing the method used to generate random 3D polydisperse
non-penetrating particle ensembles

Anovelmethod has been developed for generating non-dilute random3D polydisperse non-

penetrating particle ensembles, utilising nearest neighbour distribution functions to inform

guesses for the placement of particles. Lu and Torquato [24] generated random dispersions

of spherical particles by first placing the particles on a regular lattice and then repeatedly

moving particles a small distance in a random direction until the dispersion was sufficiently

randomised.An alternative method has been developed that creates randomised non-dilute dis-

persions with less computation time. It involvesmultiple attempts at placing the particle within

the ensemble and is described in figure 1. The particles to be positioned within the domain are

placed into the volume in descending order of size. The workflow is described in figure 1 and

the steps used are listed below:

• Step 1: a pseudo-random number generator is used to determine coordinates within the

domain for an attempt to place the particle.

• Step 2: the previous method failed and the attempted location to position the next par-

ticle penetrated an existing particle within the ensemble. A vector is created between

the attempted location and the penetrating particle’s centre coordinates. The Ep function

described in the appendix is used to determine a random matrix distance separating the

next particle from the penetrating particle using the penetrating particle as the reference

particle. This location is then used to attempt to place the particle.

• Step 3: the attempt to place the particle a distance away from the penetrating particle failed,

encountering another particle. The two penetrating particles identified frommethods 1 and

2 are noted, and the next closest particle to the attempted location to position the particles

is identified. The centre point between these three particles is then computed, and the

8
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Table 1. Model parameters for the WGRV and MR models.

Alloy γ (J m−2) Vm (m3 mol−1) Q (kJ mol−1) D0 (m
2 s−1) C0 (mol m−3)

IN738LC 0.03 7.44 × 10−6 280 4 × 10−6 4.032 × 103

RR1000 0.03 7.44 × 10−6 290 2 × 10−5 4.059 × 103

Table 2. Model parameters for the Di Nunzio model.

Alloy γ (J m−2) Vm (m3 mol−1) Q (kJ mol−1) D0 (m
2 s−1) C0 (mol m−3)

IN738LC 0.03 7.44 × 10−6 270 2 × 10−4 4.032 × 103

RR1000 0.03 7.44 × 10−6 310 2 × 10−5 4.059 × 103

distance to the closest particle at this location can then be calculated. If this distance is

larger than the radius of the particle that is to be positioned, a random location within this

region is chosen to place the particle.

The first particle is positioned randomly within the domain using step 1. The next par-

ticle is positioned using steps 1 and 2 iteratively until successful positioning of the par-

ticle. The algorithm shown in figure 1 is then applied to position the following particles

to create the polydisperse ensemble. The procedure offers some simplifications to Lu and

Torquato’s [24] approach when creating randomly dispersed multi-modal populations of par-

ticles by avoiding the need to identify a suitable density of sub-lattices to position the smaller

particles.

The calculations have been performed in normalised space for the isothermal heat treat-

ments. The model parameters have been calibrated to the experimental data reported in

[20, 27] when converting back to real space. The calibrated parameter-sets are presented in

table 1 for the WGRV, MR, SF, and Ardell models, and table 2 Di Nunzio’s model.

4. Results

4.1. Competitive growth

The WGRV model has been used to test different approximations of competitive growth. The

particle ensembles needed for this model have been generated numerically, ensuring a ran-

dom periodic dispersion of non-penetrating particles. The particle growth rates assessed are

summarised below:

Marqusee andRoss (MR) [14] V(R) =
A

R

(

1

Rc
− 1

R

)

(

1+ R
√

4πM1

)

(21)

Svoboda and Fischer (SF) [12] V(R) =
A

R

(

1

Rc
− 1

R

)(

1+
R φ1/3

k Rc

)−1

(22)

Ardell [8] V(R) =
A

R

(

1

Rc
− 1

R

)(

1+
R

R0

)

(23)

9
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Figure 2. (a) The unimodal and bimodal particle radius probability distribution func-
tions used to assess descriptions of competitive growth against the WGRV model.
Figures (b)–(g) present examples of the 3D precipitate ensembles generated for use in
the WGRV model. Figures (b)–(d) refer to the bimodal distribution, and figures (e)–(g)
refer to the unimodal distribution as described in figure (a). Figures (b) and (e) have a
volume fraction of 40%, figures (c) and (f) have 20%, and figures (d) and (g) have 0.1%.

DiNunzio [13] V(Ri) =
A∗(Ri)

R2
i

∫ ∞

0

b̃(R j)F (R j)

(

1

R j

− 1

Ri

)

dR j (24)

The coarsening kinetics of a bimodal and unimodal particle dispersion with varying volume

fractions have been calculated to test different approximations of the z factor to those obtained

from the WGRV model. The particle size probabilities are calculated from the following

normalised Gaussian PRD [18]

χ(ρ, t = 0) =
A

σ
√
2π

exp

[−(ρ− µ)2

2σ2

]

ρ = R/〈R〉

χdρ =
4π

φ∞
FR3

cdr

(25)

where µ and σ affect the shape of the size distribution and the normalisation constant A is

determined from mass balance. The unimodal particle size distribution is generated using a

µ parameter value of 1.0 and a σ value of 0.1. The bimodal distribution is generated using µ
values of 0.75 and 1.25, and σ values of 0.07 and 0.25. Both particle size distributions had a

mean particle size of 1 µm with volume fractions of either 40%, 20% or 0.1%.

Figure 2 presents the particle size probabilities and an illustration of the particle ensembles

generated for the calculation. A typical simulation of the concentration fields predicted by the

WGRV model is shown in figure 3, which compares the dimensionless diffusion potential, ϕ
for a cross section of a system of particles.

Figures 3(a), (c) and (e) are obtained from a unimodal dispersion whilst (b), (d) and (f) are

from the bimodal dispersion. Values of ϕ greater than unity refer to a source of solutes whilst

a value lower is a sink. Particles which are solute sources are shrinking whilst particles that are

solute sinks are growing. For the dilute particle dispersions (φ = 0.1%), the diffusion fields

rarely overlap. The range in ϕ is larger in the bimodal particle dispersion than the unimodal

dispersion for each volume fraction considered. The amount of overlap in ϕ increases with
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Figure 3. The dimensionless diffusion potential for a unimodal and bimodal dispersions
with volume fractions of 0.1%, 20% and 40%.

volume fraction, and is a function of the spatial arrangement and polydispersity of the particle

phase. This behaviour is what the z(r, t) factor in the particle growth rate (see equation (4))

aims to capture.

Figure 4 compares the particle growth rates calculated using the WGRV discrete particle

model to the MR, SF, Ardell, and Di Nunzio models. As expected, the WGRV model predicts

particle growth rates dependent on the local environmentof the precipitate,which is determined

by the spatial distribution of neighbouring precipitates. The contour plot in figure 4 describes

the variation in particle growth rates for a particle of a given size. It can be seen that all models
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Figure 4. A comparison of the predicted particle growth rates for bimodal and uni-
modal dispersions with different volume fractions. TheWGRVmodel predicts a range of
growth rates for a given particle size. This range is presented with a normalised continu-
ous bivariate distribution function with the magnitude of the density given in the colour
bar. The WGRV particle growth rates are compared against those calculated using the
MR, SF,Ardell, and Di Nunzio particle growth rates summarised in equations (21)–(24),
respectively.

except for Di Nunzio’s model capture correct dilute particle behaviour (volume fraction 0.1%),

where z ≈ 1. The MR and Ardell models are within the range of growth rates predicted by the

WGRV model and offer a good description of the mean particle growth rate when compared to

theWGRVmodel, demonstrating that assumptions used in thesemodels are reasonable. The SF

z factor does not capture the accelerated kinetics for non-dilute volume fractions of particles.

The results have used a value of 2.0 for the parameter k in equation (22), which was found to

be the limit for the PRDs of interest before the onset of numerical instability considering the

kinetics of the bimodal dispersion.

Although the Ardell and MR descriptions of z follow the correct behaviour, they underes-

timate the rate of particle coarsening predicted by the WGRV model for particle dispersions

with a volume fractions of 40%, as shown in figure 5. Marqusee and Ross [14] developed their

description considering particle volume fractions as high as 10%. Figures 4 and 5 show it is

suitable for 20% volume fractions; however, both the MR and Ardell’s z factors fail to capture

the accelerated rate of particle coarsening predicted by the WGRV model for the dispersions
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Figure 5. A comparison of the predicted mean particle radius during particle coarsen-
ing considering a bimodal and unimodal dispersion with varying volume fractions. The
crosses refer to the behaviour predicted by the WGRV model, with the continuous lines
describing the statistical calculations. The behaviour is presented in normalised time
scaled to the power of a third.

containing a volume fraction of 40%. The z factor approximation following Ardell’s approach

does not currently offer a substantial benefit compared to the MR z factor and requires greater

computation time. As a result, the Marqusee and Ross [14] z factor is the most suitable out of

the descriptions examined in this work. Di Nunzio’s pairwise interaction model [13] predicts

too slow kinetics of the dispersions with 0.1% and 20% volume fraction, however captures the

kinetics of the 40% dispersion accurately.

4.2. Isothermal aging of IN738LC

The discrete particle WGRV model and mean-field models with the MR z factor and Di

Nunzio’s particle growth rate have been applied to predict the coarsening kinetics of γ ′ pre-
cipitates in the nickel-based superalloy Inconel 738LC. Validation of model predictions will

be made against experimental data presented by Anderson et al [19] on the isothermal aging
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Figure 6. The as-heat treated γ ′ precipitate distribution in Inconel 738LC.

Figure 7. The evolution of the mean particle radius during isothermal aging of IN738LC
comparing experimental data with the WGRV discrete particle model and mean-field
models using the MR z correction factor and Di Nunzio’s particle growth rate.

of IN738LC at 850 ◦C and 900 ◦C. The initial bimodal particle size distribution is shown in

figure 6. The parameters used in the calculation are given in table 1 for the WGRV and MR

models, and table 2 for the Di Nunzio model.

A comparison of the measured and predicted evolution of the mean particle radius is given

in figure 7. The two particle populations shown in figure 6 will be referred to as secondary

and tertiary particles, respectively. The MR and Di Nunzio models predict a more pronounced

slowing of the growth of the mean particle radius upon dissolution of the tertiary particle popu-

lation. Once the tertiary particles are predicted to be fully dissolved, the secondary particle size

distribution changes shape so that there is a larger left-hand tail to the dispersion due to dis-

solving secondary particles. Whilst the secondary dispersion changes shape, there is a slowing

in the growth of the mean particle radius. The WGRV model predicts a much less pronounced

reduction in the growth of the mean particle radius. This is due to the location specific kinet-

ics resulting in the dissolution of secondary particles and the growth of some tertiary particles

based upon the relative sizes of neighbouring particles.
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Figure 8. A comparison of the measured and predicted particle size distributions during
isothermal aging at 850 ◦C and 900 ◦C of IN738LC. The experimental data is presented
with crosses. A histogram is used to present the results from the discrete WGRVmodel.
Blue and green continuous distributions describe the results from the MR z factor model
and Di Nunzio’s particle growth rate, respectively.

The transition from a bimodal to unimodal distribution obtained from the WGRV model is

closer to the experimental data compared to theMR and Di Nunzio calculations, which is more

clearly observed when examining the distributions shown in figure 8. The MR z factor appears

to better capture the transition from bimodal to unimodal in comparison to Di Nunzio’s model

in this case.

4.3. Isothermal aging of coarse grain RR1000

The precipitation models have also been applied to simulate the isothermal aging kinetics in

the coarse grain nickel superalloy RR1000. The initial bi-modal PRD including secondary and

tertiary precipitates is presented in figure 9. The parameters used in the calculation are given

in table 1 for the WGRV and MR models, and table 2 for the Di Nunzio model.

Figure 10 compares the predicted volume fraction of tertiary and secondary γ ′ precipitates
during isothermal aging at 700 ◦C, 750 ◦C, and 800 ◦C. At 700 ◦C, the data suggests a slight
increase in volume fraction of tertiary γ′ at the expense of secondary particles, which is not

captured by none of the models investigated in this study. All models predict the reduction in

volume fraction of tertiary particles for the three temperatures under consideration. At 750 ◦C,
experimental measurements indicate a reduction in the tertiary γ ′ volume fraction; however

tertiary particles remain in the dispersion after 500 h. The WGRV model captures the tertiary

behaviour after 100 h reasonably well, although for times less that 100 h it predicts a much

faster dissolution rate than suggested by the data. The mean-field models predict rapid disso-

lution of the tertiary at this temperature, dissolving completely within 200 h. At 800 ◦C, the
data indicates the rapid dissolution of tertiary γ ′; however, the mean-field models over-predict

the dissolution kinetics whilst the direct numerical simulation of the growth rates captures the
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Figure 9. The as-heat treated γ ′ precipitate distribution in RR1000.

Figure 10. A comparison of the measured and predicted evolution the volume frac-
tion of secondary and tertiary particles at temperatures of 700 ◦C, 750 ◦C, and 800 ◦C
within coarse grain RR1000. The data is compared against model predictions from the
mean-field and discreteWGRVmodels. Figures (a)–(c) present results for the secondary
precipitates, and figures (d)–(f) present results for tertiary particles.

dissolution of tertiary with reasonable accuracy. It can be seen that the WGRV model better

captures the dissolution kinetics of the tertiary γ ′ precipitates during isothermal aging.

Figure 11 compares the predicted andmeasured PRDs during isothermal aging. TheWGRV

model predicts the mean size of tertiary with reasonable accuracy at 700 ◦C and 800 ◦C,
however overestimates the growth rate of tertiary at 750 ◦C.
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Figure 11. A comparison of the measured and predicted particle size dispersions during
isothermal aging at 700 ◦C, 750 ◦C, and 800 ◦C of RR1000 comparing the mean-field
and WGRV discrete particle model to measured PRDs.

5. Discussion

Direct numerical solutions obtained in this study suggest that the Marqusee and Ross [14]

and Ardell [8] approximation using the Lu and Torquato [24] nearest neighbour distribution

function provides a reasonable correction factor for volume fractions up to 20%. The z factors

fail to capture the accelerated rate of precipitation predicted by the WGRV model at higher

volume fractions. DiNunzio’smodel [13] captures the kinetics of dispersionswith 40%volume

fraction, however, it deviates considerably from the WGRV model at lower volume fractions.

This limitation is an issue when modelling nucleation and growth of particles, or dissolution

during service or manufacture.

When comparing model predictions with experimental data, the WGRV model gives the

best agreement, with improved predictions of the transition from a bimodal to a unimodal

dispersion. The mean-field statistical models predict a rapid change from bimodal to unimodal

dispersion, followed by a low growth rate period before reaching the attractor state, as shown

in figure 7. During this transition, the mean size is not changing substantially while the width

of the distribution is getting wider.

The WGRV model predicts growth for a fraction of particle belonging to smaller popula-

tion, whilst the mean-field approximations predicts that all particles smaller than the critical

radius dissolve. This is significant in RR1000, where the WGRV captures the increased stabil-

ity of the tertiary particle populationwhere the mean-fieldmodel suggests they should dissolve

from the onset of coarsening. The ability to predict tertiary kinetics correctly is important when

modelling service conditions, as tertiary precipitates significantly influence creep behaviour of

powder disc alloys [28]. Although the WGRV model captures the stability of tertiary parti-

cles, their predicted size is greater than those observed experimentally after isothermal aging

at 750 ◦C as shown in figure 11(e). The predicted dissolution in tertiary particles shown in

figures 10(d) and (e) differs to the measured data. For example, in figure 10(e) the reduc-

tion of the tertiary volume fraction appears sigmoidal, compared to the predicted exponential
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decay. At 800 ◦C, the data and models agree with exponential decay like behaviour. There are

many factors that could contribute to the differences in dissolution kinetics predicted at lower

temperatures.

One possibility is that the approximation of steady-state diffusion applies at 800 ◦C, where
diffusivities and kinetics are sufficient so that steady-state diffusion fields are quickly reached.

None of the models investigated account for differences in chemistry between precipitates,

which can be significant in as-quenched nickel superalloys [29, 30]. The chemical driving

force for precipitation and the interfacial energy would vary with precipitate composition [31],

altering the coarsening behaviour of the particle populations. The assumption that the diffu-

sion fields are quasi-static is unlikely to be accurate when considering precipitates which vary

significantly in composition, with differences in matrix composition surrounding the different

populations of particles. Radis et al [32] observed solute depletion zones around particle pop-

ulations in the quenched nickel superalloy UDIMET 720 [32]. Anderson et al [20] used such

depletion zones to justify a phenomenologicalmodel where isolated tertiary precipitates do not

compete directly with secondary particles until the matrix has sufficiently homogenised. The

model succeeds in capturing the increased stability of the tertiary particles in RR1000, how-

ever it would not help with IN738LC where the larger tertiary particles are unlikely to remain

isolated at the elevated temperatures of interest.

Yang et al [33] have further developed the WGRV model to account for spatially varying

alloy chemistry in the vicinity of grain boundaries. A similar approach needs to be devel-

oped to account for differences in composition between secondary and tertiary precipitates if

transient behaviour associated with non-equilibrium conditions is to be simulated correctly.

The diffusion fields surrounding secondary and tertiary particles with significant composition

differences cannot be adequately approximated as a steady-state problem.

The current model formulations are based upon a pseudo-binary approximation of the alloy

chemistry, grouping γ′ forming elements, similar to the approaches of Coakley et al [34] and

Semiatin et al [35]. Multi-component descriptions provide a more realistic description of the

alloys of interest. Appropriate mobility databases can be used to determine diffusivities as a

function of alloy composition. Svoboda et al [36] have applied the thermodynamic extremal

principle to derive a multi-component description of a steady-state point source/sink model of

competitive growth. Although this is an improvement, it does not directly address the chal-

lenges in capturing the coarsening and dissolution kinetics observed in tertiary precipitates in

RR1000 at temperatures of �750 ◦C.
The models do not consider changes to precipitate morphology induced by either energy

minimisation of interfacial and elastic energies [37, 38], or through precipitate coalescence

events [39]. Elastically inducedmorphology changes would slow the growth rate of the precip-

itates, whilst coalescence events would rapidly increase the size of the agglomerating precipi-

tates. Figure 10(d) shows that at 700 ◦C, the data suggests a slight increase in volume fraction

of tertiary γ ′, which is not captured by either mean-field or WGRV models. One possibility is

that during these conditions the matrix is still supersaturated and that the volume fraction of γ’
is still growing, delaying the dissolution of the tertiary precipitates. This behaviour could be

attributed to experimental error, however another explanation is inverse coarsening as described

by Su et al [40], where small particles are able to grow at the expense of larger particles as

their location is less elastically distorted than the neighbouring larger particle. Kawasaki and

Enomoto [41] developed a statistical model that accounts for inverse coarsening behaviour

which can be introduced into the WGRV model. They approximate the total mean interaction

energy of a particle by the summation of the pair-wise interaction energies as described by

Eshelby [42] between the reference particle and every other particle within the domain [41].

The mean elastic interaction energy may be included within the Gibbs–Thomson equation
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when calculating the matrix composition at the precipitate-matrix interface. The alloys inves-

tigated in this work do not exhibit significant shape changes during coarsening, remaining

globular, however in other conditions or alloys with higher elastic misfit between the parti-

cle and matrix phases, the approach of Kawasaki and Enomoto [41] might be useful. This

approach does not account for the migration of the particle’s centre [43], or elastic energy

induced changes in particle morphology [38]. Onuki and Nishimori [44] found that during

particle coarsening, changes to particle morphology minimise the elastic interaction energy

meaning that the elastic interaction energy calculated from Eshelby [42] would over estimate

this effect.

Even without accounting for the elastic interaction energy, the WGRV model offers an

improvement to conventional mean-field models when modelling the coarsening kinetics of

IN738LCand can capture the unexpected stability exhibited by tertiary particles during isother-

mal aging of RR1000. This work has focused on competitive growth in nickel-based superal-

loys; however, the findings are relevant to modelling precipitates in other alloy systems, such

as aluminium alloys [10, 33], steel [45], and zirconium alloys [46].

Statistical models provide the means of predicting important microstructural information at

time scales and length scales relevant to both processing and alloy performance. They can be

readily incorporated into process models to provide location specific property prediction [47],

and can be used to predict mechanical properties. They are limited by their reduced accuracy

caused by the many simplifying assumptions made in their derivation. This work shows that

addressing issues with regards to competitive growth can improve predicted behaviour within

the transient Ostwald ripening regime.

6. Conclusion

A number of approximations of competitive growth used in mean-field particle coarsening

theory have been assessed against the WGRV multi-particle model. The results are relevant to

conditions where it is reasonable to assume quasi-static diffusion fields with spherical particle

geometry. It is shown that the MR z(R, t) factor and Ardell’s z(R, t) factor capture the predicted

behaviour of the discreteWGRVmodel for volume fractions up to 20%, however under-predict

the kinetics of higher volume fractions. Di Nunzio’s pairwise interactionmodel behaveswell at

40% but does not extrapolate to lower volume fraction dispersions, and does not reproduce the

experimentally observed coarsening kinetics as closely as theMR correction factor considering

the two multi-modal nickel based superalloys studied in this work. The multi-particle WGRV

model captures the coarsening kinetics observed in the aging of as-heat treated Inconel 738LC,

and predicts the unexpected stability of tertiary particles in the coarsening of as-heat treated

coarse grain RR1000, despite the simplifying assumptions regarding the particle morphology

and the treatment of a multi-component alloy as a pseudo-binary alloy. This work demonstrates

that statistical models can be improved by focusing on the description of competitive growth

where dissolution or growth is determined by the local environment rather than a global critical

particle radius.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the

authors.
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Appendix A. Lu and Torquato nearest neighbour particle spacing

The mean particle radius used to define the diffusion screening length has been approximated

by Torquato’s nearest neighbour distribution function [48], considering randomly arranged 3D

spherical polydisperse non-penetrating particles.

Consider a reference particle within the dispersion with radius Rf . The likelihood that a

sphere centred on the reference particle with radius λ is free of neighbouring particle centres

is given by the Ep(Rf ,λ) function. For λ < Rf , the volume considered is within the reference

particle, so Ep(Rf ,λ) = 1. As λ > Rf , the likelihood of encountering another particle increases.

When Ep(Rf ,λ) decays to zero, this describes the distance where another particle centre will

definitely be encountered within the volume of radius λ. The mean nearest neighbour matrix

spacing for the reference particle is thus

〈λ〉 =
∫ ∞

Rf

Ep dλ (26)

The Ep function is given by

Ep(Rf,λ) =
Ev(λ)

Ev(Rf)
(27)

where the Ev function is calculated using a normalised exclusion zone distance x

x =
λ

〈D〉 , (28)

where 〈D〉 = 2〈R〉. The exclusion volume Ev(x) is

Ev(x) = η exp
[

−2ηS
(

a0x
3 + a1x

2 + a2x
)]

(29)

where η is the volume fraction, S is the specific surface, and a0, a1, and a2 are coefficients.

Let f = F/Nv , so that f is a probability density distribution function descriptive of the size

distribution of particles. Let the Dth moment of f (R, t)dR be given by

〈R(D)〉 =
∫ ∞

0

f R(D) dR (30)

The specific surface is defined as

S =
〈R2〉
〈R3〉 〈R〉 (31)

The coefficients a0, a1, and a2 are

a0 =
4
(

〈R〉2/〈R2〉
)

(1− η)(1− η + 3ηS)+ 8η2S2

(1− η)3

a1 =
6
(

〈R〉2/〈R2〉
)

(1− η)+ 9ηS

(1− η)2

a2 =
3

1− η

(32)
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The reference particle used in the calculation is the mean particle radius, 〈R〉, and the

diffusion screening distance is approximated as 〈λ〉.

Appendix B. Reformulation of Di Nunzio’s model

Di Nunzio’s discrete model utilising multiple pairwise interactions to capture competitive

growth is given below [13]

V(Ri, t) =

n
∑

j=1

A

R2
i

φ1/3

1− φ1/3

〈R2〉
〈R〉

ṽiṽ j
〈ṽ〉2

n j

Nv

(

1

R j

− 1

Ri

)

ṽi =
(

α̃3
i − 1

) R3
i

〈R3〉 + 1

α̃3
i = α2 〈R3〉

〈R2〉
φ−2/3

Ri
+ 1

〈ṽ〉 =
n

∑

j=1

n jṽ(R j)

A =
DγVmc0

RgT

〈RD〉 =
n

∑

j=1

n jR
D
j ,

(33)

where fraction of particles within the size class of Ri is given by ni. This model may be

expressed using the continuous distribution function F using the relationship ni = F (R, t)dR

so that the averaged moments 〈RD〉 is given by

〈RD〉 =
n

∑

j=1

n jR
D
j ≡

1

M0

∫ ∞

0

F (R)RDdR ≡ MD

M0
, (34)

whereMD refers to theDth moment ofF (R, t) as shown in equation (1). The following equation

set is obtained when expressing equation set 35 in terms of the continuous distribution function

F and moments defined in equation (1).

V(Ri, t) =
A

R2
i

φ1/3

1− φ1/3

M2

M1
b̃(Ri)M

0

∫ ∞

0

b̃(R j)F (R j, t)

(

1

R j

− 1

Ri

)

dR j

b̃(Ri) =
ṽ(Ri)

∫∞
0
F(R)ṽ(R)dR

ṽ(Ri) = 1+ α2M0 R
2
i

M2

1

φ2/3

(35)
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