
This is a repository copy of Equal rank local theta correspondence as a strong Morita 
equivalence.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/190871/

Version: Submitted Version

Preprint:
Mesland, B. and Şengün, M.H. orcid.org/0000-0002-6210-6877 (2022) Equal rank local 
theta correspondence as a strong Morita equivalence. [Preprint] 

https://doi.org/10.48550/arXiv.2207.13484

© 2022 The Authors. Preprint available under a CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ar
X

iv
:2

20
7.

13
48

4v
1 

 [
m

at
h.

R
T

] 
 2

7 
Ju

l 2
02

2

EQUAL RANK LOCAL THETA CORRESPONDENCE AS A STRONG

MORITA EQUIVALENCE

BRAM MESLAND AND MEHMET HALUK ŞENGÜN

Abstract. Let (G,H) be one of the equal rank reductive dual pairs (Mp2n, O2n+1) or (Un, Un) over
a nonarchimedean local field of characteristic zero. It is well-known that the theta correspondence

establishes a bijection between certain subsets, say Ĝθ and Ĥθ, of the tempered duals of G and H .
We prove that this bijection arises from an equivalence between the categories of representations of

two C∗-algebras whose spectra are Ĝθ and Ĥθ. This equivalence is implemented by the induction
functor associated to a Morita equivalence bimodule (in the sense of Rieffel) which we construct
using the oscillator representation. As an immediate corollary, we deduce that the bijection is
functorial and continuous with respect to weak inclusion. We derive further consequences regarding
the transfer of characters and preservation of formal degrees.
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1. Introduction

In this paper, we shed new light onto the fundamental mechanism of the equal rank tempered
local theta correspondence by approaching it via the framework of the representation theory of
C∗-algebras.

Local theta correspondence, founded by Roger Howe in the mid 1970’s, is a major theme in
the theory of automorphic forms and representation theory. In a nutshell, local theta correspon-
dence establishes a bijection between certain sets of smooth irreducible representations of reductive
groups G and H which form a “dual pair”, that is, G and H sit inside a large enough symplectic
group in such a way that they form each others’ centralisers. Roughly speaking, this bijection is
obtained by considering how the so-called oscillator representation of the ambient symplectic group
decomposes as a G×H-representation. When the two groups have “the same size”, the local theta
correspondence enjoys several attractive properties, in particular, it preserves temperedness. It is
this tempered correspondence in the equal rank case that we will consider.

The second ingredient of our paper is the notion of strong Morita equivalence for C∗-algebras
introduced by Mark Rieffel, again, in the mid 1970’s, as part of his C∗-algebraic generalisation of
Mackey’s theory of induced representations of locally compact groups. Given two C∗-algebras A
and B, roughly put, an “equivalence A-B-bimodule” X is an A-B-bimodule which is equipped with

1



LOCAL THETA CORRESPONDENCE AS A MORITA EQUIVALENCE 2

an A-valued inner product and a B-valued inner product such that these inner products satisfy
certain compatibility and continuity conditions. If such a bimodule exists, then A and B are said
to be “strongly Morita equivalent”. This is an equivalence relation.

Given a representation π of B realized on a Hilbert space V , one can “induce” it to a rep-
resentation IndBA(X,π) of A captured on the Hilbert space X ⊗B V obtained by “interior tensor
product” (this process is sometimes called “Rieffel induction”). This association is functorial and
has an inverse implemented by the dual module of X, thus leading to an equivalence of categories
of representations of A and B. It identifies the lattices of two-sided closed ideals of A and B and
furthermore, preserves weak containment and direct integrals.

1.1. Description of the main result. We bring together the two themes above in the case where
(G,H) is an equal rank dual pair of the form (Mp2n, O2n+1) or (Un, Un) over a nonarchimedean
local field of characteristic zero. In this case, the theta correspondence π 7→ θ(π) establishes a
bijection between certain subsets of the tempered duals of G and H. Let us name these subsets

Ĝθ and Ĥθ. We consider the reduced C∗-algebras associated to the groups G and H. These are
algebras of operators, going back to Irving Segal, which are obtained from the convolution action
of the L1-algebra of a locally compact Hausdorff group on its L2-space. As such, these C∗-algebras
are directly related to tempered representations. We exhibit ideals C∗

θ (G) and C∗
θ (H) of the re-

duced C∗-algebras of G and H whose spectra are homeomorphic to Ĝθ and Ĥθ respectively. We
show that the (smooth) oscillator representation of G×H provides a natural bimodule for the
reduced C∗-algebras of G and H and that this bimodule can be promoted to an equivalence C∗

θ (G)-
C∗
θ (H)-bimodule in the sense above. Remarkably, the crucial compatibility property between the

C∗
θ (G)-valued and C∗

θ (H)-valued inner products turns out to be precisely the so-called “local Rallis
inner product formula” of Gan and Ichino [8].

We call the equivalence C∗
θ (G)-C

∗
θ (H)-bimodule above the “oscillator bimodule” and denote it

Θ. The key point is that given an irreducible representation of C∗
θ (H), which is the same as

an element of Ĥθ, the induced representation Ind
C∗

θ
(G)

C∗

θ
(H)(Θ, π) of C∗

θ (G) is the (integrated form)

of G-representation θ(π∗). In fact, Ind
C∗

θ
(G)

C∗

θ
(H)(Θ, π) is precisely the (integrated form) of the G-

representation obtained from π via the “averaging of matrix coefficients” construction of Jian-Shu
Li introduced in [23] in the so-called “stable range” case (roughly speaking, when G is at least twice
the size of H). In the equal rank cases, it is known that Li’s construction, hence ours, agrees with
θ(π∗).

As an immediate corollary, we see that the tempered theta correspondence, in the equal rank
set-up, is simply the restriction of an equivalence of categories of representations of two C∗-algebras
to the irreducible objects. As such it is functorial. Moreover, as it is implemented by an equivalence
bimodule, it enjoys various properties, such as the preservation of weak containment. In particular,

the tempered theta correspondence is a homeomorphism between Ĝθ and Ĥθ.
The oscillator bimodule interpolates the oscillator representation of one group with the regular

representation of the other group. This immediately implies that Ĝθ lies in the support of the
oscillator representation viewed as a G-representation. In fact, we show with an elementary anal-
ysis that the latter is precisely the closure of the former. This is also follows from a Plancherel
decomposition result of Sakellaridis [36].

The oscillator bimodule Θ can be viewed as generalization of the Heisenberg module of Rieffel.
Let W be a symplectic vector space. Given a closed subgroup Γ of W , Rieffel shows in [35] that
the (twisted) C∗-algebras associated to Γ and its dual/annihilator group Γ⊥ are strongly Morita
equivalent. The equivalence is implemented by the Heisenberg module based on the (projective)
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Heisenberg representation of W . The critical compatibility condition for the two operator valued
inner products on the bimodule reduces to the Poisson transformation in this case.

In the local theta correspondence set-up, we operate inside the symplectic group Sp(W ) with the
roles of Γ,Γ⊥ played by the equal rank dual pair (G,H). Accordingly we consider not the Heisenberg
representation but the more complicated oscillator representation. In this sense, the local Rallis
inner product formula of Gan and Ichino that we used in our proof of the critical compatibility
property can be viewed as a non-commutative generalisation of the Poisson transform.

1.2. Applications. After promoting the equal rank tempered theta correspondence to a categori-
cal equivalence, we move on to illustrate the fact that an equivalence bimodule allows the transfer
of a lot of information between the two sides. We do this with two applications that are attractive
in the simplicity of their statements and the elementary nature of their short proofs.

1.2.1. Explicit transfer of characters. Let us continue with the set-up of the above section. If π is
a tempered irreducible representation of H, the character of π is the tempered distribution on H,
that is, the continuous linear functional

ch(π) : S(H)→ C

on Harish-Chandra’s Schwartz algebra S(H) of H given by the trace

ch(π)(ϕ) := tr π(ϕ).

The oscillator bimodule forms a connection between parts of the Schwartz algebras of G and H,
and as such gives a meaningful way of expressing the character one representation in terms of that
of its theta lift. An elementary half-a-page long argument based on a concrete representation of
the oscillator bimodule Θ as a space of operators gives us the following.

Corollary 1.2.2. Let π be a tempered irreducible representation of H that enters the theta cor-
respondence. Let S denote the Frechét space which affords the smooth oscillator representation of
G×H. Given x, y ∈ S, let 〈x, y〉

H
∈ S(H) and G〈x, y〉 ∈ S(G) be the matrix coefficient functions

defined below in (5.2.2) and (5.3.2). We have

ch(θ(π))(G〈x, y〉) = ch(π)(〈y, x〉
H
).

The inner products G〈·, ·〉 and 〈·, ·〉H span ideals in the Schwartz algebras of G and H respectively
and the above result explicitly relates the two characters when they are restricted to these ideals.
To extend the above transfer formula beyond these ideals, various convergence issues in the theory
of operators on Hilbert C∗-modules need to be addressed. This is subject of further research.

Investigations on the question of how characters of representations relate, if at all, under the
theta correspondence go back to the late 1980s. Notably, Przebinda studied the stable range case1

over the reals (e.g. [30, 31]). For a more recent result in this direction, see [26] which treats
real cases in which one group is compact and [25] which adapts earlier works of Przebinda to the
non-archimedean stable range setting. Our result in the non-archimedean equal rank case has
been recently announced by Wee Teck Gan [11, 12]. While his proof seems different than ours,
it can be said that it philosophically agrees with ours in that matrix coefficients of the oscillator
representation play a central role.

1.2.3. Preservation of formal degrees. It is well-known (see [7]) that the local theta correspondence
takes discrete series representations to discrete series representations in the setting of equal rank
pairs. Recall that the formal degree of a discrete series representation π of, say, H is the positive
real number deg(π) such that

∫

H
〈v, π(h)(v′)〉〈w, π(h)(w′)〉ds =

1

deg(π)
〈v,w〉〈v′, w′〉

1He also proposed an explicit formula which is conjectured to hold beyond the stable range case.
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for all v, v′, w,w′ ∈ Vπ. It depends on the chosen Haar measure on H.
Using a cohomological argument mixed with some known facts regarding the transfer of trace

maps under equivalence bimodules, we obtain the following.

Corollary 1.2.4. Let π be a discrete series representation of H which enters the theta correspon-
dence. Then

deg(π) = deg(θ(π)).

The Haar measures used in the above result are the ones that we use for the proof the compati-
bility property (Prop. 5.4.1) of the oscillator bimodule. The key point of the proof is that discrete
series give generators of K0 of the reduced group C∗-algebra and one can access their formal degrees
using the canonical trace. The canonical trace is given by the orbital integral associated to the
trivial conjugacy class. We did not pursue this as we did not need it, but one could also explicitly
transfer traces arising for orbital integrals of other conjugacy classes.

The above result on preservation of formal degrees result is not new: Gan and Ichino proved2 it
in [8]. However, we think that our proof is of interest as it is a simple illustration of the usefulness
of the K-theoretic tools that are now made available by the oscillator bimodule approach for the
study of theta correspondence.

1.3. Remarks.

(1) Our approach also applies to the stable range case which was mentioned earlier. This case
will be treated in a companion paper. It should be possible to treat the almost equal rank
cases as well.

(2) We should point out that an equivalence of categories in the naive sense does not hold at
the level of full smooth (as opposed to tempered) equal rank theta correspondence; this was
explained to us by Dipendra Prasad who recently has been pursuing the idea of interpreting
the full smooth equal rank theta correspondence as a ‘derived equivalence’, see [29].

(3) As pointed out to us by Wee Teck Gan, Our C∗-algebraic approach to theta correspon-
dence could be interpreted to lie within the general C∗-algebraic framework for symplectic
quantization theory [22] developed by Klaas Landsman in the 1990’s, see [13].

1.4. Acknowledgments. We thankfully acknowledge helpful correspondences with Alexandre Af-
goustidis, Pierre Clare, Nigel Higson, Allan Merino, Roger Plymen, Dipendra Prasad, Maarten
Solleveld and Hang Wang. Special thanks go to Roger Howe for his encouragement and insightful
comments in the early stages of our project. We are grateful to Wee Teck Gan for several illumi-
nating and encouraging correspondences and conversations. In particular, it was Gan who brought
the local Rallis inner product formula to our attention as a potential tool to prove the compatibility
of the two inner products on the oscillator bimodule.

We thank the Erwin Schrödinger Institute for its hospitality during the event “Minimal Rep-
resentations and Theta Correspondence” in April 2022, and the American Mathematics Institute
Research Community “Representation Theory & Noncommutative Geometry” for providing a much
stimulating environment. Similarly, we thank the Institute for Mathematical Sciences of the Uni-
versity of Bath for its hospitality during the LMS-Bath Symposium “K-theory and Representation
Theory” in July 2022. The second author gratefully acknowledges the invaluable support of the
EPSRC New Horizons grant EP/V049119/1 which provided the much needed research time to
develop this project.

Remark 1.4.1. All Hilbert spaces in this paper will be right Hilbert spaces.

2Their methods are very different but it is interesting to note that their local Rallis inner product formula is a key
input for both their and our proofs.
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2. The local theta correspondence

Let F be a non-archimedean local field of characteristic 0. Let E be F or a quadratic extension
of F . Put ε = ±1 and set

ε0 =

{
ε, if E = F,

0, if E 6= F.

Following the conventions of [9], we set

W =Wn = a −ε-Hermitian space over E of dimension n,

V = Vm = a ε-Hermitian space over E of dimension m.

We define the associated groups as follows:

G = G(W ) =

{
the metaplectic group3 Mp(W ) if W is symplectic and dim(V ) is odd,

the isometry group of W , otherwise.

We define H = H(V ) similarly by switching the roles of W and V . If E = F and ε = 1, then
G = Sp(W ) or Mp(W ) depending on the parity of the dimension of V . If E = F and ε = −1, then
G = O(W ). If E 6= F , then G = U(W ).

We fix a non-trivial additive character ϕ of F . Associated to ϕ, and to a pair of auxillary
characters χV , χW of E× that we will not need to make precise (see [8, 3.3]), there is a distinguished
unitary representation ω of the group G×H called4 the oscillator representation. We will mainly
consider the underlying smooth representation and still denote it by ω.

2.1. The Theta lift. Given a smooth representation π of G (always assumed to be of finite length),
the maximal π-isotypic quotient of ω has the form

π ⊗Θ(π)

for some smooth representation Θ(π) = ΘW,V (π) of H, known as the “big theta lift” of π.
Alternatively, we can describe Θ(π) as the representation ω⊗1 of H on the space of G-coinvariants

(ω ⊗ π∗)G . (2.1.1)

The maximal semisimple quotient of Θ(π) is denoted by θ(π) = θW,V (π) and is called the “small
theta lift” of π.

In the case G = Mp(W ), we call π genuine if it does not factor through Sp(W ). If π is not
genuine, it is easy to see that its big theta lift is zero. We now state the fundamental result for
local theta correspondence theory.

Theorem 2.1.1. (Howe Duality) Θ(π) is either zero or has a unique irreducible quotient, so that
θ(π) is irreducible. Moreover, if θ(π) ≃ θ(π′) then π ≃ π′.

This was originally conjectured by Howe [18] and proven by him [19] in the archimedean setting.
In our nonarchimedean set-up, it was proven by Waldspurger [40] when the residue characteristic
p was not equal to 2. Much later, Gan and Takeda [9] proved this for all p.

2.2. Equal rank correspondence. We will now specialize the discussion to equal rank pairs
(G,H), that is, pairs for which we have m = n+ ε0. Precisely, these are

(Mp2k, O2k+1), (O2k+1,Mp2k), (Uk, Uk).

Theorem 2.2.1. Assume that m = n+ ε0. Let π be a tempered irreducible representation of G. If
Θ(π) is not zero, then it is irreducible (thus Θ(π) = θ(π)) and tempered.

Proof. This can be found in [10]: see their Thm 1.2 and Lemma 4.1. �

4Also known as the “Weil representation” or the “metaplectic representaion”.
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In passing, we mention that the non-vanishing of the above theta lifts has an elegant character-
isation in terms of the “standard ǫ-factors”.

2.3. Li’s form. Let π be a tempered irreducible representation of G. Following Li [23], one intro-
duces a sesquilinear form (·, ·)π on ω ⊗ π as follows

(φ⊗ v, φ′ ⊗ v′)π :=

∫

G
〈φ, ω(g)(φ′)〉〈v, π(g)(v′)〉dg (2.3.1)

The defining integral is well-known to be absolutely convergent in our equal rank case; see [23, Cor.
3.2]. One can also conclude its convergence from that of the doubling zeta integral at s = 0, see [8,
Lemma 9.5 (ii)].

Using the fact that G is unimodular, it is easy to see that this form is Hermitian and H-invariant
with respect to the natural action ω ⊗ 1 of H. Let N denote the radical of (·, ·)π, namely

N := {Φ ∈ ω ⊗ π | (Φ,Ψ)π = 0 ∀Ψ ∈ ω ⊗ π}.

Then N is stabilised by H and thus the quotient

(ω ⊗ π) /N (2.3.2)

affords a H-representation that we will denote by L(π).
A straightforward calculation shows that the subspace spanned by elements of the form

Φ− (ω ⊗ π)(g)(Φ)

with Φ ∈ ω ⊗ π and g ∈ G lies inside the radical N . Therefore we a have a projection

Θ(π∗) ≃ (ω ⊗ π)G ։ L(π).

2.4. The next result is well-known to specialists. In fact, most of it can be found in the literature,
alas not completely and not in the way we want. So we give a quick proof.

Proposition 2.4.1. Assume that m = n+ ε0. Let π be a tempered irreducible representation of G.
We have

L(π) ≃ θ(π∗).

Moreover, if the form (·, ·)π is non-zero, then

(·, ·)π ≥ 0.

Proof. Recall from Theorem 2.2.1 that Θ(π∗) = θ(π∗). Assume that (·, ·)π, and hence L(π), is
non-zero. Since π, and hence π∗, is tempered, by Thm. 2.2.1, we know that Θ(π∗) is either
zero or is irreducible. Therefore L(π) being a nonzero quotient of Θ(π∗) immediately implies that
L(π) ≃ Θ(π∗).

Now assume that (·, ·)π is zero. We will show that Θ(π∗) is zero. This is proven5 in [15, Prop.
B.4.1] for the unitary pairs. Their proof adapts easily to the metaplectic/orthogonal pairs as well;
indeed, this is essentially done in [8, Prop. 16.1.3 (iii)] which treats both cases simultaneously. In
[8, Prop. 16.1.3 (iii)], the authors consider only discrete series π but the proof still works if π is
tempered as we indicate now. First thing to point out is that, in the notation of [8], the submodule
R(V, χW )⊕R(V ′, χW ) equals all of the degenerate principal series IG

P
(0, χV ) (see [8, Prop. 7.2.(i)],

compare with [15, Prop. B.3.2]). As mentioned above, the doubling zeta integral Z is convergent
at s = 0. It is also well-known (see [8, Thm. 9.1.(iii)]) that Z is non-trivial on IG

P
(0, χV ). Our

assumption that (·, ·)π is zero on ωV,W ⊗ π implies that Z is zero on the submodule R(V, χW ),
therefore it is non-zero on the complement R(V ′, χW ). This implies that (·, ·)π is non-zero on
ωV ′,W ⊗π. From the previous paragraph, it follows then that ΘV ′,W (π∗) is nonzero. Now the theta
dichotomy principle (see [8, Cor. 9.2]) tells us that ΘV,W (π∗) is zero as claimed.

5They work with HomU(V )(ω ⊗ π,C). Note that HomU(V )(ω ⊗ π,C) ≃ Hom((ω ⊗ π)
U(V ) ,C) ≃ Hom(Θ(π∗),C).
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For the second claim, assume again that (·, ·)π is non-zero. Non-negativity of (·, ·)π follows
immediately from Thm A.5 of [15]. One sets the groups G and H in the statement of Thm. A.5
to be equal to our G. Similarly, one sets the representations πH and πG in the statement of Thm.
A.5 to be equal to our ω and π respectively. The hypothesis (i) of Thm. A.5 is automatically
satisfied since in the non-archimedean set-up all smooth vectors are K-finite, and hypothesis (ii)
is also satisfied thanks to the fast decay of the matrix coefficients of the oscillator representation
that we alluded to above, see Lemma 5.1.1 below. Now non-negativity of (·, ·)π is precisely the
conclusion of Thm. A.5. One could also directly refer to [36, Prop. 3.3.1] for non-negativity. �

3. Some ∗-algebras associated to groups

In this section we discuss various topological algebras associated to a locally compact group.
They will be the reduced C∗-algebra C∗

r (G), whose spectrum coincides with the tempered dual of
G. The Schwartz algebra S(G) is a dense subalgebra of functions on G, and is itself a Fréchet
∗-algebra. The latter algebra is more susceptible to the explicit constructions and calculations that
we present in Section 4.

3.1. C∗-algebras of groups. Given a locally compact Hausdorff topological group G, we let
L1(G) denote the Banach ∗-algebra of integrable functions. It is well-known that there is a bijec-
tion between unitary representations of G and non-degenerate ∗-representations of L1(G): given a
(strongly continuous) unitary representation π : G→ U(Vπ) of G on a Hilbert space Vπ, we obtain
a ∗-representation of L1(G) (still denoted π) by integrating

π(f) :=

∫

G
f(s)π(s)ds, (3.1.1)

where f ∈ L1(G).
Let (π, Vπ) be a unitary representation of G. We denote the C∗-algebra generated6 by the image

of L1(G) under the ∗-representation π : L1(G)→ L(Vπ) by

C∗
π(G).

It is called the C∗-algebra of G associated to π. A most important example is when we take π to be
the regular representation of G on L2(G); in that case C∗

π(G) is the so-called reduced C∗-algebra
of G and it has the established notation

C∗
r (G).

Recall that the spectrum of L1(G) is in bijection with the unitary dual Ĝ of G. As is well-

known, Ĝ comes equipped with a topology that is typically described via weak containment, or
uniform approximation of matrix coefficients on compacta. It follows that the above bijection gives
a homeomorphism between the spectrum of C∗

π(G) and the support of π, denoted supp(π), that

is, the subset of Ĝ that are made of those representations which are weakly contained in π. A
special case of this is the well-known the fact that the spectrum of C∗

r (G) is homeomorphic to the
tempered dual of G:

Ĉ∗
r (G)

homeom.
←−−−−→ Ĝtemp. (3.1.2)

3.2. Schwartz algebra. Given a connected reductive linear algebraic group G over F (which, we
recall, is non-archimedean), let us put G = G(F ). We fix a minimal parabolic subgroup P and a
“good”7 maximal compact subgroup K so that G = PK. Consider the smooth normalized induced
representation IGP (1) of the trivial representation of P to G. Let eK denote the unique vector in

6This is the closure of the image of L1(G) with respect to the operator norm.
7Rougly put, it needs to be the stabilizer of a well-chosen vertex in the building associated to G. See [8, p544]
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IGP (1) such that eK(k) = 1 for all k ∈ K. We define Harish-Chandra’s function as the diagonal
matrix coefficient of vK :

Ξ(g) := 〈IGP (1)(g)eK , eK〉, g ∈ G.

It is well-known that Ξ is a positive, K-biinvariant function that satisfies Ξ(g) = Ξ(g−1) (see [41,
Section II.1]).

We say that a continuous function f : G→ C is rapidly decreasing if for all n > 0 we have

vn(f) := sup
g∈G

|f(g)| Ξ(g)−1(1 + log ‖g‖)n <∞, (3.2.1)

where ‖·‖ is the standard norm on G arising from a good choice of embedding ι : G →֒ GLm(F )
where m is the F -rank of G (see, e.g. [8, p544]). The space S(G) of all rapidly decreasing,
uniformly locally constant8 functions on G is an algebra under convolution and it is called the
(Harish-Chandra) Schwartz algebra of G.

Given a compact open subgroup K, let S(G�K) denote the subspace of functions in S(G) which
are constant on the double cosets of K. Then the space S(G�K) is a nuclear, unital Fréchet
∗-algebra under convolution, with the topology given by the seminorms vn above. We have that

S(G) =
⋃

K

S(G�K)

where K ranges over compact open subgroups of G (the right hand side is a vector space direct
limit). We equip S(G) with the direct limit topology. Let C∞

c (G�K) denote the subspace of
functions in S(G�K) that are compactly supported. Then C∞

c (G�K) is a unital convolution
algebra that acts on L2(G), again via convolution. If we denote by C∗

r (G�K) the C∗-algebra
generated by C∞

c (G�K) inside L(L2(G)), then

C∗
r (G) = lim

−→
C∗
r (G�K),

where the right hand side a direct limit of the C*-subalgebras C∗
r (G�K) partially ordered by

inclusion.
We single out some properties of S(G) that will be of importance to us. A unitary representation

π of G is called tempered if for any smooth vectors v, v′ ∈ π, there exists a constant d such that we
have

|〈π(g)(v), v′〉| ≤ d Ξ(g)

for all g ∈ G (see [2, Eq. 2.2.3]).

Theorem 3.2.1. The Schwartz algebra S(G) enjoys the following properties.

(1) If π is a tempered representation and π∞ its associated smooth representation, then the
G-action on π∞ integrates to an action of S(G).

(2) If K is a compact open subgroup of G, then S(G�K) is a dense ∗-subalgebra of C∗
r (G�K),

in particular the inclusion S(G)→ C∗
r (G) is continuous and has dense range;

(3) If an element of S(G�K) is invertible in C∗
r (G�K), then it is already invertible in S(G�K);

Proof. The first claim is classical. It follows from the factorization S(G) = C∞
c (G) ⋆ S(G) (see [2,

(2.1.1) and (2.2.7)]). The other two claims are due to Vignéras [39]. An alternative proof is given
in [3, Lemma 2] for G = GLm(F ). �

8A function is uniformly locally constant if it is B bi-invariant for a compact open subgroup B.
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3.3. Metaplectic and orthogonal groups. The definition of the Schwartz algebra can be adapted
to the non-linear group9Mp(W ) and the disconnected O(V ) in a straight-forward way. ForMp(W ),
we pull-back the Harish-Chandra function Ξ and the standard norm ‖·‖ from Sp(W ) to Mp(W ).
For O(V ), noting that O(V ) ≃ SO(V ) × {±1}, we extend the Ξ and ‖·‖ from SO(V ) to O(V ) by
declaring that Ξ(−g) = Ξ(g) and ‖−g‖ = ‖g‖. Then in both cases, Ξ continues to enjoy the usual
properties and 1 + log ‖·‖ still defines a length function10. The definition of the Schwartz algebra
now applies. A careful treatment for the case of the metaplectic group can be found in [24, Section
2.3].

Thm. 3.2.1 stays valid when G is Mp(W ) or O(V ). The first part of Thm. 3.2.1 is clear (see [24,
Section 2.3] for the metaplectic case). For the third part, the key property needed for Vignéras’
results to apply are

(i) given a compact open K of G, the double coset space K\G/K has “polynomial growth”
([39, p237, ]) with respect to the “scale” σ := L − 1 = log ‖·‖, (this is required for results
in [39, Section 6])

(ii) Ξσ−r ∈ L2(G) for large enough r > 0. (required in order to be able to apply [39, Thm. 20],
see [39, Lem. 27 and Prop. 28])

It is easy to see that these conditions are both satisfied for the cases of G =Mp(W ) and G = O(V ).
For example, let K be a compact open in Mp(W ). Then if B′ is the image of K (again compact
open) in Sp(W ) under the covering map, then the natural map K\Mp(W )/K → K ′\Sp(W )/K ′

has fibers of size at most 2, and it follows that polynomial growth of the latter implies the same for
the former. This addresses item (i). For item (ii), we simply observe that the integral over Mp(W )
is twice that over Sp(W ). Similar reasoning applies to the case of O(V ).

4. Strong Morita equivalence

In this section, we introduce the notion of strong Morita equivalence for C∗-algebras. A Morita
equivalence between C∗-algebras A and B induces a bijection between their Hilbert space repre-
sentations. Good references for the C∗-theory include [32, 21].

Using the C∗-algebras C∗
r (H) and C∗

r (G), we will exploit this in the context of local theta
correspondence. However, as the matrix coefficients of the oscillator representation live in the
Schwartz algebras S(G) and S(H) in our equal rank set-up, our constructions naturally start at
the level of these algebras.

4.1. Local subalgebras of C∗-algebras. Let A be a complex ∗-algebra. The spectrum of a ∈ A
is the set

σA(a) := {λ ∈ C : a− λ is not invertible in A}.

If A is nonunital, its unitisation is the space

A+ := A⊕C,

equipped with coordinatewise addition and multiplication

(a, λ) · (b, µ) := (ab+ λb+ µa, λµ).

For nonunital algebras, we define σA(a) := σA+((a, 0)). An element a ∈ A is positive if a = a∗ and
σA(a) ⊂ R≥0.

If A0 ⊂ A is a ∗-subalgebra we say that A0 is spectral invariant in A if for all a ∈ A0 we have

σA0(a) = σA(a).

9While Mp(W ) is not linear like Sp(W ), it still is an “ℓ-group” like Sp(W ): i.e. it is a Hausdorff topological group
with a basis of neighborhoods of the identity consisting of compact open subgroups.

10A length function on a group G is a continuous function L : G → [0,∞] such that L(e) = 1, L(g−1) = L(g) and
L(gh) ≤ L(g) + L(h) for all g, h ∈ G.
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A Fréchet ∗-algebra admits holomorphic functional calculus ([27, Lemma 1.3]): if a ∈ A,
U ⊂ C an open set containing σA(a) and f : U → C a homolomorphic function, then

f(a) :=

∫

C
f(λ)(a− λ)−1dλ ∈ A,

where C is simple closed curve in U enclosing σ(a). Now suppose that A is a C∗-algebra and A ⊂ A
a ∗-subalgebra. We say that A is stable under holomorphic functional calculus in A if for
all a ∈ A and f a holomorphic function on neighbourhood of σA(a), we have f(a) ∈ A.

Definition 4.1.1. Let A be a C∗-algebra and A ⊂ A a dense ∗-subalgebra. We say that A is local
in A if A is stable under holomorphic functional calculus.

Lemma 4.1.2 (cf. Lemma 1.2 in [37]). Suppose that A is a Fréchet ∗-algebra, A a C∗-algebra and
i : A → A a continuous injective ∗-homomorphism with dense range. Then i(A) ⊂ A is local if and
only if i(A) is spectral invariant in A.

In the above situation we identify A with its image i(A) and simply say that A ⊂ A is local.

Proposition 4.1.3. Let F be a non-archimedean local field of characteristic 0. Let G be either
the F -points of a connected reductive group, or be Mp(W ) or O(W ) where W is over F . Then
S(G) ⊂ C∗

r (G) is local.

Proof. Since S(G) ⊂ C∗
r (G) is dense, it remains to show spectral invariance. Since S(G) ⊂ C∗

r (G)
and a both algebras are nonunital, we have

σC∗
r (G)(a) ⊂ σS(G)(a).

We have argued in Section 3.2 that for any compact open subgroup K of G, an element of S(G�K)
is invertible in C∗

r (G�K), then it is already invertible in S(G�K) (see Theorem 3.2.1(iii)). It
follows from the definitions then that S(G�K) is local in C∗

r (G�K) and hence spectral invariant
by Lemma 4.1.2.

Now let a ∈ S(G) =
⋃
K S(G�K), so a ∈ S(G�K) for some K. Since C∗

r (G) and S(G)
are nonuntial, whereas S(G�K) and C∗

r (G�K) are unital, and inclusions of C∗-algebras such as
C∗
r (G�K)→ C∗

r (G) are spectral invariant away from 0, we find

σS(G)(a) ⊂ σS(G//K)(a) \ {0} = σC∗
r (G//K)(a) \ {0} = σC∗

r (G)(a).

We deduce that σC∗
r (G)(a) = σS(G)(a) as desired. Now if f is holomorphic on σ(a) and a ∈ S(G//K)

then f(a) ∈ S(G//K) ⊂ S(G), proving that S(G) ⊂ C∗
r (G) is local. �

Remark 4.1.4. We will use the above result that the Schwartz algebras are local inside the reduced
group C∗-algebras in the proof of Prop. 4.2.3 and for our second application in Section 8 where
we use the fact that localness implies that they have the same K-theory as the reduced group C∗-
algebras. Prop. 4.2.3 is criticial in proving that the oscillator bimodule is an equivalence bimodule.
However we would like to point out that one could prove the continuity statement (4.2.2) for the
oscillator bimodule without exploiting the locality of the Schwartz algebras but instead using the
fact that the theta correspondence preserves temperedness.

4.2. Inner product modules. Let B be a C∗-algebra and B ⊂ B a ∗-subalgebra. A (complex)
vector space X is called a right inner product B-module if X is a right B-module and it is
equipped with a B-valued positive-definite Hermitian form that is compatible with the right X -
module structure. More precisely, there is a sesquilinear map

〈·, ·〉
B
: X × X → B,

satisfying the following properties:

(1) 〈x, y〉
B
∗ = 〈x, y〉

B
for all x, y ∈ X ,
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(2) 〈x, yb〉
B
= 〈x, y〉

B
b for all x, y ∈ X and b ∈ B.

(3) 〈x, x〉
B
is a positive as an element of B for every x ∈ X .

The span of the set {〈x, y〉
B
| x, y ∈ X} is an ideal of B. We call X full if this ideal is dense in the

ambient C∗-algebra B. The inner product module X is nondegenerate if

〈x, x〉
B
= 0⇔ x = 0.

We define left inner product modules in a similar way using left linear inner products.
If X is an inner product B-module, then

‖x‖2 :=
∥∥∥〈x, x〉

B

∥∥∥
B
, (4.2.1)

defines a norm on X .
In the above, making the particular choice B = B, we arrive at the following definition.

Definition 4.2.1. Let B be a C∗-algebra. An inner product B-moduleX is aHilbert C∗-module
if X is complete with respect to the norm (4.2.1).

If B ⊂ B is a dense ∗-subalgebra and X a nondegenerate inner product B-module, then the
completion X of X in the norm (4.2.1) is a Hilbert C∗-module over B ([32, Lemma 2.16]). In the
sequel we will construct inner product modules over the Schwartz algebra S(G) of a topological
group G. Since S(G) ⊂ C∗

r (G) is dense, such modules admit a completion as Hilbert C∗-modules
over C∗

r (G).

Definition 4.2.2. Let A ⊂ A and B ⊂ B be dense ∗-subalgebras and X a right inner product
B-module. We say that X is an (A,B)-correspondence if X is a left A-module such that

〈ax, y〉B = 〈x, a∗y〉B, ∀x, y ∈ X , b ∈ B.

In case A = A, B = B and X is and (A,B)-correspondence that is a Hilbert C∗-module over B,
we say that X is a C∗-correspondence for (A,B).

Given a Hilbert C∗-module over a C∗-algebra B, its algebra of adjointable operators is the space

End∗(X) := {T : X → X : ∃ T ∗ : X → X ∀x, y ∈ X 〈Tx, y〉 = 〈x, T ∗y〉} .

Elements of End∗(X) are automatically bounded and right B-linear. In fact End∗(X) forms a
C∗-algebra in the operator norm it derives from the norm on X. Thus, for a C∗-correspondence
X, we in fact have a ∗-homomorphism A→ End∗(X) between C∗-algebras.

Let X be an (A,B)-correspondence for dense subalgebras A ⊂ A and B ⊂ B. We have discussed
above that X can be completed to a right Hilbert B-module X. We will now see that if A is a local
subalgebra of A, then the X can be promoted to a C∗-correspondence for (A,B).

Proposition 4.2.3. Let A ⊂ A and B ⊂ B be dense subalgebras X an (A,B)-correspondence. If
A is local, then for all x ∈ X and a ∈ A the inequality

〈a · x, a · x〉
B
≤ ‖a‖2A〈x, x〉B, (4.2.2)

holds true in the C∗-algebra B.

Proof. Let ε > 0 and for a ∈ A and x ∈ X consider

(‖a‖2A + ε)〈x, x〉
B
− 〈a · x, a · x〉

B
= 〈(‖a‖2 + ε− a∗a)x, x〉B (4.2.3)

and observe that by spectral invariance the element ‖a‖2 + ε− a∗a ∈ A+ is positive invertible, and
thus has spectrum contained in [ε,M ] for some M > 0. Since the square root is a holomorphic

function on an open neighborhood of [ε,M ], we have that (‖a‖2 + ε− a∗a)1/2 ∈ A+, and thus that

(‖a‖2 + ε− a∗a)1/2 · x ∈ X . We find that

〈(‖a‖2 + ε− a∗a) · x, x〉A = 〈(‖a‖2 + ε− a∗a)1/2 · x, (‖a‖2 + ε− a∗a)1/2 · x〉A ≥ 0,
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and therefore by (4.2.3)

〈a · x, a · x〉
B
≤ ‖a‖2A〈x, x〉 + ε〈x, x〉

B
. (4.2.4)

Since (4.2.4) holds for all ε > 0 we conclude that

〈a · x, a · x〉
B
≤ ‖a‖2A〈x, x〉B,

as desired. �

Remark 4.2.4. Inequality (4.2.2) is one of the defining properties of a “pre-imprimitivity bimod-
ule”, see [32, Definition 3.9].

Corollary 4.2.5. Let A ⊂ A and B ⊂ B be dense ∗-subalgebras, X an (A,B)-correspondence and

N :=
{
x ∈ X : 〈x, x〉

B
= 0

}
,

the radical of X . Assume that A is local. Then X/N can be completed into a C∗-correspondence
for (A,B).

Proof. By Proposition 4.2.3, A maps N into itself, so X/N becomes a nondegenerate (A,B)-
correspondence. Let X denote its completion as a right Hilbert C∗-module over B. Then applying
Proposition 4.2.3 once more, we deduce that the action of A on X/N is bounded with respect to
the C∗-module norm on X/N , and thus extends to an action of A on X by adjointable operators.
Since A ⊂ A is dense in the C∗-norm on A, another application of Proposition 4.2.3 shows that
the left A-module structure extends to a left A-module structure satisfying 〈ax, y〉 = 〈x, a∗y〉 for
all a ∈ A and x, y ∈ X. Hence X is a C∗-correspondence for (A,B). �

4.3. Induction of representations of C∗-algebras. For C∗-correspondences over a pair of C∗-
algebras (A,B) there is a far reaching theory of induced representations. Due to the Gelfand-
Naimark-Segal theorem, a C∗-algebra usually admits numerous Hilbert space representations. A
C∗-correspondence for (A,B) allows one to construct a representation of A given a representation of
B. In the case of group C∗-algebras, this gives a functorial correspondence between the associated
group representations.

4.3.1. The interior tensor product. Let A and B be C∗-algebras and X a C∗-correspondence for
(A,B). Then we can “induce” representations of B to A via X via the following tensor product
construction.

Proposition 4.3.2 ([21, Proposition 4.5]). Let X be a C∗-correspondence for (A,B) and π : B →
L(Vπ) a representation of B on a Hilbert space Vπ. Consider X⊗alg Vπ the algebraic tensor product
of vector spaces. The right sesquilinear form

(x⊗ v, x′ ⊗ v′) := 〈v, π(〈x, x′〉
B
)v′〉

Vπ
, (4.3.1)

is positive and its radical

Nπ :=
{
ξ ∈ X ⊗alg Vπ | (ξ, ξ) = 0

}

is equal to the balancing subspace spanned by elements of the form

xb⊗ v − x⊗ π(b)(v) (x ∈ X, v ∈ Vπ, b ∈ B).

The completion of (X ⊗alg Vπ)/Nπ with respect to the inner product (4.3.1) is a Hilbert space that
we denote by X⊗B Vπ and is commonly called is the internal tensor product of X and Vπ over
B.
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Proof. The proof of positivity is based on the fact that for x1, · · · , xn ∈ X the matrix ε :=
π(〈xi, xj)B)ij ∈Mn(L(V )) is a positive operator on V n, so that for ξ =

∑n
i=1 xi ⊗ vi we have

(ξ, ξ) = (v, ε · v) ≥ 0, v :=



v1
...
vn


 ∈ V n.

The fact that the radical coincides with the balancing subspace uses positivity of the matrix ε and
the fact the Mn(B) is again a C∗-algebra, so we can extract square roots. �

It can then be shown that that action

a(x⊗ v) := a·x⊗ v

of A on the space X ⊗ V gives rise to representation of A on the Hilbert space X ⊗B V which we
will denote

IndAB(X,π),

and refer to as the A-representation induced from π via X.

4.3.3. Functoriality of induction. The induction procedure that we described above is functorial
(see [32, Prop. 2.69]).

Proposition 4.3.4. Let A,B be two C∗-algebras and let X be a C∗-correspondence for (A,B).
Assume that the action of A on X is non-degenerate (i.e. A·X = X). Then the map

π 7→ IndAB(X,π)

is a functor from the category of non-degenerate representations of B with bounded intertwining
operators to the corresponding category of A, which at the level of morphisms takes the form

L(Vπ) ∋ T 7→ 1⊗ T ∈ L(X ⊗B Vπ).

It follows that induction respects unitary equivalence and direct sums.

4.3.5. Continuity of induction. Let C be a C∗-algebra. Given a ∗-representation π and a set of
representations S of C, we say that π is weakly contained in S (denoted π ≺ S) if

ker(π) ⊃
⋂

σ∈S

ker(σ). (4.3.2)

Let Rep(C) denote the collection11 of equivalence classes of all ∗-representations of C. This space
comes equipped with a second-countable topology (due to Fell) that is characterized as follows: a
net {Ti} of elements of Rep(C) converge to T if and only if T is weakly contained in every subnet
of {Ti}.

Let Ĉ denote the subset of irreducible elements of Rep(C). We call Ĉ the spectrum of C.

Relativized to Ĉ, closure in Fell topology agrees weak closure: a subset S ⊂ Ĉ is closed if and only

if S = {π ∈ Ĉ | π ≺ S}. In this case, the topology agrees with the pull-back of the hull-kernel
topology on the space of primitive ideals of C. See [5] for a discussion of these topologies.

We have the following continuity result (see [32, Prop. 2.72])

Proposition 4.3.6. Let A,B be two C∗-algebras and let X be a C∗-correspondence for (A,B).
Then the map

π 7→ IndAB(X,π)

is continuous with respect to the topologies on Rep(B) and on Rep(A).

11In order to ensure that the collection is a set, we actually fix a cardinal ℵ and consider ∗-representations on
Hilbert spaces of cardinality ≤ ℵ. For us, considering separable Hilbert spaces will suffice.
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4.4. Equivalence bimodules.

Definition 4.4.1. Let A ⊂ A and B ⊂ B be local subalgebras and X an algebraic (A,B)-bimodule
in the usual sense that the two actions commute. We call X an inner product bimodule if

(1) X is a left inner product A-module and a right inner product B-module,
(2) for all x, y ∈ X , a ∈ A and b ∈ B, we have

〈a·x, y〉
B
= 〈x, a∗·y〉

B A〈x·b, y〉 = A〈x, y·b
∗〉 (4.4.1)

(3) for all x, y, z ∈ X , we have

A〈x, y〉·z = x·〈y, z〉
B
. (4.4.2)

4.4.2. Strong Morita equivalence of C∗-algebras. Given an inner product bimodule X for local
subalgebras A ⊂ A and B ⊂ B, we obtain a norm on X for each of the inner products. The
following is well-known (see e.g. [32, Prop. 3.11]). We give the short proof here for the convenience
of the reader.

Proposition 4.4.3. Let A ⊂ A and B ⊂ B be local subalgebras and X an (A,B) inner product
bimodule. Then the norms

‖x‖A := ‖A〈x, x〉‖
1/2
A , ‖x‖B := ‖〈x, x〉B‖

1/2
B , (4.4.3)

on X are equal.

Proof. Using Definition 4.4.1 and the Cauchy-Schwartz inequality for Hilbert C∗-modules, we have
∥∥∥〈x, x〉

B

∥∥∥
2

B
=

∥∥∥〈x, x〉
B
〈x, x〉

B

∥∥∥
B
=

∥∥∥〈x, x·〈x, x〉
B
〉
B

∥∥∥
B
=

∥∥∥〈x,A〈x, x〉·x〉B
∥∥∥
B

≤
∥∥∥〈x, x〉

B

∥∥∥
1/2

B

∥∥∥〈A〈x, x〉·x,A〈x, x〉·x〉B
∥∥∥
1/2

B
,

for all x ∈ X . Applying Proposition 4.2.3 to the second factor in the last term, we conclude that
∥∥∥〈x, x〉

B

∥∥∥
2

B
≤

∥∥∥〈x, x〉
B

∥∥∥
1/2

B
‖A〈x, x〉‖A

∥∥∥〈x, x〉
B

∥∥∥
1/2

B
.

Cancelling a factor of
∥∥∥〈x, x〉

B

∥∥∥
B
gives us

∥∥∥〈x, x〉
B

∥∥∥
B
≤ ‖A〈x, x〉‖A. Swapping the roles of A and B,

we obtain the opposite inequality and obtain the desired equality of norms. �

Definition 4.4.4. Let A and B be C∗-algebras. A Hilbert C∗-bimodule for (A,B) is an inner
product bimodule is that is complete in the norms

‖x‖2A = ‖A〈x, x〉‖A = ‖x‖2B = ‖〈x, x〉
B
‖B .

A Hilbert C∗-bimodule for (A,B) is a (Morita) equivalence bimodule if both inner products
are full. Two C∗-algebras A and B are called strongly Morita equivalent if there exists an
(A,B) Morita equivalence bimodule X.

While for unital C∗-algebras A and B, this notion coincides with classical Morita equivalence as
rings, in general, it is stronger than the classical notion (hence the name).

4.5. We have the notion of “dual” of an (A,B)-inner product bimodule. This is a (B,A)-inner
product bimodule.

Definition 4.5.1. Let X be an (A,B)-inner product bimodule and X ∗ its conjugate vector space.
By definition, we have an anti-linear bijection β : X → X ∗ such that β(λ·x) = λ·β(x) for every
x ∈ X and λ ∈ C a complex scalar. The dual module of X is X ∗ equipped with the following
(B,A)-inner product bimodule structure

b·β(x) := β(x·b∗), B〈β(x), β(y)〉 := 〈x, y〉B,

β(x)·a := β(a∗·x), 〈β(x), β(y)〉
A
:= A〈x, y〉.
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If X is an (A,B)-equivalence bimodule, then dual module X∗ is a (B,A)-equivalence bimodule.
In fact there are isomorphisms of interior tensor products

X ⊗B X
∗ ≃ A, X∗ ⊗A X ≃ B,

as (A,A) and (B,B) C∗-bimodules, respectively. It follows that the induction functors associated
to X and to X∗ are inverses to each other. Thus the categories of representations of A and B are
equivalent.

4.6. Given a two-sided closed ideal J of B, the space XJ given by the closure of the linear span of
all x·b with x ∈ X and b ∈ J forms an (I-J)-equivalence bimodule where I is the two-sided closed
ideal of A given by the closure of the linear span of all A〈x·b, y〉 with x, y ∈ X and b ∈ J . We will
view this association as an induction of ideals implemented by X and accordingly denote I by

IndAB(X,J).

It is well-known (see [32, Props. 3.24 and 3.25]) that the map J 7→ IndAB(X,J) sets up a bijection
between the two-sided closed ideals of B and A which respects inclusion of ideals (thus, it identifies
the “lattices of ideals” of B and A). Moreover, the induction of ideals is compatible with the
induction of representations, that is, if π is a representation of B, then

IndAB(X, ker(π)) = ker(IndAB(X,π)).

4.7. Lastly, we observe that any Hilbert C∗-bimodule induces a Morita equivalence between certain
associated C∗-algebras. Suppose that X is a Hilbert C∗-bimodule for (A,B). The sets

IX = A〈X,X〉 := span {A〈x, y〉 : x, y ∈ X} ⊂ A,

JX = 〈X,X〉B := span {〈x, y〉B : x, y ∈ X} ⊂ B,

form closed two-sided ideals (in particular, C∗-subalgebras) of A and B respectively. Since X is an
(A,B) Hilbert C∗-bimodule and the inner products in fact take their values in the ideals IX ⊂ A
and JX ⊂ B, we can view X as Hilbert C∗-bimodule over (IX , JX). By construction, the inner
products are now full so X is a Morita equivalence bimodule for (IX , JX). We now summarise our
findings for future reference.

Proposition 4.7.1. Let A and B be C∗-algebras and A ⊂ A and B ⊂ B local subalgebras. Suppose
that X is a nondegenerate (A,B) inner product bimodule and denote by X the completion of X
in the norm (4.4.3). Then X is an (A,B) Hilbert C∗-bimodule and hence a Morita equivalence
bimodule for the pair of ideals (IX , JX ).

5. The oscillator bimodule

We consider the smooth oscillator representation ω of G × H realized on the space of smooth
vectors that will denote by S. In this section we will equip S with the structure of an (S(G),S(H))
inner product bimodule in the sense of Definition 4.4.1. We will then use Proposition 4.7.1 to
complete S into a C∗-bimodule for (C∗

r (G), C
∗
r (H)).

5.1. Matrix coefficients. Matrix coefficients of the oscillator representation are critical to our
construction. So we start by recording a well-known fast decay property that our equal rank case
enjoys.

Proposition 5.1.1. For all x, y ∈ S, the matrix coefficient functions

g 7→ 〈x, ω(g)(y)〉, h 7→ 〈x, ω(h)(y)〉,

belong to the Schwartz algebras S(G),S(H) of G and H respectively.
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Proof. This is well-known to the experts. It follows from the matrix coefficient estimates of Li
(see Cor. 3.4 and proof of Thm 3.2 in [23]). See also Prop. 3.1.1 of [36] (where G2 denotes the
“smaller” group of the dual pair and hence applies to both groups in our equal rank case). The
same observation is made in [20, Lemma 7.4] for the case of real unitary groups. �

Observe that in particular, the oscillator representation, when restricted to G or H, is tempered
(see Section 3.2).

5.2. Right inner product module structure. We equip S with a right S(H)-module structure
as follows: for x ∈ S

x·b :=

∫

H
b(h)ω(h−1)(x) dh, b ∈ S(H). (5.2.1)

Note that x·b is well-defined and belongs to S. Next, we equip S with an S(H)-valued right linear
form

〈x, y〉H(h) := 〈x, ω(h)(y)〉, x, y ∈ S, h ∈ H (5.2.2)

It is easy to check that this form is Hermitian (i.e. 〈x, y〉
H
∗ = 〈y, x〉

H
) and compatible with the

right S(H)-module structure given above (i.e. 〈x, y·b〉
H
= 〈x, y〉

H
b).

Proposition 5.2.1. Equipped with the right module structure (5.2.1) and the form (5.2.2), the
space S becomes a nondegenerate right inner product module over S(H).

Proof. We just need to prove that the form 〈·, ·〉
H

is positive definite, that is, for any x ∈ S, we

have 〈x, x〉
H
≥ 0 as an element of the C∗-algebra C∗

r (H) and that 〈x, x〉
H
= 0 only when x = 0.

The latter is clear. To show the former, it is enough to show that given an injective representation
Π of C∗

r (H), the operator Π(〈ϕ,ϕ〉
H
) is positive for every ϕ ∈ S. If we prove that π(〈ϕ,ϕ〉

H
) is

positive for every π in the spectrum of C∗
r (H), then we will be done by considering representation

Π =
⊕

π∈ ̂C∗(H)r

π

which is injective. Therefore it suffices to prove that

π(〈x, x〉
H
) ≥ 0

as an operator on Vπ for every π in the spectrum of C∗
r (H).

〈v, π(〈x, x〉
H
)v〉 =

∫

H
〈x, ω(h)(x)〉〈v, πh(v)〉dh.

Let x, x′ ∈ S and consider the operator π(〈x, x′〉
H
) on Vπ. This operator is determined by the

bilinear form 〈
v, π(〈x, x′〉

H
)(v′)

〉
≥ 0

for v, v′ ∈ Vπ. We unfold the left hand side
〈
v, π(〈x, x′〉

H
)(v′)

〉
=

〈
v,

∫

H
〈x, x′〉

H
(h)πh(v

′)dh

〉
(5.2.3)

=

∫

H
〈x, x′〉

H
(h)〈v, πh(v

′)〉dh (5.2.4)

=

∫

H
〈x, ω(h)(x′)〉〈v, πh(v

′)〉dh (5.2.5)

= (x⊗v, x′⊗v′)π (5.2.6)

where (·, ·)π is the Hermitian form on ω⊗ π (see 2.3.1). The latter is non-negative thanks to Prop.
2.4.1. Therefore, we conclude that for x ∈ S and v ∈ Vπ we have

〈v, π(〈x, x〉H )v〉 = (x⊗v, x⊗v)π ≥ 0,
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which implies that 〈x, x〉H ≥ 0 in C∗
r (H). Now suppose 〈x, x〉H = 0, so that

〈ω(h)x, x〉 = 0, ∀h ∈ H.

Then in particular, for h = e we find that 〈x, x〉 = 0, so that x = 0 in the oscillator representation.
Since S injects into the oscillator representation, we conclude that x = 0 in S. �

5.3. Left inner product module structure. We will show that Θ can also be obtained by
equipping S with a left S(G) inner product module structure. As before, we first equip S with a
left S(G)-module structure: for x ∈ S

a·x := ω(a)(x) =

∫

G
a(g)ω(g)(x) dg, a ∈ S(G). (5.3.1)

Notice that a·x is well-defined and belongs to S since ω, as a G-representation, is tempered (as
evidenced by Prop. 5.1.1). Next, we equip S with an S(G)-valued left linear form

G〈x, y〉(g) := 〈ω(g)(y), x〉, x, y ∈ S, g ∈ G (5.3.2)

It is straight-forward to check that this S(G)-valued form is Hermitian and compatible with the
left S(G)-module structure given above.

Proposition 5.3.1. Equipped with the left module structure (5.3.1) and the form (5.3.2), the space
S becomes a nondegenerate left inner product module over S(G).

Proof. We just need to prove that the form G〈·, ·〉 is positive definite. It suffices to prove that
π(G〈x, x〉) is positive as an operator on Vπ for every π in the spectrum of C∗

r (G).

Given v ∈ π, we have seen in the said proof that
〈
v, π(G〈x, x〉)(v)

〉
equals (x⊗ v, x⊗ v)π on

ω ⊗ π. Positivity again follows from Prop. 2.4.1. �

5.4. Key compatibility property. In fact S is an inner product bimodule for (S(G),S(H)) in
the sense of Definition 4.4.1. We will prove the following compatibility between the two inner
products: for x, y, z ∈ S

G〈x, y〉·z = x·〈y, z〉
H

(5.4.1)

A convenient reformulation is as follows, for x, y, z, u ∈ S,
〈
G〈x, y〉·z, u

〉
=

〈
x·〈y, z〉

H
, u

〉

Unfolding two sides, we obtain

〈
G〈x, y〉·z, u

〉
=

〈∫

G
G〈x, y〉(g) ω(g)(z)dg, u

〉
=

∫

G
〈x, ω(g)(y)〉〈u, ω(g)(z)〉dg

and
〈
x·〈y, z〉

H
, u

〉
=

〈∫

H
〈y, z〉

H
(h) ω(h−1)(x)dh, u

〉
=

∫

H
〈y, ω(h)(z)〉〈x, ω(h)(u)〉dh

Thus we arrive at the formulation∫

G
〈x, ω(g)(y)〉〈u, ω(g)(z)〉dg =

∫

H
〈x, ω(h)(u)〉〈y, ω(h)(z)〉dh. (5.4.2)

Proposition 5.4.1. Equation (5.4.2), and hence (5.4.1), hold for any x, y, z ∈ S.

Proof. Let ω denote the complex conjugate representation of ω. Consider the maps

PG, PH : ω ⊗ ω ⊗ ω ⊗ ω → C,

given by

PG
(
x⊗ z̄ ⊗ y ⊗ ū

)
:=

∫

G
〈x, ω(g)(y)〉〈u, ω(g)(z)〉dg,
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PH
(
x⊗ z̄ ⊗ y ⊗ ū

)
:=

∫

H
〈x, ω(h)(u)〉〈y, ω(h)(z)〉dh.

Straight-forward calculations show that

PG, PH ∈ HomH×(G×G)

(
(ω ⊗ ω)⊗ (ω ⊗ ω) ,C

)

where we consider ω ⊗ ω with the diagonal action of H and with the natural action of G×G.
Now let W = W + (−W ) where −W denotes the space W with the form −〈·, ·〉W . We have an

oscillator representation ω of H ×G(W) which satisfies12 (see [8, Section 4]))

ω ⊗ (ω ⊗ χV ) ≃ ω

as G×G-representations. Here we embed G(W )×G(−W ) in G(W) and identify G(−W ) = G(W ).
In Section 17 of [8], Gan and Ichino introduce two forms

I, E ∈ HomH×(G×G)(ω ⊗ ω ⊗ χ̄V ⊗ χV ,C).

Note that roles of G and H in their Section 17 have to be swapped, as we did in the previous display
and below, in order to make it compatible with ours.

Remarkably, our forms PG and PH are essentially equal to the forms I and E of Gan and Ichino.
To see this, observe that for x, y, z, u ∈ S, we have

I(x⊗ z, y ⊗ u) =

∫

G
〈ω(g)(x), y〉〈ω(g)(z), u〉dg

=

∫

G
〈x, ω(g−1)(y)〉〈z, ω(g−1)(u)〉dg

=

∫

G
〈x, ω(g)(y)〉〈z, ω(g)(u)〉dg

= PG(x⊗ u⊗ y ⊗ z)

(for the first equality, see the middle of page 593 of [8], plug in g = g′ = e and swap G with H).
Moreover, we have (plugging in g = g′ = e, and swapping G with H, in line 7 of p 594 of [8]):

E(x⊗ z, y ⊗ u) =

∫

H
Fx⊗z̄(i(h, 1))Fy⊗ū(i(h, 1))dh

where by definition (see top of page 587 of [8]) we have

Fφ⊗ψ̄(i(h, 1)) = 〈ω(h)(φ), ψ〉, h ∈ H, φ, ψ ∈ S.

So plugging this in, we have

E(x⊗ z, y ⊗ u) =

∫

H
〈ω(h)(x), z〉〈ω(h)(y), u〉dh

=

∫

H
〈x, ω(h−1)(z)〉〈y, ω(h−1)(u)〉dh

=

∫

H
〈x, ω(h)(z)〉〈y, ω(h)(u)〉dh

= PH(x⊗ u⊗ y ⊗ z).

Gan and Ichino prove ([8, Thm. 17.2]) that the space HomG×H×H(ω ⊗ ω ⊗ χ̄V ⊗ χV ,C) is one
dimensional, so that I and E are proportional. The proportionality constant depends on the choice
of Haar measures on G and H. For a specific choice of Haar measures ([8, Section 20.1], Gan and
Ichino calculate that C = 1 in the unitary/unitary case, and in the metaplectic/orthogonal case,

12Recall that χV is one of the two auxillary characters of E× that we fixed at the very beginning to make sure
that the oscillator representation factors through G ×H .
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C = 2 or C = 1/2 depending on ε (see [8, Thm. 20.1]). Scaling the Haar measure they use by a
factor of 1/2 or 2, we make C = 1 in the metaplectic/orthogonal case. This gives us

PG(x⊗ u⊗ y ⊗ z) = I(x⊗ z, y ⊗ u) = E(x⊗ z, y ⊗ u) = PG(x⊗ u⊗ y ⊗ z)

as desired. �

Putting together Propositions 5.2.1, 5.3.1 and 5.4.1 togethe with Proposition 4.7.1 gives us the
following.

Theorem 5.4.2. The space S is a nondegenerate inner product bimodule for (S(G),S(H)). Its
C∗-module completion is a Hilbert C∗-bimodule for (C∗

r (G), C
∗
r (H)).

We will denote this Hilbert C∗-module by Θ and will call it the oscillator bimodule as an
homage to Rieffel’s Heisenberg module.

6. The θ-subalgebras and induced representations

6.1. Truncation. We will now apply the final statement of Proposition 4.7.1 to make Θ into an
equivalence bimodule for the ideals C∗

θ (G) ⊂ C
∗
r (G) and C

∗
θ (H) ⊂ C∗

r (H) generated by the span of
the left- and right inner products, respectively. We will then analyse their spectra in terms of the
local theta correspondence.

6.1.1. Truncate C∗
r (H). The linear span of the range of 〈·, ·〉

H
is a two-sided ideal of S(H). Let us

denote this linear span by 〈S,S〉
H
. Consider its C∗-closure

C∗
θ (H) := 〈S,S〉

H

C∗

r (H)
. (6.1.1)

Thus C∗
θ (H) is closed two-sided ideal of C∗

r (H).

Proposition 6.1.2. The spectrum of C∗
θ (H) can be identified with tempered irreducible represen-

tations π of H for which θ(π) 6= 0.

Proof. Basic theory tells us that the spectrum of C∗
θ (H) is simply the subset of the spectrum of

C∗
r (H) made precisely of those elements which do not vanish on C∗

θ (H).
Let π be a tempered irreducible representation of H (in other words, an elements of the spectrum

of C∗
r (H)). Observe that π vanishes on C∗

θ (H) if and only if it vanishes on the range of 〈·, ·〉
H
, thanks

to density of the latter in the former. Let x, x′ ∈ S. Then π(〈x, x′〉
H
) is the zero operator on Vπ if

and only if 〈
v, π(〈x, x′〉

H
)(v′)

〉
= 0

for all v, v′ ∈ Vπ. We unfold the left hand side
〈
v, π(〈x, x′〉

H
)(v′)

〉
=

〈
v,

∫

H
〈x, x′〉

H
(h)πh(v

′)dh

〉
(6.1.2)

=

∫

H
〈x, x′〉

H
(h)〈v, πh(v

′)〉dh (6.1.3)

=

∫

H
〈x, ω(h)(x′)〉〈v, πh(v

′)〉dh (6.1.4)

= (x⊗v, x′⊗v′)π (6.1.5)

where (·, ·)π is the Hermitian form on ω⊗ π (see 2.3.1). Therefore, we conclude that π vanishes on
C∗
θ (H) if and only the form (·, ·)π, hence L(π) is zero. However, by Prop. 2.4.1, L(π) is isomorphic

to θ(π∗) = Θ(π∗). The claim now follows from the fact that Θ(π∗) is non-zero if and only if Θ(π)
is non-zero, an immediate corollary of Lemma 6.1 of [8]. �
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6.1.3. Truncate C∗
r (G). The linear span of the range of G〈S,S〉 is a two-sided ideal of S(G). Con-

sider its C∗-closure

C∗
θ (G) := G〈S,S〉

C∗

r (G)
. (6.1.6)

Then C∗
θ (G) is a closed two-sided ideal of C∗

r (G), and hence is a C∗-subalgebra.

Proposition 6.1.4. The spectrum of C∗
θ (G) can be identified with tempered irreducible (necessarily

genuine) representations π of G for which θ(π) 6= 0.

Proof. The proof is the same as that of Prop. 6.1.2. Given tempered irreducible representation π
of G, x, x′ ∈ S and v, v′ ∈ π, we observe that

〈
v, π(G〈x, x

′〉)(v′)
〉
=

∫

G
〈ωg(x), x

′〉〈v, πg(v
′)〉dg =

∫

G
〈x, ωg(x′)〉〈v, πg(v

′)〉dg. (6.1.7)

This is the conjugate of the Hermitian form (·, ·)π on ω ⊗ π (see 2.3.1) where π is the conjugate
representation on Vπ. Therefore, we conclude that π vanishes on C∗

θ (G) if and only if (·, ·)π, hence
(·, ·)π, is zero. The claim now follows from Prop. 2.4.1 as explained in the proof of Prop. 6.1.2. �

6.2. The induced G-representation. Consider the action of G on S via the oscillator represen-
tation. As the action of G and H commute, the G-action preserves the C∗

θ (H)-valued inner product
〈·, ·〉

H
on S, that is

〈ω(g)x, ω(g)y〉H = 〈x, y〉H , x, y ∈ S.

It follows that ‖ω(g)‖End∗(Θ) = 1, so ω(g) can be extended to a unitary operator on all of Θ.
Now, given an irreducible representation of C∗

θ (H), in other words, a tempered irreducible repre-
sentation (π, Vπ) of H with θ(π) 6= 0, consider Θ⊗C∗

θ
(H) Vπ = Θ⊗C∗

r (H) Vπ. Following the previous

paragraph, G acts on Θ⊗C∗

θ
(H) Vπ via the formula

g · (x⊗ v) := ω(g)(x) ⊗ v

where g ∈ G, x ∈ Θ and v ∈ Vπ. Recall from Section 4.3 that the space Θ ⊗C∗

θ
(H) Vπ comes

equipped with a positive Hermitian form
(
x⊗ v, x′ ⊗ v′

)
:=

〈
v, π(〈x, x′〉

B
)(v′)

〉
Vπ
. (6.2.1)

As the action of G commutes with that of C∗
θ (H) on Θ, the above form and also its radical are

preserved under the action of G and we obtain a unitary representation of G on the Hilbert space
Θ⊗C∗

θ
(H) Vπ which we will denote

IndGH(Θ, π).

Proposition 6.2.1. The unitary representation IndGH(Θ, π) of G is precisely the unitarization of
θ(π∗).

Proof. By Prop. 2.4.1, we can replace θ(π∗) by L(π). Consider the map

W : S⊗ V∞
π −→ Θ⊗C∗

θ
(H) Vπ

sending
x⊗ v 7→ x⊗C∗

θ
(H) v

where we view S as a dense subspace of Θ.
As we have already observed in the proof of Prop. 6.1.2, we have

(
x⊗ v, x′ ⊗ v′

)
π
=

∫

H
〈ω(h)(x), x′〉〈π(h)(v), v′〉Vπdh =

〈
v, π(〈x, x′〉

B
)(v′)

〉
Vπ
.

Thus the map W preserves the forms on the two sides. Therefore, the kernel of W is precisely the
radical N of (·, ·)π, so that W descends to a linear embedding

(S⊗ V∞
π ) /N →֒ Θ⊗C∗

θ
(H) Vπ,
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giving us the desired injective G-intertwiner. �

We summarize our results.

Theorem 6.2.2. The oscillator bimodule Θ is an equivalence (C∗
θ (G), C

∗
θ (H))-bimodule. Moreover,

the associated induction map

π 7→ Ind
C∗

θ
(G)

C∗

θ
(H)(Θ, π)

captures the tempered local theta correspondence in the sense that if π is a tempered irreducible

representation of H then Ind
C∗

θ
(G)

C∗

θ
(H)(Θ, π) is (the integrated form of) the unitarization of θ(π∗).

Proof. The Morita equivalence statement follows from Propositions 4.7.1 and 5.4.2. For the in-
duction part, let π be a tempered irreducible representation of H. Recall that π belongs to the
spectrum of C∗

θ (H) (i.e. π restricted to C∗
θ (H) is not zero) if and only if θ(π) 6= 0. If θ(π) = 0 then

π(C∗
θ (H)) = 0 and hence Ind

C∗

θ
(G)

C∗

θ
(H)(Θ, π) = 0. So we can assume that θ(π) 6= 0. We have seen in

Prop. 6.2.1 that the G-representation IndGH(Θ, π) is the unitarization of θ(π∗). It is clear that the

C∗
θ (G)-representation Ind

C∗

θ
(G)

C∗

θ
(H)(Θ, π) is nothing but the integrated form of IndGH(Θ, π). Therefore,

the induction of representations of C∗
θ (H) to C∗

θ (G) implemented via Θ captures the local theta
correspondence as claimed. �

6.3. Functoriality. The induction of representations implemented by Θ establishes an equiva-
lence between the categories of representations of the ideal C∗

θ (G) of C
∗
r (G) and of the ideal C∗

θ (H)
of C∗

r (H). Recall that the spectra of C∗
θ (G) and C∗

θ (H) capture those tempered irreducible rep-
resentations of G and H which enter the theta correspondence and that the induction map, once
restricted to the irreducible representations, capture the theta correspondence. Therefore the theta
correspondence is functorial.

6.4. Continuity. The spectra of C∗
θ (G) and C

∗
θ (H) are homeomorphic. Thus the tempered theta

correspondence is a homeomorphism with respect to weak containment of representations.

6.5. Support of the oscillator representation. In this section, we make some elementary ob-
servations regarding the role played by the oscillator representation in our picture of the theta
correspondence. Recall that the oscillator representation in our equal rank case is tempered both
as a G-representation and an H-representation. We first show that the induction functor associated
to the oscillator bimodule, when viewed as a (C∗

r (G), C
∗
r (H))-correspondence, sends the regular rep-

resentation of H to the oscillator representation (viewed as a representation of G). Using this, we
show that C∗

θ (G) sits as an essential ideal in C∗
ω(G). Next we prove that the closure of the set of

tempered representations that enter the theta correspondence equal the support of the oscillator
representation.

Proposition 6.5.1. Denote by (ω, Vω) the oscillator representation and by (ρ, L2(H)) the left
regular representation of H. The map

UΘ : S⊗alg
S(H) S(H)→ S

x⊗ f 7→ x · f,

extends to a G-equivariant unitary isomorphism

UΘ : Θ⊗C∗
r (H) L

2(H)→ Vω.

Proof. The map UΘ has dense range because the oscillator representation is H-essential. It thus
suffices to show that it is an isometry. This is established by the following calculation.

〈UΘ(x⊗ f),UΘ(y ⊗ g)〉 = 〈x · f, y · g〉 =

∫

H

∫

H
〈ω(s)f(s−1)x, ω(t)g(t−1)y〉dsdt
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=

∫

H

∫

H
〈f(s−1)x, ω(t)g(t−1s−1)y〉dsdt =

∫

H

∫

H
〈f(s)x, ω(t)g(t−1s)y〉dsdt

=

∫

H

∫

H
f(s)〈x, ω(t)y〉g(t−1s)dsdt =

∫

H

∫

H
f(s)〈x, ω(t)y〉(ρ(t)g)(s)dsdt

=

∫

H
f(s)ρ(〈x, y〉Θ)g(s)dsdt = 〈f, ρ(〈x, y〉Θ)g〉L2(H).

The G-equivariance now follows since UΘ(gx⊗ f) = (gx) · f = g(x · f) = g(UΘ(x⊗ f)). �

In accordance with the notation we introduced in Section 3.1, let C∗
ω(G) denote the image of

C∗(G) under the oscillator representation ω.

Corollary 6.5.2. Denote by LΘ : C∗
r (G) → End∗(Θ) the ∗-homomorphism determined by the

left module action. We have kerLΘ = kerω and C∗
θ (G) embeds into C∗

ω(G) as a closed two sided

essential ideal. In particular the support of ω contains Ĉ∗
θ (G).

Proof. The regular representation is faithful, so we have an injection

End∗(Θ)→ B(Θ⊗C∗
r (H) L

2(H)) ≃ B(Vω).

Moreover this injection is compatible with the C∗
r (G) representation on both sides. Therefore the

image of LΘ is equal to C∗
ω(G). Since Θ carries a left C∗

θ (G)-valued inner product, we obtain an

injection C∗
θ (G) → C∗

ω(G). In particular kerω ∩ C∗
θ (G) = 0 and kerω ⊂ C∗

θ (G)
⊥, where the latter

denotes the annihilator of C∗
θ (G).

For b ∈ C∗
r (G) and x ∈ S we have b · x ∈ Θ ∩ Vω since b can be approximated in norm by a

sequence bn ∈ S(H), so that bn · x → b · x in both Vω and Θ. For b ∈ C∗
θ (G)

⊥ and x ∈ S we have
0 = b∗ G〈x, x〉b = G〈b · x, b · x·〉. Since the left C

∗
r (G)-valued inner product is nondegenerate we find

that b · x = 0 ∈ Vω ∩Θ and since S is dense in Vω we have b ∈ kerω. The statement follows. �

Recall that the closure of Ĉ∗
θ (G) in the tempered dual of G is the set of those irreducible repre-

sentations of G which are weakly contained in Ĉ∗
θ (G).

Lemma 6.5.3. The oscillator representation ω is contained in the closure of Ĉ∗
θ (G).

Proof. We need to show that (see (4.3.2))
⋂

π∈Ĉ∗

θ
(G)

kerπ ⊂ kerω.

Let b ∈
⋂
π∈Ĉ∗

θ
(G)

kerπ, x ∈ S and consider b · x ∈ Θ ∩ Vω. Then for all π ∈ Ĉ∗
θ (G) we have

π(G〈b · x, b · x〉) = π(b∗)π(G〈x, x〉)π(b) = 0,

so it follows that G〈b · x, b · x〉 = 0 ∈ C∗
θ (G). Therefore b · x = 0 for all x ∈ S, that is b ∈ kerω. �

Corollary 6.5.4. The closure of Ĉ∗
θ (G) in the tempered dual of G equals the support of the oscillator

representation ω.

Proof. Note that the support of ω is simply the closure of the singleton {ω}. Thus Lemma 6.5.3

gives us that the support of ω is contained in the closure of Ĉ∗
r (G). The converse containment is

given by Corollary 6.5.2. �

The above corollary is known; it follows alternatively from Thm. 3.0.2 of Sakellaridis’ paper [36]
(see his Remark 3.0.3).
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7. Application: transfer of characters

Let π be an irreducible representation of C∗
θ (H). Let us abbreviate, temporarily, Ind

C∗

θ
(G)

C∗

θ
(H)(Θ, π)

as Ind(π) for convenience so that VInd(π) = Θ⊗C∗

θ
(H) Vπ. Consider the map

T : Θ→ L(Vπ, VInd(π)), T (x)(v) := x⊗ v

for x ∈ Θ and v ∈ Vπ. The map T is linear and satisfies13 (see e.g. [42, Lemma 2.6])

T (a·x·b) = Ind(π)(a) T (x) π(b).

Moreover, we have T (x)∗(y ⊗ w) = π(〈x, y〉
H
)(w) and

T (x)∗T (y) = π(〈x, y〉
H
), T (y)T (x)∗ = Ind(π)(G〈y, x〉). (7.0.1)

To see the latter, observe that

T (y)T (x)∗(z ⊗ w) = y ⊗ π(〈x, z〉
H
))(w) = y·〈x, z〉

H
⊗ w = G〈y, x〉·z ⊗ w = Ind(π)(G〈y, x〉)(z ⊗ w).

Recall that the elements 〈x, y〉
H

and G〈y, x〉 lie in the Schwartz algebras of H and G respectively.

As both π and Ind(π) are tempered, the operators π(〈x, y〉
H
) and Ind(π)(G〈y, x〉) are of trace class.

Lemma 7.0.1. Let x, y ∈ S. We have

tr π(〈x, y〉
H
) = tr Ind(π)(G〈x, y〉).

Proof. The case where x = y can be found in [1, Cor. 5]: it follows directly from (7.0.1) together
with the fact that the traces of the operators SS∗ and S∗S are the same for any S ∈ L(Vπ, VInd(π)).
For the case x 6= y, one uses the polarization identity

4〈x, y〉
H
=

3∑

k=0

ik〈x+ iky, x+ iky〉
H

to reduce to the case where x = y. �

Now recall that θ(π) = Ind(π∗) so that for every x, y ∈ S, we have

tr π∗(〈x, y〉
H
) = tr θ(π)(G〈x, y〉).

Observing that π∗(〈x, y〉
H
) = π(〈x, y〉

H
) = π(〈y, x〉

H
), we obtain the following corollary where we

use the terminology of the Section 1.2.1.

Corollary 7.0.2. Let π be a tempered irreducible representation of H that enters the theta cor-
respondence. Given x, y ∈ S, let 〈x, y〉

H
∈ S(H) and G〈x, y〉 ∈ S(G) be the matrix coefficient

functions defined earlier in (5.2.2) and (5.3.2). We have

ch(θ(π))(G〈x, y〉) = ch(π)(〈y, x〉
H
).

The above result has been recently announced by Wee Teck Gan [11, 12]. While his proof seems
different than ours, it can be said that it philosophically agrees with ours in that matrix coefficients
of the oscillator representation play a central role.

13We are essentially considering the C∗-counterpart of HomG×H(ω, π⊗θ(π∗)). The intertwiner space
HomG×H(ω, π⊗θ(π)) is well-known to be one dimensional.
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8. Application: preservation of formal degrees

In equal rank local theta correspondence, discrete series representations are sent to discrete series
representations, see [7]. In this section, we will reprove a well-known result of Gan and Ichino about
the preservation of formal degrees of discrete series. The main point of interest will be our method
which will feature K-theory and transfer of trace maps.

Let (G,H) be an equal rank dual pair as in Section 2. We will assume in this section that in the
metaplectic-orthogonal case, H denotes the orthogonal group O(V ).

Recall that an irreducible unitary representation of H is called discrete series if its matrix
coefficients lie in L2(H)14. The formal degree of a discrete series representation π of, say, H if the
positive real number deg(π) such that

∫

H
〈v, π(h)(v′)〉〈w, π(h)(w′)〉dh =

1

deg(π)
〈v,w〉〈v′, w′〉

for all v, v′, w,w′ ∈ Vπ. Note that the formal degree depends on the chosen Haar measure dh. Gan
and Ichino proved in [8] there exist a choice of Haar measures on G and on H such that for every
discrete series representation π of H which enters the theta correspondence, we have

deg(π) = deg(θ(π)). (8.0.1)

8.1. K-theory. Given a unital complex algebra C, one defines the abelian group K0(C) as the
group of (formal differences of) Murray-von Neumann equivalence classes of idempotents in

M∞(C) := lim−→
n

Mn(C).

When C is C∗-algebra, we can alternatively describeK0(C) using (homotopy classes of) projections
instead of idempotents. For a non-unital complex algebra C, one defines K0(C) as the kernel of
map

K0(C̃)→ K0(C) ≃ Z

induced by the natural map C+ → C where C+ is the minimal unitization of C.
Note that K0 of a C∗-algebra is a naturally ordered group.

8.2. Discrete series and K-theory. Let π be a discrete series representation of H such that
θ(π) 6= 0, so that π belongs to the spectrum of C∗

θ (H). In order to show that π defines an element
in K∗(C

∗
θ (H)), we need the following lemma.

Lemma 8.2.1. The singleton {π} is a clopen (closed and open) subset of the spectrum of C∗
θ (H).

Proof. In case (G,H) is a unitary dual pair, H is a connected reductive p-adic group with compact
center, and the Plancherel formula of Harish-Chandra is well-known to imply that {π} is clopen in

the whole tempered dual Ĥtemp of H for every discrete series representation. Since the topology of

Ĉ∗
θ (H) is simply the subspace topology inherited from Ĥtemp, the point {π} is clopen in Ĉ∗

θ (H) as
well.

Let us now consider the case (G,H) = (Mp2n, O2n+1), so that H = O(V ) with V odd dimen-
sional. We have O(V ) ≃ SO(V )×{±1}. The restriction map gives us a 2-to-1 surjection from the
tempered dual of O(V ) to that of SO(V ). Restriction of π to SO(V ), say σ, is again a discrete
series representation and the Plancherel formula argument above tells us that {σ} is clopen in the
tempered dual of SO(V ). As the restriction map is continuous ([5, Lemma 1.11]), the preimage of
{σ} is clopen in the tempered dual of O(V ). It is well-known ([7, Prop. 6.3]) that in this preimage,
which has size two, only π enters the theta correspondence. Therefore this preimage, which is
clopen, intersects the spectrum of C∗

θ (H) only in the singleton {π} giving us the claim. �

14Recall that H is unimodular.
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The fact that {π} is a clopen subset of the spectrum of C∗
θ (H) implies that the closed two-sided

ideal ker(π) (here π is restricted to C∗
θ (H)) is complemented (see [38]):

C∗
θ (H) ≃ ker(π)⊕ Jπ,

where Jπ is the closed two-sided ideal

Jπ :=
⋂

σ∈Ĉ∗

θ
(H)

σ 6=π

ker(σ),

and the sum is a direct sum of C∗-algebras.

Lemma 8.2.2. Any discrete series representation π of H defines a class [π] ∈ K0(C
∗
θ (H)) of

infinite order.

Proof. Recall that π : C∗
r (H) → K(Vπ) is surjective15. Since its restriction to C∗

θ (H) is non-zero
and K(Vπ) is simple, we conclude that π : C∗

θ (H)→ K(Vπ) is still surjective. It follows that

Jπ ≃ C
∗
θ (H)/ker(π) ≃ K(Vπ).

As Jπ is a direct summand, the injection Jπ →֒ C∗
θ (H) leads to an injection

ι : K0(Jπ)→ K0(C
∗
θ (H)).

Since K0(K(Vπ)) ≃ Z, we conclude that there is a copy of Z in K0(C
∗
θ (H)) that is contributed by π.

We fix the positive generator [π] of K0(Jπ) ≃ Z and call it “the class associated to π” viewing
it inside K0(C

∗
θ (H)). �

Now, we can use the oscillator bimodule to induce ideals as well (see Section 4.6), leading to
an isomorphism of the lattices of ideal of A and B. Consider the discrete series representation
θ(π∗) of G. As θ(π∗) belongs to the spectrum of C∗

θ (G), and the spectra of C∗
θ (G) and C

∗
θ (H) are

homeomorphic, we deduce that {θ(π∗)} is isolated in Ĉ∗
θ (G). It follows from the previous paragraph

that we have a direct sum of C∗-algebras

C∗
θ (G) ≃ ker(θ(π∗))⊕ Jθ(π∗)

with

Jθ(π∗) :=
⋂

σ∈Ĉ∗

θ
(G)

σ 6=θ(π∗)

ker(σ).

As the induction of ideals is compatible with the induction of representations, for any σ ∈ Ĉ∗
θ (H),

we have that

Ind
C∗

θ
(G)

C∗

θ
(H)(Θ, ker(σ)) = ker(Ind

C∗

θ
(G)

C∗

θ
(H)(Θ, σ)).

It follows that

Ind(Θ, ker(π)) = ker(θ(π∗)), Ind(Θ, Jπ) = Jθ(π∗). (8.2.1)

A (C,D)-equivalence bimodule X gives rise to an isomorphism of K-groups (see, for example,
Prop. 2.4 and the paragraph following that in [34] for the unital case):

ΨX : K0(C)
≃
−−−→ K0(D)

15This is true for any irreducible unitary representation of H since H is a ‘CCR group’.
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as ordered groups. Assuming the set-up of the above paragraph, Θπ := ΘJπ is a (Jθ(π∗), Jπ)-
equivalence bimodule. We are led to below commutative diagram

K0(Jθ(π∗))

ΨΘπ≃

��

�

� ι
// K0(C

∗
θ (G))

ΨΘ≃

��

K0(Jπ)
�

� ι
// K0(C

∗
θ (H))

(8.2.2)

Lemma 8.2.3. Let π be a discrete series representation of H such that θ(π) 6= 0. Then the class
of θ(π∗) in K0(C

∗
θ (G)) is taken to the class of π in K0(C

∗
θ (H)) under the map ΨΘ.

Proof. As ΨΘπ
is an isomorphism of ordered groups, it takes [θ(π∗)] to [π]. Our claim now follows

from the commutativity of diagram (8.2.2). �

8.3. Traces. Let C be a C∗-algebra and let C+ denote its cone of positive elements. By a trace on
C, we mean a linear map χ : C+ → [0,∞] such that χ(0) = 0 and χ(cc∗) = χ(c∗c) for all a ∈ C. If
χ takes finite values, then it is called bounded. In this case, χ can be extended to a linear functional
on C (since C+ spans C) satisfying the usual trace property: χ(cd) = χ(dc) for all c, d ∈ C.

We will be mainly interested unbounded traces. We say that χ is densely defined if its domain
{c ∈ C+ | χ(c) < ∞} is dense in C+. The “canonical trace” τH on C∗

r (H) is a densely defined,
unbounded trace that is determined uniquely by the property τH(f) = f(e) for any f ∈ S(H).

Upon restriction, one obtains a linear map τH : S(H)→ C that satisfies the usual trace property.
The map τH on the algebra S(H) induces16 a linear functional, denoted τ∗H , onK0(S(H)). It follows
from Thm. 3.2.1 (ii) that S(H) is spectral invariant in C∗

r (H), which in turn implies that the

inclusion i : S(H) → C∗
r (H) induces an isomorphism i∗ : K0(S(H))

∼
−→ K0(C

∗
r (H)) in K-theory.

Thus we obtain a linear map

τ∗H : K0(C
∗
r (H))→ C.

They key fact is that if π is a discrete series representation of H then

τ∗H([π]) = deg(π). (8.3.1)

It is worth mentioning that τ∗H vanishes on all other classes which do not correspond to discrete
series representations.

8.4. Transfer of traces. Given a densely defined trace χ on C∗
θ (H), one can construct, using the

oscillator bimodule, a densely defined χ̂ on C∗
θ (G) which satisfies

χ̂(G〈x, x〉) = χ(〈x, x〉
H
)

for all x ∈ Θ (see [34, Section 2] for bounded traces over unital algebras, and [28, Section 1, Prop.
1.3.11] for the densely defined case, see also [4, Section 2.1] for the case of ‘lower semi-continuous’
traces which our canonical traces are examples of). For the canonical trace, we have

τ̂H(G〈x, x〉) = τH(〈x, x〉H) = 〈x, x〉 = τG(G〈x, x〉) (8.4.1)

for all x ∈ S. Therefore τ̂H equals the canonical trace τG on C∗
θ (G).

We have the following cohomological aspect of the transfer of traces. Restrict τG, τH to C∗
θ (G)

and C∗
θ (H) respectively, and restrict τ∗G, τ

∗
H to K0(C

∗
θ (G)) and K0(C

∗
θ (H)) respectively.

Lemma 8.4.1. The pull-back map τ∗H◦ΨΘ : K0(C
∗
θ (G))→ C agrees with the map τ̂∗H : K0(C

∗
θ (G))→

C associated to the transfer τ̂H of τH from C∗
θ (H) to C∗

θ (G).

16One can extend the trace to Mn(S(H)) in the obvious way and this will give a well-defined map on the classes
of projections.
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Proof. For bounded traces on unital algebras, this is already noted by Rieffel in Prop. 2.5 of [34].
More generally, this is recorded by Pierrot in Cor. 1.3.12 of [28]: to see this, just set his A to be
our C∗

θ (H) and his E to be our Θ so that his K(E) becomes isomorphic our C∗
θ (G). �

Corollary 8.4.2. Let π be a discrete series representation of H such that θ(π) is non-zero. Assume
that {π} is isolated in the tempered dual of H. Then the formal degree of θ(π) equals that of π.

Proof. Consider the pull-back τ∗H ◦ΨΘ : K0(C
∗
θ (G))→ C. We have

(τ∗H ◦ΨΘ)([θ(π∗)]) = τ∗H(ΨΘ([θ(π∗)])) = τ∗H([π]) (8.4.2)

where we used Lemma 8.2.3 in the middle equality. By Lemma 8.4.1, the map τ∗H ◦ ΨΘ equals
the map K0(C

∗
θ (G)) → C that is induced by the transfer τ̂H of τH to C∗

θ (G). By (8.4.1), we have
τ̂H = τG; thus

τ∗G([θ(π
∗)]) = τ̂∗H([θ(π

∗)]) = (τ∗H ◦ΨΘ)([θ(π∗)]). (8.4.3)

Recall from (8.3.1) that τ∗H([π]) equals deg(π) and that τ∗G([θ(π
∗)]) equals deg(θ(π∗)). Thus, com-

bining (8.4.2) and (8.4.3), we deduce that the degree of θ(π∗) equals that of π. The claim follows
since π∗ and π have the same degree. �

We point out the Haar measures used above are the ones that we employed during the proof of
Prop. 5.4.1.

Remark 8.4.3. Here we only dealt with the canonical trace as we were interested in the formal
degrees. Once could however consider the transfer of traces given orbital integrals (see, e.g. [17])
associated to conjugacy classes other than the trivial element (which gives the canonical trace).
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