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 Quantum theory is often cited as being one of the most empirically validated 

theories in terms of its predictive power and precision. These attributes have led to 

numerous scientific discoveries and technological advancements.  However, the precise 

relationship between quantum and classical physics remains obscure. The prevailing 

description is known as decoherence theory, where classical physics emerges from a 

more general quantum theory through environmental interaction. Sometimes referred to 

as the decoherence program, it does not solve the quantum measurement problem. We 

believe experiments performed between the microscopic and macroscopic world may 

help finish the program. The following considers a free electron that interacts with a 

surface (the environment), providing a controlled decoherence mechanism.  

There are non-decohering interactions to be examined and quantified before the 

weaker decohering effects are filtered out. In the first experiment, an electron beam 

passes over a surface that’s illuminated by low-power laser light. This induces a surface 

charge redistribution causing the electron deflection. This phenomenon’s parameters are 

investigated. This system can be well understood in terms of classical electrodynamics, 



 

and the technological applications of this electron beam switch are considered. Such 

phenomena may mask decoherence effects. 

 A second experiment tests decoherence theory by introducing a nanofabricated 

diffraction grating before the surface. The electron undergoes diffraction through the 

grating, but as the electron passes over the surface it’s predicted by various physical 

models that the electron will lose its wave interference property. Image charge based 

models, which predict a larger loss of contrast than what is observed, are falsified 

(despite experiencing an image charge force). 

 A theoretical study demonstrates how a loss of contrast may not be due to the 

irreversible process decoherence, but dephasing (a reversible process due to 

randomization of the wavefunction’s phase). To resolve this ambiguity, a correlation 

function on an ensemble of diffraction patterns is analyzed after an electron undergoes 

either process in a path integral calculation. The diffraction pattern is successfully 

recovered for dephasing, but not for decoherence, thus verifying it as a potential tool in 

experimental studies to determine the nature of the observed process.
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 The experimental work “A Low-Power Optical Electron Switch” described in 

Chapter 3 has been published in Journal of Physics D: Applied Physics 

 The experimental work “Experimental Test of Decoherence Theory using 

Electron Matter Waves” described in Chapter 4 has been submitted for publication in 

Physical Review Letters. 

 The theoretical work “Spatial Correlation in Matter Wave Interference as a 

measure of Decoherence, Dephasing and Entropy” described in Chapter 5 has been 

submitted for publication in Physical Review A. 
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CHAPTER 1  

INTRODUCTION 

1.1  Motivation 

Particle-wave duality is the bedrock of quantum theory, and can be most famously 

realized in the controlled electron double slit experiment, where an individual electron 

“interacts” with two neighboring slits (figure 1.1a, also known as a double slit), then 

travels to a phosphorous screen “detector” which lights up in an individual location 

indicating the position in which the electron has landed (the backstop detector in figure 

1.1) [1]. If multiple electrons followed classical Newtonian motion, they would 

statistically form a pattern at the detector resembling that of the sum two smooth 

Gaussian-like distributions corresponding to the electron travelling through either the first 

or the second slit (figure 1.1b). However, successive iterations of such electron events 

result in a buildup of a histogram (figure 1.1 i-v) on the detection screen resembling an 

interference pattern (figure 1.1c). This is interpreted to mean that each electron originally 

behaved as a wave and the interaction is that of wave diffraction through both slits, thus 

constructive and destructive interference from both sources occurs. It is this behavior 

which prompts us to implement the Schrödinger equation to explain the dynamics, where 

the electron propagates from a superposition of two separate position states.  

Yet when we detect or measure the electron at the phosphorous screen, we only 

ever observe the electron at one position, never in multiple locations or a continuum of 

locations (hence its particle behavior). It is not obvious why this would be the case given 

the prior description of the evolution of the quantum state. Given that one can compute a 
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nonzero probability of the electron being at two spatially separate positions at a detector 

from the electron’s wave function, it would seem reasonable to expect to observe this; but 

this does not occur. Bohr indeed admits that, within the Copenhagen interpretation of 

quantum theory, a measurement of the state changes the state of the system which cannot 

be described by quantum mechanics [2]. Thus, there is an additional measurement axiom 

in which the wave function collapses to one or more states according to the Born Rule. 

But it is not clear under what conditions a “measurement” is said to occur. For example, a 

particle in a bubble chamber has presumably undergone measurement, as only single 

particle tracks are observed. On the other hand, should the same particle travel through 

free space, a dilute gas, or in an electromagnetic field, we may or may not defer to 

regarding to a quantum measurement collapse, or consider the system undergoing unitary 

evolution in quantum mechanics. The physical environment which the particle interacts 

with is not sufficient to a priori determine what type of evolution to invoke. These are the 

central issues behind what is known as “the quantum measurement problem”  [3].  
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Figure 1.1: Double Slit Diffraction: Wave Interference vs Classical 
Distribution (images and experiment from Roger Bach et al. in  [1]). An 

electron gun fires individual electrons through two slits (double slit (a)) and 
land on the backstop detector. After successive buildup of each electron at the 

detector (i-v) an interference pattern is formed (v and (c)) rather than the 
classical sum of travelling through the two individual slits (b). decoherence 
aims to predict how through quantum interaction (via entanglement) with an 

external environment an electron’s motion can transition the observed 
probability distribution from quantum interference 2

1 2   (c) to more 

classical statistical behavior 2 2

1 2   (b). 

 
 

To take the double-slit experiment further, Richard Feynman expanded the 

thought experiment to include a detector which monitors which slit the electron passes 

through  [4]. With this addition, the distribution of electrons that is recorded at the 

detector is no longer an interference pattern, but the sum of two smooth Gaussian-like 

distributions. It seems that this detector disrupted the electron’s behavior such that it has 
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transitioned from quantum to classical mechanics. The theory of decoherence sets out to 

describe why and how this transition occurs. 

Taking an emergent point of view, it seems reasonable to claim that all of 

classical theory must be a subset of quantum theory, and is just a special case (as Galilean 

classical relativity can be thought of as the special case of Einsteinian special relativity in 

the limit of 1v c  ). Similarly, for matter if you take the de Broglie Wavelength of an 

object  dB h mv   in the limit of large mass, then the wavelength would resultantly be 

exceedingly small. Richard Feynman eloquently illustrates this concept in a lecture 

contained in the book Six Easy Pieces  [5], where one imagines exchanging the electrons 

in the double-slit experiment with bullets (see Figure 1.2). He argued that if were one to 

fire these coherent bullets through the double slit, then the far field histogram pattern one 

might hope to observe would be in principle that of an interference pattern, but because 

of the very small wavelength of these bullets, the distance between of such interference 

fringes would be so small that in practice no detector could hope to resolve them. Thus, 

the resulting pattern would be a smeared distribution. It is in this way it is argued that the 

Copenhagen interpretation remains consistent. 
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Figure 1.2: Double Slit Experiment With Classical Bullets (from Feynman’s 

Six Easy Pieces  [5]). According to the Copenhagen interpretation of quantum 
mechanics, because the deBroglie wavelength of a high momentum object 
(like a classical bullet) is so small, any interference pattern produced in a 

macroscopic double-slit like experiment would result in a fringe periodicity 
too small to be resolved (d) and as a result the final observed distribution will 

be smeared out (c). 
 
 

Is this a sufficient story however? Does this imply that if the momentum of the 

object is sufficiently small, as in a slow electron, then it will always exhibit quantum 

behavior such as the superposition principle? Are there no other factors to consider 

except for momentum?  

The Decoherence Program starts with ordinary quantum theory and has found that 

a quantum system coupled (i.e. entangled) by even a small amount with an environment 

can result in a large transfer of the wave’s phase information from the system to the 

environment. This loss results in the loss of coherence between different orthogonal 

states of the wave function, which is precisely what allows them to interfere in the first 

place. Thus if such an interaction is permitted to occur comparable to the timescale called 

the decoherence time (also known as the decorrelation time) [6], then interference is not 

observed; and the system reduces to classical behavior. For the case of the electron and 
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the double slit, this theory specifies how the statistical distribution of the electron can be 

changed from the interference pattern (figure 1.1 c) to the addition of two smooth 

distributions (figure 1.1 b). Symbolically, this means; 

2 2 2

1 2 1 2
decoherence      .                                                 (1.1) 

One ought to ask how long it takes for a wave packet to reduce to a single 

position state. This is particularly of interest in the classical world of macroscopic 

parameters, such as the prior double slit bullet example. To take a similar scenario, 

Wojciech H. Zurek  [7] considered a free particle of mass 1 g at room temperature that is 

coherently split into a superposition of two distinct positions that is separated by a 

distance 1x   cm. The state is considered weakly coupled to an environment (or bath) 

of quantum harmonic oscillators. For such a case, the decorrelation timescale   of this 

spatial superposition can be compared to the timescale   of energy dissipation from the 

particle to the environment by   2

4mkT x      . 

Substituting in the aforementioned macroscopic parameters yields a ratio of these 

two timescales of  4010   . For reference, this means that even if one could ideally 

build an experimentally isolated system such that the timescale in which energy 

dissipates from the particle to the outside environment is that of the age of the universe (

 175 10 s ), then the spatial superposition of our 1 g particle would still very quickly 

decay on the timescale of 235 10 s  . This is, for comparison, of the order of the 

typical strong nuclear interaction [8]. This provides some explanation for why we don’t 

see the such bizarre quantum phenomena in the ordinary world, and why we need not 
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worry if Schrödinger’s torturous experiments can put our feline friends in a superposition 

limbo. 

The goal of the decoherence program is to not only explain why macroscopic 

objects do not exist in quantum superposition within the framework of quantum theory, 

but also how microscopic objects such as electrons can lose their quantum behavior. Can 

environmental interactions described by decoherence make predictions about the loss of 

“quantumness” of the electron (by, for example, controlling the strength of this 

environmental interaction)? 

1.2  Summary of Chapters 

 The following chapters feature three projects related to the coherent electron 

beam interaction with conducting and semiconducting surfaces. Chapter 2 provides an 

extensive introduction to the theoretical background and tools this work is grounded 

upon. This includes well established concepts such as image charge potentials which we 

use to understand our data, as well as competing decoherence models we sought out to 

directly test. Chapter 3 details the development and characterization of an electron beam 

switch which is controlled by the field produced by a surface charge distribution 

produced by a low-power optical laser. Chapter 4 involves the experimental test of 

decoherence theories by bringing gold and n-doped silicon surfaces near an electron 

beam undergoing diffraction through a nanofabricated grating. Chapter 5 presents a 

theoretical investigation of the differences between decoherence and dephasing in matter 

wave propagation (such as electron waves). It is also shown how it is possible to 

distinguish between dephasing and decoherence processes that may distort the 
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interference pattern in the far field. Finally, Chapter 6 gives concluding remarks 

regarding this work and an outlook on what opportunities this work leads to. 

1.2.1  Electron-Optical Switch 

A beam of 4 keV electrons passes by a metallic surface, which is illuminated by a 

low-power continuous laser beam (typically 10 mW and 658 nm)  [9,10]. These electrons 

experience a force that deflects the beam's direction by 550 μrad when the electrons are 

approx. 10 μm from the surface. This “electron switch” has a response time of 

approximately 6 μs. The deflection of the electron beam is shown to decrease as the 

beam's distance from the wall increases, giving an observed electron deflection as far as 

200 μm from the surface.  This switching mechanism is shown to be robust, as it is 

demonstrated for various optical wavelengths and surfaces. This type of electronic-free 

electron manipulation has potential use in electron beam microscopy (EBM) and electron 

beam lithography (EBL).  

1.2.2  Decoherence Experiment 

A controlled decoherence environment is studied experimentally by free 

electrons interacting with semi-conducting and metallic plates. The results are 

compared with physical models applied to decoherence theory to describe the 

quantum-classical transition. The experiment is consistent with decoherence 

theory and rules out established Coulomb interaction models in favor of a 

plasmonic excitation model. In contrast to previous decoherence experiments the 

present experiment is sensitive to the onset of decoherence. 
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1.2.3  Dephasing vs Decoherence  

In this theoretical work, we study the loss of contrast in double-slit electron-

diffraction. We show how the spatial autocorrelation spectrum of the far field intensity 

distribution can be used to distinguish between a loss of contrast caused by dephasing or 

decoherence processes. This establishes a measure of time-reversibility that does not 

require the determination of coherence terms of the density matrix (correlations between 

spatial states). This contrasts with entropy, another measure of time-reversibility, that 

does require the coherence terms. This spatial autocorrelation technique is promising, 

taking into consideration the need to diminish the detrimental experimental effect of loss 

of contrast, identifying what kind of processes or environments cause irreversible damage 

to interference and which can be reconstructed, and for fundamental studies regarding the 

transition from the classical to the quantum regime. 

1.3  Chapter 1 Bibliography 
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Wesley, Reading, MA, 1965), p. Chapter 1. 
[5] R. P. Feynman, R. B. Leighton, and M. Sands, Six Easy Pieces: Essentials of Physics 

Explained by Its Most Brilliant Teacher, 4, illustrated, reprint ed. (Basic Books, 2011, 
1985). 

[6] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). 
[7] W. H. Zurek, in Front. Nonequilibrium Stat. Phys., edited by G. T. Moore and M. O. 

Scully (Springer US, 1986), pp. 145–149. 
[8] D. Griffiths, in Introd. Elem. Part., 2nd ed. (Wiley-VCH, Weinheim, 2010), pp. 33–

34. 
[9] W. C.-W. Huang, R. Bach, P. Beierle, and H. Batelaan, J. Phys. Appl. Phys. 47, 

085102 (2014). 
[10] P. Beierle, W. Huang, R. Bach, M. Becker, D. Ruffner, and H. Batelaan, in (APS 

Division of Atomic, Molecular and Optical Physics Meeting, 2014). 
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CHAPTER 2 

THEORY 

2.1  Introduction 

Outlined in this chapter are the models used to test the experimental and 

theoretical work completed in Chapters 3-5. The Chapter also provides some details 

about the underlying theories and concepts these models make use of. This begins in 

Section 2 with classical electron propagation both in free space and over a conducting 

surface, including effects born from classical image charge and classical surface charge 

induced by light (the latter pertaining to Chapter 3). Section 3 introduces quantum 

propagation of electrons, in particular the electron’s wave propagation and the 

interference which results. In Section 4 the concepts of wave coherence of light and 

electrons are summarized. Section 5 is an introduction to the theory of decoherence, 

which aims to bridge the gap between classical and quantum mechanics by attempting to 

arrive at classical results entirely within a quantum framework. Section 6 provides 

various physical models which have been developed by others to predict decoherence 

effects due to a free electron propagating over a conducting surface (which we test in the 

experiment in Chapter 4). Finally, Section 7 gives an introductory comparison between 

decoherence and dephasing, and examines the concepts and measures (i.e. spatial 

autocorrelation and entropy) associated with these two phenomena. This is the subject of 

the theoretical work of Chapter 5. 
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2.2  Classical Electron Propagation over a Conducting Surface 

Classical motion of non-relativistic electrons which propagate in free space as 

well as interacting in an electric field can be well approximated using Newtonian 

mechanics and classical electrodynamics [1]. Importantly, in classical mechanics the 

motion of an electron is well defined in terms of definite position  x t


 and definite 

velocity  v t


 at any given time. When it comes to electrons interacting with a surface, 

the term “free” is used to indicate that the electron approaches a surface (perhaps from a 

different source) and then moves away from the surface until it experiences a negligible 

or no force due to its field. This contrasts with electrons that may collide with the surface 

and remain bound to it, or electrons that are emitted from the surface (which are the 

subject of phenomena such as thermionic electron emission and inverse photoemission). 

Also not considered are electrons which make contact and rebound from the surface 

(contact collisions).  

The source of the electromagnetic interactions that are taken into consideration 

from the surface include those surface charge distributions which most simply model the 

change in momentum the electron experiences perpendicular to the plane of the surface in 

the later experiments. These surface charge distributions we consider, attributed to 

maintaining zero electric field inside the conductor, include 1) image charge and 2) the 

charges which produce the ponderomotive potential induced by laser light effects. 

2.2.1  Classical Image Charge 

 In the classical case, the electric force a point charge experiences in vacuum at a 

distance d away from a boundary separating vacuum from a conducting surface is a 
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convenient electrostatics problem to solve, and the symmetry of the problem simplifies it 

further. Consider that in static case, one would have to solve for an electron with charge -

e located at r


 experiencing a potential  r


 due to a charge distribution with charge 

density  r   [2], 

      3

04

e r
F r e r d r

r r





     


   

  .                            (2.1) 

Because of assumed rotational symmetry about the perpendicular line crossing 

through the electron, as well as translational symmetries in the x & z directions and the 

reflection symmetries in the x-y and z-y planes (see figure 1), and ignoring fringe fields of 

the finite surface (assume y is much smaller than the size of the surface) as well as skin-

depth effects, this simplifies to  

 
 

2

2
0

ˆ

4 2
 

 e y
F y

y
 .                                             (2.2) 

 Note that this form is that of an electron experiencing a coulomb force due to a 

positive charge +|e| at a distance 2y away from the electron, thus this surface charge has 

is called an “image” or “mirror” charge. 
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Figure 2.1 Image Charge Configuration 
 

 However, there is a slight reduction of this force for the case of the non-perfect 

conductor with a static dielectric constant 0 r   . In this case, the image charge’s 

strength reduces to  

 
0

0

( )
q e

 
 
  


.                                                (2.3) 

If one takes as an example silicon whose relative dielectric constant 11.7r  , then 

.843q e  . Thus, the force is modified to become 

 
     

2
0

2 2
0 0 0

ˆ ˆ( )

4 42 2

 
   
 

   


 eq y e y
F y

y y
 .                         (2.4) 

See Chapter 4.5 for details on how this is implemented in modelling the deflection the 

electron experiences. 

2.2.2  Deflection from Induced Light Potential 

A surface charge distribution model was also produced by Wayne Huang to 

predict the force in the developed electron switch described in Chapter 3 [3]. When a 

laser light is incident perpendicular to a surface, a thin surface layer ( 1 nm) of 

electrons can be redistributed (again as a result of maintaining zero electric field inside 

the material). This lateral force on these surface electrons is  

    
2 2

2 3
0

, ,
8p

e

e
F x z I x z

m c


 

  
 

,                                     (2.5) 
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where   is the wavelength of the laser, and  ,I x z is the intensity distribution of the 

focused laser on the surface. Assuming a that this force induces a dipole moment 

distribution, and thus produces a surface charge distribution, 

     
3 2

20
2 3

0

1
, ,

8 e

n e
x z P I x z

m c

  
  

    
 

,                         (2.6) 

where  is a fitting parameter in the linear dipole approximation and n0 is the free 

electron density of the material. The electron travelling over the surface then experiences 

a force depending upon its x-z position on the surface as  

   ,
ˆ,

2

e x z
F x z y





.                                              (2.7) 

Note that the approximation is used that one is near the surface such that the propagating 

electron experiences the local surface charge (thus the distance dependence was not 

worked out). Also, note that the force changes as a function of the path the electron 

travels along the surface (so much so that the deflection direction can change due to the 

Laplacian of the laser’s intensity spatial distribution on the surface  2 ,I x z  changing 

sign). This is in direct contrast with the modelling of image charge, where it is assumed 

that the force of the electron over the surface is the same everywhere over the surface and 

that the magnitude of the force depends on the distance to the surface in the y direction. 

 

2.3  Quantum Electron Propagation in Free Space 

While there are many situations where it is appropriate to approximate the motion 

of an electron using classical physics, electrons in the right contexts also demonstrate 
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properties that are not associated with classical particle motion. This includes phenomena 

such as wave interference (via the superposition principle), quantized states such as 

quantized angular momentum states when bound in a hydrogen atom, and electron 

degeneracy arising from fermionic statistics [4]. 

As an initial framework to describe quantum electron propagation in free space as 

it is ordinarily introduced, we begin with the emphasis of some of the postulates of 

quantum mechanics. For a more comprehensive formulation of all of these postulates, see 

Cohen-Tannoudjii et al [5]. The first postulate is stated as, 

First Postulate: At a fixed time 0t , the state of a physical system is defined by specifying 

a ket  0t  belonging to the state space E . 

The physical system in this case (and throughout this thesis) is the free election. The state 

space E is a complex Hilbert space where the included states are unit vectors (i.e. it is a 

type of complex vector space). Importantly, because the state is described in terms of a 

complex vector, it follows that a linear combination of states within E  is itself a state 

within E , 

i i
i

   .                                                  (2.8) 

It is this feature of quantum states which is known as the superposition principle.  

 The sixth postulate according to Cohen-Tannoudjii et al. is the foundation of the 

propagation, or time evolution of the quantum state, 

Sixth Postulate: The time evolution of the state vector  t  is governed by the 

Schrodinger equation:  
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     i t H t t
t
 




                                            (2.9) 

where  H t  [the Hamiltonian] is the observable associated with the total energy of the 

system. 

The combination of the unitary evolution of the quantum state described by the 

Schrodinger equation and the superposition principle is what leads to the wave properties 

of the quantum state of the electron. 

 Consider now an electron wave that is split into two states  1 ,x t  and 

 2 ,x t  (see Figure 2) where x corresponds to the coordinate position in the transverse 

direction of propagation. After wave propagation of these separate states, assume that the 

evolution was prepared such that it leads to recombination at a detection screen (at the 

detection screen, there is at least some spatial overlap of these two states). One will 

observe the electron landing at a specific position x on the detector determined by the 

probability distribution in terms of the wavefunction in position representation, 

                2 2 2

1 2 1 2 1 22 ReP x I x x x x x x x               (2.10) 

where the first two terms correspond to the probabilities of the two separate wave 

functions alone, and the third mixed term provides the interference. At the position x 

when          2 2

1 2 1 22Re x x x x       , total destructive interference takes 

place and the probability of the electron landing at that position is zero. At the position x 

when          2 2

1 2 1 22Re       x x x x , total constructive interference takes 
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place and the probability of the electron landing at that position is maximized for that 

position. 

 

 

Figure 2.2 Coherent Interference between Two States. 
 

2.4  Coherence of Matter Waves 

 In the previous section, it was shown how matter wave propagation leads to 

quantum interference.  If the state of the electron can be described in this way, then it is 

said that the electron state (or the wave function) is coherent. Here, by coherent we 

informally define coherence as the electron state to undergo “full” interference (total 

constructive interference, or total destructive interference is possible). This does not 

necessarily need to be the case, and the following sections described the consequences of 

the case when the wave function is partially coherent. 

2.4.1  Partial Coherence and Density Matrix Formalism 
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 To describe a partially coherent (or mixed) quantum state, the density matrix (also 

known as a density operator  [6]) formalism is a convenient mathematical tool to do so, 

as the previously described convention is insufficient to do so. Starting with the simple 

example of a fully coherent state as in equation 2.8, the density matrix of this state can be 

written as 

    .                                                    (2.11) 

If the state is constructed from a wave function (e.g. equation 2.8), the state is said to be 

pure and 2  . If a quantum state is pure, then it is also fully coherent. 

 A mixed state can be constructed by statistically adding pure states together as a 

convex sum, 

     mixed pure
k k k k k

k k

p p ,                               (2.12) 

with the convex condition 1k
k

p  . Such a statistical mixture may evolve in a unitary 

manner according to the von Neumann equation (which can be deduced from the 

Schrodinger equation and vice versa [6]): 

ˆ ,H i
t

     
 .                                                (2.13) 

 If the density matrix is written in the position representation (in the x-direction) 

then the final spatial probability distribution can be found by taking the (main) diagonal 

of the density matrix; 

        P x x x diag x .                                    (2.14) 
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2.4.2  Relationship between Coherence and Observed Interference 

The nature of coherence can be best understood by its relation to observed 

interference. Starting again as in section 2.3 with an initial electron wave split into two 

states, 1   and 2 , and evolves along separate paths as shown in Figure 2. This time 

however, the evolution somehow corrupts the two states (examples, such as density 

matrix state reduction, will be described in sections 2.5-2.7). For the two state case, 

analogous to equation 2.10, the observed intensity distribution observed in the far field is 

proportional to [7], 

 2 2

1 2 1 22 Re H.O.T.      I V ,                       (2.15) 

where H.O.T. corresponds to higher order terms, and V corresponds to the 

visibility of the interference pattern: 

max min

max min

I I
V

I I





.                                                 (2.16) 

Imax is the maximum envelope of the intensity distribution and Imin corresponds to the 

minimum envelope that develops as a result of loss of contrast in interference (see Figure 

3). Thus, if min 0I  , then 1V  , and the final state is fully coherent. If min maxI I , then 

0V   and the state may be fully incoherent. If min max0 I I  , then 0 1V   and the 

final state may be partially coherent. Thus, visibility is often used as a measure of 

coherence. 

An example diffraction pattern that models such a case is double slit diffraction, 

with a far field intensity distribution,  
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    2

0

1 cos 2sin

2




 
  

 

V
I I ,                                   (2.17) 

where 0I  is the central intensity value for V=1 and x=0,  sin
 



c

 and 

 sin
 



a

. c  is the width of the slit, a  is the distance between slits,   is the de-

Broglie wavelength, and   is the angle with respect to the normal of the double slit 

plane. In the small angle approximation at a distance z away from the surface (see Figure 

3); 

 
2

0 2
sin 1 cos

2

 
  

                 

I axcx cx
I x V

z z z
,                     (2.18) 

In the limit 1V  , I approaches the ordinary double-slit Fraunhofer equation: 

   
2

2
0

sin
cos





 

  
 

I I                                          (2.19) 

and in the limit 0V  , it approaches the single slit Fraunhofer equation: 

  2

0
sin

2




 
  

 

I
I .                                               (2.20) 

 Thus, a 2-path experiment (such as a double-slit experiment or a 2-path 

interferometer), visibility is a useful measure of the loss of coherence in a system as 

measured at the detector. 
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Figure 2.3 Far Field Double-slit Interference Pattern for Various Visibility Values. If V=1, then 
the interfering waves are fully coherent. See equation (2.17). If 0<V<1, then interfering waves are 

partially coherent with respect to each other. If V=0, then there is no interference between 
interfering waves (bottom left).  

 

2.4.3  Coherence Length for a Collimated Matter Wave 

 For the case of a matter wave (such as atoms, electrons, etc) that is collimated 

(using for example collimation slits, see Figure 4), the coherence length can be computed 

starting with the Heisenberg uncertainty relation: 

xx p h   ,                 (2.21) 

where we take the uncertainty in position x  to be the transverse coherence length, and 

xp  corresponds to uncertainty in the beam’s transverse momentum. Taking into 

consideration the geometry of beam collimation in the small angle limit: 

 tanx
coll coll

z

p

p
 

  ,            (2.22) 
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where coll  correspond to the beam’s divergence angle. This can be substituted into the 

uncertainty relation: 

z collx p h    .       (2.23) 

 

 

Figure 2.4: Schematic of Collimated Diffraction. The divergence of the electron beam coll  

depends on the geometry of two collimation slits (S1 and S2). This ultimately determines the 
initial width FWHMw  of the diffraction peaks. The diffraction angle max  depends on 

nanofabricated diffraction Grating’s (G) periodicity a  along with the electron’s wavelength. This 
determines the periodicity d  of the observed diffraction at the detector through the diffraction 

equation (equation 2.27). These parameters are what influence the measure of the initial 
transverse coherence length (equation 2.30). 

 

Using the definition of the De Broglie wavelength: 

dB

h

p
  ,             (2.24) 

the transverse coherence length becomes, in agreement with  [8], 

dB
coh

coll

x L



   .       (2.25) 
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To calculate this transverse coherence length in terms of measurable quantities, a 

diffraction grating can be introduced after the beam has been collimated. For grating 

diffraction, the well-known diffraction equation is invoked, 

 maxsina n   ,                      (2.26) 

where a is the periodicity of the grating, n corresponds to the nth order diffraction peak, 

and max  corresponds to the angle between the incident beam and the direction which the 

far field diffraction peaks propagate.  This can be used to determine the distance d 

between the diffraction peak maxima in the far field in the small diffraction angle 

approximation; 

   max max maxsin tan
d

z
     ,                   (2.27) 

where z is the distance between the grating and the plane in which diffraction peaks that 

are detected. 

 Equations (2.26) and (2.27) can be combined for a new expression of the De 

Broglie wavelength: 

dB

ad

z
   .                         (2.28) 

 Similarly, the collimation angle can be determined in the small angle 

approximation by the width of the diffraction peaks FW HMw at a distance z away from the 

grating; 

 tan   FWHM
coll coll

w

z
.             (2.29) 
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Finally, the calculation of transverse coherence length of the electron at the 

grating can be determined entirely in terms of measurable quantities observed at the 

detector by substituting in equations (2.28) and (2.29) into (2.25): 

coh
FWHM

ad
L

w
 .                             (2.30) 

Thus, a loss of coherence is associated with a widening of the width of the 

diffraction peaks FWHMw  rather than a loss of contrast. Notice that this measure is 

independent of the distance z between the grating and the detector (provided that the 

detector is in the Fraunhofer diffraction region), and that only the ratio of the peak-to-

peak distance to the width of the peaks matters. We can therefore measure coherence in 

terms of the transverse coherence length of the diffracted beam as observed at the 

detector. 

 

2.4.4  Comparison of Coherence Measures (Transverse Coherence 

Length and Visibility) 

To illustrate the effects of irreducible background on the measurement of 

visibility, let’s first take the simple case of a detected interference pattern that is in a 

spatial range 0 x L   perfectly sinusoidal with no irreducible background. Such an 

intensity distribution can be modeled as: 

    1 costotal
clean

I
I x V n x

L
  ,                                   (2.31) 
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where totalI is the total integrated intensity in 0 x L   of the particles of interest, 

0 1V   describes the visibility associated with dephasing or decoherence one is trying 

to measure, and n controls the observed periodicity of the intensity pattern. In such a case 

with a maximum intensity of    max 1total
clean

I
I x V

L
    , and a minimum intensity of

   min 1total
clean

I
I x V

L
    , then using equation (2.16) the computed visibility becomes 

by design 

   
   
1 1

1 1

total total

total total

I I
L L

clean I I
L L

V V
V V

V V

  
 

  
.                                 (2.32) 

 Now we introduce to this intensity a constant irreducible background with total 

intensity Ld, then the interference intensity distribution is modified to become 

    1 costotal
clean bckd

I
I x V n x d

L
    .                             (2.33) 

With a new maximum intensity of    max 1total
clean bckd

I
I x V d

L      and a minimum 

intensity of    min 1total
clean bckd

I
I x V d

L      , once more using equation (2.16) the 

visibility in this case is 

total
clean bckd

total

I V
V

I Ld 


.                                            (2.34) 

Note that  in the limit 0d  ; clean bckd cleanV V  . With a combined total intensity of 

totalI Ld , the fraction of the intensity that is background is 

;  [0,1)
total

Ld
f f

I Ld
 


;                                         (2.35) 
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thus the total background in terms of its fraction to the combined total intensity is 

1
totalI f

Ld
f




.                                                   (2.36) 

 Finally, substituting this result into equation (2.34) the total visibility as a function 

of percent irreducible background is 

   
1

1
1

1clean bckd clean cleanf
f

V f V V f


 
     

,                           (2.37) 

which is plotted in Figure 5. Note how this differs from when calculating the transverse 

coherence length, in this case subtracting the irreducible background does not change the 

calculation of the coherence length, because   .cohL f const  

 

Figure 2.5. Comparison between visibility (V) and normalized transverse coherence length (
max

coh coh cohL L L ). For interferometry, the visibility is used to place a bound on decoherence. For 

diffraction, the decoherence measure is coherence length.  The advantage of using diffraction 
rather than interferometry is that the decoherence measure is not background dependent. In other 
words, the linear drop of visibility in an interferometer (dashed line) due to a weak background 

signal masks the decoherence. This makes diffraction well-suited to search for weak decoherence.  
The shaded areas correspond to uncertainty due to the statistical error introduced by the 

background. 
 

This illuminates the advantage of using diffractometry (as described in Chapter 4) 

over interferometry, which lies in their respective decoherence measures, cohL  and V  
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(Figure. 5). The background signal can be subtracted for diffraction without distorting the 

measured value of .cohL  This is not the case when measuring visibility in an 

interferometer. The visibility V  drops off linearly due to a weak background signal, 

which can mask decoherence. For a weak decoherer that scatters the incident beam and 

introduces background, diffractometry is thus well suited. 

2.5  Decoherence Theory 

As introduced in Chapter 1, Decoherence Theory [9,10] sets out to describe and 

predict how classical behavior emerges out of quantum mechanics when a quantum 

object or system becomes unable to sufficiently isolate itself from interacting through 

entanglement with its external environment. Despite Decoherence Theory being an 

extension of the rules of ordinary quantum mechanics, this explanation is a break from 

the orthodoxy of the Copenhagen interpretation of quantum mechanics, where the 

observation of quantum effects of any object is only limited by a the devising of a 

suitable classical measuring device that can carry out the task with the suitable 

precision [11]. 

2.5.1  Zurek’s Formalism 

 The process of decoherence according to Zurek can be summarized in the 

following way  [12]: starting with an initial state S  of the “system” (in this case the 

electron) which is in a superposition of states i  which can be written in the form  

S i i
i

   . Separate from this is an external environment in an initial state 0 . 
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The system then interacts with the environment via entanglement, resulting in a new 

entangled state  SE t . This process can be illustrated by: 

   interaction
0 0 entanglement

0SE S i i SE i i i
i i

t        
         

 
  . (2.38) 

The Hamiltonian of this interaction, sH  , has the important feature that in relationship to 

the states of the system, the commutation relationship , 0s i iH        is obeyed. 

What this means is that there exists a set of states i , known as pointer states, which 

remain unchanged under entanglement.  

 The combined state is itself a pure state. Because we are interested only in the 

system and not the combined state, a partial trace is performed over the environment, 

resulting in a diagonalized density matrix,  

      2

s E SE SE i i i
i

t Tr t t       .                       (2.39) 

which is a diagonalized matrix with no remaining coherences (the off-diagonal elements 

are zero). Importantly, the set of states that end up on the diagonal of the density matrix is 

always the same [12], (hence the pointer states being “preferred” states).  The process in 

which these pointer states are selected by the environment is known as “environment-

induced superselection” or “einselection” [9]. If the system was to start in one of these 

preferred states, the interaction of the environment would do nothing to it, and the system 

would remain unperturbed. These stable pointer states that appear on the diagonal of 

 s t  after a decoherence time with probabilities  
2

i  (see equation 2.14), are 
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effectively classical states, as the coherences between these i  states become 

insignificant (or in the extreme case completely uncorrelated) [12]. 

2.5.2  Density Matrix and Coherence 

An important example of a decoherence process (applied to models such as the 

one described in section 2.6.1) is a particle interacting with an environment of harmonic 

oscillators [11,13], i.e. a quantum scalar field    [14]. Excitations of this scalar field 

scatter off the particle, carrying with it information about the particle’s position x. This 

therefore leads to the localization of the particle in position space [15].  

The system-environment interaction takes the form via the Hamiltonian [13],  

s i i
i

H x c q   ,                                                 (2.40) 

where iq  corresponds to the position of the ith quantum oscillator with coupling strength 

ic . After tracing over the environment this results in a new evolution equation of the 

particles density matrix (also known as a master equation) which has an exact 

solution  [16]. In the high temperature limit of the harmonic bath (thermal fluctuations of 

the field rather than zero-point vacuum fluctuations), the master equation becomes [9]:  

     2

2

2
, B

s s s s

i m k T
H x x x x

x x

                


 
.          (2.41) 

The first term alone (when the relaxation rate 0  ) corresponds to the Von Neumann 

equation (equation 2.13). the second term is responsible for relaxation (or dampening) with 

its rate proportion to the “viscosity” of the particle in the harmonic bath  . The third term 

is responsible for random fluctuations associated with quantum Brownian motion [9]. 
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Zurek  defines the diagonal as those elements which 0x x   and    2 2
x x x   as 

elements the square of the separation between off-diagonal elements [11]. 

 In the macroscopic/classical limit   is small compared to other combined terms 

with units of action (e.g.  2
2 Bm k T x x   ) the high temperature particle 

evolution equation becomes dominated by the third term and the equation can be further 

approximated to [9], 

 2

2s s

T

x x
  




  ,                                              (2.42) 

where the thermal De Broglie wavelength here is defined as 2T bmk T   . This linear 

differential equation can be solved as it is in the simple form y
t cy
    and thus has a 

solution of 

   
2

/, , , ,0 T dec

x x
t

tinitial
s s sx x t x x e e


   

  
  

    .                        (2.43) 

From this general solution, we can conclude that the coherence terms in the density 

matrix decay exponentially with a decoherence timescale  21
dec T x    . After a 

sufficiently long time t compared to the decoherence time dec , the density matrix will be 

approximately diagonalized and the particle behaves classically. 

An alternative derivation by Breuer and Petruccione [15] utilized an underlying 

master equation based on a general Markov process, 

     , , ,s s s St i H t x x t            
  ,                            (2.44) 
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where the Hamiltonian of the particle is 
2

2s

p
H

m



with a coordinate x


. Equation 2.44 also 

has a similar solution to equation 2.41 in the “recoilless limit” (where damping effects are 

neglected). This means that the decay of the off-diagonals coherences occurs on an time 

scale much shorter than the dampening of the diagonal elements. Additionally, it is 

assumed that the free evolution corresponding to the Hamiltonian (for example the 

broadening of the state due to beam divergence)  [15]. This leads to the solution  

     2, , , ,0 x x t
s sx x t x x e    

    
,                                  (2.45) 

where Breuer and Petruccione calls   the “decoherence rate” [15]. Nevertheless, the 

similarity between this Markovian decoherence solution and the decay of the density 

matrix due to quantum Brownian motion in equation 2.43 when 2
T   . 

 Oftentimes when the off-diagonal terms decay exponentially (as in equation 2.43 

and equation 2.45) the absolute value of the terms in the exponent are combined to form 

the decoherence factor  . For example, in the case of equation 2.43, the decoherence 

factor is dect   . 

2.6  Mechanisms of Decoherence Due to Conducting Surfaces 

 The following subsections provide examples of application of this decoherence 

program by inserting particular physical models where an electron may decohere due to 

its interaction with a conducting surface acting as an environment. Each physical model 

presumes its own decoherence timescales dec . These physical models are tested 

experimentally as described in Chapter 4. In the experiment, the distance y between the 

electron and the surface is not constant in time as it propagates over the surface (because 
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of the image charge force). Therefore, because of this the strength of the interaction 

changes over its propagation (i.e. dec is a function of y), the decoherence evolution of the 

density matrix from the beginning of the surface at time iT  to the end of the surface at 

time fT  is modified to take the form 

     , , , , , ,

T f

Ti dec

t
dt

s f s i s ix x T x x T e x x T e   


     .                  (2.46) 

 Additionally, the decoherence factor   of these decoherence processes do not 

universally take the form  2xe e   . To take the example of Scheel and Buhmann 

(section 2.6.2  [17]) the decoherence factor is modified due to the assumption of an image 

charge travelling under both paths in their two path setup. However, for small 1x   

the first order term in the expansion of these decoherence factors is consistently 

   21
1a x   .  This points to the importance of investigating decoherence effects by 

varying the parameter x  at large values as an alternative to distinguishing between 

different effects. See Appendix C for a description of how this evolution of the density 

due to decoherence is implemented numerically as it relates to the decoherence 

experiment. 

2.6.1  Free Electron-Surface Decoherence Models 

The original decoherence model that focused on electron-surface decoherence 

was conceived by Anglin and Zurek  [18,19]. The physical system is a classical image 

charge on the surface of the conductor that follows the free electron as it travels parallel 

to the surface (see figure 6). Joule heating, which the image charge experiences while 
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traversing the surface, causes dissipation with a relaxation time relax. Back-action on the 

free electron leads to decoherence with a corresponding time dec (called decorrelation 

time in [13]). The decoherence time is taken to be  proportional to the relaxation time 

according to [13],  

2

th
dec relaxx


     

,                                                 (2.47) 

with the thermal de Broglie wavelength of th bmk T    in accordance to 

Sonnentag  [20]. Anglin and Zurek proposes that power is dissipated due to the Ohmic 

resistance that the image charge experiences while it travels over the surface. For an 

image charge with velocity v  (which is approximated to be equal to the velocity of the 

free electron that is at a distance y away from the interface of the surface), and a surface 

resistivity of  . According to Boyer and Chapman et al. this dissipated power is found to 

be  [21,22] 

2 2

316Joule

e v
P

y




 .                                                  (2.48) 

This power loss is responsible for the relaxation (or dampening) time. Equating this 

power dissipation to the power associated with the change in kinetic energy of the image 

charge: 

21

2

d dv
P mv mv

dt dt
   
 

.                                         (2.49) 

 Taking the definition of relaxation time according to Zeh et. al. [10]: 

relax

dv
v

dt
  .                                                  (2.50) 
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This can now be substituted into Eq. 2.48 and then be equated to loss of power 

due to image charge to arrive at the relaxation time due to Ohmic dissipation: 

2 2 2 3

3 2

16

16 relax
relax

mv e v my
P mvv

y e

 
  

     .                          (2.51) 

 Thus, substituting this into equation 2.47, the resulting decoherence time scale is 

 

2 3

22

4Zurek
dec

B

h y

e k T x


 



.                                          (2.52) 

 

 

Figure 2.6. Original Electron-Surface Decoherence Model from Anglin and Zurek (image 
from  [18]). Two electron paths that are separated by a distance  x pass over a surface at height y 

and subsequently recombine at the detector. The resulting loss of contrast in this model is 
attributed to the Joule heating that the classical image charge experiences as transverses the 

surface. 
 

The decoherence model by Scheel and Buhmann [17] is also based on the 

electron’s interaction with its image charge, but it considers a full macroscopic quantum 

electrodynamic treatment. This considers the surface’s linear dielectric response. Taking 

the low frequency limit where the Drude approximation    01 i      holds for 

both gold  [17] and doped silicon  [23,24], the decoherence time scale is 
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dec

Be k T y y x





 
  
   


.                          (2.53) 

In the limit x << y this is equivalent to Equation 2.52.  

Machnikowski’s fully quantum many-body electron gas model implies that the 

primary decoherence mechanism is due to the dissipative effects of image charge 

formation rather than Ohmic resistivity effects [7]. It is notably dependent on the Fermi 

wave-vector for metals (kFermi). This decoherence time scale is 

 
22

0
2

32Machnikowski Fermi
dec

B

h k y

e mk T x




    
.                                    (2.54) 

Howie’s model [24] is based on event probability Pe  rather than energy 

dissipation, where such events correspond to aloof scattering with long wavelength 

plasmons and “similar excitations” up to a cutoff frequency 0.6x1012 Hz. The stated 

expression for this probability is 

 2 2

2 2

4

exp

4
Howie m

y

x

se L
P ds

s


 





 
  
 


.                                 (2.55) 

The exponential integral is approximated by [25], 

       0.137.7exp s
Ei ds A B

s





     ,                           (2.56) 

where 4y x   ,   log 0.56146 0.65 1     A , and  3.74 7.7 2B e    . Note 

that in the original article  [24],   is mistakenly written as a factor of 16 different than 

the determined value (A. Howie, private communication). It should be mentioned that 

this theory has been further elaborated to be explained in terms of the electron’s loss of 
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energy by emission of photons associated with the material’s optical excitations (in a 

similar way the material may also undergo photon emission) [26,27].  

There has been much interest in the potential to measure the effects of 

decoherence due to vacuum field fluctuations in such an experiment as a biprism 

interferometer [28–33]. It has been shown that, absent the surface, the decoherence factor 

  scales with    2 2 2 x T c  where T  is the total time of flight of the electron [30,32] 

and c is the speed of light. This decoherence effect is said to be intrinsic to the electron 

propogating in free space; and if a surface is brought near the interferometer, decoherence 

due to vacuum field fluctuations may be either enhanced by up to a factor of 2 or 

suppressed (called “recoherence”) depending on if the plane of the separated paths is 

perpendicular or parallel to the surface respectively (see Figure 2.7) [32,33]. 

 

Figure 2.7: Surface Dependence on Decoherence due to Vacuum Field Fluctuations. a) Electron 
interferomer/separated path configuration either parallel (top) or perpendicular (bottom) to the 

surface. Here 0z  corresponds to the height of the initial state with respect to to the surface 

(elsewhere defined as y as in figure 6 et al), and T is the total time of flight over the surface 
between separation and recombination of states. W corresponds to the negative of the 

decoherence factor  . If no surface is present,    2 2 2
0   W W x T c . b) The height 
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dependence of the decoherence factor with respect to the surface. As the interferometer is brought 
near the surface, the decoherence factor decreases toward zero in the parallel case. In in the 

perpendicular case, the decoherence factor tends toward twice the vacuum field decoherence 
when no surface is present. Image taken from Hsiang and Lee  [32].  

 

2.7  Decoherence vs Dephasing 

While the two terms are often used interchangeably, decoherence and dephasing 

are two distinct phenomena that result in the loss of observed interference (a loss of 

contrast). However, they are physically quite different, decoherence corresponds to a 

irreversible process while dephasing corresponds to a reversible process. Zurek 

differentiates dephasing and decoherence in the following way [9]: There are processes 

which lead to measures which lead to “ignorance” of phase information, but these 

processes may not lead to an imprint (i.e. a transfer of information) of the state of the 

system on the environment (this is what we call dephasing). Dephasing due to “Classical 

noise” is when a “classical perturbation” (for example random phase noise in the 

potential) leads to unitary (reversible) evolution, but the evolution remains “unknown”. 

This leads to the modification of the system/apparatus combined wave function such 

that [9], 

    exp .n n
SA j j j j j j SA

j j

A i s A  
 

     
 
                  (2.57) 

Here we use  n
SA  to corresponds to different resulting realizations of random phase 

noise, a member of an ensemble of n final states. If the process is acting on the system (or 

the particle), the dephasing Hamiltonian takes the form 

      .n n
d j j j

j

H t s s                                            (2.58) 
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Note that a similar Hamiltonian exists if dephasing occurs on the state of the 

apparatus. An important characteristic of  n
dH  is that it does not change the “nature” or 

the “degree of the system/apparatus correlations” [9]. It does not transfer information 

about the state of either the system of the apparatus onto the environment. 

 Note that each final state  n
SA  is a pure state. Additionally, if the noise 

information  n
j  is known or is acquirable, these pre-dephased state can be reconstructed. 

But when this is not the case (e.g., if different n corresponds to time-evolving iterations 

too fast to obtain the evolution of the phase noise), then the final system/apparatus state is 

written by the density matrix averaged over the ensemble of noise realizations: 

   

2

,

,
n n

j k

SA SA SA j j j j j
j

i

j k j k j k
j k n

s s A A

e s s A A
 

 

 
   

    






                 (2.59) 

where here  denotes an ensemble average. This ensemble averaging does result in the 

reduction of the off-diagonal terms of the density matrix and results in a loss of contrast, 

hence the similar observed result when decoherence occurs. An important conclusion 

here is that dephasing is a loss of phase coherence between members of the ensemble 

rather than between pointer states in decoherence, and this loss of coherence is due to 

differences in the noise in phases each member experiences.  

2.7.1  Correlation Function and Entropy 

As outlined in Chapter 5; the questions which we arise at are what other physical 

characteristics differentiate decoherence vs dephasing. More specifically is it possible to 
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distinguish between the two processes with limited information given only an observed 

interference intensity pattern (without reverting to directly obtaining the wave’s phase 

information of the individual members of the ensemble as in tomography and entropy 

measurements). The tool utilized here is the second order correlation function (also 

known as the degree of second order coherence) for a single source is written as  [34]:  

   
       

   

* *
1 1 1 1 2 2 2 22

1 1 2 2 2 2

1 1 2 2

, , , ,
, ; ,

, ,

x t x t x t x t
g x t x t

x t x t

   

 
 .                  (2.60) 

Taking the case of the wave function at time t at the detecting plane, considering 

symmetric points about the origin ( 1x x  and 2x x ), and interpreting the ensemble 

average to be a either a time average or an average over an ensemble of different phase 

patterns, this becomes: 

   
       

   
   
   

* *
2

2 2
;

x x x x I x I x
g x x

I x I xx x

   

 

  
  


.       (2.61) 

It is demonstrated from this final form of the second order correlation function that this 

measure, since it is in terms of the intensity distribution (after dephasing or decoherence) 

of each member final state, without any phase information of the wave functions. 

 Aside from the second order correlation function, entropy can be used to 

differentiate between dephasing and decoherence (although, in contrast to the former, the 

phase information or coherence terms of the density matrix does have to be known). In 

terms of a density matrix   (either pure or mixed) the entropy (particularly Von 

Neumann entropy) at a given time can be written as 

  lnS Tr    ,                                               (2.62) 
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where Tr (…) denotes the full trace (sum of diagonal elements). This is typically more 

easily computed by rearranging this in terms of the density matrix’s spectral 

decomposition (in terms of the eigenvalues i  of  ): 

 lni i
i

S    .                                               (2.63) 

 It will be demonstrated in Chapter 5 how an increase in entropy, 0S  , of a 

quantum system after undergoing a process indicates that it is a decohering process (as it 

is related to nonunitary, irreversible evolution), and a process with unchanging entropy, 

0S  , may be associated with dephasing (as dephasing is still unitary and thus 

reversible). 
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CHAPTER 3 

OPTICAL ELECTRON SWITCH 

3.1 Introduction 

 This Chapter details a free electron beam switch which was developed involving 

interaction with a laser-induced surface charge [1]. The original motivation of this 

experiment was the creation of an ultra-fast electron switch (within the femtosecond 

regime) [2]. Such a fast switch has important uses for the fast detection of electrons in 

experiments such as an electron Stern-Gerlach experiment [3], freefall experiments for 

electrons [4], plasmonic physics [5], the detection of ultra-fast physics [6,7], and the 

development of an electron dispersion compensator [8]. 

 The concept behind this fast electron switch makes use of the short travel time-

scales of the electron over a nanostructure. Specifically, the idea was to design a 

rectification switch using a nanofabricated diffraction grating combined with a laser (see 

Figure 3.1). The electric field of the optical laser induces electric dipoles on the top 

surface/edge of the 100 nm grating, and these dipoles would then in turn oscillate in 

phase with the field of the laser. Then, as the electron passes over these dipoles, it would 

feel a Coulomb force toward (or away, depending on the initial timing of arrival) from 

the surface as it passes over the beginning of the grating bar (a single solid portion of the 

grating). Matching the velocity and thus time of flight over the grating bar with the period 

of the oscillating laser field/dipole field over half the field’s period ensures that the 

electron experiences a force in the same direction for the duration of its travel (thus the 

force becomes accumulative). Furthermore, the speed of this switching mechanism then 

simply depends on the speed of the electron and the width of the grating bars. As an 
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example, for a 3.98 keV electron and a 100 nm grating bar, the deflection switching 

mechanism can be as fast as    7100 3.74 10 2.67 m
sswitch grating flightt a v nm fs    . 

 

Figure 3.1: Fast Electron Rectification Switch Concept. If we can match the laser frequency with 
a 3.98 keV electron’s travel time over a 100 nm periodic grating bar we can access a steering 

process that will be as fast as 2.67 fs  [9,10]. 
 

However, upon attempting to observe deflections of the electron beam due to such 

a rectification effect, a much larger deflection angle had occurred [1]. It is this effect 

(which cannot be explained by the above rectification mechanism) that was measured and 

characterized. 

3.2  Setup and Procedure 

A 3.98 keV electron beam is collimated by two slits that have widths of 5 m and 

2 m in the y-direction and are separated by 24 cm in the z-direction. This produces a y-

direction beam divergence of  5 μm 2 μm 24 cm 29 μradians    (see figure 3.2).  6 



44 
 

cm after the second slit, the electron beam passes over a surface or grating in the x-z 

plane (primarily SiN, Au coated) with a beam width of 10 µm. This is while a laser (658-

800 nm) is focused with a cylindrical lens on the wall near the e-beam’s path. This 

cylindrical focusing is utilized to maximize the intensity of the laser along the electron’s 

path over the surface. By turning the laser on and off via a mechanical chopper or an 

acousto-optic modulator (AOM), the resulting angle in which the electron propagates can 

be changed (from a straight-travelling beam to a deflected beam).  

To measure the angle in which the beam is deflected, a 5 m detection slit 24 cm 

after the surface samples a portion of the electron beam’s profile in the y-direction. By 

scanning the beam in the y-direction with deflection plates (10 cm before the detection 

slit), an electron distribution is acquired using a multichannel scaler (MCS) software and 

counting electronics connected to a multichannel plate (MCP). By moving the detection 

slit by a known distance in the x-direction (as measured by the linear feedthrough’s 

micrometer) and comparing how far in time the center of the histogram travelled, the 

width and position of the electron beam at the detection screen can be calibrated. 

The lasers used were continuous-wave diode lasers with powers of 1 mW, 10 mW 

and 5 mW with respective wavelengths of 532 nm, 685 nm and 800 nm. The cylindrical 

lens produced a laser focus FWHM of 280 µm in the y-direction and retained the spot’s 

length of 1 mm in the z-direction along the beam path. The idea behind not focusing the 

beam in the z direction is to maximize the time in which the beam experiences the charge 

distribution to maximize the force. With these wavelengths, deflections were observed 

(though with different magnitudes) indicating that the observation is robust in its 

generality. 
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Figure 3.2:  Experimental Setup for Surface Optical-Electron Switch. An electron beam is 
collimated by slits S1 and S2 and passes over a Grating/Surface. As the surface is illuminated by a 
laser beam, it is deflected by an angle θ when the surface is illuminated by a laser beam. For the 

electrons to switch from one angle/spatial position to another, a mechanical chopper (for low 
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frequency) or acousto-optic modulator (AOM, for high frequency) turned on and off the laser 
beam. 

 

3.3  Measurements and Results 

To observe the switching speed, the edge of the mount holding the detection slit 

was used to block the area where the deflected beam would hit the MCP detector (see 

Figure 3.3). Using the MCS it was found that the switching speed (from on to off) was 

approximately 6 s. 

Using the MCS spatial calibration as a guide, the deflection angle was also 

measured as a function of chopping frequency. For low frequencies, this was achieved 

with a mechanical chopping wheel. Because this chopping frequency was limited to 2000 

Hz and a considerable chopping angle was still observed, the mechanical chopper was 

replaced with the acousto-optic modulator as the switching mechanism for the laser. 

Angular deflection was observed up to a frequency of 2 MHz.  

Interestingly, the deflection angle dropped roughly linearly with chopping 

frequency but becomes constant at approximately 100 Hz; then it drops linearly once 

more starting at approximately 300 kHz. Also, note that the deflection angle between 

using the mechanical chopper and the AOM during constant frequency region (a 

difference of a factor of 2) is due to the loss of intensity of the laser beam as it passed 

through the AOM. 
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Figure 3.3 Electron-Optical Switch Speed. Plotted is the electron counts as a function of time as 
the laser is switched on and off. The chopping data for the mechanical chopper (red) at 818 Hz 
and the AOM (black) at 1000 Hz are shown. Top-left: A time accumulated electron image from 
the CCD camera shows the initial (left) and deflected electron beam (right). A semi-transparent 

rectangle “Block” represents the edge of the detection slit mount used to switch the electron beam 
“on” and “off”. Top-right: Plotted is the electron beam deflection as a function of the chopping 

frequency (using the AOM or mechanical chopper). The maximum chopping frequency is 
approximately 2 MHz. The red data points represent the data collected with the chopper and the 

black data points with the AOM. 
 

A distance dependence measurement of this effect was also taken. Illustrative of 

how strong this effect is with such low power light, the electron beam can be steered or 

deflected when it is as far as 200 m away from the surface (farther than which the 

deflection amplitude is no longer larger than the divergence angle, thus the deflected 

beam becomes indiscernible from the original beam), see Figure 3.4. Granted, the power 

of these lasers was not necessarily maximized, so the beam may potentially be deflected 

even farther from these surfaces. 



48 
 

 

Figure 3.4   Beam Deflection as a Function of Distance Between the Electron Beam and the 
Surface. the electron beam can be deflected when it is as far as 200 m away from the surface 

 

 One of the most remarkable aspects of this observed deflection mechanism is how 

the deflection angle changes as the laser beam laterally sweeps perpendicular in the x-

direction to the beam’s path (see Figure 3.5). While the electron deflects towards the 

surface as the center of the laser beam is directly over the surface, as the laser beam is 

moved either to either side of the electron’s path the deflection angle amplitude decreases 

to zero and then further inverts in the opposite direction such that the beam deflects away 

from the surface, and of course further movement of the laser from the beam’s path leads 

to a settling out of no deflection. From this deflection distribution as a function of laser 

position in the x-direction and the relative width of the laser width of 280 m (which is 

comparable to the distance between the crossovers from attractive deflection to repulsive 
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deflection) is indicative of a formation of the charge distribution being dependent on the 

gradient of the intensity of the laser (which is what inspired the ponderomotive model for 

explaining this laser induced deflection phenomenon). 

 

Figure 3.5: Change in Beam Deflection Angle as a Function of the Lateral Position (x) of the 
Laser Focus. Left: The measured deflection magnitude is measured as a function of the distance 

between the electron’s path and the center of the laser spot. The direction of the deflection is 
measured at three positions (red circles). The value of these angles including the sign of the 

direction are indicated (red crosses). Reversals of deflection direction is attempted to be explained 
by a heuristic model (blue line) of a light-induced surface-charge redistribution based on a 

ponderomotive force. Right: Diagram of the electron trajectories (black lines) and surface-charge 
density on the surface (blue to red surface plot) is shown. The interaction between the electron 

beam and the surface charge distribution is such that it is attractive in the middle of the laser spot 
and repulsive at the sides of the laser spot (roughly beyond the width of the laser spot, as the 

FWHM of the laser is focused on the surface at 280 m). 
 

 In addition to a range of wavelengths, a range of available surface types were also 

investigated, including gold-palladium coated silicon nitride grating, bare silicon nitride 

grating, solid aluminum, and solid gallium arsenide (the last of which is unpublished). 

The general trend seen is that the surface-charge redistribution is driven by the intensity 

gradient of the laser due to a ponderomotive potential (as seen in Figure 3.5) and this 

what was found with metal coated SiN observation (Figure 3.5), but this is not the case 

for uncoated SiN (Figure 3.6) or aluminum. Combining this with issues with the 
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amplitude of the deflection being limited to only a fit factor casts considerable doubt on 

the ponderomotive force model proposed to explain this deflection model outlined in  [1].   

 

Figure 3.6: “Uncoated” Deflection Measurement. Electron beam deflection is measured as a 
function of the laser beam position x. This measurement is similar to that shown in figure 3.5, 

except the deflection is measured at a location on the surface where the coating was not visible, 
which we call: ‘uncoated’ or bare Silicon Nitride Grating. The deflection images are shown (left 
column). For all images the laser beam was chopped on and off, while the electron image was 

recorded continuously. Note that only deflection in one direction was observed in contrast to that 
reported in figure 3.5 for the coated SiN surface (for a more detailed description see text). An 

electron microscope image of the SiN surface is shown (top right). A higher magnification image 
of the edge view of a similar grating (bottom right) is reported earlier  [11]. 

 

3.5  Conclusion and Outlook 

Even without a complete understanding of the physical mechanism of the laser-

induced surface charge redistribution which causes the deflection of the free electron, the 

setup still shows utility in applications such as electron beam lithography and microscopy 

where external electronics need to be kept isolated [12]. Additionally, further studies in 

understanding the mechanism of this laser-induced potential will be needed if one were to 
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investigate coherence effects after travelling over such an environment. Potential 

pathways of such an investigation include starting with more geometrically simpler 

surface (for example, a flat surface instead of a nanofabricated grating), using a range of 

materials which have been well characterized, and using a more comprehensive laser 

intensity dependence and wavelength dependence study. 
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CHAPTER 4 

DECOHERENCE EXPERIMENT 

4.1  Introduction 

The continuous divide between quantum and classical physics can be described 

by decoherence theory. Decoherence is an irreversible process in which a quantum state 

entangles with an environment in such a way that it loses its wave interference 

properties  [1,2]. For most experiments, maintaining a system’s quantum coherence is 

desirable, and great efforts are made to isolate the system from its environment  [3–6]. 

Additionally, it has been suggested that some sources of decoherence may be ubiquitous, 

such as those originating from vacuum field fluctuations or gravitation [7–12], and that 

decoherence in general is a critical element to resolving the quantum measurement 

problem [13]. Thus, experimentally sorting out various sources of decoherence and 

determining which dominate is desirable for both technical applications and fundamental 

studies, including the decoherence program [13]. 

There have been experiments in which the transition between the quantum and 

classical domain has been controlled through both the “distance” between states  [14–16] 

and the strength of the interaction with the environment [16–20]. Most of these 

experiments involve various wave-matter interferometric techniques.  

Here we will describe an decoherence setup that realizes Zurek’s original thought 

experiment of diffracting charges through a grating and controlling the spatial quantum 

coherence with a conducting surface  [21]. We have measured the effect of a gold and 

silicon surface and found upper bounds on the loss of contrast due to decoherence. These 

results refute current decoherence models premised on image charge  [22–24]. We also  
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identify viable decoherence models based on dielectric excitation theory from effects 

including surface plasmons  [25,26].  In addition, we propose a pathway to measure 

decoherence due to electromagnetic vacuum field fluctuations. 

Sonnentag and Hasselbach previously used an electron biprism interferometer 

setup with separated arms passing over a semi-conducting surface before 

recombination  [16]. In contrast, we used electron diffraction from a nano-grating and 

measured the effect of a conducting surface. Diffraction is well suited for measuring 

small losses in coherence, which is particularly useful in detecting weak decoherence 

channels.  Sonnentag’s and Hasselbach’s measurements on doped n-type silicon reveals a 

decoherence strength that is a factor of 102 too weak as compared to Zurek’s image 

charge model. This is confirmed by our findings.  

Their determination of the physical mechanism nevertheless supported image 

charge models [16,23] as the analysis ignored the strength of decoherence and was 

limited to a best fit of the functional form, as was done in a similar experiment by Röder 

and Lubk [27]. The implicit assumption is that a metallic surface (as used in the theory) 

behaves similarly as a silicon surface. The image charge models were thus considered 

valid. Our measurements which now also include the conductor gold as well as silicon, 

refute this conclusion and identify Howie’s model [25,26] as viable.  

4.2 Experimental Setup 

A 1.67 keV electron beam (Kimball EGG-3101 electron gun) is sent through two 

collimation slits separated by 25 cm with a geometrical beam divergence of 61 rad in 

the x-direction and 120 rad in the y-direction (see Figure 4.1). This collimation gives a 

transverse coherence length of the electron beam of approximately 600 nm as determined 
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by diffraction images. This makes it possible to diffract the electrons from a 100 nm 

periodic nanofabricated grating [28,29]. The diffracted electron distribution is magnified 

24 cm downstream by an electrostatic quadrupole lens, detected by a multichannel plate 

detector, backed by a phosphorous screen (Beam Imaging Solutions BOS-18), and 

imaged by a CCD camera. A LabVIEW image acquisition program [30] accumulates a 

two-dimensional streaming image from the camera. The vacuum chamber in which this 

experiment takes place is held at a pressure of 4 10-5 Pa and is protected from external 

magnetic fields by two layers of mu-metal magnetic shielding.  

         

 

Figure 4.1:  Experimental Setup. Left: Diagram of experiment. Electrons are prepared in a 
spatially coherent state by collimation with two slits (S1 and S2), then diffracted through a 

nanofabricated diffraction grating (G) before passing over either a doped silicon (Si) or gold (Au) 
surface, which acts as the decohering “environment”. Left: Schematic of Experimental setup with 

contour plot of data. Right: Image of the “Linear Electron eXperiment” (LEX) utilized for this 
Decoherence Experiment (as well as the optical electron switch experiment in Chapter 3). 

 

A 1 cm2 surface is then brought in from below the diffracted beam 3 mm after the 

grating such that the surface in the x-y plane is perpendicular to the diffraction grating 

bars. The surface height is adjusted to cut into the beam so that 1/3 of the intensity of the 
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original beam reaches the detector. The surface is supported by a mechanical feedthrough 

whose angular pitch with respect to the beamline can be adjusted with a precision of 

approx. 0.2 mrad. This pitch of the surface is adjusted to maximize the electron beam’s 

deflection due to image charge attraction. The Si surface was cleaned using a version of 

the industry-standard RCA cleaning method (without the oxide strip) [31], to remove dust 

or other contaminants (see Appendix D for more details). 

4.3  Analysis 

When an electron passes over a decohering surface, it interacts with the surface so 

that the interference pattern in the far field has lower visibility, and further decreases the 

closer the electron passes over the surface. Previously, the decoherence was measured in 

terms of the visibility of the interference pattern  [14,16,18,27], i.e. 

   max min max min  isV I I I I . 

However, to measure smaller changes in contrast and reduce the uncertainty in 

measurement due to background counts, we measure coherence in terms of the transverse 

coherence length of the diffracted beam as observed at the detector [32]: 

dB
coh

coll FWHM

ad
L

w




  .                              (4.1) 

 
Here a  is the periodicity of the grating, d  is the distance between neighboring 

diffraction peaks at the detection screen, and FWHMw  is the FWHM of a diffraction peak. 

Thus, here we associate a loss of coherence with an increase of the width of the 

diffraction peaks FWHMw  rather than a loss of visibility. 
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Two dimensional images of the electron interference pattern are recorded. 

Lineouts of the diffractograms are extracted so that each x-direction horizontal lineout 

corresponds to a 4.8 m range in the y-direction on the detector where electron detection 

events occurred. The lineouts are taken at a slant with the x-direction to compensate for 

the image skew. These diffraction lineouts are fitted by the expression: 
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,                       (4.2) 

where the first term corresponds to the single slit envelope and the diffraction peaks, and 

each individual peak, 

   2 2 2 2
1 22 2

1 11x c x cG x a e a e    ,                               (4.3) 

is approximated in terms of two Gaussians with overlapping means, which also very well 

fits the shape of the beam without diffraction. The full width half max width FWHMw  of 

all diffraction peaks is constrained to be the same for a single diffraction pattern, as is the 

peak to peak distance d  taken to be constant. More details on this fitting method can be 

found in Appendix A. From this fit FWHMw  and d  are extracted to compute the 

coherence length cohL  for a given distribution according to equation 4.1 (Figure 4.2). For 

more details about coherence length in this context, see section 2.4.3 for more details. 
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.  

Figure 4.2: Analysis of Diffractogram. Bottom Right: Contour of accumulated CCD image of a 
diffractogram when the surface cuts the intensity by 1/3 of the original intensity. Top Right: 

vertical line-out (black solid dots) of zeroth order diffraction peak affected by image charge (see 
Appendix C for more details). Bottom Left: Horizontal Electron line-out of 4.8 m of the 

Diffraction Pattern (Black solid dots). These lineouts are fitted by equation 4.2, and then assigned 
a coherence length according to coh FWHML ad w . Top Left: Nanofabricated diffraction grating 

with periodicity a = 100 nm. 
 

The advantage of using diffractometry over interferometry lies in their respective 

decoherence measures, cohL  and isV . The background signal can be subtracted for 

diffraction without distorting the measured value of cohL . This is not the case when 

measuring visibility in an interferometer. The visibility isV  drops off linearly due to a 

weak background signal, which can mask decoherence. For a weak decohering 

environment that scatters the incident beam and introduces background, diffractometry is 

thus well suited. For more details on this, see section 2.4.4. 
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4.4  Comparison between Experimental Results and Physical Models  

As derived in section 2.5.2, decoherence over the surface modifies the density 

matrix of the electron according to  [1,33]: 

t f
dec

ti
dt

final initial initiale e


  


  ,                                            (4.4) 

where   is the decoherence factor. The decoherence time scale dec  is not only model-

dependent, but also depends on the distance between paths x  and the height above the 

surface y . For all electron-surface decoherence models described in section 2.6, the 

predicted final diffraction pattern is obtained by propagating the final density matrix 

final  to the detection screen (see Appendix C for details). From this, the change in 

transverse coherence length is then obtained from the calculated far-field diffraction 

pattern using Equation 1.  

Plotted in Figure 4.3 is a comparison of the coherence length as a function of 

vertical position Y at the detector for the case of two different n-type phosphorous doped 

silicon samples with resistivities 1-20 cm and 1-10 cm (data points). Our results agree 

with Hasselbach’s experimental findings, who used a 1.5 cm n-type doped silicon 

sample of 1 cm length using the same beam energy of 1.67 keV. The observed loss of 

contrast can be visualized in the diffractogram’s diffraction peak broadening (Figure 4.3 

top right), based on the histogram data collected from the CCD camera (see Appendix D 

for more details). The surface acting as a lens (e.g. a charge distribution on the surface on 

the lens) is ruled out as an explanation of the change in coherence length. This is because 

a simple lens model cannot simultaneously explain both the widths of the diffraction 

peaks and the peak periodicity values observed (see Appendix D for more details).  
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  The experimental data is also compared to Zurek’s model of classical image 

charge/Ohmic dissipation, Scheel and Buhmann’s macroscopic quantum electrodynamic 

model and Howie’s dielectric excitation theory model. The uncertainty associated with 

the theoretical curves (shaded regions I, II and III) in Figure 4.3 corresponds to the range 

of Si resistivity 1-20 cm. The shaded region for Hasselbach’s experimental fit (IV) 

corresponds to the published experimental uncertainty [16]. 

 

 

Figure 4.3  Transverse Coherence Length for a Silicon Surface. The diffraction pattern shows a 
loss of contrast as the diffraction peaks broaden for electrons that passed closer to the surface (top 

right). Our experimental findings (dotted) show agreement with Hasselbach’s experimental fit 
(IV, green), and is consistent with modelling based on dielectric excitation theory (II, red). The 
data does not agree with models based on Ohmic dissipation due to classical image charge and 

macroscopic quantum electrodynamic theory using dielectric response (I and III, blue). 
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The observed loss of contrast in doped-silicon rules out Zurek’s and Scheel’s 

decoherence models.  This is in contrast to the claim made earlier that Zurek’s model is 

in adequate agreement with experiment  [16] . Even if dephasing is present in our 

experiment, the observed loss of contrast is much smaller than predicted by the models 

and therefore the conclusion remains valid. Howie’s dielectric excitation model agrees 

with our findings. 

This experiment was also carried out for the case of a gold surface, and plotted in 

Figure 4.4 is the transverse coherence length as a function of height. For a metal with a 

resistivity of 2.2x10-6 cm   [34], no reduction in contrast is measured for an electron 

passing close to the gold surface. This is consistent with Zurek’s and Scheel & Buhman’s 

models. Machnikowski’s quantum many body model based on image charge formation 

significantly overestimates the loss of coherence, despite being developed for high 

conductivity metals such as gold. Hence, Machnikowski’s model can also be ruled out as 

a viable decoherence mechanism. 

The general lack of height-dependence of the loss of contrast can be visualized in 

the diffraction peak’s width of the diffraction pattern remaining approximately constant 

(Figure 4.4 top right). This height independence of the coherence length for the case of 

the gold surface contrasts with that of doped silicon. This may be connected to the much 

smaller resistivity of gold than doped silicon. No theoretical model is currently able to 

explain both results.  
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Figure 4.4: Transverse Coherence Length for a Gold Surface. For an initial coherence width of 
~600 nm, no loss of coherence is observed. Here we can see that decoherence due to image 

charge formation in a quantum many-body electron gas model can also be ruled out. 
 

4.5  Outlook and Conclusion 

This diffractometer setup opens the door to more sensitive measurements of weak 

decoherence results. Consider that our modest experimental setup is limited by an initial 

coherence width (~600 nm) and that the decoherence factor in many cases scales as  2
x . 

Given that it is now possible for transmission electron microscopes (TEM) to reach 

coherence lengths as large as 100 microns  [35], we can thus improve our sensitivity by 

about 104. This opens the pathway to study decoherence surface effects due to plasmon 

excitation  [25,26,36], optical bandgap excitation, superconductive transitions, spin 
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dependent transport effects [37–39], coherent thermal near-fields  [40–42]  blackbody-

like near-fields  [43,44], etc.  

There has been much interest in the potential to measure the effects of 

decoherence due to vacuum field fluctuations in electron interference [7,8,10,45–47]. It 

has been shown that, absent of the surface, the decoherence factor scales with 

   2 2 2
flightx T c   where flightT  is the total time of flight of the electron  [8,47]. Given that 

x is generally between 100 nm – 100 m and flightT   is roughly between 1 ns – 100 ns,  

this corresponds to a transverse velocity of 510 m sT flightv x T    and a decoherence 

factor of 710 , which is not currently feasible to observe. To observe such decoherence, 

the transverse velocity has to be increased by changing the experimental configuration 

(for example as in an quantum electron microscope  [48,49]). 

In conclusion, we have confirmed the loss of contrast in an electron diffraction 

pattern due to the introduction of a doped silicon surface with a strength consistent with 

Sonnentag and Hasselbach’s biprism interferometer experiment. Our diffractometer setup 

is simpler in terms of its components and is particularly advantageous in observing weak 

decoherence effects. Thus, we have shown a new pathway to observe weak decoherence 

channels, including vacuum field decoherence. Additionally, for the case of a gold 

surface we have placed an upper bound on the loss of contrast that can be attributed to 

decoherence. Combining our silicon and gold decoherence results, it has been confirmed 

that the observed effect is strongly material dependent. We have ruled out a range of 

decoherence models due image charge based on classical theory  [22], quantum many 

body theory  [23], and dielectric theory  [24]. For the materials and electron beam 

parameter range studied, our work remains consistent with decoherence effects due to 
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dielectric excitation theory from effects including surface plasmons [25,26]. These 

findings are consistent with the general decoherence program  [1,2,13].  
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CHAPTER 5 

DEPHASING VS DECOHERENCE 

5.1  Introduction 

 The nature of the loss of quantum interference can be generally separated into two 

distinct processes: dephasing and decoherence. The effect of these two processes on 

interference can be seen most clearly in the combined phenomenological expression of 

the detected probability distribution of two matter-wave states of equal shape [1,2], 
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The third term, which is responsible for the interference, can be modulated by both the 

dephasing term  ,  fi x t
e  (which represents the net distortion from dephasing) and the 

decoherence term  , fx t
e  (which represents the net distortion from decoherence) where 

both  and   are real numbers. Notice the similarity between equation 5.1 and equation 

2.15. Ignoring the higher order corrections, it turns out that the visibility (a measure of 

the loss of contrast) in this case is     , ,
Re

   f fx t i x t
V e e . Thus, we can see that both 

processes can contribute to loss of visibility. 

There is however an important physical difference between the two processes. 

Decoherence, which involves entanglement with its environment as described in section 

2.5.1, is time-irreversible. Dephasing on the other hand, which involves phase modulation 

of the wavefunction from an external field, is time-reversible. Unfortunately, visibility, 

transverse coherence length, and similar measures do not adequately distinguish between 
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decoherence and dephasing. This makes it hard to identify sources of contrast loss by 

looking at the intensity distribution alone, and thus take appropriate measures to reduce 

such a loss of contrast (if the goal is to observe high-contrast diffraction or interference). 

As this relates to the work presented in Chapter 4, a separate issue is revealed. 

When probing the transition from quantum to classical mechanics, or testing if one is 

introducing a decoherence environment to a system, it is not immediately evident that the 

observed loss of contrast is due to decoherence rather than dephasing using the 

measurement methods that are traditionally utilized. This opens the concerning question 

of whether or not the transition between quantum and classical transition has actually 

been observed, or if only upper limits to the loss of coherence have been observed. 

 One straightforward way to determine if a process is a decohering one is to 

evaluate the Von Neuman entropy before and after the process: 

 ln  S Tr                                                           (5.2) 

When S remains constant in time, the process is time-reversible; as opposed to when S 

increases in time, the process is time-irreversible [3]. Calculating S however requires the 

determination of the off-diagonal elements (also known as the coherence terms) of the 

density matrix  . These terms cannot be determined by the intensity distribution alone, 

and require phase retrieval techniques such as holography or quantum state 

tomography [4]. 

 Instead of relying on such methods, we have proposed using the method based on 

reptetitive ensemble measurements of the propability distribution using a spatial 

correlation function of these measurements. Without knowing the details of the dephaser 

(defined as a process which causes dephasing), we show that, with repetitive 
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measurement, this method can in principle extract sufficient information to recover the 

loss of contrast in the diffraction pattern. Conversely, we show that the same process fails 

to recover the loss of contrast in the diffraction pattern for the case of a decoherer 

(defined as a process which causes decoherence). 

5.2  Path Integral Simulation with Dephasing and Decoherence 

 The following is a description of  how, via the path integral formalism [5,6], a 

discrete numerical simulation is used to produce a far field diffraction pattern after the 

electron undergoes either dephasing or decoherence in the near field of a diffraction 

grating (particularly right before the grating). The final density matrix in both cases is 

recorded. This is initially pursued to demonstrate that we can create a decoherer and a 

dephaser that both produce a similar loss of contrast. But by calculating the entropy 

before and after the simulation, it is shown that the dephaser does not change the entropy 

of the system while the decoherer increases the entropy in the system. 

The parameters used are inspired by the decoherence experiment’s setup outlined 

in Chapter 4. Figure 5.1 is a rough sketch of the grid planes used in this computation. 

These grid points are the positions considered in a finite sum approximation of the path 

integrals. Only straight-lined paths are considered, and an azimuthal equal velocity 

approximation is used for the propagator [6]. 
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Figure 5.1: Diagram of Dephaser/Decoherer Path Integral Setup 1. A matter wave (with the mass 
of an electron and an energy of 1.67 keV) propogates incoherently from the first collimation slit 
(S1) to a second slit, (S2) to a plane acting as a dephaser or decoherer (D/D). It then propagates 

through a grating (G) and finally to the near field (NFD) and the Far Field (FFD). 
 

 Beginning with the dephaser case, the wavefunction propagates from one 

individual grid point kx  at the plane representing slit 1 to the plane for slit 2 with grid 

points jx  to produce the wave function 2  at slit 2:  

   2 2
1

2

2 j k dBi x x Lk
j

j

x e
    

 ,                                             (5.3) 

where dB h mv   is the de-Broglie wavelength of the electron.  

The wave propagation continues from the second slit from each grid point ix  to 

the plane representing the dephaser with grid points jx : 

       2 2
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3 2

2 j i dBn j i x x Li xk k
j i

j i

x e x e
     

  .                          (5.4) 
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A phase  n ji x
e


 is applied to the wave function 3  to act as the dephaser, a piecewise step 

function which consists of N blocks of 241 nm size with constant phase angle n  

uniformly randomly varying from 0 to 2c (see Figure 5.2). The quantity c is a tunable 

variable used to tune the dephasing effect; i.e.  0 < c < 1 where c=0 means no dephasing 

and c=1 is maximal dephasing for this step function dephasing pattern. 

 

Figure 5.2. Step-wise Defined Random Phase used in Dephaser.  

 Next, the wave propagates to a grating at a distance of L3 away, which has a 50/50 

transmission ratio and 100 nm periodicity:  
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(5.5) 

where  jH x  represents the grating function (equals 1 for transmission and equals 0 for 

no transmission). Then the propagation continues to the near field of the grating, and then 

to the far field “detector”: 
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With such a wave function, initially from the kth grid point at the first slit, we construct a 

density matrix (which is at the moment still coherent): 

6 6
k k

k   .                                                             (5.7) 

 We repeat the above series of path integrals for all Ns grid-points at the source and 

sum the density matrices together (and then normalize) to obtain the final density matrix 

associated with dephasing:  

6 6
1

s

final

N
deph k k

k
k k

   


   .                                                  (5.8) 

 For our initial modeling of decoherence instead of dephasing, this path integral 

system is somewhat modified. The initial propagation from the first to second slit 

outlined in equation (5.3) remains the same. However, from the second slit to the 

decoherer, the only paths considered are those whose final position lies within the nth 241 

nm piecewise step section of the random phase.  n ji x
e


 are initially integrated over: 
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 Then from this smaller portion of the dephasing plane, the wave function 

continues to propagate to the grating: 
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and as before to the near and far field: 
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Note as before that while up to this point a fully coherent density matrix has been 

produced, 

, ,
, 6 6

k n k n
k n   ,                                                    (5.12) 

to produce the desired final density matrix representative of the entire process, not only 

does one add incoherently over all initial states at the source, but also over all Np 

piecewise segments of the decoherer. Thus: 

, ,
, 6 6

1 1

p s

final

N N
dec k n k n

k n
n k n k

   
 

   .                                     (5.13) 

A summary of the parameters used in this path integral simulation to test the results of the 

effects of this dephaser and decohere can be found in Appendix E.1. 

 One can then determine the coherence length and time associated with the 

resulting probability distribution by taking the diagonal of the final density matrix, 

   final finalP x diag  .       (5.14) 
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The von Neumann entropy S (Equation 5.2) of the system can be determined using the 

final density matrix, most easily by first determining the eigenvalues of the density 

matrix: 

 lni i
i

S    .                                                    (5.15) 

 The results of doing this can be seen in Figure 5.3, where plotted is the final 

intensity distribution for the cases of 1) no dephasing/decoherence, 2) with dephasing, 

and 3) with decoherence (where c= .7). The coherence length in both cases decreases, and 

they decreased by roughly the same amount (although the spatial noise for the dephasing 

case is much larger). However, from the second slit to the detector, the change in entropy 

S=0 for the case of dephasing, whereas the entropy increases by S= 2.7444 for the 

case of decoherence.  

 

Figure 5.3: Far Field Intensity Pattern After Dephasing/Decoherence Path Integral Simulation 1. 
Adding dephasing and decoherence in this case widens the diffraction peaks, but in the case of 

decoherence, the entropy increases. 
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It can be concluded that these two processes both can alter the interference 

properties in proximally the same way (and if one were to take a time average, they can 

become indistinguishable).  However, given that entropy changes in one case and remains 

unchanged in another, the underlying physical mechanisms indeed differ in a very 

fundamental way which further motivates a means to distinguish what is the cause of the 

lost of contrast post-diffraction/interference. 

5.3 Spatial Correlation Method 

 Previously, Rui-Feng et al  [7] developed an optical experiment that exhibited a 

loss of contrast. They managed to recover the diffraction pattern after it was severely 

distorted using a ground glass disk.  Here they shined a red 632.8 nm laser through a 

double slit with a slit separation of d = 1.5 mm and slit width of .5 mm; and imaged the 

diffraction pattern at a distance z = 20 cm in the Fresnel diffraction region (

2
0 0;  3.5 mz z z d   ) using a CCD camera (see Figure 5.4). They also placed a 

ground glass disk spinning at .5 Hz very close and right before the double slit. When the 

ground glass disk was removed, the camera can clearly image the near field pattern with 

its two main lobes and smaller near field fringes present. When the ground glass disk is 

present, the image is completely blurred away and no information seems to remain.  

As the ground glass disk was spinning, images of the pattern were taken with a 

100 s exposure time for each image. After collecting many blurred images (~1000), they 

used a second order correlation function on the spatial intensity distribution according to; 

            2 ,g x x I x I x I x I x    .      (5.16) 
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where  I x  represents the intensity measured on the CCD camera at position x  in the 

direction of diffraction (taking x=0 to be the center of the camera) and ...  here 

representing averaging over time (or averaged over the frames). The result of this is was 

the production of a second order correlation pattern which closely fits the Fraunhofer 

pattern, or expected far field diffraction pattern that matched the experimental 

parameters. The implication of this is that after Fourier transformation of the second 

order correlation function, the original near field pattern can be restored.  

 

Figure 5.4: Ghost Imaging Experiment by Rui-Feng et al  [7]. Top Left: Experimental setup. 
Laser light is sent through a rotating ground glass disk (GDD) before passing through a double 
slit and being imaged by a CCD camera in the Fresnel diffraction region. Bottom Left: (a) The 

Near Field intensity image obtained when no GGD is present shows a coherent diffraction pattern 
as opposed to (b) a blurred or scrambled pattern when the GDD is present. Right: by calculating 

the second order correlation function 
   2 ,g x x  from a series of blurred images, the far field 

diffraction pattern is obtained. Thus after a Fourier transformation of 
   2 ,g x x , near field 

information can be restored. See text and [3] for more details. Photos credited to Rui-Feng et 
al [7]. 

 



75 
 

It is from this work we asked the questions: given that it appears that scrambled 

information is restored, is this recovery procedure one method to discern if the process 

which causes loss of contrast (the laser light passing through the ground glass disk) 

reversible or irreversible, and thus a dephasing or decoherence process? Under what 

parameters is this diffraction reconstitution possible? Can such a method be extended to 

matter-wave optics? 

 To test this, the path integral simulation described in Section 5.2 was modified so 

diffraction of the electron occurs through a double-slit rather than a grating, resembling 

the double slit experiment by Bach et al [8] (see Figure 5.5). An electron energy of 1.67 

keV is used, but it starts with a fully coherent plane wave which propagates to the 

double-slit. The dephasing/decoherence takes place at the double-slit plane rather than 

being a separate plane (i.e. there is no propagation between the dephasing/decohering 

plane and the double slit). It then propagates to the far field detection plane. A summary 

of the parameters can be found in Appendix E.2. 

 

Figure 5.5. Dephasing vs Decoherence for the Case of the Double Slit. Sketch of the double slit 
setup when (a) no dephasing or decoherence is present, (b) dephasing and (c) decoherence. 

Contrast is lost for the cases of dephasing and decoherence. For dephasing, a random potential 
(dark green curve) using a sum of gaussians is used at the double-slit. For decoherence, the 

electron wave is split into a probabilistic sum of separate incoherent overlapping gaussian waves, 
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and then propagate to the detector. The diffraction image produced in (a) is attributed to Bach et 
al [8]. Image produced by Zilin Cheng. 

 

For the dephaser, instead of the phase distribution being in the form of a step 

function, the spatial dephasing pattern used in  i xe   is a smooth sum of 500 Gaussians: 

   22i ix x

i
i

x Ae
  

 ,       (5.17) 

where each iA and ix  are evenly distributed random numbers within the intervals [0, 2] 

and [-250 nm, 250 nm] respectively. i  is a normally distributed random number with a 

mean value of 4 nm and a standard deviation of .5 nm. 

 For the case of decoherence, the same phase is applied, and as before the wave 

propagation is cut into finite segments. However, this time instead of being cut into 

boxed segments, the entire double-slit plane is propagated over, and this time the wave 

function is truncated by a Gaussian function (similar to a grating or double slit function): 

     20 2

0
nx xn

dx x A e
   

 ,             (5.18) 

where  d x  is the wave function at the double-slit with the smooth random phase 

pattern, 5
0 2.23 10A    and 0 100 2  nm   are constant values of  and nx is the central 

position of the Gaussian. For the incoherent adding of the path integrals (addition like 

before), the distance between these Gaussians is 12.5 nm and there are 40 Gaussians 

total. Plotted in Figure 5.6 are representative images of the random phase pattern and the 

summed Gaussians at the double slit plane. 
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Figure 5.6: Representative Diagram of Dephasing and Decoherence at the Double Slit. the 
vertical lines show the range of the double slit. Left: the blue curve represents the smooth random 
phase also applied to the electron wave function. Right: example Gaussian distributions applied to 

the wave function. Note that here the widths and separations are not drawn to scale. For 
dephasing, only the phase is applied to the wave function while for decoherence both the random 

phase and (incoherently added) the Gaussians are applied to the electron wave function at the 
double slit. For both cases the diffraction pattern was calculated 500 times each with a different 

set of random numbers. Image Produced by Zilin Cheng 
 

 This path integral simulation was carried out 500 times for both the dephasing and 

decoherence case each with a different smooth random phase applied. Plotted in Figure 

5.7 are example intensity distributions as measured in the far field after 

dephasing/decoherence, and the time average of each. Individually, although the main 

structure is maintained for both dephasing and decoherence (in that the position and 

relative amplitudes of the maxima are similar in both cases), a lower contrast for the case 

of decoherence is a distinguishing difference for a single iteration. For the near field, this 

is consistent with the work done by P Kazemi et. al  [9]. where they were able to see 

interference minima for the case of dephasing in the near field quantum carpet, but not 

for the case of decoherence.  
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Figure 5.7 Example Intensity Distributions in Far Field after Dephasing/Decoherence for Path 
Integral Setup 2. (a) and (b) shows the intensity distribution resulting after experiencing the first 

random phase after dephasing and decoherence, respectively. (c) and (d) shows the intensity 
distribution after a different smooth random phase. Individually, although the main structure is 
maintained for both dephasing and decoherence (in that the position and relative amplitudes of 

the maxima are similar in both cases), a lower contrast for the case of decoherence is a 
distinguishing difference for a single iteration. (e) and (f) show the intensity distributions 

averaged over 500 iterations with different random phases. Image produced by Zilin Cheng. 
 

 
 Similar to Rui-Feng et al [7], the deviation of the correlation function (equation 

5.16) is applied to the sequence of 500 phase-independent final intensity distributions in 

the far field for both the dephasing and decoherence simulations: 

   
       

       

2
1 2

2
1 2 1 1 2 2

2
1*

1 2 1 1, 1 2 2, 2 1 2

,

,

, .

G x x

G x x I x I x

dx dx h x x h x x G x x



 

      

                                  (5.19) 
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The result is a recovery of what resembles the far field diffraction pattern for the case of 

dephasing and what appears to be only a single peak for the case of decoherence.  

 

 

Figure 5.8: Effects of Applying the Correlation Function g(2)(x,-x). When applying the correlation 
function g(2)(x,-x) to 500 independent iterations of the far field pattern  where (top) is the 

computation after dephasing while (bottom) is the computation after decoherence. The correlation 
function successfully recovers a far field pattern in the case of dephasing while this is not the case 

for decoherence. the diffraction pattern fits the dephaser correlation pattern well, as the peak to 
peak distance of the correlation pattern (22.9 m) is close to the expected diffraction peak to peak 

distance (24 m). Image produced by Zilin Cheng. 
 

 Fitting the autocorrelation pattern that came out of the dephasing case with the 

double slit diffraction pattern function in the small angle approximation (See Figure 5.8), 

  2 2 2

2 2

4 sinc cos
wx dx

I x w
L L


 

   
    

   
,     (5.20) 

where w is the width of the slits (50 nm), d is the distance between slits (150 nm),  is the 

electron’s wavelength (30.03 pm), and L2 is the distance from the double slit to the far 
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field screen (24 cm). Using these values, one would expect that the distance between 

local maxima (peaks) in the diffraction pattern would be 24 m, and the best fit to our 

autocorrelation pattern is a peak to peak distance of 22.9 m. 

 
 The change in entropy from the source to detection for both dephasing and 

decoherence cases is computed as before (equation 5.15). For dephasing, the change of 

entropy was 0S   whereas for decoherence the change in entropy was increased by 

0.69S  , as anticipated from the previous path integral results. This reaffirms that the 

dephasing processes we theoretically realized are time-reversible while the decoherence 

process is time-irreversible. 

5.4  Conclusion and Outlook 

 In conclusion, we have reaffirmed using a matter wave path integral simulation 

that the distinguishing feature between dephasing and decoherence processes is that the 

former is a time-reversible process and the latter is a time-irreversible process. Although 

the resulting time-averaged intensity patterns can be difficult to distinguish from each 

other at first glance, by taking a sequence of measurements and performing an 

autocorrelation computation on the time sequence in the far field, we have found that a 

far field diffraction pattern showing high visibility interference can indeed be recovered 

for the dephasing case, but not for the decoherence case. This result agrees with the 

experimental results by Stibor et. al.  [10,11]. 

 Questions arise regarding how to realize this result experimentally. Primarily, 

how fast does the imaging of individual patterns need to be in order to recover the far 

field diffraction pattern for the case of dephasing? Although in Stibor’s case they 
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managed to recover interference by taking the positions of nearest and next nearest 

neighbors of individual electron events, they used a known modulation frequency. 

Therefore, we hypothesize that so long as the characteristic dephasing time (between 

modulations or “sequences”) is sufficiently slow compared to the time to accumulate a 

statistically significant far field pattern, a diffraction pattern should be recoverable. 

 Besides these results having implications for fundamental studies including 

thermodynamics in quantum mechanics and experiments pertaining to the quantum 

measurement problem, this process has application as a diagnostic tool for determining 

the source of loss of contrast in imaging involving diffraction such as transmission 

electron microscopy (TEM) and improving contrast in long-exposure images that are 

distorted over time. 
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CHAPTER 6 

CONCLUSIONS AND OUTLOOK 

6.1  Optical-Electron Switch 

Despite issues with having a complete understanding of the physical mechanism 

of the laser-induced surface charge redistribution which causes the deflection of the free 

electron, the setup still shows utility in applications such as electron beam lithography 

and microscopy where external electronics need to be kept isolated [1]. Additionally, 

further study in understanding the mechanism of this laser-induced potential will be 

needed if one were to study coherence effects after travelling over such an environment. 

Potential pathways of such an investigation include starting with more geometrically 

simpler and pristine surfaces, using a range of materials which have been well 

characterized, and using a more comprehensive laser intensity dependence and 

wavelength dependence study. 

6.2  Decoherence Experiment 

This diffractometer setup opens the door to more sensitive measurements of weak 

decoherence results. Consider that our modest experimental setup is limited by an initial 

coherence width (~600 nm) and that the decoherence factor in many cases scales as (x)2. 

Given that it is now possible for transmission electron microscopes (TEM) to reach 

coherence lengths as large as 100 microns [2], the sensitivity can thus be improved by 

about 104. The general method of detection present here opens the pathway to study 

spatially dependent decoherence surface effects due to plasmon excitation  [3–5], optical 
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bandgap excitation, superconductive transitions, spin dependent transport effects  [6–8], 

coherent thermal near-fields  [9–11], blackbody-like near-fields  [12,13], etc.  

In this experiment, we have confirmed the loss of contrast in an electron 

diffraction pattern due to the introduction of a doped silicon surface with a strength 

consistent with Sonnentag and Hasselbach’s biprism interferometer experiment. Our 

diffractometer setup is simpler in terms of its components and is particularly 

advantageous in observing weak decoherence effects. Thus, we have shown a new 

pathway to observe weak decoherence channels, including vacuum field decoherence. 

Additionally, for the case of a gold surface we have placed an upper bound on the loss of 

contrast that can be attributed to decoherence. The silicon and gold decoherence results 

together confirm that the observed effect is strongly material dependent. We have ruled 

out a range of decoherence models due image charge based on classical theory  [14], 

quantum many body theory  [15], and dielectric theory  [16]. For the materials and 

electron beam parameter range studied, our work remains consistent with decoherence 

effects due to dielectric excitation theory from effects including surface plasmons [4,5]. 

These findings are consistent with the general decoherence program  [17–19]. 

 If the goal is to study decoherence for its own sake, then there is a need for less 

complex and well characterized environments. Such an engineered environment reduces 

the number of possible decoherence channels. Fine-tuning the geometry of the material 

may be one way of doing this (such as low dimensional materials to reduce certain 

degrees of freedom and thus restricting the field modes, such as quantum dots, atomic 

and molecular gases, nano-wires, and low dimensional surfaces), as well as choosing 
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materials that suppress certain field channels and enhance others (eg thermal polaritons 

vs field induced polaritons), etc. 

Independent of this, there is great need to study these experiments over an 

independent and wider parameter range. This was attempted to some degree by 

Sonnentag and Hasselbach (where they also varied x  as well as y ). However, in their 

case, they managed to confirm the small separation approximation where the decoherence 

factor varies with small ,x  but did not go into further detail to investigate outside this 

limit which is where the decoherence theories in Chapter 2 section 6 diverge (see Figure 

6.1). Other important parameters besides x  to serve the same purpose include 

temperature, the energy of the system, and the momentum exchange between the system 

and the environment.   

 

Figure 6.1: Illustration of the Functional form of the Decoherence Factor. For small x , these 
decoherence factor based on physical models described in Chapter 2 are all roughly proportional 
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to  2
x , but diverge for larger x . Probing the decoherence factor over a wide enough range of 

x where such divergence is evident is an important cross-check of the validity and exclusion of 
any of these theories along with the check of the strength of the decoherence factor. 

 
 

 These kinds of decoherence experiments can serve as a great navigation tool for a 

vast amount of mesoscopic studies (including nanoscience, quantum information, 

biological and organic systems, etc) where it is not clear to what degree quantum or 

classical effects are taking place, and whether decoherence itself is playing a role. 

However, should this be a goal, these studies would be best served if the prior mentioned 

experiments are tailor made to investigate the precise underlying physics in question, 

once preliminary studies such as the ones investigated here are well understood. This 

general approach also applies to proposed tests of the fundamental of quantum mechanics 

(including nanomechanical oscillators [20], quantum optomechanics [21], tests of 

collapse models [22], and gravitational cat states [23–25]). 

6.3  Dephasing vs. Decoherence 

In this theoretical work, we have reaffirmed using a matter-wave path-integral 

simulation that the distinguishing feature between dephasing and decoherence processes 

is that the former is a time-reversible process and the latter is a time-irreversible process. 

Although the resulting time-averaged intensity patterns can be difficult to distinguish 

from each other at first glance, by taking a sequence of measurements and performing an 

correlation computation on the time sequence in the far field, we have found that a far 

field diffraction pattern, showing high visibility interference, can indeed be recovered for 

the dephasing case, but not for the decoherence case. This result agrees with the 

experimental results by Stibor et. al.  [26,27]. 
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 The question arises how to realize this result experimentally. Primarily, how fast 

does the imaging of individual patterns need to be in order to recover the far field 

diffraction pattern for the case of dephasing? Although in Stibor’s case they were able to 

recover interference by taking the positions of nearest and next nearest neighbors of 

individual electron events, they used a known modulation frequency. Therefore, we 

hypothesize that so long as the characteristic dephasing time (between modulations or 

“sequences”) is sufficiently slow compared to the time to accumulate a statistically 

significant far field pattern, a diffraction pattern should be recoverable. 

 Besides these results having implications for fundamental studies including 

thermodynamics in quantum mechanics and experiments pertaining to the quantum 

measurement problem, this process has applications as a diagnostic tool for determining 

the source of loss of contrast in imaging involving diffraction such as transmission 

electron microscopy (TEM) and improving contrast in long-exposure images that are 

distorted over time. 
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APPENDIX A 

MATLAB CODE FOR DECOHERENCE EXPERIMENT ANALYSIS 

A.1  Matlab Code for Decoherence Experiment Analysis 

 The following Matlab code is used to extract horizontal and vertical lineouts of 

the CCD integrated images of the MCP’s phosphorous screen. See the below flowchart 

(figure A.1) for a diagrammatical description. After The acquired image data (from a 

LabView image acquisition program [1]) is uploaded in its .txt format and ordering the 

accumulated data values into their original pixel/matrix positions. A contour plot of the 

histogram is generated (figure 4.11 bottom right). At this point, the pixel locations of the 

maxima corresponding to the individual diffraction peaks are determined. These maxima 

are best-fitted to a line, which determines the slope of what will be the “tilted” horizontal 

lineouts. Next, the zeroth order diffraction peak is selected as representative of the 

vertical distribution of the diffraction pattern. An integrated sum (or line-out) of the entire 

diffraction peak is produced (creating for example the vertical experimental data points in 

figure 4.11 bottom left).  

From such a vertical lineout (be electron beam near or far away from the surface) 

a range in the y-direction is selected to perform horizontal lineouts on; namely the 

domain corresponding to the vertical position along the center of the zeroth order peak 

which is at minimum 5% of the maximum intensity value of the vertical lineout. Then an 

integrated tilted horizontal lineout (interpolated from the data with a vertical width of 4.8

μm ) is performed, one corresponding to each data point of the vertical lineout. Each 

horizontal lineout is then fitted to the function of Equation 4.1, with  fixed for all 
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lineouts determined by the lineout corresponding to the maximum intensity. To begin a 

fit, an initial guess (manual or otherwise) is made for all parameters except for  . Then 

after undergoing an r-square fitting routine to determine the best-fit parameters, some of 

these new parameters are plugged in as new initial guesses ( d , 1x , 1c  and 2c ) which 

affect the position of the peaks, the periodicity and their widths. However all other 

parameters ( , 0x , 2x , 3c , 1a  and bckA ) are held fixed. This final fit is then saved and the 

final parameters are then inserted as the next initial guess for the horizontal lineout fit. 

Finally. After recording the final parameters for all fits, the transverse coherence length is 

calculated using equation 2.29. 
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Figure A.1: Flowchart of Experimental Decoherence Image Analysis 
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A.2  Visualization of Loss of Coherence 

In order to highlight the loss of contrast in the diffraction pattern, the accumulated 

image of the MCP detector that was taken by the CCD camera was transformed into the 

revised images shown in Figure 4.3 and Figure 4.4. Figure A.2 shows the images before 

and after this process. Line-outs of the image are extracted to obtain diffraction patterns. 

The line-outs are taken at a slant with the x -direction to compensate for image skew. 

This skew can be explained by small rotational misalignments between the optical 

elements in the system, however this does not affect the measured coherence length. In 

the y-direction a 4.8 m range on the detector is integrated for each line-out. Each of 

these line-outs then correspond to an individual horizontal line on the diffractogram. 

After the individual line-outs are fitted according to equation 4.2, the background 

term is subtracted from the line-out to show only the relative broadening. Each diffraction 

peak is normalized by its maximum intensity value for that order. 

 

Figure A.2. Visualization of the Loss of Contrast. (a) Contour of data accumulated by 
CCD camera. (b) Resulting diffractogram based on data. 

 
[1] R. Bach, Electron Matter Interferometry and the Electron Double-Slit Experiment, 

Appendix B, Dissertation, University of Nebraska-Lincoln, 2014. 
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APPENDIX B   

MATLAB CODE FOR CORERENCE LENGTH CALCULATION I 

 The following Program is the Program for Computing the transverse coherence 

length of the electron beam after decoherence has occurred based on the final density 

matrix of the electron state. This executed by 1) deconvoluting the final density as a sum 

of pure quantum states, 2) propagating each state to the far field using Fourier 

transformation, and 3) incoherently summing the resulting probability distributions from 

each of the pure quantum states. See Appendix C.2 for an extended description of how 

this is done. 
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APPENDIX C 

THEORETICAL METHOD FOR CLASSICAL BEAM 

PROPAGATION AND CALCULATION OF TRANSVERSE 

COHERENCE LENGTH 

C.1  Classical Simulation Perpendicular to the Surface 

The electron distribution measured at the detector in the Y-direction is modeled 

(perpendicular to the plane of the surface) by classical simulation. The simulation starts 

with a distribution of initial positions and momentum which is defined by the 1st and 2nd 

slits. With a 1st slit of height of 19 m and a second slit with a height of 12.8 m 

separated by 25 cm, this provides a beam with a divergence of ~120 rad. This produces 

a small transverse coherence length in the y-direction (~250 nm), therefore a classical 

approach for motion in the y-direction is appropriate. 

Therefore, the initial positions  0y  and corresponding initial velocities  0yv at 

the beginning of the surface are 
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with 19.5 μm 9.5 μms   , 26.4 μm 6.4 μms   in steps of 10 nm. 
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Over the 1 cm surface, the electron evolves per newton’s equations of motion 

with a force in the y-direction due to image charge. Thus, the kinematic equations are 
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where H is the height of the surface. Only electrons which do not contact the surface are 

considered (i.e. trajectories that collide within 10 nm of the surface are thrown out). This 

is done in time steps of ~825 femtoseconds (the total time of flight over the surface is 

~413 picoseconds).  

After reaching the end of the surface the electron undergoes free propagation 

another 23 cm to the detection plan, that is 
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For computation time and simplicity this is completed in only one time-step: 

 23 cm zt v  . The final positions of the electrons are binned into 600 nm intervals 

along the y-direction. After the accumulation of all the trajectories that reach the 

detection plane, an electron distribution is produced in the Y-direction that can be 

compared to experimental results. 
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In the simulation, the surface is cut in at a height H= -590 nm below the central 

axis of the electron beam resulting in only 1/3 of the original electron beam flux making 

it to the detector. This distribution is compared to the case of the electric image charge 

force turned off, as well as when the surface is brought far away from the beam. From 

this it can be shown that the classical simulation of propagation of this electron beam 

with a travelling image charge well-approximates what is observed experimentally at the 

detector (see Figure C.1). 

 

 

Figure C.1: Classical Simulation in the Y-Z Plane. Left: The Initial positions and velocities at the 
surface (Surf) are prepared corresponding to ballistic motion from the two collimating slits (S1 
and S2). The electron then propagates over the surface with an image charge attraction in the Y-

direction, and afterward freely propagates to the detector. The trajectories imaged are a sample of 
the case those when the surface cuts the beam but no image charge is present.  Right: Simulation 

When there is no wall (solid red line) compared to when the surface is raised to cut 1/3 of the 
beam (dashed and dotted-dashed lines). When the surface is not present, the experimentally 
observed distribution (blue open dots) closely fits the simulation when no surface is present. 

When experimentally the surface cuts 1/3 of the electron flux (black closed dots), the distribution 
closely fits the simulation when image charge is present (green dashed line) as opposed to no 

image charge (pink dashed dotted line). 
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C.2  Quantum Decoherence Simulation Parallel to the Surface 

To compute the evolution of the electron’s density matrix in the x-direction as it 

passes over the surface, we first prepare the initial density matrix of the free electron by 

considering a partially coherent Gaussian beam, 
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Here x  and x  describe the coordinates of the matrix element in the direction of the 

diagonal and in the direction orthogonal to the diagonal respectively (Figure C.2). The 

position 0x  indicates the center of the Gaussian. The width of the Gaussian in the x  

direction,  2 2 ln 2initial initialw   , is proportional to the transverse coherence length. The 

spatial width along x ,   02 2 ln 2 cohw   is determined by a path integral 

simulation taking into consideration propagation through the first two collimation slits 

and reaching the beginning of the surface  [28]. Note that if initialw  equals w , then the 

initial beam is fully coherent. If initialw  is smaller than w , then the initial beam is partially 

coherent as in Figure C.2 (left). 

The initial state of the electron initial  now starts right before the surface at time it . 

We model the change in transverse coherence length of the electron over the surface due 

to a given decoherence process by considering the evolution of the density matrix of the 

electron. It changes according to  [33]: 
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where the decoherence time scale dec  is model-dependent and depends on x  and  y t . 

When computing the integral in equation C.5 the simulated trajectories  y t  are then 

inserted. 

Each element in the density matrix is computed according to equation C.5 with 

the corresponding model considered. Note that 2x x   is the distance between 

symmetric elements across the main diagonal, and equals the variable x  used in the 

models.  The final state of the electron final  is now right after the surface at time ft . The 

density of the electron after the surface now has the form 
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when the width of the final state orthogonal to the diagonal is smaller than the width of 

the initial state ( final initialw w  ) then decoherence has occurred. 
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Figure C.2: Evolution of Density Matrix when Propagating over the Surface. As a result of 
decoherence, the initial state (left) evolves such that the off-diagonal elements reduce in 

amplitude. Hence the state’s width w  decrease ( initial finalw w  ). 

 

  For each final position bin at the detector where electrons landed, the final density 

matrix at the detector is computed by incoherently adding the individual matrices of each 

electron that reaches that bin. Making use of the ability to write a partial coherent state as 

a sum of coherent (i.e. pure) states (see Figure C.3), 
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 ,                                                  (C.7) 

then we can write 
final  as a sum of Gaussian coherent states, 
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where 2
coh

final    describes the width of the reduced pure states after decoherence, and 

   2 2

0 2
coh coh

env                                                      (C.9) 

is the width of the envelope of the convolution.  
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Figure C.3 Deconvolution of a Partial Coherent (Mixed) State by a Series of Coherent (Pure) 
States. 

 

The initial state is now propagated to the state right after the surface. Next, each 

wave function corresponding to one of the reduced pure states is acted upon by a grating 

function (emulating the nanofabricated grating) followed by a Fourier Transform to 

determine the far field pattern. This is repeated for each of the reduced pure states and the 

resulting probability distribution patterns give the far field diffraction pattern (Figure C.4 

bottom right). It is from this final pattern that a transverse coherence width detector( )cohL y  is 

computed using coh dB coll FWHML ad w   , where a is the periodicity of the grating, 

FWHMw  is the width of the computed diffraction peaks in the far field, and d is the 

distance between diffraction peaks . It is these values detector( )cohL y  which produce the 

theoretical curves in the Figures  4.3 and 4.4. 
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Figure C.4: Reduction of Coherence Elements in the Density Matrix and Corresponding Decrease 
in Coherence Length. Top Left: Density matrix of a coherent Gaussian electron beam. Top Right: 
Grating diffraction pattern in the far field after Fourier transformation of coherent state. Bottom 
Left: Final density matrix after decoherence evolution according to Equation 2. Bottom Right: 
Grating diffraction pattern in the far field after Fourier transformation of deconvoluted partial 

coherent state. Notice the stark difference in the widths in the diffraction peaks for the case of the 
fully coherent case (Top Right) as compared to the partial coherent case (Bottom Right). 

 

C.3  Fortran Code for Classical Beam Propagation and Coherence 

Propagation 

 



126 
 

The following is the Fortran code used to produce the classical vertical electron 

distributions as the electron passes over a surface and lands on the detector, and the 

corresponding loss of coherence computation based on the various theoretical models 

outlined in Chapter 2.6 . See the flowchart below (Figure C.5) and the description of the 

program outlined in Appendix C.2. 

 

 

Figure C.5. Flowchart of Fortran Code for Classical Beam Propagation and Coherence 
Propagation 
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APPENDIX D 

SURFACES & GRATING; MOUNT DESIGN AND PREP 

D.1  Summary 

The following outlines details of the surface and grating mounts used to control 

the two, as well as the surface preparation needed to minimize sources of dephasing and 

other contamination in the experiment. 

D.2  Surface and Grating Mounts 

This experiment underwent two iterations of surface/grating mounts. Both are 

made primarily of aluminum to minimize the introduction of local magnetic fields.  

The first was a monolithic, compact design that was top-loaded into the system 

(see Figures D.1-D.3). The free-standing grating sat on a lip which extended out by 1mm 

and whose top was gently held from falling over by a bronze clamp (as well as a ground 

channel to reduce charging of the grating bars). A large circular hole allows electrons to 

travel through the grating. The surface itself was separated by 2mm from the grating and 

held upside-down by two small aluminum clamps. Outside the vacuum chamber the 

feedthrough was supported by a translational stage which was used to control the height 

of the surface with respect to the electron beam, as well as a 2-D wobble mount, which 

provided control over the angle of the surface.  
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Figure D.1:  Schematic of First Surface/Grating Mount 
 

 

Figure D.2: Preparation Image of Gold Surface and Grating in Mount. Left: View of 
nanofabricated grating. Right: View of entire feedthrough (without the external translation stage 

and wobble mount) 
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Figure D.3: In-Vacuum Image of Surface/Granting Mount.  
 

 Later, two new mounts were designed to hold the grating and slit independently 

(designed by Liyun Zhang). These mounts were held with separate feedthroughs that are 

loaded horizontally with respect to the ground The Grating Mount is similar in 

functionality as the grating had in the first design, except that its angle is held fixed and it 

has the ability to translate two directions: in the x-transverse direction with respect to the 

electron beam (and perpendicular to the direction the grating bars), and in the z-direction 

along the path of the electron beam. This allows for more control of the distance between 

the grating and the surface, as well as sampling of multiple portions of the surface. 

 The surface mount is also horizontally loaded with the surface sitting on top. The 

surface is glued down with a small drop of Silver paste (using a precision pipet). A small 

link of silver paste is also used to connect the top of the surface (at its edge) to the mount 

for grounding purposes. Outside the vacuum system the mount is also supported by a 

two-dimensional translation stage (in the y-direction to control the height, and the x-

direction to sample different portions of the surface). Also, the angular pitch is controlled 
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by a connected rotational stage. This rotational stage has the advantage of rotating in only 

one direction (not axial to the beamline as the previous wobble mount) and it is 

micrometer rotational control allowing for more precise adjustment of the pitch. 

 

 

Figure D.4: Second Mount Schematic of Surface. Courtesy of Liyun Zhang. Labeled numbers are 
in millimeters 
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Figure D.5: Out of Chamber Images of Surface Mount. Top Left: Top view of combined image of 
surface mount, feedthrough, and translational/rotation stage. Bottom Left: Side view of surface 

mount. Right: Zoomed image of mount and surface. 
 

 

Figure D.6: Top View of Surface Mount and Grating Mount 

 

Other advantages of this upgrade includes, being able to modify the surface or the 

grating outside of the vacuum system without exposing the other to the elements outside, 

and independent observation of the electron beams interaction with the grating, the 

surface, and combined.  

D.3  Surface Preparation 

Great care needs to be taken to ensure that the surface remains clean of dust or 

other contaminants. The effects of dust can be observed in the diffraction pattern and 

reduce contrast, lowering the sensitivity of our experiment. These dust particles tend to 

charge up and thus deflect the electron diffraction distribution, typically in the form of 

lensing (see Figure D.7).  
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Figure D.7. Effects of Dust on Surface. Left: Diffraction pattern at the detector after interacting 
with a dust particle on the surface. In such circumstances, deflections (such as lensing) can occur. 

Right: Clean Position on the surface. No dust or contaminants present result in straight 
interference fringes in the vertical direction. 

 

After cutting to size (1 cm2) the surface with a boron carbide wafer cutter, the Si 

surface was cleaned using a version of the industry-standard RCA cleaning method 

(without the oxide strip), to remove dust or other contaminants [1]. Specifically, the 

cleaning procedure that was underwent is as follows: 

i. Initial Prep: All glassware is initially cleaned with piranha solution (3:1 mixture of 
sulfuric acid and hydrogen peroxide) to eliminate any initial contaminants introduced 
during the cleaning process.  

ii. Pre-RCA clean: The silicon surface is first sonicated for 30 minutes in acetone for large 
contaminants, followed by 30 min in isopropanol to clean off the acetone. The surface is 
then immediately blow-dried with nitrogen gas. The surface is then submerged in 
deionized water (and is kept in this state whenever any inaction during the cleaning is 
taking place) 

iii. RCA clean:  
a. the first step is used to remove organics and particles. It involves submerging the 

surface in a solution of deionized water, 29% Ammonium Hydroxide, and 30% 
Hydrogen peroxide in a volume ratio of 5:1:1. These solutions were mixed and 
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measured using disposable glass pipets and each part was allowanced its own  
Pipet straw. The surface was held here for 10 minutes at approximately 80 
degrees Celsius on a hotplate. Upon taking the surface out of the solution it was 
immediately rinsed with a squeeze bottle of deionized water and then submerged 
into deionized water  

b. The second step, which usually involves removal of an oxide layer via 
hydrofluoric acid, was skipped. 

c. The third step is used to remove ions. It involves transferring the surface from the 
deionized water where it was last left to a solution of deionized water, 37% 
hydrochloric acid, and 30% hydrogen peroxide in a volume ratio of 6:1:1 at 
approximately 80 degrees Celsius for 10 minutes. 

iv. Post RCA clean: the surface was taken out with a tweezer and immediately rinsed with 
deionized water and blow-dried with nitrogen gas. It was then placed in a cleaned dry 
sample container for immediate transfer to installation into the vacuum chamber (taking 
roughly 45 minutes until the chamber was closed and began pumping down). 

 
The uncoated gold mirror was immediately installed into the vacuum system upon 

unpackaging to minimize exposure. In both cases, contaminants were successfully 

eliminated. 

 

 

Figure D.8: Uncleaned Silicon and Gold Samples. Not appropriately cleaning the sample results 
in distortion of diffraction pattern as in Figure 4.9 left. 
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Figure D.9: Image of RCA cleaned Si Surfaces. Top Left: Optical Laser Microscope Image of 

10x magnification of corner of Si Surface 1. Top Right Composite image of 1 cm2 silicon surface. 
Bottom Left: Out of vacuum chamber image of Si surface 1. Bottom Right: Out of vacuum 

chamber image of Si surface 2. 
 

D.4  Pitch Alignment 

To measure the relative pitch of the surface, a small HeNe laser was mounted on 

top of the rotational stage. The laser would cast a spot on the wall with 1 mm square 

Cartesian graph paper 3.3 m away. As the stage rotated, the laser spot moved vertically 

on the wall. The precision of the laser spot vertically on the graph paper was 

approximately .5 mm. thus the angular pitch with respect to the beamline can be adjusted 

with a precision of approx. 0.2 mrad.  
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This pitch of the surface is adjusted to maximize the electron beam’s deflection 

due to image charge attraction. In practice, what this means is the diffraction pattern was 

imaged at many pitch angles (near the optimum at steps of 0.2  mrad) all such that the 

beam current is 1/3 the original beam current (without the surface). Then the angle in 

which the image charge most deflects the beam is chosen as the one to be analyzed. 

D.5  Effects of Lensing 

As is elaborated upon in Chapter 5, a loss of contrast does not imply that 

decoherence has occurred, as dephasing is also possible cause. Here we will give 

attention to one form of dephasing: lensing, particularly a simple lens. Suppose a spatial 

charge distribution is formed on the surface such that the diffraction electron beams are 

broadened (or focused). This is a reasonable supposition, as the effects of dust particles or 

other contaminants appear to affect the diffraction pattern in this way (see figure 4.8). It 

should also be noted that the periodicity of the diffraction peaks also changed in this 

observation, which is what gave us the suspicion that lensing was occurring in the first 

place. Indeed, placing a convex lens after a grating can cause simultaneous focusing of 

the periodicity of the diffraction peaks and an increase in the width of the diffraction 

peaks.  

In the experimental diffraction images for the case of silicon, (figure 4.3 and 

figure D.10) even after cleaning there is a noticeable amount of reduction in the 

diffraction peak to peak distance along with broadening. Therefore, it is critical to 

investigate whether a grating-simple lens model can simultaneously predict both 

observations in a quantifiable way. 
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Figure D.10. Diffractogram Image for the case of Silicon 
 

Sketched in Figure D.11 is a combined ray & beam diagram representing the 

effects of the diffraction beams undergoing diffraction from a grating (G) due to a lens 

(L). the lens and the grated are separated by a distance 3 .3 cm 1.3 cmz   . From the 

lens, the distance between the lens to the detection screen (Det.) is 4 3z Z z  , where 

24 cmZ   is the distance from the grating to the detector. Without a lens, the observed 

diffraction peak periodicity is d  and the diffraction peaks have a width of w . With a lens 

that has a focal length of f , the observed diffraction peak periodicity is d   and the 

diffraction peaks have a width of w . Starting from a measured difference in peak 

periodicity from d  to  d   and treating the diffraction beams as rays, basic optics 

formulas will be used to to calculate the lens’s focal length, and then treating the 

diffraction beams as Gaussian beams, beam optics formulas are used to calculate what the 

new diffraction peak’s width w  would be. 
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Figure D.11. Collimated Grating-Lens System. sketched is an electron beam (blue) collimated by 
two slits (S1 and S2) that undergoes diffraction through a grating (G) and further propagates to the 
detection screen (Det.). Without no lens (L) with focal length (f) present, the resulting diffraction 

pattern at the detection screen has a peak periodicity of d and a FWHM of w. When a lens is 
present, the diffraction beams (light green) alter in their divergence and land at new positions on 
the detector. This final pattern has a peak periodicity of d’ and the peaks have a FWHM of w’. 

 

 The important basic optics formula to start with is based on the exit equation of a 

ray from a lens of focal length f .  two central assumptions are made. The first 

assumption is that the position along the x -direction in which the ray enters the lens 

(define as x ) is equal to the position in which the ray leaves the lens (this is the “thin lens 

approximation”). The second assumption is that the change in the slope 2 1m m m    of 

a ray from entering the lens with slope 1m  to exiting the lens with slope 2m , is 

proportional to the distance away  from the central axis of the lens (i.e. m ax  , where 

a  is the proportionality constant). 

  From this, the first order diffraction ray starting at a central point at the grating 

will pass through the lens and will land on the detector at a height d   with respect to the 

central axis according to (equation 1.7 in  [2]), 
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The entrance slope 1m  can be calculated from the diffraction angle using the diffraction 

equation, 

   1 tan sincoll coll dBm a     ,                                            (D.2) 

where a  is the periodicity of the grating. Rearranging equation D.2 in terms of the focal 

length yields  
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Note that it can be seen through this equation that although a focal length can be either 

positive or negative, it can only have one solution for a given set of parameters.  

 It can now be inferred what kind of peak broadening would come for a particular 

focal length. The primary equations used are the beam optics lens equations 3.2-5 

through 3.2-9a from [3]. After passing through the lens, the new divergence angle is 

proportional to the old divergence angle by  

coll coll M   ,                                                        (D.4) 

where the magnification is written in terms of the parameters  beam beam
not beamr z z f   

and  beam
r beamM f z f  , 
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.                                                         (D.5) 

Here 1 2 3beamz z z z    is the distance between the initial waist position (before the 

second slit) and the lens, and 0
beam
not collz W   is the initial depth of beam’s focus (i.e. the 
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Raleigh length) with waist 0W . With an initial, unfocused divergence angle of 

33 μradcoll  , the distance from the second slit to the beam waist position is determined 

to be   1 2 colltan 7.57 cmz S    and the Raleigh length would be 

2.5 μm 33 μrad 7.57 mbeam
notz  . That 1

beam
notz z  is not particularly surprising in light of 

Figure 3.1-4 of  [3].  

 Once the new collimation angle is established, the final beam’s width can be 

calculated trigonometrically back from the new waist location due to the lens. This waist 

location can be found using the equation,  

  2
beam beamz M z f f    .                                             (D.6) 

And then the final beam’s width can be computed as 

       2
3 4, tan coll beamw d z z f M z f       .                             (D.7) 

As a reminder,  f is expressed in terms of d’ and z3. 

 Plotted in Figure D.12 are curves of the final FWHM (w’) vs peak periodicity 

(d’), each curve corresponding to a lens with a particular distance to the grating z3, and 

are parameterized by their focal length f. This is compared with the experimentally 

observed values extracted from the horizontal lineouts for different vertical positions 

(from figure D.10). The intersection of these curves along with the data corresponds to 

the width and periodicity with no lens present ( 72 μmd   and 13 μmw  ). 
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Figure D.12. Lensing Diagnostic Map 
 

 If one assumes that different heights to the surface corresponds to different 

focusing powers (or different focal lengths) it is clear that the a simple lens model cannot 

explain the behavior of the loss of contrast and change in peak periodicity, because the 

general trend is that there would be a focusing of the peak’s widths before a defocusing 

as the peak to peak distance comes together, as well as these curves generally do not fall 

in the same general area on this parameter space as the experimental data. It is still 

possible that the physical reality is well explained by a more complex lens model (such as 

a multiple lens model). Nevertheless, we can exclude a simple single lens model to 

explain the general loss of contrast. 
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APPENDIX E 

PROGRAMS FOR DEPHASING VS DECOHERENCE 

 The following contains the computations and program while investigating the 

similarities and differences between dephasing and decoherence as described in Chapter 

5. 

E.1  Decoherence and Dephasing Path Integral Program Version 1 

This is the original version of the decoherence and dephasing path integral code. 

Stated parameters are based on the experimental setup described in Chapter 4: 

Decoherence Experiment, where two collimating slits are used, a decoherer is set up 

separate from the grating. The decoherer contains incoherent summing of random blocks 

with phase jumps ranging matching that of Section D.1 . The random phase includes 

random blocks of phase jumps ranging from 0 to 2c, where 0 < c < 1 acts as the variable 

that changes the contrast. See Chapter 5 section 2 for more details. 

The following table (D.1) outlines the set of parameters used in the path integral 

to test the results of the effects of dephasing/decoherence.  

Plane Name Width 
# of Grid-

Points 
Section Between 

Azimuthal 

Length 

Slit 1 12.7 m 24 Slit 1 & Slit 2 L1 = 24 cm 

Slit 2 2.5 m 1500 Slit 2 & Dephaser / Decoherer L2 = 5.5 cm 

Dephaser / 

Decoherer 
20 m 5000 Dephaser / Decoherer & Grating L3 = .5 cm 

Grating 15 m 12000 Grating & Near Field L4 = .5 cm 

Near Field 20 m 1500 Near Field & Far Field L5 = 24 cm 

Far Field 60 m 1500   
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Table E.1: Parameters for Path Integral Simulation Setup 1 
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E.2  Dephasing Path Integral Program Version 2 

This is the reduced and revised version of the dephasing and decoherence path 

integral code, rewritten by Zilin Chen. It is based on a double-slit setup (no collimating 
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slits) with random potentials acting on the wave function based on a sum of random 

Gaussian potentials. See Chapter 5 for more details. Table D.2 outlines the parameters 

used in this program; 

 

Plane 

Name 
Width 

# of Grid-

Points 
Section Between Azimuthal Length 

Source 15 m 1500 Source & Double Slit L1 = 24 cm 

Double Slit 

Screen 
500 nm 1000 

Dephaser / Decoherer 

& Double Slit 
0 cm 

Dephaser / 

Decoherer 
500 nm 1000 Double Slit & Far Field L2 = 24 cm 

Distance 

btw. Slits 
150 nm 300   

Slit Width 50 100   

Far Field 800 m 1500   

Table E.2: Parameters for Path Integral Simulation Setup 2 
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E.3  Decoherence Path Integral Program Version 2 

This is the revised and reduced version of the decoherence path integral code, 

written by Zilin Chen. It is based on a double-slit setup (no collimating slits) with an 
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incoherent summing of Gaussians at the grating with random potentials acting on the 

wave function identical to that of D.3. See Chapter 5 for more details 
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E.4  Matlab Code for Entropy Calculation 
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E.5  Matlab Code for Correlation Calculation 
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