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Abstract: The goal of this paper is to provide a novel computing approach that can be used to reduce 

the power consumption, size, and cost of wearable electronics. To achieve this goal, the use of mi-

croelectromechanical systems (MEMS) sensors for simultaneous sensing and computing is intro-

duced. Specifically, by enabling sensing and computing locally at the MEMS sensor node and uti-

lizing the usually unwanted pull in/out hysteresis, we may eliminate the need for cloud computing 

and reduce the use of analog-to-digital converters, sampling circuits, and digital processors. As a 

proof of concept, we show that a simulation model of a network of three commercially available 

MEMS accelerometers can classify a train of square and triangular acceleration signals inherently 

using pull-in and release hysteresis. Furthermore, we develop and fabricate a network with finger 

arrays of parallel plate actuators to facilitate coupling between MEMS devices in the network using 

actuating assemblies and biasing assemblies, thus bypassing the previously reported coupling chal-

lenge in MEMS neural networks. 

Keywords: neuromorphic computing; MEMS; Sensor Network; CTRNN 

 

1. Introduction 

Wearable devices promise great improvement in human quality of life by enabling 

health monitoring and diagnostics via human activity recognition (HAR), which is essen-

tial for fitness tracking, productivity assessment, and comfort management. Wearable de-

vices rely on biological data measured through sensors such as accelerometers. The data 

points are then processed through complex machine learning schemes to determine the 

biological state. However, as wearable electronics are limited in power and space, com-

plex machine learning approaches cannot be efficiently implemented locally. Instead, bi-

ological data are typically sent to the cloud for processing, causing power loss through 

wireless communication, and posing security risks in such systems. 

Neuromorphic computing, first introduced by Mead [1], is a viable solution to the 

challenge of local computing in wearable devices. Neuromorphic computing started as 
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an idea of using transistors in the subthreshold regime to simulate the response of biolog-

ical neurons. More recently, this has evolved into a set of computing schemes that utilize 

analog devices to perform computing [2]. Neuromorphic computing has shown great 

power-saving potential while maintaining substantial computational ability [2]. Spiking 

neural networks (SNNs) are considered the most well-known neuromorphic computing 

schemes. In such a scheme a network of analog devices is used to produce a spiking re-

sponse, like that observed in biological neurons [3]. Neuromorphic sensors have also been 

introduced previously to simulate the behavior of sensory organs and provide visual sens-

ing [4], audio sensing [5], and olfactory sensing [6]. Such devices produce asynchronous 

spiking outputs corresponding to changes in the measured signals. However, for both 

neuromorphic implementations (sensors and SNNs) additional components are needed 

to translate the spiking signals into digital signals for further processing, increasing the 

footprint of such devices. Moreover, neuromorphic sensors require neuromorphic, spike-

based processors, adding to the system size and power requirements [3]. 

Inspired by the neural system of very tiny biological systems, such as some insects as 

shown in Figure 1 [7] an alternative means of computing that addresses such concerns is 

colocalized sensing and computing. In this approach, some of the measured signals are 

preprocessed at the sensor level. Sensory information is consequently produced or post-

processed by a digital processor. Microelectromechanical Systems (MEMS) sensors have 

been previously considered for this type of computing process. Networks of MEMS oscil-

lators were shown to be able to perform computing through oscillator synchronization 

[8,9]. However, phase comparison between MEMS oscillators and the need to maintain 

specific initial conditions of oscillators are challenges that require addressing. More re-

cently, a single MEMS device has been shown to perform computing through reservoir 

computing, by utilizing time-multiplexing to create temporally coupled virtual nodes 

[10,11]. However, in this approach, the response of the MEMS device is required to be 

sampled at very high rates (tens or hundreds of kHz). Furthermore, delayed feedback is 

required, which further complicates the required electronics. 

 

Figure 1. New findings in insect neural systems reveal that they have local integrated sensing and 

computing neurons to reduce computing demands at the central processing unit (the brain) [7]. 

In our previous work, we presented the novel use of MEMS electrostatic sensor dy-

namics with special geometric nonlinearities to naturally solve the continuous-time recur-

rent neural network (CTRNN) equations [12,13]. In that implementation, there is no need 

for a digital computer to solve the CTRNN equations. As an application, it was shown that 

the dynamics of eight coupled MEMS devices can be trained to perform a classification and 
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object tracking of a mobile robot application [13]. In this paper, the concept of MEMS-

based CTRNN is expanded to enable the use of almost any type of electrostatic MEMS to 

perform CTRNN computing. This new implementation relies on the hysteresis due to the 

Pull-in/Pull-out behavior that inherently exists in almost any parallel-plate electrostatic 

MEMS transducer. Furthermore, compared to previous works, the concept of colocalized 

sensing and computing eliminates the need for additional sensors at the network input layer 

and the need for capacitive measurement elements, thus reducing the network footprint. 

The organization of this article is as follows: In Section.2 The theory for CTRNN and 

the use of MEMS Pull-in/out instability to perform CTRNN computation is introduced. In 

Section.3, we demonstrate through simulation model for a small network of off-the-shelf 

MEMS accelerometer sensors to perform a simple classification problem and we present 

the challenge for experimental implantation. In Scetion.4, we design and fabricate the first 

MEMS CTRNN to perform simultaneous sensing and computing. We also provide some 

preliminary results and motivate the need for more thorough parameter optimization for 

this novel network to perform classification problems experimentally. Finally, we provide 

conclusions and future work in Section.5. 

2. Theory and Methodology 

2.1. RNN vs. CTRNN 

Recurrent neural networks (RNN), unlike traditional feed-forward neural networks 

(FFNN), utilize internal memory through self-feedback to preserve the sequences of input 

data during training [14,15]. Thus, the RNNs have shown great success in sensory appli-

cations such as image, video, and audio processing, as well as in optimization, associative 

memories, and controls [14]. A special, yet very complex form of RNN known as a 

CTRNN [16], uses differential equations to describe the activation level of the neurons (see 

Equation (1) below). To perform a certain classification problem, the self-coupling and 

cross-coupling weights between different neurons of a CTRNN are determined through 

the training performed during the design phase of the network. 

��̇  =  ��(��, … , ��)  =  
�

��
�−�� + ∑ ��������  +  ℎ�  +  ��

�
� � � �, � =  1,2, … , �  (1)

where � is an activation function, ��  and yi are the time constant and activation level of 

neuron i, respectively, wij is the connection strength between the ith neuron and the jth neu-

ron, ℎ is a bias term, Ii is the input to the ith neuron, and the dot operator represents the 

time derivative. 

Figure 2 shows schematic diagrams comparing the structure of a single feedforward 

neuron (FFN), a recurrent neuron (RN), and a continuous-time recurrent neuron (CTRN). 

The schematics show that while having self-feedback is the main difference between 

CT/RN and the FFN, the differential equation is the main difference between the RN and 

the CTRN. The first-order differential equation with a time constant τ of the CTRN model 

acts as a low-pass filter. The function of �� is to produce a resistance to reject the input 

from other neurons and try to maintain the influence of previous inputs on the neuron. 

Larger �� means stronger resistance and a slower activation process. In other words, a 

neuron with a large time constant attempts to store the history information and needs a 

longer time to accept new inputs. The value of �� thus has a profound impact on the over-

all model learned by the CTRNN network. Moreover, it provides the CTRNN a learning 

capability comparable to the state-of-art advanced, yet complex, recurrent neural net-

works such as Long Short-Term Memory (LSTM) neural network. As such, CTRNNs have 

emerged as a very attractive machine learning option as they require fewer neurons for 

high-level learning. For example, a CTRNN made of only four CTRNs was needed to learn 

eight wrist trajectories from its acceleration measurements [17], where 128 RNs were 

needed to perform a similar task [18]. However, CTRNNs are computationally expensive 

for real-time implementation as they require simultaneous solutions of highly coupled 
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multiple differential equations. This makes them unsuitable for many emerging applica-

tions such as wearable devices with limited memory and processing capabilities [19]. 

 

Figure 2. The differences between FFN and CT/RN. While CTRN and RN have internal memory through self-feedback, a 

CTRN approximates the response of a group of RNs by having a first-order differential equation. 

2.2. MEMS-Based CTRNN Approach 

To overcome the challenges, in previous work, we have identified nonlinearity and 

hysteresis as essential properties for CTRNNs to perform computing. Thus, we have 

shown that systems exhibiting these properties, such as a network of coupled bi-stable 

MEMS devices, are candidates for performing CTRNN computing in an analog fashion 

[12,13]. However, while that work demonstrated an efficient way to perform CTRNN 

computing using MEMS devices, it followed a typical machine learning structure that sep-

arates the input (sensor) layer from the computing layer (Figure 3a). As MEMS devices 

were originally designed to be sensors, in this work, we expand the MEMS novel compu-

ting concept to allow a MEMS bi-stable network to perform simultaneous sensing and 

computing (Figure 3b). Thus, eliminating the need for the complex sensor interfaces and 

signal conditioning circuits to perform similar computation. 

 

Figure 3. (a) Our previous attempt for building a MEMS CTRNN follows a typical machine learning approach that sepa-

rates sensing and computing. While it provides an efficient way to do computing, it still requires the complex sensor 

reading and interface between the input and output layers. (b) This paper’s contribution is to investigate and demonstrate 

a MEMS CTRNN that no longer separates between the input and output layers. 

2.3. Modeling 

In the new MEMS sensing and computing implementation, we approximate the re-

sponse of each MEMS device in the N-MEMS network as a single-degree of freedom 

spring-mass-damper system, shown in Figure 4 and governed by (1): 

(a) (b) 
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���̈�(�) + ����(�) + ����(�)  =  
���∑ ���

∗�
� � � �� ����(�)���������

�

�(�����)� − ���̈(�)  (2)

where ��(�)  =  ��(�) − ��(�) is the relative deflection of the ith MEMS device at time �, 

computed as the difference between the absolute MEMS deflection ��(�) and the base 

(sensor casing) displacement ��(�). The �th MEMS device in the network has a mass ��, 

damping constant ��  and stiffness �� . The surface area of each MEMS electrode is �� 

and the separation between the stationary and moving electrodes of the MEMS devices, 

when at rest, is ��. Each MEMS device is electrostatically actuated using a signal ��  =

  ∑ ���� �� ����(�)  −  ����  +  ���  composed of a bias voltage ���  and an external 

weighted signal from the other MEMS devices in the network ���
∗ ���(��(�)  − ��), where 

�(��(�)  −  ��)  is a unit step function that activates when ��(�)  ≥  �� , representing a 

switching action and ���
∗  is the connection weight from the jth MEMS device to the ith 

MEMS device. Each MEMS device in the network may experience pull-in instability if the 

total applied voltage (pull-in voltage) produces an electrostatic force that exceeds the me-

chanical stiffness of the structure. This leads to the collapse of the MEMS structure and 

the closing of an electrical circuit (ON state). However, due to internet hysteresis behavior, 

the voltage needs to be reduced to a value smaller than the pull-in voltage (release voltage) 

to release the proof mass (OFF state). To simulate the impact of pull in/out hysteresis in 

the MEMS network response in (2), we limit the MEMS deflection to a threshold value ��, 

using mechanical stoppers, where . 33 � <  �� < d, where higher �� values indicate more 

hysteresis. In real MEMS implementation, hysteresis can be controlled by the thickness of 

the thin intermediate dielectric layer on the substrate [20,21]. 

 

Figure 4. MEMS Schematic. 

To rewrite (2) in a similar form to the CTRNN equation in (1), we first non-dimen-

sionalize (2) using the nondimensional parameters in (3): 

���  =  
��

��
, �̂  =  

�

��
, ��  =  

�

���

, ��  =  
��

������

   (3)

Applying the substitutions in (3) to (2) yields (4): 

��̈
�  +  2���̇��  +  �̂�  =   

���∑ ���
∗�

� � � �� ���̂�(�) � �� � ����
�

���
���(� � ��� )�  −  

��

��
�

���
�̈(�)  (4)

where ���
 =  ���/�� is the natural resonance frequency of the �th MEMS device, and �� 

is its damping ratio. One can show through dimensional analysis that, the first term in (4) 

can be dropped if the MEMS resonance frequency is sufficiently high, for a given damping 

ratio. This condition is easy to satisfy when the MEMS device is operated under atmos-

pheric pressure due to the prevalence of squeeze-film damping [12]. Therefore, (4) can be 

rewritten in a form like the CTRNN equation, as follows: 
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���̇��(�)  =  −�̂�(�)  +  �� �∑ ���
�
� � � �� ���̂�(�)  −  1�  +  ��, �̂�(�)�  +  ��(�)  (5)

where ��  =  2�� is the MEMS time constant, ��(�) =   
��

��
�

���
�̈(�) is the acceleration input 

to the MEMS device, ���  =  
�����

∗

������
 is the effective connection weight between the MEMS 

devices, ��  =   
�����

������
 is the bias signal and ��(�, �)  =  ��/(1 − �)� is a nonlinear trans-

formation corresponding to the nonlinear electrostatic forcing on the MEMS device. The 

parameters to be optimized in the MEMS CTRNN to achieve a certain functionality are 

���
, ��,�� ���

, and ��,�
∗ . 

2.4. Weight Implementation 

To achieve coupling with adjustable weights between the MEMS devices in a com-

puting network, we have used operational amplifiers.13 However, this approach requires 

extra electronics and power and scales poorly as the network size increases. Moreover, it 

cannot be used to represent negative weights as while an operational amplifier can invert 

the input voltage polarity, a MEMS according to (4) only responds to the square of the 

voltage. To address this challenge, we have adopted the electrostatic mechanical coupling 

mechanism. This approach has been already used by our team to realize a digital mechan-

ical MEMS accelerometer [22]. 

In this approach, electrostatic parallel plate finger arrays will be adopted to realize 

the coupling between the neurons of the MEMS-based CTRNN. For example, in the sens-

ing and computing layer, a proof mass i is coupled to other proof masses by different sets 

of fingers as shown in Figure 5. The activation voltage of each j set of fingers acting on 

proof mass i is controlled by the corresponding proof mass j status. Thus, the total elec-

trostatic forces acting on a proof mass i can be described by: 

���  =  
����∑ ∓������,�

��
� � � �

���
�   (6)

 

Figure 5. The finger arrays approach to realize electrostatic coupling between the MEMS CTRNs. 



Micromachines 2021, 12, 268 7 of 17 
 

 

where Vout,j(uj) is the output voltage from the jth proof mass, and nj, A1, and di are the num-

ber of parallel fingers controlled by the proof mass j, the overlapping area of the parallel 

fingers, and the nominal separation between the fingers, respectively. 

The coupling effect may be positive or negative depending on the relative position 

between the stationary fingers and the moving fingers (attached to proof mass). For ex-

ample, for the proof massi shown in the figure, the voltage signal for fingers activated by 

proof massj=2 are associated with a positive effect because they produce a force that moves 

massi toward its fixed electrode. On the other hand, the fingers activated by massj=1 are 

associated with a negative effect as it produces a force in the opposite direction. The for-

mer operation is demonstrated in the top schematic of Figure 5, where the massj=1 that is 

oriented along the y-direction may receive enough acceleration to bring it into contact 

with its fixed substrate. This in turn activates the applied voltage V1 on its corresponding 

fingers acting on massi to pull it away from its fixed substrate. 

3. Waveform Classification Using a Commercial Off-the-Shelf Accelerometer 

Classification is one of the most popular tasks in the machine learning literature. For 

this work, we consider a simple classification task as a test for the computational potential 

of a network of MEMS devices. The task here involves the non-trivial problem in the lit-

erature [23,24] to classify an input waveform into either ‘Square’ signal or ‘Triangular’ 

signal, as shown in Figure 6. The input waveforms are supplied as acceleration wave-

forms. We note here that, unlike other physical implementations of neural networks 

where inputs are electrical signals, the MEMS network simultaneously performs sensing 

and computing. For the MEMS CTRNN to perform the computational task properly, the 

size of the network and the connection weights between the MEMS devices are optimized. 

Optimization was performed manually by starting from a ladder diagram optimization 

scheme, assuming each MEMS device is a relay switch with no memory. Under that as-

sumption, five MEMS devices are required to perform the computational task. The num-

ber of MEMS devices required is reduced to three by taking advantage of the dynamics of 

MEMS devices, namely inertia and pull in/out hysteresis. 

 

Figure 6. Classification task considered in this work. (a) Visualization of the binary classification problem. (b) MEMS 

network used for classification. The network is composed of three identical devices. Two devices receive an input acceler- 
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ation signal and one device performs classification. (c) A connection circuit for the MEMS network. 

The bias voltages were chosen such that ��,�  >  ��,� to force MEMS1 to pull-in ahead 

of MEMS2 when supplied by a ramped signal. MEMS1 and MEMS2 pull-in nearly simulta-

neously when a square acceleration signal is applied to the CTRNN. The connection weights 

between the MEMS devices in the network are also optimized manually by taking ad-

vantage of the ‘selection properties’ of a CTRNN [12,16]. Due to selection, the influence of 

input signals depends on the amplitude of the input signals as well as their temporal order. 

We note here that, due to our chosen method of weight optimization, the MEMS CTRNN 

will be able to classify any quasi-static acceleration signal. However, at acceleration frequen-

cies close to the natural frequencies of MEMS1 and MEMS2, this method fails. Other opti-

mization methods would be required to enable the classification of such signals. 

For our task, a model for a network of identical commercial off-the-shelf accelerom-

eter doubly cantilever MEMS accelerometer devices fabricated by Sensata technologies 

was used. The accelerometer is designed to measure low g acceleration, but if a high bias 

voltage is applied, it can pull-in and acts as a switch. The network is assumed to be cou-

pled using operational amplifiers [12], in a fashion similar to that shown in Figure 6c. 

Here, the resistor values would be chosen for two purposes: reducing the current follow 

at pull-in ; and tuning the connection weights between the MEMS devices. The parameters 

of the MEMS devices are presented in Table 1. This MEMS device is shown in the insert 

of Figure 6b. The MEMS devices in this circuit can be connected in series to large resistor 

to reduce the current following in the circuit at pull-in, which would otherwise burn the 

MEMS circuit. Additional information about the sensor and its model can be found in [12]. 

Here, it is assumed that MEMS1 and MEMS2 are input neurons, directly influenced by 

the acceleration signal. MEMS3, however, to simplify the calculation, is designed to be 

oblivious to the acceleration signal. This can be achieved by rotating MEMS3 such that the 

acceleration signal is perpendicular to the MEMS motion. 

As a demonstration, the MEMS CTRNN is subjected to a sequence of a square and 

triangle signal with an amplitude �̈ =  −5�. The results of the MEMS CTRNN are shown 

in Figure 7. This figure is produced using a Matlab code, assuming that each MEMS device 

acts as a perfect switch with output ����,� = ���(� − ��). The simulated shock signal ex-

cites both MEMS1 and MEMS2 (Figure 7a,b, respectively). Initially, when a triangle signal 

is observed, MEMS1 pulls-in (at around −2 g) first, ahead of MEMS2, due to its higher bias 

voltage. Consequently, MEMS3 pulls-in. When the acceleration signal ramps to −3 g, 

MEMS2 pull-in. Since MEMS2 has a negative connection weight, it reduces ��(�) to a 

value below the MEMS3 pull-in voltage. However, this reduction is insufficient to release 

MEMS3, due to the hysteresis at pull-out. Thus, MEMS3 remains pulled-in until the accel-

eration amplitude is reduced to below −2 g. Hence, despite MEMS1 and MEMS2 eventu-

ally pulling-in when they experience a triangle-shaped acceleration signal, the difference 

in pull-in timing ultimately results in triangle classification. 
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Figure 7. Classification test results showing the response of MEMS1 (a), MEMS2 (b) and MEMS3 (c). (d) The effective 

voltage acting on MEMS3 ��(�). (e) The state of MEMS3 when subject to a triangle or a square signal. 

Alternatively, when a square signal is encountered, MEMS1 and MEMS2 experience 

a sudden and immediate change in amplitude, which results in them pulling-in (nearly) 

simultaneously. In this case, the voltage acting on MEMS3 is immediately equal to �����,� +

��,���,� + ��,� (noting that ��� > 0, ��� < 0). By design, this voltage is insufficient to pull-

in MEMS3. Therefore, the output of MEMS3 remains low and square classification is per-

formed. Interestingly, MEMS inertia is beneficial in this computing scheme as inertia pre-

vents MEMS3 from pulling-in if MEMS1 is pulled in momentarily before MEMS2. Moreo-

ver, inertia allows this scheme to be performed to classify imperfect square signals, such 

as signals generated from a shaker, which tend to be trapezoidal, assuming the signal 

ramp is sufficiently steep since the MEMS devices will slightly lag the input signal. 

The results from Figure 7 also clearly demonstrate the importance of hysteresis in a 

MEMS CTRNN as inputs of equal amplitudes may lead to significantly different behav-

iors depending on past information. (see the areas marked by the red circle and black 

dashed circle in Figure 7a–d, in which MEMS1 and MEMS2 are simultaneously pulled-in, 

yet MEMS3 can assume two different configurations). 

Table 1. MEMS parameters. 

MEMS Parameter Value 

Length (l) 9 mm 

Width (b) 5.32 mm 

�  8.85 × 10−12 F/m 

Gap (d) 42 μm  

Stiffness (k) 215 N/m 

Mass (�) 143 mg 

Dampign cofficient (�) 0.351 N. s/m 

Bias MEMS1 (��,�) 50 V 

Bias MEMS2 (��,�) 50 V 

Bias MEMS3 (��,�) 50 V 

Weight MEMS3→ 1 (���) 1.5 

Weight MEMS3 → 2 ��� −1 

Threshold deflection (��) 30 μm 
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It is worth mentioning that while the above simulated results provide great insight 

into the possibility of realizing a MEMS sensing and computing CTRNN and its working 

principle, a physical implementation of such a network using the commercial MEMS ac-

celerometers network is not warranted. The commercial MEMS accelerometers are fabri-

cated and packaged individually without any sort of mechanical coupling. Thus with this 

configuration it is hard to implement the negative weight (w32 in Table 1). The limitation 

of the commercial MEMS accelerometers has motivated the need to fabricate a customized 

design that utilizes mechanical coupling to achieve negative weight. 

4. Waveform Classification Using a Customized MEMS Network 

In this section, a novel design of a MEMS network to perform sensing and computing 

is presented. A schematic for the full network is presented in Figure 8 and a detailed sche-

matic with dimensions of each MEMS in the network is in figures A1 and A2 in the Ap-

pendix. Figure 8 shows the network is made of two input MEMS sensors, each biased with 

a different voltage, to enable a different response to the applied acceleration. If the applied 

acceleration exceeds a threshold value, the MEMS will act as an ON switch that will acti-

vate a set of fingers on the computing MEMS (MEMS3). The bias voltages for each MEMS 

device and the number of fingers were manually tuned so that the MEMS3 will be pulled 

in (ON switch) when the applied acceleration is a triangular signal. Otherwise, it will be 

off. We note here that the output terminals have been designed at the proof mass contact 

point (represented by the triangular edges in Figure 8) to reduce the contact gap and min-

imize the risk of stiction. These contact tips additionally serve as stoppers to limit the dis-

tance between the electrodes in the moving and stationary assemblies upon the MEMS 

motion. 

 

Figure 8. A schematic for the customized MEMS CTRNN to perform waveform classification. The 

schematic highlights the coupling through fingers between the three MEMS. 

Like the commercial accelerometer network, a new model was developed for the cus-

tomized network that accounts for electrostatic finger array coupling. Figure 9 shows the 

high accuracy of the network, using the tuned parameters, to distinguish a square signal 

from a triangular one. The next step was to fabricate the optimized network. Figure 10 

shows the 2-mask micromachining process flow. In this approach, the devices are 
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comprised of a 20–40 µm thick single-crystalline silicon device layer of a Silicon on Insu-

lator (SOI) substrate with a thin coating of Ruthenium. The coating of Ruthenium is for 

mechanical robustness and low electrical contact resistance at output electrode contacts. 

The thickness of the substrate’s device layer was chosen to be 30 µm with buried oxide 

(BOX) layer thickness of 2 µm. First, a 50 nm layer of aluminum oxide (Al2O3) was de-

posited on the SOI device layer via atomic layer deposition (ALD). The deposited thin 

film, patterned using the first lithography mask (Figure 10a), is to serve as a hard mask 

for the following device layer silicon etch. The device silicon skeletons were then carved 

into the device layer via deep reactive ion etching (DRIE) (Figure 10b). The second mask 

was used for backside lithography, which was followed by a long DRIE to remove the 

handle layer underneath the movable parts of the devices (Figure 10c). This is to avoid 

any potential stiction issues for the large proof masses. The buried oxide layer was wet 

etched from the backside by a 6-min dip in 49% hydrofluoric acid (HF) solution. The re-

maining Al2O3 is also removed during this step and the wire bonding pads are partially 

undercut due to the partial removal of the BOX underneath. Since the ruthenium deposi-

tion step is a maskless process, the undercut helps avoid shorts after the metal deposition. 

Finally, a thin layer of ruthenium (~400 nm thick) was sputtered on the fabricated devices 

(Figure 10d). The metal coating slightly covers the sidewalls contributing to a high-quality 

metal to metal electrical contact between the tip of the proof mass and the output elec-

trode. Ruthenium was chosen due to its very high mechanical hardness and excellent wear 

resistance. A SEM view of a sample of the fabricated MEMS CTRNN is shown in Figure 

11. 

 

Figure 9. Simulation results for the customized MEMS CTRNN to classify square signal from triangle signal. (a) The de-

flection of the two input MEMS neuron and input acceleration signal. (b) the status of the three MEMS neurons, where 

the status of MEMS3 is considered the network output. The state of the MEMS device is considered to be 1 if pulled-in 

and 0 otherwise. By the end of each waveform cycle, MEMS3 is correctly on when the input signal is a triangle and is Off 

when the input signal is a square. 



Micromachines 2021, 12, 268 12 of 17 
 

 

 

Figure 10. Schematic side view showing the microfabrication process flow: (a) Patterned Al2O3 used as hard mask, (b) 

Device layer etch (DRIE) (c) Backside etch (DRIE) (d) Oxide etch in HF followed by ruthenium deposition with sidewall 

coverage.  

A complete experimental set up shown in Figure 12 was designed to test the fabri-

cated MEMS networks. In this setup, the MEMS device is fixed on a shaker. The MEMS 

response is measured as the difference between the microbeam and substrate base deflec-

tions. The shaker is controlled through a dedicated adaptive controller to produce the re-

quired signal as shown in Figure 12b. The vibrometer here is used to measure the motion 

of the entire MEMS structure. However, the actual proof mass deflection cannot be rec-

orded using the vibrometer as the MEMS structure is in-plane. The MEMS response is 

instead probed electrically at pull-in. The actual MEMS deflection can be found by ana-

lyzing images from a digital holographic microscope using edge detection (Figure 13). 

However, while the computing MEMS3 seems to work as expected as shown in Figure 13, 

there were issues with MEMS1 & MEMS2 during operation. Specifically, the manual tun-

ing for the design parameters for MEMS1 & MEMS2 devices resulted in having a large proof 

mass along with very low stiffness tethers for the devices. Thus, they were very vulnerable 

to shock and vibration, even those happening during handling and mounting the chips. This 

resulted in multiple supporting tethers breaking. A sample hysteresis plot of MEMS3 is 

shown in Figure 13c, showing pull-in near 22 V and pull-out near 16 V, providing a wide 

regime of hysteresis in-between. Here, the MEMS circuit for measuring the output voltage 

includes a MEMS device, a DC output voltage supply of 5 V and a 200 kΩ resistor. Most 

voltage drop is across the MEMS device when the device is not pulled in. Once pull-in 

occurs, the MEMS device acts as an element with low resistance (around 1 kΩ), thus most 

voltage drop is reported across the external resistor, resulting in the voltage drop across 

the MEMS device reported in Figure 13c. The reported voltage of 0.3 V at pull-in is a result 

of the reading being reported using a 1 MΩ input impedance oscilloscope for measure-

ment. Figure correction is attainable by shifting the entire figure by ≈ 0.3 V. 

The reliability of the MEMS devices based on the number of contacts prior to failure 

has been characterized. In order to perform the reliability test, the ohmic resistivity 

SiO2
 



Micromachines 2021, 12, 268 13 of 17 
 

 

between metallic tip of the proof mass and the output electrode (coated with ruthenium 

thin film) has been monitored for a long-time operation of the device. In this manner, 

electrostatic actuator of a sample MEMS device was fed by pulse signal with predeter-

mined frequency of 50 Hz and an amplitude that assures pull-in, while the output elec-

trode was biased with a DC voltage of 5 V through a very large resistivity of 100 kΩ. 

Similar to electrical configuration of the device during the acceleration measurement op-

eration, proof mass was electrically grounded. This operation simulates operating the 

MEMS device as a switch, which is continuously turned on and off. Contact between the 

tip of the proof mass and output electrode closes the electrical circuit and results in a DC 

current through the contact point. In this manner, the ohmic resistivity of metal- metal 

contact can be simply measured using ohm’s law. An ohmic resistivity of 1.2 kΩ has been 

measured for the very early cycles of operation. Damage of the thin film metal deposited 

on the silicon skeleton increases the ohmic resistivity of the contact suddenly at around 

the 17.5 million cycle mark, which occurred after 4 days of continuous pull-in and pull-

off operations. An ohmic resistivity of around 1 MΩ has been measured after the damage 

of the metal film. Figure 14 shows SEM zoomed-in view of both sides of the contact point 

after 17.5 million cycles of operation. 

 

  

Figure 11. Scanning electron microscope (SEM) views of a fabricated MEMS CTRNN. This novel MEMS network can 

perform intelligent computing using only bias voltages. 

MEMS sensor MEMS sensor 2 MEMS 3 

Electrostatic Actuator 
Transduction gap Contact tip 

Supporting tether 
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Figure 12. (a) The experimental set up to test the MEMS CTRNN, (b) samples of the triangle and square acceleration 

profiles generated by the mechanical shaker. 

 

Figure 13. Pull out (a) and pull in (b) images for MEMS 3. (c) A sample hysteresis plot. 

 

Figure 14. (a) SEM view of the contact tip after the long-term operation causing damage to the metal film. (b) SEM view 

of the damaged metal film on output electrode. 

5. Conclusions 

The concept of performing sensing and computing using MEMS devices has great 

potential for advancing computing in many applications such as wearable devices, how-

ever, poses new challenging problems that require new ways of thinking to solve. For 

example, this novel concept requires optimizing the MEMS design parameters to afford 

simultaneous sensing and computing. In this paper, however, we adopted a manual train-

ing technique that solves intuitively the computing behavior, while ignoring the sensing 

limitation. While our simulation shows a great response, the real implementation and fab-

rication of this MEMS CTRNN network revealed that its sensing mechanical parameters 

(b) 

(a) (b) 

(a) 
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(i.e., mass and stiffness) while accommodating the required computing aspect, were too 

sensitive to shocks resulting in their mechanical failure. Our ongoing approach involves 

using common machine learning techniques such as genetic algorithm and Back Propaga-

tion Through Time (BPTT) among other methods to optimize the MEMS parameters to 

satisfy both the computing and sensing requirements of the MEMS CTRNN network. We 

also plan to investigate the capability of MEMS CTRNN in more complex classification 

applications with relatively long-term time-series patterns such as those that occur in mo-

tion sensor data involving human activities. 
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Appendix A 

Schematics and dimensions of the computing MEMS, MEMS3, fabricated in Section 4. 

 

Figure 1A. Design of the computing MMES device (labeled MEMS3 in section 4), including information about the total 

stiffness of the MEMS device and the pull-in voltage. 

Appendix B 

Schematics and dimensions of the input-layer MEMS devices: MEMS1 and MEMS2, 

fabricated in Section 4. The two MEMS devices are shown below, respectively. 
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Figure 2A. Design of the input layer MMES device (labeled MEMS1 and MEMS2 in section 4), including information about 

the total stiffness of the MEMS devices and the pull-in voltages. Top figure: MEMS1, bottom figure: MEMS2. 
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