
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Faculty Papers and Publications in Animal 
Science Animal Science Department 

10-21-2021 

MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and 

Therapeutic Targeting of Ovarian Cancer Therapeutic Targeting of Ovarian Cancer 

Yegane Mirahmadi 

Reza Nabavi 

Fourough Taheri 

Mohammad Mahdi Samadian 

Zari Naderi Ghale-Noie 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/animalscifacpub 

 Part of the Genetics and Genomics Commons, and the Meat Science Commons 

This Article is brought to you for free and open access by the Animal Science Department at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Papers and 
Publications in Animal Science by an authorized administrator of DigitalCommons@University of Nebraska - 
Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/animalscifacpub
https://digitalcommons.unl.edu/animalscifacpub
https://digitalcommons.unl.edu/ag_animal
https://digitalcommons.unl.edu/animalscifacpub?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/27?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1301?utm_source=digitalcommons.unl.edu%2Fanimalscifacpub%2F1199&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Yegane Mirahmadi, Reza Nabavi, Fourough Taheri, Mohammad Mahdi Samadian, Zari Naderi Ghale-Noie, 
Mahsa Farjami, Abbas Samadi-khouzani, Meysam Yousefi, Sara Azhdari, Arash Salmaninejad, and 
Amirhossein Sahebkar 



Review Article
MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and
Therapeutic Targeting of Ovarian Cancer

Yegane Mirahmadi,1,2 Reza Nabavi,3 Fourough Taheri,4 Mohammad Mahdi Samadian,1

Zari Naderi Ghale-Noie,1,2 Mahsa Farjami,1,2 Abbas Samadi-khouzani,4 Meysam Yousefi,5

Sara Azhdari,6 Arash Salmaninejad ,1,2,7 and Amirhossein Sahebkar 8,9,10

1Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
3University of Nebraska, Lincoln, NE, USA
4Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
5Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
6Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
7Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Guilan, Iran
8Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
9Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
10School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Correspondence should be addressed to Arash Salmaninejad; arash.salmany@yahoo.com and
Amirhossein Sahebkar; amir_saheb2000@yahoo.com

Received 29 June 2021; Accepted 27 September 2021; Published 21 October 2021

Academic Editor: Ashok Pandurangan

Copyright © 2021 Yegane Mirahmadi et al. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Ovarian cancer is the major cause of gynecologic cancer-related mortality. Regardless of outstanding advances, which have been
made for improving the prognosis, diagnosis, and treatment of ovarian cancer, the majority of the patients will die of the disease.
Late-stage diagnosis and the occurrence of recurrent cancer after treatment are the most important causes of the high mortality
rate observed in ovarian cancer patients. Unraveling the molecular mechanisms involved in the pathogenesis of ovarian cancer
may help find new biomarkers and therapeutic targets for ovarian cancer. MicroRNAs (miRNAs) are small noncoding RNAs that
regulate gene expression, mostly at the posttranscriptional stage, through binding to mRNA targets and inducing translational
repression or degradation of target via the RNA-induced silencing complex. Over the last two decades, the role of miRNAs in the
pathogenesis of various human cancers, including ovarian cancer, has been documented in multiple studies. Consequently, these
small RNAs could be considered as reliable markers for prognosis and early diagnosis. Furthermore, given the function of
miRNAs in various cellular pathways, including cell survival and differentiation, targeting miRNAs could be an interesting
approach for the treatment of human cancers. Here, we review our current understanding of the most updated role of the
important dysregulation of miRNAs and their roles in the progression and metastasis of ovarian cancer. Furthermore, we
meticulously discuss the significance of miRNAs as prognostic and diagnostic markers. Lastly, we mention the opportunities and
the efforts made for targeting ovarian cancer through inhibition and/or stimulation of the miRNAs.

1. Introduction

Ovarian cancer is the most frequent type of gynecologic
malignancy and it is the fifth leading cause of cancer-related

deaths worldwide. According to the estimations, ovarian
cancer accounts for 1.3% of all new cancer cases and is the
cause of 2.3% of all cancer-related deaths [1]. Despite the
administration of standard therapy, which is the
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combination of debulking surgery and taxane- and plati-
num-based chemotherapeutic agents, ovarian cancer has
witnessed a minimal improvement in the cure rate of the
patients. In fact, the average five-year survival of the ovarian
cancer patients is less than 50%, highlighting the fact that
most of the patients are diagnosed at the advanced stage of
the disease [2]. In this regard, studies have indicated that
only 15% of the ovarian cancer patients are diagnosed when
the tumor is in its early stage and, therefore, most patients
are diagnosed after disseminating the tumor to the perito-
neal cavity and distant organs. According to the reports,
when the tumor is localized to one or both ovaries, ˂10% of
the patients succumb to their disease, reflecting the signif-
icance of tumor dissemination and metastasis in ovarian
cancer mortality [1, 3].

MicroRNAs (miRNAs) are a type of small noncoding
RNAs with a length of about 19–25 nucleotides which
function in the regulation of gene expression typically
through the inhibition of translation and debilitation of
messenger RNAs (mRNAs) stability [4]. *erefore, miRNAs
control the genes expression correlated with various cellular
pathways, including cell cycle regulation, inflammation, cell
differentiation, apoptosis, and cell migration. Compelling
pieces of evidence have established the role of miRNAs in
human cancers. miRNAs dysregulation in human cancers
usually occurs through amplification or deletion of miRNA
genes, dysregulated epigenetic alterations, defective tran-
scription of miRNAs, and miRNA synthesis machinery [5].
In this regard, the dysregulated miRNAs have been reported
as tumor suppressors or oncogenes, augmenting the hall-
marks of cancers, including intensified proliferative capacity,
resisting cell death signals, and increased cell invasion and
angiogenesis [6].

Regarding the high mortality of ovarian cancer which is
mostly because of the difficulties in detecting this daunting
disease at the primary stage and the paucity of efficacious
therapies for patients in the advanced stage or with a re-
current malignancy, the investigation into the role of
miRNAs in this cancer pathogenesis and metastasis is
highly warranted. Given the fact that an amplitude of
mRNAs can be regulated by miRNAs, it is reasonable to
expect that a large number of cellular and molecular
processes contributing to the formation and dissemination
of ovarian cancer are controlled by miRNAs. In this regard,
a plethora of studies have explored miRNAs functions in
various steps of ovarian cancer, including cancer initiation,
progression, and metastasis [7–9]. Understanding the
function of microRNAs in the development and metastasis
of ovarian cancer will hopefully shed light on finding new
diagnostic and prognostic biomarkers for the patients
[10–12]. Furthermore, given that miRNAs could act as
either tumor suppressor gene or oncogene to regulate gene
expression, miRNA-based anticancer therapies are being
developed to ameliorate the disease response and cure rate
of cancer patients, including ovarian cancer patients, either
as a single therapy or with other systemic or targeted
treatments [13]. *e privilege of miRNA-based therapeu-
tics is in their ability to simultaneously impact various
effectors proliferation and tumorigenesis pathways. In this

regard, several clinical trials are being recruited to unravel
the promising potential of miRNA-based therapies in
targeting of ovarian cancer [14].

In this review, we discuss the role of miRNAs in the
tumorigenesis and metastasis of ovarian cancer and their use
as biomarker for prognostic and diagnostic purposes in this
devastating tumor. Furthermore, we illustrate the strategies
for the application of miRNA-based therapies in targeting
ovarian cancer. We finally present the perspectives, future
directions, and the challenges beyond the application of
miRNAs in the development of new treatments for targeting
ovarian cancer.

2. miRNA Biogenesis and Function

miRNAs are small noncoding RNA fragments with the
length of 18–24 nucleotides. *eir function is to regulate the
gene expression. *ese pieces were first discovered in
Caenorhabditis elegans in 1990s [15]. *ousands of miRNAs
have been detected in a variety of species (i.e., single-cell
algae to humans) [15, 16]. More studies have suggested that
miRNAs are highly conserved in various species [17, 18].
Bioinformatic evaluations have predicted that miRNAs are
expected to control more than fifty percent of the human
protein-coding genes [19, 20]. *erefore, given the regula-
tory effects on different mRNAs, miRNAs play crucial role in
numerous cellular processes, including differentiation, cell
growth, and apoptosis.

*e biogenesis of miRNA begins with the simultaneous
or subsequent processing of RNA polymerase II/III tran-
scripts [4, 21]. Around half of the known miRNAs are in-
tragenic, most of which are introns originated and somewhat
few are created from protein-coding exons. Left over
intergenic miRNAs are transcribed and regulated by specific
genes and their promoters [4, 22, 23]. miRNAs are con-
sidered as a family when they are transcribed as clusters (i.e.,
one long transcript) that might have analogous seed areas
[4, 24].

miRNAs biogenesis is carried out through both ca-
nonical and noncanonical pathways. *e chief pathway
involved in the processing of the miRNA is the canonical
biogenesis. In this pathway, RNA polymerase II transcribes
pri-miRNAs with more than 200 nucleotides in length from
related genes, and then, by microprocessor complex, they
can be processed into pre-miRNAs. *e microprocessor
complex is comprised of an RNA-binding protein called
DiGeorge Syndrome Critical Region 8 (DGCR8) and
Drosha, a ribonuclease III enzyme [4, 25]. Two steps are
required for pri-miRNAs to go through the processing.
*ese two processes can be catalyzed by two enzymes of the
RNase III family (i.e., Drosha and Dicer). Initially, N6-
methyladenylated GGAC and other motifs within the pri-
miRNA should be recognized by the complex of Drosha-
DGCR8 recognizes [4, 26]; then Drosha slices the pri-
miRNA duplex and generates miRNA precursors (pre-
miRNA) which are around 70-nucleotide hairpin inter-
mediates. *is causes the formation of a 2-nucleotide 3′
that is overhang on pre-miRNA [27]. When pre-miRNAs
are created, through a complex called exportin 5 (XPO5)/
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RanGTP, they can be transferred to the cytoplasm.*e next
step is the process of them by the RNase III endonuclease
Dicer [25, 28] that slashes the transferred pre-miRNAs into
∼22-nucleotide miRNA/miRNA duplexes in cytoplasm.
*is process encompasses the deletion of the terminal loop
and results in a mature miRNA duplex [4, 29]. *e name of
the mature miRNA form is determined by the direction of
the miRNA strand. *e 3p and the 5p strands come from
the 3′ end and the 5′end of the pre-miRNA hairpin, re-
spectively. Next, the guide strand is integrated into the
RNA-induced silencing complex (RISC). Both 3p and 5p
strands which are emanated from the mature miRNA
duplex can be overloaded to proteins of Argonaute (AGO)
family (in humans called AGO1-4) using an ATP-depen-
dent related manner [4, 30]. For each miRNA, the amount
of AGO-loaded 3p or 5p strands varies and it highly de-
pends on the type or environment of the cell. *is ranges
from almost equal proportions to mainly one cell type and
environment or the other [4, 31]. A 5 U at nucleotide
position 1 or the thermodynamic stability at the 5 ends of
the miRNA duplex has a role in selection of 3p or 5p
strands in part [4, 32]. Typically, the guide strand is opted
according to stability and Uracil content. *erefore, the
strand with lower 5 stability or 5 Uracil is preferred to be
loaded into AGO. *rough the different mechanisms, the
passenger strand (i.e., the unloaded strand) will be sepa-
rated from the guide strand according to the degree of
complementarity. *is strand of miRNA which has no
mismatches is sliced by AGO2. *en it is degraded by
cellular machinery that can generate a strong strand bias.
miRNA duplexes with central mismatches or non-AGO2-
loaded miRNAs are passively disentangled and degraded
[4, 21]. miRNAs can aim at the 3 untranslated regions
(UTRs) of mRNAs and also can cause degradation of
mRNA or translational inhibition of mRNA. Hence,
they can suppress protein synthesis and gene expression
(Figure 1) [16–18, 20].

So far, several biogenesis pathways of noncanonical
miRNA have been explained. In mentioned pathways,
various combinations of the proteins engaged in the ca-
nonical pathway are utilized. *ey are predominantly
Drosha, Dicer, exportin 5, and AGO2 (Figure 1). Most of
the time, the noncanonical miRNA biogenesis is catego-
rized into Drosha/DGCR8-independent as well as Dicer-
independent pathways. Of note, pre-miRNAs that are
created by the Drosha/DGCR8-independent pathway seem
to be the substrates of Dicer. Mirtrons and 7-methyl-
guanosine- (m7G-) capped are examples of such pre-
miRNAs. During splicing, they can be generated from the
introns of mRNA [4, 33, 34]. Exportin 1 directly con-
tributes to transporting these emerging RNAs to the cy-
toplasm without cleavage by Drosha.*em7G cap prevents
loading of 5p strands into Argonaute that causes a strong
bias in the 3p strand [4, 35]. Drosha, instead, processes the
Dicer-independent miRNAs from endogenous short
hairpin RNA (shRNA) transcripts [4, 36]. In order to
complete the maturation of pre-miRNAs within the cy-
toplasm, they need AGO2 as their length is not long enough
for them to be suitable substrates for Dicer. *is process

consecutively fosters the loading of the complete pre-
miRNA into AGO2 and AGO2-dependent slicing of the 3p
strand. *e maturation process is completed by the 3–5
trimming of the 5p strand [4, 37].

miRNAs have critical roles in numerous types of bio-
logical processes such as cell proliferation, differentiation,
development, metabolism, migration, and apoptosis
through posttranscriptional regulation mechanisms
[16–18, 20]. Also, any change in their expression is asso-
ciated with several human pathologies [20, 38–40]. More-
over, miRNAs can be found in a stable form in plasma and
serum samples [20, 41, 42], saliva [43], urine [44], colostrum,
tears, peritoneal fluid, seminal fluid, bronchial lavage [4, 45],
milk [46], ovarian follicular fluid [47], and cell culture
supernatants [48, 49]. *erefore, miRNAs can be found in
two stabilized forms in the extracellular spaces. Also, it has
been reported that both extracellular and intracellular
miRNAs can regulate physiological and pathological events
and, therefore, evaluation of their expression profiles can be
utilized as potential beneficial markers for the diagnosis of
human diseases [20]. Pritchard et al. evaluated circulating
miRNAs in 79 solid tumors and noticed that more than half
of them were highly expressed in one or more blood cell
type. Furthermore, they indicated that miRNA biomarkers
in plasma are highly associated with relevant hemolysis
(blood cell counts). *is observation suggests that the
miRNAs in both plasma and serum are mostly stemmed
from blood cells [50]. Researchers [51–54] have detected
specific kinds of miRNAs enriched in tissues, such as
muscle-enriched miR-133, liver-enriched miR-122, and
heart-enriched miR-208 in plasma.*ere are three pathways
for their release into the extracellular space: (1) tissue injury,
inflammation, and cell death that cause passive leakage from
broken cells, (2) microvesicles (MVs) (i.e., active secretion
through membrane-enclosed cell fragments) that consist of
discarding vesicles and exosomes (under physiological and
pathological conditions, almost all cell types that are in-
volved in releasing MVs [20, 55–59]), and (3) active se-
cretion through a protein-dependent MV-free RNA-binding
pathway. It is recommended by some researchers [60–63]
that numerous RNA-binding proteins that include AGO2,
high-density lipoprotein (HDL), and nucleophosmin 1
(NPM1), are capable of merging with miRNAs and bring
them outside places of the cells. miRNAs secretion by MVs
and HDL-binding is an active process and requires energy in
comparison with passive leakage. Active pathways which
secrete extracellular miRNAs can mediate regulation of
biological processes.

Lately, it is believed that extracellular/miRNAs and
those circulating in the blood can be used as biomarkers of
various diseases and also play a significant function in cell-
cell communications. Not only do these miRNAs have
active functions in recipient cells but also a number of them
can interact with receptors in cell surface. *erefore, the
miRNAs’ activities are like hormones. *e existence and
stability of extracellular miRNAs in circulation indicate an
interesting function of these cell-derived miRNAs, but the
detailed functions of many secreted miRNAs, especially
MV-free, protein-binding extracellular miRNAs, remain to
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be elucidated. However, in intercellular communication,
the extracellular miRNAs seem to be a unique component.
Moreover, a new insight can be given by the crosstalk
mediated by these miRNAs to unravel the mechanisms of
dysfunctionality. Some studies suggest that, during tumor
progression, cancer cells dynamically are capable of
packaging the miRNAs into MVs and help them to be
transferred to the surroundings in order to change tumor
microenvironment. Also, it has been found out that ex-
tracellular miRNAs can be considered as diagnosis and
prognosis biomarkers in various disorders such as cancers
[41–44], diabetes, and viral infections [64, 65]. Further-
more, specific genes can be targeted by miRNAs and
siRNAs, and these RNAs can regulate the expression of
related proteins. Since these RNA molecules can modulate
the genes with abnormal expression in different diseases,
they may be considered as the promising potential therapy
in near future [66, 67].

3. The Dysregulation of miRNAs in Cancer

Cancer is a multistep procedure, during which genetic
changes in normal cells cause progression of a sequence of
premalignant conditions (initiation) into a malignant con-
dition (progression). *e resulting cellular phenotype that is
transformed has many features. *is transformation enables
the cells to proliferate independently from growth signals
and make them irresponsive to inhibitory signals, elude
designed cell death pathways (apoptosis), conquer intrinsic
cell replication restrictions, stimulate and maintain angio-
genesis, and produce new discontinued colonies with the
primary tumor [68, 69]. *e leading cause of cancer initi-
ation and progression is dysregulation of genes which are
involved in biological processes such as cell proliferation,
differentiation, and/or apoptosis. Genes that are correlated
with development of various cancers are described as on-
cogenes and tumor suppressors. Based on function,

Pri-miRNA

miRNA-miRNA Duplex

Pri-miRNA

microRNA Gene

Exportin 5

Cytoplasm

DICER

TRBP

Mature
miRNA

mRNA
Translational Repression RISC

RISC
mRNAmRNA Degradation

RANGTP

Nucleus
METTL3

Pol II

DGCR8

DROSHA

Figure 1: *e biogenesis of miRNAs. miRNA genes are usually transcribed by RNA polymerase II, which first produces large transcripts,
referred to as pri-miRNAs.*e pri-miRNAs are then cleaved by a complex, which is composed of RNA-binding protein DGCR8 and type III
RNase, termed Drosha. *e resultant ∼85-nucleotide stem-loop structure is pre-miRNA. Following the transportation from nucleus to
cytoplasm by Ran/GTP/exportin 5 complex, the pre-miRNAs are cleaved by another RNase III enzyme, which is called Dicer. *e miRNA
duplexes are then unwound, and the mature miRNA is incorporated into an RISC complex. According to the complementarity between the
miRNA and the targeted mRNA, the miRNA-loaded RISC complex mediates gene silencing by cleavage or by a translational repression.
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oncogene products can be classified into six groups: growth
factors, growth factor receptors, transcription factors,
chromatin remodelers, signal transducers, and apoptosis
regulators [69, 70]. Overexpression of the products of these
genes provides selective growth advantage that causes tumor
growth. *e genetic changes can mediate the oncogene
activation and result in strengthening the gene, alter pro-
moters/enhancers capability to raise gene expression, or
permanently modify protein structure to an active state
[70–72]. On the other hand, the products of tumor sup-
pressor genes have regulatory functions in biological pro-
cesses. Loss or reduced function of tumor suppressors causes
dysregulation contributing to cancer [73]. Lately, the de-
scription of both tumor suppressors and oncogenes has been
changed from the classical protein coding genes and,
therefore, various types of noncoding RNAs, like miRNAs,
are included in this description [74, 75]. miRNAs play a
regulatory role in several cellular and metabolic pathways,
especially those that control cell proliferation, differentia-
tion, and survival [40, 76–83]. *e dysregulated expression
of miRNAs has been indicated in most tumors found
[74, 84], but the investigation on grouping of miRNA as
tumor suppressors or oncogenes has been quite challenging,
since expression patterns of miRNAs have been complicated.
For various tissues and differentiation states, the expression
patterns of miRNAs differ. *us, there are two difficulties in
the miRNA classification [85–89]. It is sometimes unclear
that altered miRNA patterns directly or indirectly contribute
to cancer in cellular phenotypes. Moreover, several targets
can be regulated by a single miRNA [90]. *is phenomenon,
as well as tissue specific expression, introduces a single
miRNA, either oncogene or tumor suppressor gene, in
various contexts.

3.1. miRNAs Activity on Cancer and Its Dysregulation. In
cancer, the dysregulation of pathway components involved
in miRNA biogenesis plus its expression state has been
revealed (Figure 2). For example, there is a negative cor-
relation between increase and decrease in the expression of
Dicer and Drosha with the advanced stage of tumor and
poor clinical outcome. Existing of any flaws in the pathway
components of the miRNA biogenesis poses significant
change in expression levels of many cellular miRNAs. *ere
are several examples of tumors with global downregulation
of miRNA, particularly in differentiated ones. A suggested
explanation for this common miRNA downregulation in
cancerous cells is that several miRNAs’ role is to describe the
properties of specific lineages. So, the small abundance of
miRNAs raises the undifferentiated state of tumor cells and
increases the potential metastasis and invasion of human
cancers [88].

According to conducted studies, haploinsufficiency or
knockdown of Dicer 1 in rodents has been reported to
promote tumor development and progression.*is supports
the general “tumor suppressor” action of global miRNAs.
Conversely, the levels of the processing enzymes such as
Drosha and Dicer have increased in tumor cells even though
global upregulation of miRNAs is unusual [92–94]. Some

examples of dysregulation of various components of the
miRNA biogenesis pathway are as below.

3.2. Drosha Microprocessor Dysregulation. RNA polymerase
II transcribes long pri-miRNAs that endure primary pro-
cessing in the nucleus by the function of a complex, the
Drosha microprocessor, which comprises different cofactors
including of DGCR8. In various types of cancers, the
upregulation of DGCR8 has been observed. Lately, analyses
of gene mutation have indicated frequent heterozygous
mutations in the Drosha gene in Wilms tumors [45, 95–99].
It is thought that this mutation interferes with metal binding
and destructively regulates the processing function related to
Drosha in a main fashion. It reveals a consistency with the
global downregulation of miRNAs which is shown in Wilms
tumors that harbor mutated Drosha [45, 95–98]. Besides
E1147Kmutation, numerous other splice-site, missense, and
nonsense mutations in Drosha gene have been detected in
Wilms tumors, but their effect has not been fully elucidated.
Other mutations like somatic as well as germline mutations
in DGCR8 have also been observed in Wilms tumors
[45, 97, 98]. A “hot-spot” in the first double-strand RNA
(dsRNA) binding domain (dsRBDe) of DGCR8 is the
missense mutation of E518K, which contributes to over 70%
of the DGCR8 mutations in Wilms tumors [45, 97, 98]. *e
E518K mutation decreases vital miRNAs in tumors
[45, 97, 98]. *is is in accordance with the fact that DGCR8
knockdown stimulates tumor growth [92].*e expression of
alternatively spliced variants of Drosha alongside the gene
mutations has been stated in some human cancers, including
melanoma and teratocarcinoma cells [100]. *e variants of
splice site can encode a Drosha protein with a truncated
carboxyl- (C-) terminal RNase domain. Its dsRBD is not
capable of interacting with DGCR8 and thus is functionally
cooperated and functions as a detrimental leader [100]. On
the other hand, there is a high copy number of the Drosha
gene or overexpression of Drosha protein in over half of the
advanced cervical squamous cell carcinomas, which in turn
cause a global shift in levels of miRNA [101, 102]. Further
studies are needed to reveal why mutations in Drosha gene
are often observed in Wilms tumors, besides why Drosha
levels are regulated in contrary directions reliant on the
tumor type.

Drosha acetylation by CGN5, CBP, and P300 inhibits
ubiquitin-mediated degradation and leads to Drosha sta-
bilization [103] and DGCR8 deacetylation by histone
deacetylase 1 (HDAC1) increases the resemblance between
DGCR8 and pri-miRNAs [104], while phosphorylation of
DGCR8 by Erk contributes to stabilizing the DGCR8 protein
and promotes miRNA production [105]. It is unclear
whether alterations in miRNA modification process
resulting from the Drosha PTMs (posttranscriptional
modifications) are practical in cancer. In contrast, both
HDAC1 and GSK3B are regularly dysregulated in cancer;
thus it is probable that various Drosha PTMs may be ob-
served in cancer cells in comparison with nontumor cells.

Several nuclear proteins can play a role in regulating the
activity of Drosha in a way that it commonly influences the
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biogenesis of only a small subset of miRNAs. An example of
such nuclear protein is adenosine deaminase acting on RNA
(ADAR). ADAR is an RNA-editing enzyme that transforms
adenosine (A) to inosine (I) in double-stranded RNAs.

ADAR1 constructs a complex with DGCR8 and inhibits the
activity of Drosha [106]. *e level of ADAR1 decreased in
metastatic melanoma, and two miRNAs (miR-17 and miR-
432) are excessively produced and stimulate tumor
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Figure 2: miRNA dysregulation in cancer. A schematic representation depicting the canonical miRNA biogenesis pathway and the general
mechanisms whereby normal miRNA expression and function can be dysregulated in cancer. (a) Dysregulation of miRNA gene tran-
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development [106]. Also, Smad proteins, which are the
signal transducers of the transforming growth factor-β
(TGF-β) family of growth factors, mediate the change in
Drosha activity in the nucleus. While Smad proteins were
predominately cytoplasmic at even state, they are trans-
located to the nucleus during ligand activation.

Smad proteins are inherent transcription factors with
DNA attachment and transcription activating domains
[107]. Nevertheless, these proteins are enlisted for the
complex of Drosha microprocessor via physical interaction
with the RNA helicase p68, also identified as DDX5. Pri-
miRNA is escalated here to pre-miRNA processing of ap-
proximately 20 miRNAs [108], which include miR-21 and
miR-199. *e studies have shown that miR-21 as an on-
cogenic miRNA (onco-miR) is frequently upregulated in
roughly all tumor samples and is recognized as an inhibitor
of a large number of tumor suppressor genes such as
PDCD4, PTEN, SPRY1/2, TPM1, and TP53BP2 [109]. Fur-
thermore, miR-21 is able to lead tumorigenesis by pre-
venting the negative regulators like Ras/MEK/Erk pathway
[110].

*e regulation of pri-miRNA processing mediated by
R-Smad is obtained by direct connection of R-Smads with a
sequence component in the stem district of pri-miR-21
[111]. In addition, similar to Smads, p53 can provoke the
expression of several suppressormiRNAs (suppressor-miRs)
(miR-143, miR-15/16, miR-203, and miR-145) by linking
with the complex of Drosha microprocessor through p68
and expediting pri-miRNA processing [112]. Although
genotoxic stimuli induce acetylation of K120 in the DNA
binding domain of p53, they do not influence the tran-
scription activity of p53. *ey lead to the correlation of p53
with the complex of Drosha microprocessor and promote
miR-203 quantities to increase apoptosis as a replacement
for cell cycle arrest [113]. It is not clear yet how p53 can
regulate the processing of a specific subset of miRNA and
how activation of Smads mediated by TGF-β can influence
the process of miRNA regulation mediated by p53.

A new research also detected Yes-associated protein
(YAP), a signal transducer of the Hippo pathway, which
monitors the size of organ by sensing cell density, as a
regulating factor of Drosha microprocessor activity [114]. In
normal or cancerous cells at low cell density in which Hippo
signaling is not active, YAP is collected in the nucleus and is
capable of binding to the RNA helicase p72 (also known as
DDX17) and then sequestering it from the Drosha micro-
processor, which can inhibit a subset of miRNAs that aim at
Myc [114].*ere is a possibility that the inhibition of Drosha
by YAP/p72 complex may play an important role in the
common downregulation of a large group of miRNAs in
cancer. *e single-strand RNA binding factor KH-type
splicing regulatory protein (KSRP, also known as FUBP2)
combines to a small subset of pri-miRNAs through their
terminal loops. *is includes onco-miRs in the let-7 family,
miR-21 and miR-125, and stimulates processing by Drosha
by an unidentified mechanism [115, 116]. When the PI3K/
Akt signaling pathway is activated, KSRP is phosphorylated
at the sites of S274 and S670, which triggers enhanced
binding to pri-miRNAs and induces their Drosha-

dependent processing [115]. Moreover, DNA damage leads
to activation of KSRP-enhanced miRNA biogenesis [117]. In
comparison with the chronic phase disease, KSRP is ex-
ceedingly expressed in chronic myeloid leukemia (CML)
acute phase/blast crisis. However, it is not clear whether
changed expression or function of KSRP aids in leukemo-
genesis mediated by dysregulation of miRNA processing
[118].

Some other RNA binding proteins, like hnRNP A1,
serine/arginine-rich splicing factor 1 (SRSF1), and FUS (also
known as TLS), have been discovered to be related to pri-
miRNAs and assist Drosha processing, but the direct con-
tribution of them in tumorigenesis has not been evidenced.
Modification of pre-miRNA export, dysregulation of the
Dicer/TRBP processing complex, and posttranslational
modifications of Ago proteins can be other reasons for
dysregulation, which are described further in [95].

4. miRNAs and the Pathogenesis and
Metastasis of Ovarian Cancer

Ovarian cancer cells could originate from epithelial, stromal,
or germline cells, among which epithelial tumors are the
most common type [119]. Demographic and lifestyle factors,
ethnicity, advanced age, and female reproductive hormones
are the risk factors associated with ovarian cancer. However,
a positive family history of ovarian, uterine, breast, or colon
cancer is linked to mutations in BRCA1, BRCA2, or TP53
genes, the most potent risk factor [120]. At the molecular
level, ovarian cancer is considered to be an extremely het-
erogeneous disease with somatic and germline mutations, in
tumor suppressor genes and DNA repair genes, and on-
cogenes such as BRCA1, BRCA2, KRAS, BARD1, BRAF,
PTEN, PIK3CA, BRIP1, MRE11A, MSH6, CHEK2, NBN,
RAD50, PALB2, RAD51C, and TP53 have role in prolifer-
ation, invasion, and metastasis process of ovarian cancer
cells [121]. Alongside genetic mutations, alteration in the
expression of these genes and other genes related to car-
cinogenesis may result in the aberrant proliferation of
ovarian cancer cells.

As mentioned earlier, miRNAs are determined to reg-
ulate up to half of activities of all protein coding genes [122]
and are observed to manage almost all the cellular processes
[123]. Several studies discovered that miRNAs’ dysregula-
tion leads to different human diseases like cancer [124, 125].
Due to their involvement in oncogenesis, miRNAs function
as either tumor suppressors or oncogenes, according to their
function and expression pattern [126]. High-throughput
technologies indicated that miRNAs have a fundamental
effect on cancer-specific targets in all cancers [38, 127].
Broad dysregulation of miRNAs ultimately causes cancer.
*ere are altered mechanisms that are responsible for this
circumstance: DNA point mutations, epigenetic mecha-
nisms, translational modulations, chromosomal alterations,
and genetic and epigenetic modifications in various stages of
transcriptional and posttranscriptional pathways [128]. Low
activities of Dicer and Drosha are closely correlated with
end-stage ovarian cancer and low suboptimal surgery, re-
spectively [124]. *e upregulation and dysregulation of
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miRNA in ovarian cancer are key features of malignancies
regarding tumor suppressor genes or oncogenes [40]. *e
miRNAs presence in serum is associated with the occurrence
of malignancies and tumors and has also been used as a
diagnostic tool for detecting cancers [129].

Numerous studies confirmed that approximately 40% of
the miRNA genes reveal modified DNA copy numbers
[130, 131]. *e worldwide miRNA expression of human
ovarian cancer and the differential expression in cancer cells
and normal ovarian tissue have been investigated by Iorio
et al. which revealed the upregulation of miR-200a, miR-141,
miR-200b, and miR-200c in carcinomas and the down-
regulation of miR-125b1, miR-145, miR-140, and miR-199a.
*e deletion of miR-140 in ovarian cancers leads to the belief
that it is related to invasion, involving matrix metal-
loproteinase-13 (MMP-13), fibroblast growth factor 2, and
angiogenic VEGF-A [132]. miR-138 downregulates the
expression of SOX4 and HIF-1a and, consequently, sup-
presses ovarian cancer invasion and metastasis. *ese are
more involved in the regulation of EGFR and Slug pathways,
respectively [133]. *e overexpression of miR-320 was re-
ported to be tangled in invasion and metastasis in ovarian
cancer [134]. Similarly, the overexpression of miR-196a
stimulates epithelial ovarian cancer (EOC) to migrate [135].

In ovarian cancer, miRNAs’ involvement in various
cellular pathways includes cell cycle, tumorigenesis, prolif-
eration, apoptosis, invasion, and metastasis. *e expression
profiling of miRNAs in various cancer types revealed their
pivotal roles in recognizing the miRNAs’ function in ovarian
cancer. It has been shown that miRNAs are oncogenes and
tumor-suppressor genes; hence, they can be considered
reliable biomarkers for ovarian cancer. miRNAs are more
specific and sensitive than any other biomarkers and their
effectiveness is worth to be scrutinized for the diagnosis and
prognosis of ovarian cancer [39, 136]. Some significant
miRNAs that have a role in the pathogenesis and metastasis
of ovarian cancer are listed in Table 1. *e following is a
concise overview of some important miRNAs associated
with ovarian cancer’s pathogenesis and metastasis processes.

4.1. miR-182. miR-182-5p is an oncogenic miRNA posi-
tioned on 7q32.2 region and its overexpression is prevalent
in many solitary malignancies, including melanoma [155],
colon cancer [156], breast cancer [157], and ovarian cancer
[155, 158]. miR-182 is one of a few miRNAs affected by
cellular stress or damage to DNA [19], and, therefore, its
overexpression results in tumor development. *e onco-
genic features of miR-182 in ovarian cancer are noticeably
due to impairment in double-strand breaks repair in DNA,
negative control of BRCA1, suppression of metastasis
suppressor 1 (MTSS1), and overexpression of high-mobility
group AT-hook 2 (HMGA2) [155, 159–162]. MTSS1 and
HMGA2 may represent a central role in miR-182-mediated
tumor metastasis. HMGA2 protein, encoded by the HMGA2
gene, has different effects on a number of biological pro-
cesses, including responses to DNA damage repair, cell cycle,
apoptosis, cell senescence, epithelial-mesenchymal transi-
tion (EMT), and telomere restoration, so that its aberrant

expression in adult tissues is generally associated with both
malignant and benign tumor formation [163]. Recent in-
vestigations showed that HMGA2 is significantly overex-
pressed in most of ovarian cancers [164]. Multiple studies
have reported that miR-182 enhanced HMGA2 expression
and promoted ovarian cancer invasion via direct binding to
the SNAIL1 promoter. SNAIL1 is a zinc-finger transcription
factor playing critical roles in tumor progression and EMT
[165, 166].

Metastasis suppressor 1 (MTSS1), which is also referred
to as missing-in-metastasis (MIM), is a potential metastasis
suppressor protein [165], which functions as a cytoskeletal
scaffold protein and influences cytoskeletal movements
through interacting with Rac, actin, and actin-associated
proteins [167]. Stress fiber formation (F-actin) is one of the
most critical events of cytoskeleton rearrangement during
migration and invasion of cancer cells blocked by MTSS1
(27). MTSS1 is considered as a top target of miR-182 and,
therefore, is significantly downregulated in many metastatic
types of cancer [162].

Discoidin domain-containing receptor 2 (DDR2) is
another miR-182 target gene that mediates cell interactions
of extracellular matrix (ECM) so may contribute to cancer
cell proliferation and migration [168–170]. DDR2 affects the
SNAIL1 function in ovarian cancer and contributes to in-
vasion and cell migration [171]. Ramalho et al. have revealed
that the overexpression of DDR2 leads to decreased miR-182
levels and worse progression-free survival. Accordingly,
these molecules might be related to cancer progression [172].

DCN (Decorin), AKT3 (AKT Serine/*reonine Kinase
3), and TIMP2 (tissue inhibitor of metalloproteinases 2) are
the other novel candidate target genes for miR-182 involved
in the regulation of ovarian cancer biological processes
[173]. Due to the above statements, blocking the expression
of miR-182 will rescue some well-known genes suppressing
the tumor and recover the cell’s critical biologic functions.

4.2.miR-200Family. *ere are fivemiRNAs (miR-141, miR-
200a, b, c, and miR-429) in miR-200 family and they are
abundantly expressed in epithelial tissues. miR-200b/a and
miR-429 are on chromosome 1p36.33 and miR-200a/141 are
located on different clusters of chromosome 12. miR-200c
can promote CD44 expression. CD44 is a multifunctional
molecule which is involved in cell-to-cell interactions, ad-
hesion, and migration. Consequently, decreased expression
of miR-200c could lead to metastatic ovarian cancer [174].
Due to its dual function in various cancer cells, miR-429 is a
tumor suppress in bladder cancer [175], gastric cancer [176],
and cervical cancer [177] and has an oncogenic role in
colorectal and ovarian cancers. Plenty of studies indicate that
miR-429 has a fundamental role in the initiation and pro-
motion of EOC through the regulation of EMT. In this
regard, it has been identified that promoter hyper-
methylation of miR-429 suppressed its expression and
therefore upregulated its corresponding target genes, in-
cluding KIAA0101, ZEB1, and ZEB2 [178].

It has been identified that ZEB1, as a mesenchymal
marker repressing the transcription of E-cadherin, is an
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EMT activator [179]. Indeed, inhibiting ZEB1 and ZEB2
upregulates E-cadherin and reduces cell motility [180]. ZEB1
and ZEB2, as targets of miR-429, inhibit this regulatory
miRNA and alter the expression of the calcium-dependent
adhesion protein E-cadherin [181, 182], inducing EMT in
various cell types [183] (Figure 3).

KIAA0101 protein (PCNA-associate factor) is a cell
cycle-regulated protein occurring most abundantly during
S/G2 phase and acts as a regulator of DNA repair during
DNA replication (42). KIAA0101 is required for the EOC cell
invasion and chemoresistance (Figure 3) and is the target
gene for miR-429. *erefore, decreased expression of miR-
429 in the metastatic cells in EOC tissues leads to the
upregulation of KIAA0101 and enhances the migratory
activity and chemoresistance of EOC cells [184].

4.3.miR-23a. miR-23a belongs to the miR-23∼27∼24 cluster
in 19p13, where the miR-23a-27a-24-2 cluster is located
[185]. *e transcription of this cluster results in the pro-
duction of a pri-miRNA transcript consisting of miR-23a,
miR-27a, and miR-24. miR-23a, as an oncogenic miRNA
(onco-miR), has multiple-gene regulatory functions and is
significantly increased in different cancer tissues such as
bladder cancer, glioblastoma, pancreatic cancer, and gastric

cancer [186–188]. Moreover, this miRNA is involved in the
initiation and progression of a variety of cancers [189].

Ikappa B kinase-alpha (IKKα) and suppression of tu-
morigenicity 7 like (ST7L) are two miR-23a target genes that
are shown to provoke the oncogenic role of miR-23a and
contribution in the malignancy of EOC cells through effects
on nuclear factor kappa B (NF-κB) andWnt pathways [190].
NF-κB transcription factor acts as a protein complex reg-
ulating the transcription of various genes involved in cy-
tokine production, cell survival, proliferation, and
differentiation [191]. IKKα is one of the NF-κB pathway
proteins that activated NF-κB to modulate target gene ex-
pression [191]. ST7L is a suppressor of the Wnt/β-catenin
signaling pathway and acts as a tumor suppressor in many
cancers [192]. For the control of cell proliferation, migration,
and apoptosis as well as the promotion of EMT by inducing
the expression of EMT transcription factors, the Wnt/
β-catenin signaling pathway is essential [193, 194]. Yang
et al. reported that, by binding to their 3′-untranslated re-
gions (3′-UTRs) in EOC cells, miR-23a might increase IKKα
expression but decrease ST7L expression. Regarding IKKα as
an essential factor for the NF-κB pathway and ST7L as aWnt
pathway inhibitor, miR-23a positively regulates these
pathways inducing cell growth, migration, and invasion in
EOC cells [190] (Figure 3).

Table 1: Targets and functions of important miRNAs associated with ovarian cancer.

miRNA Target Alteration Cellular function Ref.

miR-214
Sema 4D (Semaphoring 4D) Upregulation Inhibits cell proliferation and promotes

apoptosis [137]

LHX6 (LIM Homeobox 6) Downregulation Induces apoptosis [138]
PETN (phosphatase and tensin homolog) Upregulation Promotes radioresistance [139]

miR-182 BNIP3 (BCL2 interacting protein 3) Upregulation Inhibits proliferation and migration [140]

miR-23b CCNG1 (cyclin G1) Upregulation Inhibits ovarian cancer tumorigenesis and
progression [141]

miR-381 YY1 (the ubiquitous transcription factor yin yang 1) Upregulation Inhibits ovarian cancer cell proliferation,
migration, and invasion [142]

miR-132 E2F5 (transcription factor) Upregulation Inhibits cell migration and invasion of cancer
cells [143]

miR-143-
3p

TAK1 (transforming growth factor-β-activated
kinase 1) Upregulation Inhibits the proliferation, migration, and

invasion of ovarian cancer cells [144]

CTGF (connective tissue growth factor) Upregulation Inhibits ovarian cancer cells proliferation,
migration, and invasion [145]

miR-145 CCND2 & E2F3 (cyclin D2) Upregulation *e invasion and proliferation suppressor [146]
miR-34a-
5p NEAT1 (nuclear paraspeckle assembly transcript 1) Downregulation Suppresses Cell proliferation and triggers

apoptosis [147]

miR-383-
5p TRIM27 (tripartite motif containing 27) Upregulation Proliferation, chemosensitivity suppressor and

enhancer in ovarian cancer cells [148]

miR-
148a-3p c-Met (tyrosine-protein kinase Met) Upregulation Inhibits invasion of ovarian cancer cells and cell

migration [149]

miR-141 KEAP1 (Kelch-like ECH-associated protein 1) Upregulated Cisplatin resistance [150]
miR-218 RUNX2 (runt-related transcription factor 2) Upregulated Inhibits proliferation and invasion [151]

miR-199a HIF-1α & HIF-2α (hypoxia-inducible factor) Upregulation Decreases migration and metastatic tumor
formation [152]

miR-491-
5p

EGFR (epidermal growth factor receptor) and BCL-
XL

Upregulation
Induces cancer cell apoptosis by blocking
downstream AKT and MAPK signaling

pathways
[153]

miR-744-
5p

HNRNPC (heterogeneous nuclear
ribonucleoproteins C1/C2) and NFIX (nuclear

factor 1 X-type)
Upregulation Induces tumor cell apoptosis [154]
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Discs large MAGUK scaffold protein 2 (DLG2) is
found to be another miR-23a target. DLG2 is a member of
the membrane-associated guanylate kinase (MAGUK)
family, which has various protein-protein interaction
domains having a role in a broad range of cellular
pathways [195]. miR-23a can inhibit its expression
through binding specifically to the DLG2 gene and inhibit
its expression. Zhuang and his colleagues found that miR-
23a, via targeting the DLG2 expression, elevates anti-
apoptotic Bcl-2 expression and suppresses proapoptotic
protein Bax expression, blocking ovarian cancer cell ap-
optosis and inducing tumor stem cells development
(Figure 3) [196].

miR-23a is also related to the chemotherapy-resistant
ovarian cancer cell lines [197].*e RUNX3 gene is one of the
antioncogenes that have a quenching effect on multidrug
resistance gene 1 (MDR1) expression. MDR1 acts as a drug
pump to excrete the chemotherapeutic agents out of the cells
(Figure 3). One of miR-23a targets is the 3′-UTR of RUNX3
gene [198]. Jin and Wei by studying on drug-resistance
ovarian cancer A2780 cell lines indicated that, in the pres-
ence of a highly expressed level of miR-23a, the silenced gene

MDR1 was expressed, and the classic resistance mechanism
was initiated [199].

4.4. miR-205. Human miR-205 is a highly conserved
miRNA placed on chromosome 1q32.2. miR-205 has dual
roles in cell regulation due to its involvement in both
physiological and pathological pathways by targeting on-
cogene or tumor suppressor genes [200]. According to the
various evidences, miR-205 is elevated in a broad range of
cancers such as lung [201], kidney and bladder cancers or
prostate [202], esophageal [203], melanoma [204], and
breast [205] cancers. In EOC cells, SMAD4 and PTEN
(phosphatase and tensin homolog) genes have been iden-
tified as miR-205 targets, and their downregulation con-
tributes to cell proliferation, migration, and cancer cell
invasion [206]. Smad4 (SMAD family member 4) is activated
through phosphorylation by transmembrane serine-threo-
nine receptor kinases in response to TGF-β signaling and
regulates the transcription of target genes related to cellular
adhesion, motility, and differentiation.*erefore, the Smad4
reduction correlates the cancer progression [207, 208].
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Figure 3: *is schematic figure represents the main miRNAs and gene targets involved in the biological processes of ovarian cancer. miR-
200 family are abundantly expressed in epithelial tissues. *is miRNA induces the expression of CD44, which plays a key role in cell-to-cell
interactions, adhesion, and migration. *e cluster of the miR-23a is involved in the initiation and progression of ovarian cancer through
affecting transcription factors like NF-κB andWNTpathway, regulating the transcription of various genes involved in cytokine production,
cell survival, proliferation, and differentiation. miR-205 targets many biological processes like proliferation, differentiation, and migration
and facilitates apoptosis in some ovarian cancer cells.
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PTEN tumor suppressor gene is located on 10q23.3 and is
altered in various cancers at high frequency. Various studies
have confirmed its ability in decreasing tumor growth and
chemoresistance via blocking various cell signaling pathways
[209]. Loss of PTEN expression in several tumor types in-
dicated that low PTEN expression might be an accelerating
factor in the development of cancer cells. Shi and his co-
workers found that the downregulation of PTEN/AKT
pathway via miR-205 is contributed to cisplatin-resistant
C13K ovarian cancer cells [210]. Furthermore, findings from
the research of He et al. show that exosomal miR-205 sig-
nificantly accelerated angiogenesis and promoted metastasis
in a mouse model and HUVECs human cell lines by tar-
geting PTEN-AKT pathway [211] (Figure 3).

Leucine-rich repeat kinase 2 (LRRK2), as a target of miR-
205, has been introduced in another study of Liu et al. *ey
showed that LRRK2 has lower expression in ovarian cancer
tissues than in healthy ovarian tissues [212]. LRRK2 is a
kinase mediating the c-Jun N-terminal kinase (JNK)
phosphorylation [213]. *e JNK signaling pathway partic-
ipates in biological processes of proliferation, differentiation,
and apoptosis and facilitates apoptosis in some ovarian
cancer cells [214]. *erefore, decreased LRRK2 expression
by miR-205 results in the JNK pathway inactivation and the
apoptosis inhibition of ovarian cancer cell. VEGFA (vascular
endothelial growth factor A) is known as another target gene
of miR-205 increasing the ovarian cancer risk by targeting
EMTprogression factors [215]. Another direct target of miR-
205 is transcription factor 21 (TCF21), which is a reduced
tumor suppressor in ovarian cancers [216]. TCF21 is an
essential factor in epithelial cell differentiation which is
located on chromosome 6q23 [217]. MMPs are involved in
tissue cell integrity through the regulation of cell-matrix
composition and play a pivotal role in tumor progression
[218]. TCF21, as a transcription factor, is reported to de-
crease MMP-2 and MMP-10 expression and lead to the
maintenance of cell integrity. In ovarian cancer, miR-205
directly targets TCF21, resulting in high expression ofMMP-
2, which increases cancer cell migration [216, 219] (Figure 3).

5. miRNAs as a Biomarker for Prognosis and
Early Diagnosis of Ovarian Cancer

One of the most common gynecologic malignancies in
women is ovarian cancer and the patients show symptoms
even at the primary stages of cancer. *ese symptoms are
regularly misunderstood as they are closely associated with
other gastro- and gynecological diseases leading to the
misdiagnosis of this disease [220, 221]. Around 230,000 new
plus 140,000 death cases are reported annually [202].
Generally, ovarian cancer starts from granular-theca and
germ cells. Also, more than 90 percent of patients have
epithelial histology stemming from surface covering cells or
subsurface cyst cells [222]. EOC is the most common cancer
type compared to the other stromal and germline tumor
types [119, 221]. A family history of cancer, age, and repeated
ovulation with mutation in BRCA1 are associated with
ovarian cancer [223]. Even though there are advancements
in the identification of cases and cytotoxic treatments, only

one-third of patients with an advanced stage of cancer live
approximately five years after prognosis [224], whereas the
mortality rate of the rest of the patients is high because of
diagnosis at the late stage [132]. Moreover, about 19% of
ovarian cancer patients are diagnosed at the early stages of
cancer [132]. Genetic and epigenetic alterations both help in
the progression of ovarian cancer which can be created from
gene amplification, deletion, and changes in the methylation
state [221, 225]. Ovarian cancer is of two types of tumors:
low-grade and high-grade types that are based on gene
mutations. Low-grade group is less common. *ese are
diagnosed at early stages, and tumor growth is stepwise and
encompasses mutations in KRAS, BRAF, PIK3CA, and
PTEN. High-grade tumors are more common, which are
mostly diagnosed at late stage. *ey are aggressive in nature
and include mutations in TP53, BRCA1, and BRCA2
[221, 226, 227]. TP53 mutations are the most typical in
ovarian cancer, whereas inactivation of phosphatase and
tensin homolog (PTEN) is less typical. Mutations in DNA
repair genes BRCA1 and BRCA2 contribute to heredity to
ovarian cancer and accordingly increase the genomic in-
stability [228]. At molecular levels, ovarian cancer has a
highly heterogeneous disease etiology [229]. As a conse-
quence of inadequacy of standard diagnostic and pelvic tests,
serum cancer antigen 125 (CA125), and transvaginal ul-
trasonography for the detection of cancer at the early stage,
there are more cases of death [124]. *e main root of poor
prognosis can be due to subtle disease symptoms at early
stages, chemotherapy resistance, and lack of precise non-
invasive detection methods [132, 220]. Surgery and che-
motherapy are preferred treatments for advanced ovarian
cancer, and, even with chemotherapy advancements, there is
the possibility of chemotherapy resistance or relapses.
Ovarian cancer diagnostic methods consist of pelvic ex-
amination, transvaginal ultrasound, and CA125 measure-
ments [130]. So, advanced methods for detecting ovarian
cancer, especially at early stages, are critical for prescription
of the right medications and therapies. Clear cell, endo-
metrioid, serous, and mucinous, with serous as the most
frequent type, are the four major histological subtypes of
ovarian carcinoma [132]. Analysis of the newest large-scale
data of ovarian cancer samples recommends invasiveness at
mesenchymal subtype of tumors to be connected with TGF-
β. TGF-β, a multifunctional protein, stimulates EMT,
resulting in metastasis and chemotherapy resistance in
various kinds of cancers [230]. *ese histological types are
related to different morphologic and genetic modifications
[231]. Recently, expression profiling technologies have been
significantly advanced, which expand the awareness on
molecular implications of cancer in order to utilize them for
diagnosis, therapy, and cancer drugs development. *ere-
fore, the innovative and superior markers and drugs for
diagnosis and treatment of ovarian cancer are figured out.
Several researchers have recognized and examined modified
expression of miRNAs in ovarian cancer, which results in the
establishment of macrometastasis. miRNAs are used as
novel diagnostic and prognostic markers and could be
considered as novel targets for therapeutic purposes [232]
(Table 2).
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5.1. ?e Patterns of miRNA Expression in Ovarian Cancer.
Numerous experiments of miRNA and cDNA microarrays
in ovarian cancer have shown large transcriptional varia-
tions [233]. Various miRNAs are indistinguishable to be
downregulated in miRNA expression profiles of ovarian
cancer, validating miRNAs’ role in tumorigenesis [124].
Iorio et al. compared the expression profiles of miRNAs
between ovarian cancer tissues or cell lines with normal
tissues and showed that only 29 miRNAs, miR-14, miR-
200a, miR-200b, and miR-200c were found to be upregu-
lated in cancer cells, and there is a downregulation in the rest
of all the 25 miRNAs comprising miR-140, miR-145, miR-
199a, and miR-125b-1 [132]. *ey also mentioned that there
is a distinction between the miRNA signatures in different
histotypes of ovarian cancer. In another study by Vang et al.,
miRNA expression patterns of primary serous ovarian
cancer and their omental metastasis had significant differ-
ences, measured by qPCR. miR-146a and miR-150 were
related to omental metastases, cisplatin resistance, and
spheroid formation [234]. Also, Calura et al. showed the
profile of miRNA expression of each stage I EOC histotype
and revealed the overexpression of miR-30a-5p and miR-
30a-3p on clear cell type and the higher level of miR-192 and
miR-194 on mucinous histotype [235]. Furthermore, Nam
et al. showed the upregulation of 11 miRNAs (miR-16, miR-
20a, miR-21, miR-23a, miR-23b, miR-27a, miR-93, miR-141,
miR-200a, miR-200b, and miR-200c) and downregulation of
12 (miR-10b, miR-226a, miR-29a, miR-99a, miR-100, miR-
125a, miR-125b, miR-143, miR-145, miR-199a, miR-214,
and let-7b) through the miRNA microarray of 20 serous
ovarian carcinomas and their comparison with normal
samples [236].

*e Cancer Genome Atlas (TCGA) project has revealed
the mRNA and miRNA expression, promoter methylation,
and DNA copy number in 489 patients with high-grade
serous ovarian adenocarcinomas [237] and it has been stated
that TP53 mutation has been detected in nearly 96% of
tumors plus recurring somatic mutations of NF1, RB1,
CDK12, BRCA1, and BRCA2 [124]. Eight key miRNAs
(miR-141, miR-182, miR-200a, miR-506, miR-25, miR-29c,
miR-101, and miR-128) were found and thought to target up
to 90% of its network [124]. A combination of genomic
methods, including array-based comparative genomic hy-
bridization (aCGH), miR microarray, cDNA microarray,
and tissue array, was utilized to evaluate alterations in the
miRs’ expression in EOC [233]. It was discovered that ge-
nomic losses along with epigenetic variations might cause
the downregulation of miRNA. From 35 dysregulated miRs
in ovarian cancer (immortalized ovarian surface epithelial
cells), 31 (88.6%) had almost lost their expression in com-
parison with normal cells, including the miRs that are tumor
suppressors, like let-7d [238] and miR-127 [239].

Experiments also disclosed that miR-199a, miR-214,
miR-200, miR-100, and let-7 family are the most extremely
expressed candidates in normal ovarian cells and EOC in
different ways [130, 202, 240]. *e expression of miR-200
family detected in epithelial tissues includes five members
(miR-200a, miR-200b, miR-200c, miR-141, and miR-429).
*ese miRNAs are divided into two groups in the human
genome. miR-200a, miR-200b, and miR-429 are grouped on
chromosome 1, while miR-200c and miR-141 are found on
chromosome 12 [241]. Numerous researches have indicated
variations in the expressions of distinct components of the
miR-200 family and exhibited their essential functions in

Table 2: Significant miRNAs with potential prognostic and diagnostic biomarkers.

Biomarker Prognosis Diagnosis Tumor stages Endpoint Source Ref.

miR-532-5p Yes No Cell proliferation of ovarian
neoplasms OS — [242]

miR-200b Yes No EMT and migration OS Ascitic fluid [243, 244]
miR-193b No Yes Lymph node metastasis Poor survival Tissue [245]

miR-135a-3p Yes No Cell proliferation of ovarian
tumors Decreased PFS Peritoneal

fluid [246]

miR-125b Yes Yes Lymph node involvement and
distant metastasis Decreased OS Serum [247]

miR-613 Yes No Lymph node involvement Short PFS and OS Tissue [248]
miR-506 Yes No EMT Decreased OS and PFS Tissue [249]
miR-205 Yes Yes Advanced stages III/IV — Plasma [250]
miR-200c-3p, miR-346,
miR-127-3p No Yes Distant metastasis — Serum [251]

miR-200c No Yes Stage I OS and PFS Tissue [252]

miR-27a and miR-23a Yes No Stages I-IV OS, RFS, and short PFS
(miR-27a) Serum [253]

miR-let-7 Yes No Early tumor progression Poor survival Tissue [241]
miR-221 Yes Yes Stages I–IV Decreased OS Serum [254]
miR-21 Yes Yes Stages I–IV OS Serum [255]
miR-335 Yes No Distant metastasis (stages III/IV) OS and RFS Tissue [256]
miR-429 Yes Yes Stages III-IV OS Serum [168]
miR-199a Yes Yes Stages III-IV Poor OS [257]
miR-1246 No Yes Stages III-IV — Serum [258]
PFS: progression-free survival, OS: overall survival, RFS: recurrence-free survival.
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ovarian carcinoma development. *ese experiments showed
the miR-200 family in three categories of ovarian cancer:
serous, endometrioid, and clear cell carcinomas. However,
they revealed the upregulation of miR-200b and miR-141
merely in endometrioid and serous categories. *is rec-
ommends a more intricate and distinct role of the miR-200
family in ovarian cancer than it was believed primarily [132].
*erefore, different miRNAs have been identified as vital
prognostic and diagnostic biomarkers that can be served as a
potential utility in ovarian cancer.

5.2. miRNAs Alterations in Ovarian Cancer. *e copy
number variations of genes that are near cancer-associated
genomic regions (CAGRs) influence miRNA expression
[259]. A comprehensive study of cancer modifications was
presented with aCGH to recognize miRNA loci that are
gained or lost in some human cancers, including ovarian
cancer, breast cancer, and melanoma [131]. Zhang et al.
studied 283 miRNA loci and discovered that 37.1% of these
miRNAs had significant alterations in their copy number
[131]. Similarly, substantial copy variations were noticed in
72.8% of breast cancer samples and 85.9% of melanomas
samples. *e miR-15a/16-1 locus is lost in up to 24% of
ovarian cancer samples and miR-17-92 in all tumor tissues
[123]. A copy number increase in Dicer1 and Ago2 loci has
also been reported in, respectively, 24.8% and 51.5% of
ovarian tumor regions [131]. As stated earlier, an effectual
miRNA processing and operation requires Dicer and Ago2
proteins. Short-hairpin-RNA- (shRNA-) mediated knock-
out of Dicer1 and Ago2 boosts colony development in both
in vivo and in vitro environments [92]. Modifications in
Dicer1/Ago2 expression result in huge alterations of miRNA
expression, which commonly occur in cancer through either
germline deletions, mutations, or promoter methylation
[239, 260]. Mutation of p53 is also one of the most wide-
spread changes noticed in EOC, especially in high-grade
serous tumors [261].

5.3. Dysregulation of miRNA in Ovarian Cancer. Many ex-
periments on the expression of miRNAs in ovarian cancer
and normal epithelial ovarian cells as well as immortalized
ovarian surface epithelial cells [262–264] have reported the
dysregulation of 310 miRNAs in ovarian cancers, among
which 34 miRNAs were constantly dysregulated in carci-
noma tissues in at least three separate studies. Numerous
miRNAs discovered to control growth of ovarian cancers are
miR-31, miR-34abc, miR-125b, miR-127, and let-7a/b/d/f
miR-31 [265]. According to studies, oncogenic miR-182
expression is upregulated in high-grade ovarian tumors,
resulting in proliferation and progression of cancer cells by
enhancing the BRCA1/HMGA2 dysregulation [266]. miR-
221-3p plays a tumor suppressor role by affecting ARF4 to
repress the proliferation and migration of EOC cells. *ose
having the high miR-221-3p expression can survive better as
compared to others [267]. miRNAs are the regulators of
chemosensitivity, since dysregulated miRNA expressions
contribute to therapeutic chemoresistance.*e upregulation
of miR-106a and downregulation of miR-591 cause

chemoresistance to Paclitaxel, so the chemosensitivity of
Paclitaxel can be achieved by downregulation of miR-106a
and upregulation of miR-591 [268]. miR-145 also sensitizes
the resistant ovarian cell to Paclitaxel by regulating the Sp1
and Cdk6 [185, 269].

5.4. miRNAs as Prognostic Markers in Ovarian Cancer.
For ovarian cancer diagnosis and detection, the miRNAs can
be utilized as an essential tool. Downregulation of miR-9 has
been shown in ovarian cancer cases [270]. Upregulation of
miR-92, miR-21, and miR-15a has been proposed to be a
signature of ovarian cancer. *e underexpression of miR-31
indicates the initial phase of ovarian cancer growth [265].
On the other hand, the downregulation of miR-34 a/b/c/
miR-449b, miR-503, and miR-507 has been noticed in pa-
tients of last phases [233, 271, 272]. Research has also shown
the overexpression of miR-200 family and underexpression
of let-7 family in EOC cases. In this regard, it has been
reported that serum miRNAs, miR-21, miR-155, and miR-
210, were significantly higher in cancer patients compared
with normal participants [273]. Chung et al. showed let-7b,
miR-26a, miR-132, and miR-145 as diagnostic markers in
EOC patients [274]. Zheng et al. also indicated let-7f and
miR-205 as biomarkers for the EOC diagnosis [275]. Since
miRNAs with tissue-specific expressions are often stated for
being dysregulated in cancer cells, they appear to be tumor
indicators [276]. Several reports have revealed an unusual
miRNA expression pattern as a prognostic indicator
showing the disease result during the treatment. For ex-
ample, in ovarian cancer cases, loss of let-7 expression along
with the overexpression of HMGA2 is an indicator of a bad
prognosis. Hence, the ratio of HMGA2 to let-7 is used to
predict treatment outcomes; it means that cases with a
higher ratio of HMGA2/let-7 have poor survival (<10%) in
comparison with patients with a low ratio (40%) [241].
Furthermore, let-7 is underexpressed in chemotherapy-re-
sistant patients and is associated with shorter survival;
hence, it might be a potential biomarker for observing
treatment outcomes and patients survival [240]. So, the miR-
200 family was found to be a prognostic marker for ovarian
cancer. Hu et al. studied 55 ovarian cancer patients with
stages III and IV [277]. *ey found that expression of miR-
200 family group, comprising miR-200a/b/c and miR-429,
has been extremely reduced in patients with a recurrent
cancer related to patients without recurrence. Eitan et al. in
their research revealed the same conclusions [278]. *ey
studied 57 patients with either serous or endometrioid
histology who were at stage I or stage III of the disease and
revealed downregulation of miR-200a, miR-34, and miR-
449b miRNAs in advanced ovarian cancer (stage III) and
high expression of miR-200a in initial stages of disease (stage
I) with a more satisfactory conclusion. Also, studying 107
other patients from all types and stages disclosed higher
survival in high-grade ovarian cancer patients mixed with
high miR-200a levels in comparison to patients with lower
expression of miR-200a [279]. miR-9 and miR-223 might be
applicable as prognostic markers since they are correlated
with the recurrent type of ovarian cancer [270]. Recently, the
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overexpression of miR-30d has been detected in patients that
are sensitive to platinum-based chemotherapy compared to
in chemoresistant patients. Moreover, the downregulation of
miR-30d in patients with recurrent ovarian cancer has been
noticed [280]. Lee et al. who were investigating miRNA
expression in patients with ovarian cancer, benign ovarian
cancers, and borderline malignancy discovered a higher
expression of miR-30c, miR-30d, miR30e-3p, and miR-181d
as survival prognostic markers [280]. Others have identified
low expression of miR-34c and miR-422b in patients with a
dropped survival of high-grade ovarian cancer [272]. Corney
et al. indicated that downregulation of miR-34b/c, which is
detected in the late stage of ovarian cancer, is related to
mesenchymal-to-epithelial transition (MET) [271]. Kim
et al. discovered a link between notable upregulation of miR-
519a and poor survival [281]. miR-22 downregulated in
ovarian cancer is correlated with overall survival and pro-
gression-free survival of patients; hence, it might be used as
an efficient prognostic factor [282].

5.5. miRNAs as Novel Tools for Ovarian Cancer Diagnosis.
miRNAs play a role as a perfect diagnostic and monitoring
factor for ovarian cancer. Patients with a minimum level of
miR-200 genes expression have poor survival with cancer
growth [277]. Also, patients with low let 7a-3 methylation
have minimal survival rate compared to patients with high
methylation [202]. Precursor miR-146a causes G to C
variants in patients with ovarian and breast cancer [283].
Ratio of HMGA2 to let-7 has been discovered as a prognosis
factor in ovarian carcinoma patients [241]. *e serum
miRNAs are useful for recognition of cancer [273, 284].
Tumor-derived exosomes (small lipid vesicles) encompass
diagnostic miRNAs [285]. Early detection of life-threatening
malignancies, including ovarian cancer, has long been the
key to successful therapy among the different considered
preventive measurements [130]. *e abnormal expression
pattern of miRNAs expression can be useful for identifying
an early-stage ovarian cancer. miR-200a and miR-141 were
identified as exceedingly upregulated miRNAs in ovarian
cancer, whereas miR-199a, miR-140, miR-145, and miR-
125b1 were most astonishingly downregulated. In addition,
to detect the histological types of ovarian tumors, dysre-
gulation of a particular miRNA was also applied. For in-
stance, there is an overexpression of miR-200a and miR-
200c in all types (mucinous, endometrioid, and clear cells),
miR-200b and miR-141 were overexpressed in serous as well
as endometrioid carcinomas, and miR-21, miR-203, and
miR-205 were overexpressed in endometrioid tumors. In
fact, miR-145 is underexpressed in serous and clear-cell
tumors, while miR-222 is underexpressed in endometrioid
and clear-cell malignancies.

A different research has proven outstanding down-
regulation of serum miR-145 in malignant and benign
ovarian cancers compared to healthy cases, and outcomes
suggested that miR-145 can forcefully be used to discover
ovarian and other types of human cancers [286]. Nam et al.
determined 23 haphazardly expressed miRNAs in at least
60% of specimens of ovarian cancer with miR-21 as the most

overexpressed miRNA (85% samples) and miR-125b (95%
samples) as the most downregulated miRNA [236]. Yang
et al. finalized 36 miRNAs differently expressed in normal
and ovarian cancer cells, comprising miR-199a, miR-214,
and miR-200a, respectively, overexpressed in 53, 56, and
43% of tumors of high-grade cancers [240]. miR-100 instead
is downregulated in 76% of tumors. In comparison with
previously mentioned data, Eitan et al. exhibited down-
regulation of miR-200a, miR-34a, and miR-449b in the
evolved (stage III) ovarian tumors with miR-200a relation to
the initial-stage cancer and enhanced overall survival [278].
Furthermore, miR-200a was discovered as a satisfactory
outcome predictor in another research of 55 patients [277].
In addition, Marchini et al. recognized the correlation of
miR-200c with progression-free survival or overall survival
or both in phase I ovarian cancers [252]. *e root cause for
upregulation of miR-21, miR-203, and miR-205 in ovarian
cancer tissues is hypomethylation of miRNA genes as the
most essential epigenetic mechanism [132]. A different re-
search has reported the overexpression of miRNAs as a
consequence of miRNA genes amplification in tumors [233].
Among 35 miRNAs studied, there have been upregulation in
four miRNAs (miR-26, miR-182, miR-103, and miR-26a)
and downregulation in two miRNAs (let-7d and miR-127).
*ese findings proposed alterations in copy number and
epigenetic mediators as two reasons for unusual expression
of miRNAs in ovarian cancer [233]. *us, miR-30c, miR-
30d, and miR-30e are frequently upregulated, whereas miR-
493 is downregulated in ovarian tumors compared to in
normal HOSE cell lines.

6. Implications of miRNAs in Targeting
Ovarian Cancer

If ovarian cancer cells are confined to the ovaries, they can be
effectively treated by debulking surgery. However, most of
tumors are not diagnosed but are at more advanced met-
astatic stages of the disease, when chemotherapy treatment is
required [287]. *e majority of ovarian cancer cells respond
effectively to neoadjuvant platinum-based chemotherapies.
On the other hand, mesenchymal-like metastasis initiating
cancer stem cells are usually resistant to these chemother-
apies, resulting in cancer recurrence in many ovarian cancer
patients [288]. Targeted therapy is another strategy in which
crucial pathways for ovarian cancer cells growth or survival
are blocked, while normal cells are not affected [289]. A
possible targeted therapy for the treatment of ovarian cancer
metastasis is based on targeting miRNAs. As described
above, many miRNAs act as tumor promoters or suppres-
sors in various cancers, and they can be given more attention
as new therapeutic targets.

*anks to the enhancement of cancer studies, patient-
specific treatments soon would be developed. Since the
expressions of a plethora of various genes are regulated by
miRNAs, they can control and coordinate multiple cellular
pathways [109, 130]. *erefore, miRNAs have been rec-
ommended as potential therapies against cancer. Correction
of the mRNA expressions is an appealing strategy to target
cancer cells, which can be done through the application of
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miRNAmimics (miRNA replacement therapy) to inhibit the
upregulated onco-miRs by antisense miRs (miRNA inhi-
bition therapy) [256]. miRNA drug MRX34, which is a miR-
34mimic, is the first and the only anticancermiRNA that has
entered clinical trials in cancer patients. *is miRNA mimic
is being evaluated in clinical trials of phase I in hepato-
cellular carcinoma patients, which may finally open new
avenues toward the application of miRNAs in cancer
treatments.

Chen et al. suggested that the targeted delivery of miR-
429 to carcinoma cells may have therapeutic effect for re-
ducing cancer cell metastasis and tumor recurrence in ad-
vance-staged cancer patients [290]. miR-492 plays a
significant role in controlling EMT and MET pathways;
therefore, the overexpression of miR-429 may reduce me-
tastasis by inducing epithelial phenotype in mesenchymal
stem cell-like metastasizing cells reducing their tumorige-
nicity andmetastatic potential [291]. Also, miR-492 is shown
to be negatively correlated with resistance to Paclitaxel and
cisplatin in ovarian adenocarcinoma cell lines [292]. Chen
et al. have investigated the EOC cell lines, SKOV3 and
COV644, and revealed the inhibition of metastasis and
chemoresistance of EOC cells by miR-429 via KIAA0101-
mediated Wnt/β-catenin signaling [184]. As a consequence,
delivery of miR-429 inhibits the recurrence and improves
survival rates of ovarian cancer.

*e X-linked inhibitor of apoptosis protein (XIAP) acts
as an apoptosis blockage and directly inhibits the effector
caspases (caspases 3, 6, 7, and 9) [293] and promotes tumor
formation and metastasis [294]. XIAP plays a crucial role in
chemotherapy resistance in ovarian cancer and various
tumors [295]. It is also highly expressed in ovarian cancer
cells, which indicates the chemosensitivity of cancer cells
[296]. XIAP is a direct target gene of miR-149 and miR-137.
miR-137 [297] and miR-149 [298] are usually down-
regulated in ovarian cancer. *e results obtained from
several studies suggest that ectopic expression of miR-137
and miR-149 can suppress the XIAP 3′UTR function and
decrease the levels of XIAP protein in ovarian cancer cells
[297–299]. miR-150 is considered as an EMT process reg-
ulator but is downregulated in primary EOC tissues [234],
and ectopic expression of miR-150 blocks proliferation,
invasion, and metastasis of EOC cells [300].

miR-320, which is a tumor suppressor, is markedly
downregulated in EOC cells and cell lines.MAPK1 [301] and
TWIST [302] are two direct target genes of miR-320 in EOC,
which are significantly upregulated in EOC tissues, and their
downregulation represses the proliferation and invasive
ability of EOC cells. MAPK1 plays a crucial role in the
MAPK/ERK pathway and mediates various biological pro-
cesses, including cell growth, cell survival, and differentia-
tion through the regulation of transcription, translation, and
cytoskeletal rearrangements [303, 304].*erefore, decreased
expression of MAPK1 suppresses SKOV3 cells growth and
invasion in ovarian cancer [305]. TWIST1 is one member of
the basic helix-loop-helix transcription factor twist family
that plays important roles in the mesenchymal phenotype,
serves as one potent oncogene [306], and is overexpressed in
various cancers. Overexpression of TWIST1 promoted

tumor cell migration, proliferation, and invasion [307].
Besides, miR-186 is another miRNA that inhibits EMT in
ovarian cancer cells and stimulates G1 cell-cycle arrest and
promotes apoptosis by regulating TWIST1 [308].

miR-34 family is thought to be underexpressed in EOC,
especially those with mutations in TP53, and was linked to
tumor stage [271]. It is also demonstrated that replacement
therapy with miR-34 in SKOV3 cell line has drastically
reduced proliferation, migration, and invasion. In most of
ovarian cancers, miR-200 family members (miR-141, miR-
200a, miR-200b, miR-200c, and miR-429) are underex-
pressed correlating with poor survival [132, 236]. *e miR-
200 family inhibit EMT, cell migration, and metastasis
through impacting on ZEB1 (zinc-finger E-box-binding
homeobox 1) and ZEB2 [279, 309]. Chen et al. reported that
IKK expression is regulated by miR-199a, which changes the
inflammatory microenvironment in ovarian cancer [310].
Epigenetic silencing of miR-199b-5p is linked to chemo-
resistance in ovarian cancer, since it activates JAG1/Notch1
signaling [311]. Recently, meta-analysis of the transcriptome
of high-grade serous ovarian carcinoma (HGSOC) has
revealed that let-7b, as a weak prognostic marker, helps
predict molecular and clinical classes of HG-SOC [312].

Studies have reported that miR-200 affects interleukin-8
(IL-8) and CXCL1 in epithelial cancer cells, thereby
inhibiting angiogenesis, demonstrating the therapeutic role
of miR-200 in ovarian cancer treatment [313]. It is also
found that loss of miR-31 results in TP53 pathway defi-
ciency, highlighting the potential therapeutic benefits of this
miRNA in patients with TP53 deficient activity [124, 262].
Taken together, since a variety of human cancer cells, in-
cluding ovarian cancer cells, have been shown to have al-
tered expression of different miRNAs, the development of a
targeted therapeutic agent that would suppress or provoke
oncogenic/tumor suppressor miRNAs would be a promising
antitumor therapy against cancer.

7. Conclusions

Regardless of the advancements achieved for prognosis,
diagnosis, and monitoring of ovarian cancer, most of the
patients succumb to this devastating malignancy, mostly
because of the late-stage diagnosis and recurrent disease.
*erefore, the need for identifying reliable markers for early
detection and EOC patients monitoring, which are both
sensitive and specific, remains a long-awaited priority. EOC
management could be well supported by the application of
the biomarkers for discriminating malignant tumors from
benign pelvic masses, early diagnosis, estimating prognosis,
monitoring the treatment efficacy, and predicting response
to individual drugs. Current screening and monitoring in-
dicators for ovarian cancer do not meet the requirements for
fulfilling cancer diagnosis, tumor subtype classification,
chemoresistance monitoring, and outcome prognosis. For
instance, carcinoembryonic antigen (CEA) is a broad-
spectrum biomarker for diagnosis of various types of cancers
and lacks sensitivity. CA125, which is the most well-known
biomarker for EOC screening, lacks sensitivity, especially for
the diagnosis of early-stage patients and could not
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discriminate the malignant tumors from benign pelvic cysts.
Human epididymis protein 4 (HE4), which is another
marker usually applied for EOC detection, lacks acceptable
specificity and could not monitor the tumor burden during
the treatment course.*erefore, incorporating other types of
biomarkers, either alone or in combination with the tra-
ditional biomarkers, may help ameliorate the diagnosis and
monitoring of the patients. Considering the miRNAs as
biomarkers for prognostication and screening of cancer
patients is promising, because they usually exhibit aberrant
expression under different pathological conditions, in-
cluding ovarian malignancy. miRNAs are involved in var-
ious cellular processes. *erefore, a plethora of these
markers are available, making it possible to trace any aspect
of cellular and molecular mechanisms involved in cancer
progression. In addition, miRNAs benefit from structural
stability, making them promising for being considered as
screening and monitoring biomarkers (Table 2). Further-
more, since each miRNA usually targets a vast number of
mRNAs, targeting or the delivery of miRNAs may be an
interesting approach for efficiently targeting ovarian cancer
cells. Further studies are, however, needed to suffice the role
of miRNAs as biomarkers in clinical settings for ovarian
cancer management.
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