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Abstract
Sun-induced chlorophyll fluorescence (SIF) measurements have shown unique potential for
quantifying plant physiological stress. However, recent investigations found canopy structure and
radiation largely control SIF, and physiological relevance of SIF remains yet to be fully understood.
This study aims to evaluate whether the SIF-derived physiological signal improves quantification of
crop responses to environmental stresses, by analyzing data at three different spatial scales within
the U.S. Corn Belt, i.e. experiment plot, field, and regional scales, where ground-based portable,
stationary and space-borne hyperspectral sensing systems are used, respectively. We found that,
when controlling for variations in incoming radiation and canopy structure, crop SIF signals can
be decomposed into non-physiological (i.e. canopy structure and radiation, 60%∼ 82%) and
physiological information (i.e. physiological SIF yield, ΦF, 17%∼ 31%), which confirms the
contribution of physiological variation to SIF. We further evaluated whether ΦF indicated plant
responses under high-temperature and high vapor pressure deficit (VPD) stresses. The plot-scale
data showed that ΦF responded to the proxy for physiological stress (partial correlation coefficient,
rp = 0.40, p < 0.001) while non-physiological signals of SIF did not respond (p > 0.1). The
field-scale ΦF data showed water deficit stress from the comparison between irrigated and rainfed
fields, and ΦF was positively correlated with canopy-scale stomatal conductance, a reliable
indicator of plant physiological condition (correlation coefficient r = 0.60 and 0.56 for an irrigated
and rainfed sites, respectively). The regional-scale data showed ΦF was more strongly correlated
spatially with air temperature and VPD (r = 0.23 and 0.39) than SIF (r = 0.11 and 0.34) for the
U.S. Corn Belt. The lines of evidence suggested that ΦF reflects crop physiological responses
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to environmental stresses with greater sensitivity to stress factors than SIF, and the stress
quantification capability of ΦF is spatially scalable. Utilizing ΦF for physiological investigations
will contribute to improve our understanding of vegetation responses to high-temperature and
high-VPD stresses.

1. Introduction

Crop remote sensing needs to quantify environ-
mental stress impacts on both canopy structure and
plant physiology to fully understand environmental
impacts on crop productivity and yield (Hatfield et al
2008, Guan et al 2017). Although remote sensing-
based monitoring has been effective in quantifying
crop responses to various environmental stresses, it
has been primarily focused on the structural variabil-
ity of crops and insufficient in quantifying physiolo-
gical stress impacts. Commonly used remote sensing-
based approaches are the estimation of leaf area
index (LAI) or canopy chlorophyll content, both of
which are an effective predictor of crop growth and
crop yield, and vegetation indices are developed and
tested to better estimate those variables (Viña et al
2011, Lobell et al 2015, Cai et al 2019, Kimm et al
2020b). However, existing approaches are unable to
quantify immediate non-structural stress impacts, i.e.
physiological down-regulation such as depressions in
instantaneous photosynthetic rate, reproductive, and
carbon-allocation processes (Erdle et al 2013,Hatfield
and Prueger 2015, Fleta-Soriano and Munné-Bosch
2016, Guan et al 2016, 2017). To understand envir-
onmental impacts on crops better, it is necessary to
make a distinction between structural and physiolo-
gical impacts and to quantify them separately.

Remote sensing-based quantification of plant
physiology has been relatively limited, but new
opportunities became available with the advances of
sun-induced chlorophyll fluorescence (SIF) measure-
ments. SIF has shown its potential for quantifying
plant physiological variability through higher accur-
acy and sensitivity in quantifying crop productiv-
ity or crop stress when compared to existing remote
sensing approaches (Sun et al 2015, Song et al 2018,
Li et al 2020a). A SIF signal includes information
on both plant physiological variation and canopy
structural variation. Structural information of SIF
has been relatively well understood. Initially, plant
canopy-absorbed radiation (absorbed photosynthet-
ically active radiation, APAR) was used to explain
SIF signals related to the canopy structural variab-
ility and incoming radiation (Miao et al 2020, Yang
et al 2018a). More recently, near-infrared reflectance
of vegetation (Badgley et al 2017, 2019) and near-
infrared radiance of vegetation (NIRvR) (Wu et al
2019, Baldocchi et al 2020) were found to better
account for structural- and radiation information,
and were used to address the dominance of such non-
physiological information in far-red SIF.

A physiological signal of SIF, however, has not
been fully recognized so far because of the dominant
contribution of canopy structural variation, a lack of
physiological stress, and a relatively large magnitude
of uncertainty in previous SIF datasets (Dechant et al
2020, 2022, Miao et al 2020). Following a recently
introduced framework of understanding SIF signal
(Dechant et al 2020), physiological information can
be better derived through normalization of SIF by
other components, i.e. incoming PAR, the fraction
of chlorophyll-absorbed PAR (fAPAR), and escaping
ratio (fesc) that describes the measured fraction of
SIF photons that escape a plant canopy (Zeng et al
2019). Estimated physiological information of SIF,
denoted as ΦF, has been found to be relatively con-
stant from continuous datasets (Dechant et al 2020,
Liu et al 2020), but only few studies focused on
such a physiological aspect of SIF. Considering the
mechanistic link between SIF and photochemistry
(Porcar-Castell et al 2014, van der Tol et al 2014), ΦF

may include useful physiological information, which
is yet to be found.

Recently, there are more opportunities available
for studying SIF-derived physiological information at
different scales and under different circumstances as
SIF data become available at various spatial scales
through different platforms. Commonly used SIF
platforms are ground-based (portable and station-
ary), air-borne, and space-borne sensing systems.
Datasets from different platforms are complement-
ary in observing spatiotemporal variation of SIF and
underscore different aspects of SIF in estimating plant
productivity or plant stress. A ground-based port-
able system usually collects data from experimental
plots with specific environmental controls and eval-
uates the capability of SIF in quantifying plant stress
responses (Helm et al 2020, Kimm et al 2021). A
ground-based stationary measurement collects con-
tinuous data that are often pairedwith othermeasure-
ments such as CO2, water, and energy fluxes from an
Eddy Covariance-based flux tower. The data usually
include a long-term record for biological and met-
eorological variables, which allow for in-depth eval-
uation of the observed SIF (Liu et al 2017, Miao et al
2018, 2020, Yang et al 2018a, Li et al 2020b). Airborne
and space-borne measurements most efficiently col-
lect data from large areas. These datasets quantify spa-
tial variation over large areas, and findings from such
data are spatially representative (Sun et al 2015, Guan
et al 2016, Song et al 2018, Li et al 2020a). Given the
complementing characteristics of different SIF data-
sets, to include multi-scale and multi-platform data
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is critical for achieving a thorough understanding of
SIF.

This study focused on the U.S. Corn Belt where
one-third of the global corn and soybean supply
is produced, and we investigated non-physiological
and physiological information contained in far-red
SIF (SIF indicates far-red SIF throughout the manu-
script) responding to the major crop stress factors,
high temperature and high vapor pressure deficit
(VPD). Specifically, we derived non-physiological
and physiological information of SIF from three dif-
ferent spectral datasets based on different platforms
at different scales and analyzed the derived physiolo-
gical SIF yield (ΦF) to evaluate relative advantages of
ΦF signals in understanding crop response to envir-
onmental stresses. To obtain a comprehensive under-
standing, we used three datasets that include dif-
ferent sources of physiological variability, heating
treatment effect, controlled water management, and
a large natural gradient of temperature and VPD.
The overarching question of this study is: Whether
SIF-derived physiological signals help us understand
and quantify the physiological impacts of high-
temperature and high-VPD stresses in the U.S. Corn
Belt. Specific questions are: (a) what is the relative
importance of the non-physiological signal vs. plant
physiological signal in SIF variability under different
environmental variabilities? (b) Do the SIF-derived
physiological signals indicate plant responses to high-
temperature and high-VPD stress and contribute to
quantifying physiological stress impacts? If so, towhat
extent? This study will address the potential improve-
ment of crop monitoring by disaggregating SIF sig-
nals into non-physiological and physiological signals
and by evaluating the derived physiological signals.
Explicit consideration of physiological responses of
crops will allow for comprehensive assessment and
understanding of crop growth and its interactionwith
the surrounding environment.

2. Materials andmethods

2.1. Data
Data was collected from three platforms at different
temporal and spatial scales (table 1). The plot-scale
dataset was collected by a ground-based portable sys-
tem in a warming experiment for soybean (Kimm
et al 2021). The field-scale dataset was collected by
ground-based stationary systems at adjacent irrig-
ated and rainfed corn-soybean rotation fields. The
regional-scale dataset was collected by MODIS and
TROPOMI space-borne platforms covering the U.S.
Corn Belt.

2.1.1. Plot-scale data
The warming experiment was conducted in 2019 at
the SoyFACE facility located in Champaign, Illinois
(40◦02′30.5′′ N 88◦13′58.8′′ W). The experiment
included an ambient level and four treatment levels

of canopy temperature (+1.5 ◦C, +3.0 ◦C, +4.5 ◦C,
and +6.0 ◦C) with two replicates. Infrared heaters
were used to warm the canopy temperature to a set
point and to achieve specific increments compared
to the ambient plot. Real-time canopy temperature
measurements were made using a thermal infrared
radiometer in each plot. Further details can be found
in (Kimm et al 2021). Spectral measurements were
made using a portable system prepared for rapid data
collection over the 12 plots (an ambient plot per two
treatment plots where the total 8 treatment plots were
designed with 4 levels of treatment and 2 replicates).
The system included a low spectral resolution, wide
spectral range spectrometer and a high spectral resol-
ution (0.15 nm full width at half maximum, i.e., full
width at half maximum (FWHM), and spectral range
from 630 to 800 nm), narrow spectral range spectro-
meter (1.10 nm FWHM and spectral range from 350
to 1100 nm) to collect spectral reflectance for visible
and near-infrared waveband and SIF retrieval.

2.1.2. Field-scale data
The stationary observation sites of this study are
two corn-soybean rotation fields in Saunders, NE
(41◦10′46.8′′ N 96◦26′22.7′′ W and 41◦09′53.5′′ N
96◦28′12.4′′ W). A combined spectral measurement
system, the Fluospec2 system, was deployed at the
two sites on a 5 m height scaffold (Miao et al 2018,
Yang et al 2018b). Similar to plot-scale data collection,
Fluospec2 included two spectrometers with different
specifications, and collected spectral data at two dif-
ferent spectral range and resolution (See Miao et al
(2018) for the instrumentation details, and see Miao
et al (2020) for the data collection details). The data
were collected in 2017 and 2018, but 2018 was an
abnormally wet year (no water deficit stress) and thus
was out of the scope of this study. The spectral meas-
urements were collected next to eddy covariance flux
towers registered at AmeriFlux network (site IDs are
US-Ne2 and US-Ne3, https://ameriflux.lbl.gov/), and
we also used water flux and meteorology data from
these flux towers for part of our analysis.

2.1.3. Regional-scale data
We used SIF retrieval from TROPOMI data (Köhler
et al 2018), surface reflectance for red and near-
infrared waveband of MODIS, and incident photo-
synthetically active radiation (PAR) derived by apply-
ing machine learning methods to MODIS land and
atmospheric products (Jiang et al 2020a). Addition-
ally, we used daily maximum temperature and daily
maximum VPD of PRISM climate data (https://
prism.oregonstate.edu/) to analyze a relationship
between climatic variables and SIF signals, crop data
layer (CDL) from National Agricultural Statistics
Service of United States Department of Agriculture
(USDA) to focus on croplands, and irrigation map
data to confirm the scope to the rainfed areas.
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Table 1. Description of the datasets used in this study.

Platform Target Stress
Spatial scale
(footprint)

Temporal
scale Reference

Ground-based
portable system

Warming
experiment plots

Temperature <1 m radius Daily
(discrete)

Kimm et al
(2021)

Ground-based
stationary systems

Irrigated vs rainfed
crop fields

VPD <5 m radius Half-hourly
(continuous)

Miao et al
(2020)

Space-borne
system

U.S. Corn Belt Temperature
and VPD

0.05◦ × 0.05◦ Daily
(continuous)

Köhler et al
(2018)

Daily frequency TROPOMI SIF data were collec-
ted with a footprint scale of 3.5 km by 7 km at nadir
view (Köhler et al 2018) and were resampled at 0.05◦

resolution for comparisons with gridded datasets,
and cloudy pixels were excluded from the analysis.
TROPOMI SIF retrieval algorithm was thoroughly
tested in an earlier study (Köhler et al 2018), and the
quantified retrieval model error was <1% of meas-
ured radiance (∼200mWm−2 sr−1 nm−1) but could
be more than 20% for the retrieved SIF due to its
small magnitude (∼3 mWm−2 sr−1 nm−1). To min-
imize the uncertainty for SIF as well asΦF calculation
(see section 2.2 for ΦF derivation), the data at 0.05◦

were aggregated at 0.25◦ of spatial resolution. For
consistency with the SIF data, daily 250 m-resolution
MODIS surface reflectance and 1 km-resolution PAR
data were prepared in the same way. These MODIS
data were first aggregated within each footprint of SIF
data and then resampled at 0.05◦ grid. In this study,
we only assessed corn and soybean that are the most
common commodities in theU.S. Corn Belt by select-
ing only the pixels with greater than 60% of the com-
bined fraction of corn and soybean based on CDL
land cover type data. The land cover data were also
similarly prepared as SIF data by calculating the frac-
tion of corn and soybean at each pixel of the aggreg-
ated 0.05◦ grid. To minimize the potential impact
of irrigation in evaluating climatic impacts on crops,
irrigated areas were excluded from the analysis (the
fraction of irrigated area >10%) based on the irriga-
tion map data from Xie et al (2019).

2.2. SIF disaggregation
We applied an advanced framework for interpreting a
SIF signal (Dechant et al 2020, Zeng et al 2020), which
disaggregates it into non-physiological and physiolo-
gical signals. Following thorough testing based on
simulations, we used either NIRvP or soil-adjusted
NIRvP (SANIRvP) as a proxy for non-physiological
(i.e. canopy structure and radiation) signals included
in SIF, and they are obtained as follows:

NDVI= (ρNIR − ρRed)/(ρNIR + ρRed) (1)

NIRv= ρNIR ·NDVI (2)

NIRvP=NIRv ·PAR (3)

SANIRvP=NIRvmax ·
NIRv−NIRvmin

NIRvmax −NIRvmin
·PAR

(4)

where NIRv is an approximation of near-infrared
reflectance of vegetation, PAR is incident photosyn-
thetically active radiation, and NIRvmax and NIR-
vmin are long-term maximum and minimum of
NIRv. SANIRvP accounts for soil impact through
normalizing NIRv as shown in equation (4), but
as it requires long-term records for the reliable
consideration of soil impact, it was only used for
satellite datasets. Proximal remote sensing-derived
NIRvP and satellite-based SANIRvP used different
PAR units. NIRvP used instantaneous photon flux
density (µmol photon m−2 s−1) whereas SANIRvP
used daily radiation energy flux (MJ m−2 d−1) (Jiang
et al 2020a). We then derived ΦF using (SA)NIRvP
following the below calculations:

SIF= PAR× fAPARchl × fesc ×ΦF (5)

fesc =NIRv/fAPARchl
(6)

ΦF = SIF/NIRvP. (7)

The derivation of ΦF is based on the consideration of
non-physiological impacts on the canopy-scale obser-
vation of SIF that involves multiple factors, i.e. incid-
ent radiation, leaf-to-canopy scaling parameters such
as LAI and leaf angle distribution. As (SA)NIRvP
accounts for the photosystem-to-canopy scaling, the
ratio of SIF to (SA)NIRvP allows for estimating
photosystem-scale fluorescence yield, which is linked
to photochemical yield and stomatal conductance
(equations (3), (5)–(7)) (Zeng et al 2020).
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Table 2. Description of data preprocessing.

Target Spatial scale Temporal scale Time of day Time of year

Warming
experiment plots

<1 m radius Daily (discrete) 10 AM–3 PM 20 July–15 September
→ 20 July–4 September

Irrigated vs rainfed
crop fields

<5 m radius Half-hourly
(continuous)
→ Daily

9 AM–6 PM
→ 10 AM–2 PM

May–October
→ July–August

U.S. Corn Belt 0.25◦ × 0.25◦ Daily
(continuous)

10 AM–2 PM January–December
→ Peak three week period

2.3. Data analysis
2.3.1. Data preprocessing
We preprocessed the data for our analyses to reduce
variations of incoming radiation and canopy struc-
ture, which are non-physiological and directly asso-
ciated with SIF, and to focus on the impacts of high
temperature and high VPD on crop physiology. For
the two ground-based sensing datasets, time of day
and time of year are restricted to peak radiation hours
and peak growth season. Particularly for the field-
scale data, time of day was set corresponding to the
overpass time of TROPOMI data, and the spectral
data were aggregated at the daily timescale (table 2).
For the TROPOMI data, we only selected the data
from a three week period of the highest NIRv on
a pixel basis in each year to minimize the pixel-
to-pixel difference caused by different phenological
stages and to focus on crop responses in their peak
growth period. We obtained the three week period
mean values and analyzed spatial patterns.

2.3.2. Relative importance analysis
To quantify relative importance, we calculated the
relative sum of squares from analysis of variance
(ANOVA), i.e. a sum of square for each term (SSNIRvP,
SSSANIRvP or SSΦF) divided by the total sum of square
(SSTotal). The ANOVA was conducted to the below
regression model:

SIF= c1 + c2 ·NIRvP+ c3 ·φF (8)

where c1, c2, and c3 are regression coefficients. To keep
the consistency of our analysis across different data-
sets, we focused on temporal variability rather than
spatial variability. ANOVA was conducted for each
plot, each site, and each pixel, respectively, and then
we averaged the quantified relative importance across
different plots, sites, and pixels and obtained a 95%
confidence interval from their variability (figures 2(a)
and (c)).

2.3.3. Plot-scale data
We used simple linear regression and partial correla-
tion analysis to evaluate to what extent NIRvP andΦF

were associated with non-physiological and physiolo-
gical stress. We used green chlorophyll vegetation
index (GCVI), which is developed for estimating leaf-
and canopy-scale chlorophyll content (Gitelson et al
2005), as a proxy for canopy structure. Since the
plot-scale data included a manipulated gradient of
canopy temperature, we approximated physiological
stress by using canopy temperature. Considering the
continuity of the warming treatments, structural and
physiological impacts were presumed to be collinear.
To account for the collinearity between variables, we
used partial correlation analysis including GCVI and
canopy temperature as an explanatory variable. For
correlation analysis and partial correlation analysis,
we reported Pearson’s correlation coefficient (r and
rp, respectively).

2.3.4. Field-scale data
We first compared SIF, NIRvP, and ΦF between the
irrigated and rainfed fields and used t-test for sig-
nificance test. Then further investigated whether the
observed ΦF difference indicates plant physiological
difference by testing its relation with canopy sto-
matal conductance (Gs). Gs is regarded as a proxy
for plant physiological responses, especially under
water-deficit stress (Kimm et al 2020a, Zhang et al
2021) and was obtained by applying the inverted
Penman-Monteith equation to the estimated evapo-
transpiration from Ameriflux tower data (US-Ne1
and US-Ne2, Ameriflux network), which includes
minimal surface evaporation impact by removing
data possibly affected by precipitation or leaf-surface
dew formation. Further details can be found in Kimm
et al (2020a).

2.3.5. Regional-scale data
We evaluated whether ΦF potentially contributed
to improving our capability of quantifying plant
response to high-temperature and high-VPD stresses
by analyzing the satellite data along with PRISM cli-
mate data. Here we used mean values of the selec-
ted three week period, which was the peak season, i.e.
the highest mean SANIRv on a pixel basis, to minim-
ize the phenological variability across pixels. We used
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Figure 1. Comparisons between SIF and NIRvP (or SANIRvP) for all the available data in each of the three datasets (i.e. the entire
spatiotemporal variation). (a) Plot-scale data, (b) field-scale data, and (c) regional-scale data. The magnitude of NIRvP and
SANIRvP differed because NIRvP used instantaneous photon flux density (µmol photon m−2 s−1) whereas SANIRvP used daily
radiation energy flux (MJ m−2 d−1) for PAR. A density plot was used for (c) because of the extensive number of data points.

the Pearson correlation analysis to evaluate how crops
in the U.S. Corn Belt responded to the variability of
air temperature and VPD through the three variables,
SIF, SANIRvP, and ΦF.

3. Results

3.1. Relative importance of the disaggregated
signals of SIF
We first evaluated the importance of the non-
physiological information for the spatiotemporal
variation of all the available SIF data in each dataset.
The determination coefficient (R2) of the relationship
between SIF and (SA)NIRvP was >0.82 in the three
datasets (figure 1). Less than 20% of the SIF vari-
ation was potentially attributable to plant physiolo-
gical information. Considering the uncertainty of the
measurements and SIF retrieval, this value maybe
even less than 10%. To quantify and evaluate clearer
physiological signals from SIF, we controlled tem-
poral variations in radiation and seasonality of can-
opy development. Before and after the preprocessing,
we disaggregated SIF into (SA)NIRv and ΦF that
represent a non-physiological and physiological sig-
nal, respectively, and quantified the relative import-
ance of each component from the three datasets
(figure 2). Although (SA)NIRvP explained themajor-
ity of SIF variability in both cases, our relative import-
ance results showed that a physiological signal of
SIF occupied a significant portion of SIF variab-
ility after the preprocessing and indicated poten-
tial applications of SIF-derived physiological signals.
With all data included, the relative importance of
(SA)NIRvP explained 64%–91% of SIF variability,
and ΦF explained 0%–20% (5%, 20%, and 0% for
the plot-scale, field-scale, and regional-scale data-
sets, respectively, figure 2). After preprocessing the
data, (SA)NIRvP explained less (60%–82%) and ΦF

explained more of SIF variation (28%, 31%, and
17%, respectively for the plot-scale, field-scale, and
regional-scale dataset). In both cases, the plot-scale
and field-scale datasets showed greater importance of
ΦF than the satellite dataset.

3.2. SIF-derived physiological signals for
understanding plant responses to high-VPD and
high-temperature stresses
For each of the three different datasets, we tested
whether (if so, to what extent) the SIF-derived
physiological signals indicate physiological stress to
high-temperature andwater deficit stress. First, linear
regression analysis of the plot-scale dataset showed
that both NIRvP and ΦF were significantly correlated
withGCVI and canopy temperature (Tc), andNIRvP-
GCVI andΦF-Tc showed the greatest association sug-
gesting that NIRvP andΦF contained information on
non-physiological variation and physiological stress,
respectively (correlation coefficient for NIRvP-GCVI:
0.47, NIRvP-Tc: −0.28, ΦF-GCVI: 0.35, and ΦF-Tc:
−0.50, p < 0.001 for all cases) (figures 3(a)–(d)). In
partial correlation analysis, including GCVI and can-
opy temperature as an explanatory variable, collinear-
ity between the two variables was accounted for, and
we evaluated more strictly whether ΦF were indicat-
ive of physiological stress. We found from the par-
tial correlation results that the SIF-GCVI correlation
was largely attributed to NIRvP (partial correlation rp
for NIRvP-GCVI: 0.4, p < 0.001, and for ΦF-GCVI:
0.16, p>0.01), while the SIF-canopy temperature cor-
relation was entirely attributed to ΦF (rp for ΦF-Tc:
−0.4, p < 0.001, and for NIRvP-Tc: not significant,
p> 0.1), which showed even greater sensitivity to can-
opy temperature than SIF (rp = −0.28, p < 0.001)
(figure 3(e)).

Second, the field-scale data included different
water-deficit levels by different management prac-
tices (i.e. irrigation or rainfed). We first compared
SIF, NIRvP, and ΦF between the two fields and
found a statistically significant difference only in ΦF

(p < 0.001), which showed an 18% relative differ-
ence (two sites’ difference normalized by the value of
the irrigated site) (figure 4(a)). The smaller ΦF in the
rainfed site suggested water deficit stress of the crops,
and the lack of SIF difference indicates that ΦF could
have a better ability to detect stress than SIF. Further,
both Gs and ΦF showed smaller values in the rain-
fed site, which supported stronger stomatal regula-
tion and photosynthetic depression caused by water
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Figure 2. The relative importance of NIRvP (or SANIRvP) andΦF in explaining the spatiotemporal variation of SIF from the
plot-scale data (a), field-scale data (b), and regional-scale data (c) before and after the data preprocessing. SSfactor and SStotal are
sum of square values from ANOVA.

Figure 3. Left side plots show a scatter plot with a linear regression line for one-to-one relationships forΦF and GCVI (a),ΦF and
Tc (b), NIRvP and GCVI (c), and NIRvP and Tc (d). The right-hand side plot shows partial correlation analysis result for SIF,
NIRvP, and ΦF explained by GCVI and canopy temperature (Tc) with the consideration of collinearity (e).

Figure 4. (a) Difference of SIF, NIRvP, andΦF between the irrigated and rainfed sites.ΦF was compared to canopy scale stomatal
conductance (Gs) to evaluate its link to plant physiology in both irrigated and rainfed sites (b).

deficit. The comparison between Gs and ΦF showed
a positive linear relationship only in the rainfed site
(figure 4(b)). The discovered positive linear relation-
ship between Gs and ΦF indicated that the observed

ΦF difference resulted from the physiological stress by
water deficit in the rainfed site.

Third, we analyzed the regional-scale data,
i.e. TROPOMI SIF, MODIS-based SANIRvP, and
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Figure 5. (a) Maps of SIF, (b) SANIRvP, (c)ΦF in 2018, (d) VPD, and (e) air temperature. (f) Relationship of SIF, SANIRvP, and
ΦF with air temperature and VPD during the peak growth period in 2018 (correlations are significant at p < 0.05).

SIF-derivedΦF. All three variables negatively respon-
ded to VPD, and ΦF showed a greater response
to VPD than SANIRvP and SIF (figure 5(d)). For
air temperature, the three variables showed a sim-
ilar pattern with weaker responses than to VPD
(figure 5(d)). Only SIF and ΦF showed a negative
response to air temperature, and again, ΦF showed
greater sensitivity than SIF. Considering the find-
ings of the two ground-based sensing datasets, the

relationship of satellite-derived ΦF with air temper-
ature and VPD suggested that ΦF variation could
be indicative of plant physiological responses. The
correlation between SIF and environmental vari-
ables showed that SIF may capture plant responses in
terms of both canopy structure and plant physiology,
but ΦF separately quantified physiological signals
and showed its strength for stress detection through
greater sensitivity than SIF.
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4. Discussion

4.1. Plant physiological signals,ΦF, explained a
significant portion of SIF variability under
different environmental conditions
We first showed a high correlation between SIF and
(SA)NIRvP (figure 1), which is consistent with the
dominant role of structural information in explain-
ing SIF from previous studies, e.g. SIF was highly cor-
related with APAR (Miao et al 2018, 2020, Yang et al,
2018a) andNIRvP (Baldocchi et al 2020,Dechant et al
2020). The agreement between SIF and NIRvP was
predictable considering the pronounced importance
of diurnal and seasonal variation of radiation and sea-
sonality of canopy development in SIF. The relative
importance of (SA)NIRvP andΦF in this study, how-
ever, further showed that data preprocessing that con-
trolled temporal variation in radiation and canopy
structure amplifiedΦF signals and allowed for invest-
igating ΦF and plant physiological responses. With
all data included, the relative importance of ΦF was
no greater than 20% (5%, 20%, and 0% for the plot-
scale, field-scale, and regional-scale datasets, respect-
ively). The highest importance found in the field-
scale dataset could be due to the water deficit-induced
physiological variability. Meanwhile, the plot-scale
dataset showed smaller importance of ΦF although
it also included a large physiological variability due
to the warming treatments. The different results of
the plot-scale and field-scale datasets might be the
coupling of NIRvP and ΦF. In the plot-scale data-
set, the continuity of the warming treatments affected
both canopy structure and plant physiology whereas
the field-scale dataset showed decoupling of NIRvP
and ΦF (figure 4(a)). After the data preprocessing,
the importance of ΦF increased to 17%–31% in the
three datasets (figure 2). Specifically, the importance
of ΦF was greater in the plot-scale and the field-scale
datasets than the regional-scale dataset (28%, 31%,
and 17%, respectively for the plot-scale, field-scale,
and regional-scale dataset). A probable reason is stress
factors included in the two ground-based datasets (i.e.
high-temperature stress and water deficit stress in the
plot-scale and field-scale data, respectively).

4.2. SIF-derived physiological signals indicate and
quantify plant physiological impacts of
high-temperature and high-VPD stress
We found from the three datasets that the quanti-
fied ΦF contribution to the SIF variation after the
data preprocessing was relevant to plant physiolo-
gical responses. Chlorophyll fluorescence measure-
ments including SIF have long been used to test high-
temperature and water stress impacts at the canopy
scale (Ač et al 2015). However, SIF-derived ΦF has
been only recently evaluated, and in the majority of
the previous canopy-scale studies, a lack of expli-
cit consideration of canopy structural impact might

have influenced the interpretations of SIF or SIF yield
(i.e. SIF divided by APAR). The data of this study
showed that SIF-derived ΦF allowed for quantify-
ing plant physiological variation and contributed to
quantifying plant physiological responses under stress
conditions.

Our plot-scale data from the canopy warming
experiment revealed that NIRvP indicated a non-
physiological impact, and SIF-derived ΦF was indic-
ative of physiological stress with even greater sensit-
ivity than SIF (figure 5(a)), which is consistent with
our expectations based on the theory behind the ΦF

derivation. Meanwhile, the field-scale data showed a
positive linear relationship betweenGs andΦF, which
is consistent with a leaf-level finding (Flexas et al
2002). Even the irrigated site also showed positive lin-
earity between Gs and ΦF, which suggests not only
soil moisture but also VPD regulated crop physiology
(Kimm et al 2020a). A recent study, on the other
hand, reported asymmetry between ΦF and Gs (and
photochemical quantum yield, ΦP) responses, which
disagrees with our finding (Magney et al 2020, Marrs
et al 2020). However, the asymmetry was found under
artificial treatments, i.e. abscisic acid application and
pressure cuff-induced xylemembolism,while our res-
ult was based on less artificial abiotic stress impacts,
and target plants’ stress coping mechanism might
have differed under artificial treatments.

The relationship between Gs and ΦF of our ana-
lysis suggests that ΦF is indicative of plant physiolo-
gical responses because, under the water deficit con-
ditions of our measurements, Gs behavior suggests
physiological stress and further, Gs could be mech-
anistically connected and synchronized with ΦP.
The relation between ΦP and Gs might be partially
explained by mechanisms related to photosynthetic
processes. First, there have been investigations on
the direct connection between stomatal behavior and
photosynthetic electron transfer chain (Sharkey and
Raschke 1981, Messinger et al 2006, Busch 2014,
Głowacka et al 2018). The connection between the
two components has not been fully understood, but
changes in light, i.e. different spectral intensity or
modulations in photosystem II, were found to induce
stomatal behavioral changes suggesting a direct con-
nection. Second, optimality theory may explain the
link between stomatal behavior and light reaction.
Stomatal behavior was often understood from a per-
spective of optimization between carbon gain and
water loss (Katul et al 2012), and photosynthetic pro-
cesses were also seen from an optimality perspect-
ive utilizing the balance between rubisco carbon fixa-
tion and photosynthetic electron transfer rate (Jiang
et al 2020b). A rate of photosynthesis involves mul-
tiple processes including stomatal behavior, and to
optimize resource and energy use, plants are expec-
ted to balance between the processes resulting in the
linearity between Gs and ΦP.
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The SIF-derived ΦF application also showed the
potential with the satellite data analysis and sup-
ported the large-scale applicability of ΦF for SIF-
based physiological investigations. Existing studies
of satellite-based SIF have found that SIF showed
stronger and earlier plant responses to droughts and
heat stress than conventional vegetation indices (Sun
et al 2015, Song et al 2018, Li et al 2020a). However,
what the SIF responses actually suggested remained
unclear, e.g. how much of SIF responses were due
to the physiological responses or non-physiological
variability. Our analysis showed that SIF responses
to temperature and VPD were attributed more to ΦF

than SANIRvP, indicating physiological stress than
canopy structural depressions. Especially, temperat-
ure impact on SIF was largely attributed to ΦF while
almost no response was found in SANIRvP (figure
5(f)), andwe found greater sensitivity ofΦF to climate
variables than SIF. The aforementioned relationship
ofΦF with temperature andVPD showed that, despite
the large uncertainty, the derived ΦF suggested plant
physiological responses. Its sensitivity to climate vari-
ables indicates ΦF could be more useful than SIF in
detecting physiological stresses possibly becauseΦF is
unassociated with canopy structural variation, unlike
SIF.

4.3. Implications of usingΦF for ecosystem stress
detection
In this study, we quantified SIF-derived ΦF and
demonstrated its capability for physiological invest-
igations in crops. Our results addressed the unique
contribution of SIF to remote sensing of crops and
showed the potential of SIF for large-scale crop stress
quantification. Previous crop SIF studies, however,
reported that physiological signals may have a mar-
ginal contribution to SIF variations (Miao et al 2018,
Yang et al 2018a, Dechant et al 2020), and particu-
larly, studies that investigated SIF-derived ΦF found
the physiological signal relatively constant through-
out their datasets (Dechant et al 2020, Liu et al
2020). We speculate that the different findings about
ΦF were due to two major aspects, i.e. if physiolo-
gical stresses existed and how tightly physiological
stress was coupled with canopy structural variation.
First, crop physiological stress tends to be well
managed through agricultural management practices
such as irrigation and fertilization application (Peng
et al 2020), and previous crop SIF studies observed
crops without stress, and therefore, observed no
clear signals of physiological variation. This study,
on the other hand, included data of crops with
and without high-temperature or high-VPD condi-
tions, and by comparing their difference, we captured
strong physiological down-regulation of crop pro-
ductivity. Second, crop physiological status is largely
coupled with canopy structure, and crop productivity
largely depends on canopy structure (Wu et al 2019,
Liu et al 2020). The opposite case, for example, is

evergreen ecosystems where canopy structural vari-
ation and physiological status are largely decoupled
and SIF can quantify physiological variations better
than in other ecosystems (Walther et al 2016, Magney
et al 2019, Kim et al 2021). In this study, we processed
the data constraining variations in radiation and can-
opy structure to decouple structure and physiology,
which allowed the extraction of signals that are related
to physiological variations.

5. Conclusion

In this study, we quantified the SIF-derived physiolo-
gical signal, ΦF, and investigated whether ΦF sig-
nal quantifies crop physiological responses and
contributes to understanding crop responses to envir-
onmental stresses. We analyzed three SIF datasets
at different spatial scales and platforms, and disag-
gregation of SIF showed that ∼31% of SIF variation
was attributable to ΦF, which was theoretically rel-
evant to plant physiological responses. We further
analyzed and demonstrated that ΦF signals sugges-
ted crop physiological responses to high-temperature
and water deficit stresses with greater sensitivity to
plant responses compared to SIF. The findings were
from plot-scale, field-scale, and regional-scale data-
sets and showed the scalability of ΦF application for
physiological investigations. This study highlights
the unique contribution of SIF to remote sensing of
vegetation physiology by utilizingΦF and emphasizes
the potential ofΦF in understanding plant physiology
responses to different environmental conditions as
well as the stress-coping mechanisms of plants.
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