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Abstract
Tuning surface emissivity has been of great interest in thermal radiation appli-
cations, such as thermophotovoltaics and passive radiative cooling. As a low-
cost and scalable technique for manufacturing surfaces with desired emissivi-
ties, femtosecond laser surface processing (FLSP) has recently drawn enormous 
attention. Despite the versatility offered by FLSP, there is a knowledge gap in 
accurately predicting the outcome emissivity prior to fabrication. In this work, 
we demonstrate the immense advantage of employing artificial intelligence (AI) 
techniques to predict the emissivity of complex surfaces. For this aim, we used 
FLSP to fabricate 116 different aluminum samples. A comprehensive dataset 
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was established by collecting surface characteristics, laser operating parame-
ters, and the measured emissivities for all samples. We demonstrate the suc-
cessful application of AI in two distinct scenarios: (1) effective emissivity clas-
sification solely based on 3D surface morphology images, and (2) emissivity 
prediction based on surface characteristics and FLSP parameters. These find-
ings open new pathways towards extended implementation of AI to predict 
various surface properties in functionalized samples or extract the required 
fabrication parameters via reverse engineering.  

Keywords: Emissivity, Functionalized surfaces, Artificial intelligence, Thermal 
radiation, Femtosecond laser surface processing 

1. Introduction 

Altering the emissivity of real surfaces is of great interest in many en-
gineering applications, such as thermal protection systems for aero-
space vehicles [1–3], passive radiative cooling [4, 5], thermophotovol-
taics (TPVs) [6, 7], and thermal management systems [8 , 9]. Several 
methods have been suggested in the literature to modify a surface’s ra-
diative response, including applying coatings and paints on the surface, 
fabricating metamaterials, or functionalizing surfaces. 

Coatings and paints can modify the electrical and optical properties 
of a material by introducing impurities in the form of nanocomposites, 
metallic powders, or polymers to a surface [10]. Their ease of implemen-
tation on large or curved surfaces has given rise to their applications in 
TPV emitters [11], radiation pyrometry [12 , 13], heating and cooling 
[14 , 15], and thermal imaging [16 , 17]. However, being susceptible to 
lamination and wear due to variations in environmental conditions lim-
its their applications. In a different approach, the fabrication of meta-
materials has been pursued to obtain surfaces with desired spectral and 
directional emissivity [18–20]. Metamaterials can exhibit wavelength-
selective properties by carefully fabricating subwavelength nanostruc-
tures on the surface that can enhance [21] or lower [22] the emissive 
power. However, their tailored response is often limited to a narrow 
spectral band and requires costly microfabrication processes. An alter-
native way to tune the emissivity of larger surfaces can be achieved via 
surface functionalization, which is a process that involves the combi-
nation of physical (e.g., texturing/patterning) and chemical modifica-
tion of surfaces [23]. One way to produce functionalized surfaces is by 
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using femtosecond laser surface processing (FLSP), a unique process to 
directly modify the surface morphology of almost any material, thus al-
tering their broadband absorption or emission response [24–26]. In ad-
dition to their simple fabrication process, FLSP surfaces show remark-
ably wider bandwidth response, and great permanency and durability 
even in extreme environments [27]. 

Despite the tremendous technological advancements in fabrication pro-
cesses of engineered surfaces, there still remains a significant challenge in 
accurately predicting the outcome of these processes. An accurate predic-
tion of the emissivity from the envisioned engineered surfaces can signif-
icantly cut the time and labor cost of the required fabrication processes. 
In principle, this would be feasible by understanding how various surface 
patterns and microstructures affect the interaction of electromagnetic 
waves with the surface. However, trying to correlate the geometrical at-
tributes of the quasiperiodic surface structures to the measured emissiv-
ity via physics-based or model-driven approaches can be a cumbersome 
task due to the multifaceted nature of the problem. In such complex prob-
lems, artificial intelligence (AI) techniques can be employed to act as facil-
itators to find the linkage between the inputs (e.g., laser parameters and 
surface characteristics) and the outputs (i.e., emissivity). 

Recently, AI-based data-driven models of physical processes in vari-
ous fields have demonstrated great potential to accurately predict phys-
ical properties [28–31]. For example, Kang et al. [32] used machine-
learning methods to predict radiative properties of dispersed media as 
a function of packed bed geometry and material properties. In another 
study, Mishra et al. [33] implemented a special data-driven algorithm 
based on physics-informed neural networks (PINNs) [34] to simulate 
radiative transfer. Their model demonstrated remarkable performance 
in accurately finding an unknown absorption coefficient from measure-
ments of incident radiation. Borjali et al. [35] developed a data-driven 
model for predicting the wear rate of orthopedic polyethylene as a func-
tion of the wear experiment’s parameters such as velocity and contact 
area. In a different application, Xiong et al. [36] developed an AI predic-
tive model to understand the effect of alloy composition on the shear and 
bulk modulus of new bulk metallic glasses (BMGs). In an effort to predict 
the surface roughness of additively manufactured Ti-6Al-4V, Akhil et al. 
[37] developed a predictive model by using AI to extract texture param-
eters from scanning electron microscopy (SEM) images. 
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Besides the massive advantage in developing predictive data-driven 
models, AI techniques can also be implemented for inverse design and 
optimization problems. For instance, in nanophotonics, AI is used to 
optimize photonic structures’ subwavelength geometrical features and 
their optical response [38]. Peurifoy et al. [39] used deep neural net-
works (DNNs) first to predict the light scattering of a multilayered core-
shell nanoparticle. Once trained, the DNN was used to optimize the to-
tal number of layers and their thicknesses required to achieve a desired 
optical response. Similarly, So et al. [40] used a special DNN architec-
ture to simultaneously design and output the optimal material and layer 
thickness of spherical three-layered nanoparticles based on a set of de-
sired electric and magnetic dipole resonances as the input. In another 
application, Liu et al. [41] implemented an ensemble of convolutional 
neural networks (CNNs) to generate optimal surface patterns for struc-
tured metasurfaces, where the input to the network was a desired spec-
tral transmittance distribution. Lastly, Garcia et al. [42] demonstrated 
how deep-learning techniques could be implemented for the modeling 
and inverse design of radiative heat transfer phenomena in various sys-
tems, including hyperbolic metamaterials, passive radiative cooling in 
photonic-crystals, and emissive power of subwavelength objects. 

The aforementioned studies are just a handful of many diverse re-
search projects where the applications of AI have proven to be of signifi-
cant importance in the analysis of data, prediction of physical properties, 
and inverse design of physical phenomena. In this study, we demon-
strate how AI techniques can be employed to successfully predict the 
hemispherical emissivity of aluminum surfaces processed by FLSP. In 
the following sections, the sample fabrication, preparation, and charac-
terization processes will be discussed in detail, followed by the AI im-
plementation process and a discussion of the results. 

2. Sample Preparation and Fabrication via FLSP 

In this work, we employed FLSP manufacturing technique to directly 
modify the surface properties of bulk aluminum alloy 6061 samples in 
a well-controlled manner. FLSP can form quasi-periodic patterns of self-
organized microstructures. The geometrical structure of these perma-
nent surface features mostly resembles micro-/nano-scale mounds or 
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pyramids, coated by a thin layer of redeposited nanoparticles [27]. The 
surface chemistry and subsurface microstructure will also be altered by 
FLSP, leading to very unique surface properties for each sample [43]. By 
adjusting the processing parameters of FLSP, such as laser fluence (i.e., 
energy per surface area), laser pulse count, and the atmospheric envi-
ronment, one can directly control the resultant surface morphology and 
chemistry [44]. 

FLSP has many advantages over other surface functionalization meth-
ods: it results in a fully functionalized surface in a single processing step; 
it is a scalable process; it involves the creation of hierarchical micro-/
nano-scale surface features composed of the original material, making 
the surface highly permanent; it modifies the original surface without 
the net addition of mass; and, it results in a small heat affected zone, so 
the surface can be modified without altering the bulk properties of the 
materials [45]. More importantly, FLSP surfaces can produce omnidirec-
tional emissivity due to high absorption at large incident angles, which is 
very difficult to achieve via coatings, paints, or metamaterials [27 , 46]. 

Prior to performing FLSP, the samples were cleaned by wetting with 
ethanol and let dry to remove any contamination. Afterward, the sam-
ples were placed on a motorized stage within an open-air environment, 
where the surface processing occurs. A typical setup to apply FLSP is 
shown in Fig. 1, consisting of a femtosecond laser system, beam deliv-
ery and focusing optics, and a motorized 3D stage where the samples 
are placed. The laser used was a Coherent Inc. Astrella Ti:sapphire laser 
system that produces 6 mJ, 35 fs pulses at a 1 kHz repetition rate, with 
a central wavelength of 800 nm. The pulses were focused onto the sam-
ple surface using a 150 nm focal length plano-convex lens. The laser out-
put is quantified via two laser processing parameters: fluence ( Fp ) and 
pulse count ( Pc ). The fluence values given are the peak fluence, which is 
the fluence at the peak of the Gaussian distribution of the focused pulses. 
Fluence is the energy per unit area (J/cm2 ), and is defined as,

                                              Fp =
    2 P 

πω2R                                                                 (1) 

where P is the average power, ω is the 1/e2 beam radius, and R is the rep-
etition rate of the laser. In order to process an area larger than that of 
the beam, a raster scanning pattern is utilized. The laser is used to scan 
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a line in the x−direction, and then the motorized stage is stepped over 
in the y−direction. The step distance between line scans is referred to 
as the pitch, p. The pulse count considers the overlap in the pitch and 
scan directions to calculate the number of pulses incident at each point 
on the surface and is defined as, 

                                                       Pc =
 πRω2

 vp                                                             (2) 

where v is the stage velocity. Optimizing the fluence and pulse count is 
a crucial step in fabricating a desired surface as they dictate the shape 
and periodicity of the microstructures and the thickness of the oxide 
layer forming on the surface. 

In order to produce the 116 aluminum samples used for this study, the 
fluence was varied between 0.06 and 5.5 (J/cm2 ) and the pulse counts 
between 270 and 140 0 0. Fig. 2 shows surface SEM images of four of 
the aluminum samples after the FLSP is performed. From Fig. 2, the for-
mation of quasiperiodic self-organized microstructures can be observed. 
Note the different morphology of the micro-/nano-scale surface features 
that develop via FLSP for different fluence and pulse count values.   

Fig. 1. Schematic illustration of the femtosecond laser surface processing setup. The 
samples are mounted on 3-axis motorized stages that control the processing pattern 
of the laser. Since the beam diameter is small compared to the size of the processed 
area, a rastering pattern is used to effectively cover the surface. 
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3. Surface characterization and emissivity measurement 

In order to fully characterize the surface features of the FLSP samples, la-
ser scanning confocal microscopy (LSCM, Keyence VK-X200K) with 500 
nanometer z−axis resolution was used with a 50× objective to capture 
the 3D topography at three different areas of each sample. Three scan-
ning areas were chosen to account for the potential variations of the pat-
terns along the surface. The average height Rz and roughness Ra for each 
surface were extracted from LSCM images using the ISO 4287:1997 stan-
dard. Based on these measured properties, the average skewness and 
the average kurtosis were also calculated. Fig. 3 shows the comparison 
between the optical image and the laser scanning 3D height map of a 
functionalized sample captured with LSCM. Another essential piece of 
information that needs to be extracted from the height-filtered images 
is the density distribution (i.e., number of mounds per unit surface area) 
of the microstructures on each surface. To accomplish this, Fast Fourier 

Fig. 2. Surface SEM images of the aluminum samples with quasi-periodic microstruc-
tures produced by FLSP. The laser parameters of pulse count and fluence are shown 
on each image. The resultant measured hemispherical emissivities are (a) εh = 0.926, 
(b) εh = 0 . 865, (c) εh = 0 . 781, and (d) εh = 0 . 926.  
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Transform (FFT) was implemented using MATLAB to find the strongest 
or the most frequent pattern in the LSCM images. Using this image pro-
cessing technique, the dominant frequency in a 2D plane was found. 
However, in some images, a strong periodicity may be observed only in 
one direction. For such cases, the periodicity (or spacing) is usually as-
sumed to be equal in both directions. The density distribution can then 
be determined by knowing the periodicity of the patterns and the scale 
of each LSCM image. 

Now, to obtain the hemispherical emissivity of the samples in our 
study, first we measured the directional emissivity of the surfaces. To 
this aim, we utilized a FLIR A655sc thermal imaging camera with a spec-
tral range of 7.5−14 μm to measure the surface temperature at different 
angles from 0° to 85° with increments of 5°. As a standard step in ther-
mal imaging, a calibrated reference with a known emissivity is needed to 
accurately measure the emissivity of unknown specimens. In this work, 
black polyvinyl chloride electrical tape was used as the calibrated ref-
erence where its hemispherical, and directional emissivity were pre-
viously measured via Surface Optics SOC100 reflection-based instru-
ment. We placed the tape next to a sample and heat them uniformly to 
60 °C under the thermal camera. By adjusting the emissivity of the ther-
mal camera to that of the calibrated reference, we can verify once the 
tape’s temperature reaches 60 °C. Now, to extract the directional emis-
sivity of the sample, first we can find the rate of incident energy on the 
thermal camera to be, 
                                                                                                  14 μm

                          Ed = As cosθΔΩ ∫7.5 μm    [ελ(θ)Iλ,b + ρλ(θ)Iλ,bg]dλ

      = As cosθΔΩ Ii (θ)                                                                    (3) 

 Fig. 3. (Left) 3D LSCM image of the FLSP aluminum sample captured at 50× magni-
fication. (Right) 3D topographic map and height measurement of the same sample. 
This sample was produced with a pulse count of 490 and peak fluence of 2.01 J·cm−2 . 
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In the above equation, As is the sample’s pixel surface area, ΔΩ is the de-
tection solid angle, θ is the polar angle of the camera’s orientation, and 
ελ(θ) and ρλ(θ) are the spectral directional emissivity and reflectivity of 
the surface, respectively. As depicted, the radiation intensity incident on 
the camera consists of ελ(θ)Iλ,b which is due to the thermal emission from 
the surface, and ρλ(θ)Iλ,bg that represents the radiation from background 
reflected from the surface. By only considering the radiation inside the 
7.5−14 μm window and assuming similar spectral distributions for Iλ,b 

and Iλ,bg , we can simply replace the above integration with the total in-
cident intensity, Ii(θ), which then yields,  

                       Ii (θ) = ε (θ)Ib + ρ(θ)Ibg  

                                                      =
 ε(θ)σTs

4  + ρ(θ)σTbg
4      

           π                 π                                                                (4) 

where Ts is the sample’s surface temperature, Tbg is the background 
(room) temperature, and ρ(θ) = 1 − ε(θ) based on Kirchhoff’s law (i.e., 
ελ(θ) = αλ(θ)) where the spectral dependence within 7.5−14 μm is inher-
ently accounted for in the measurements from thermal camera. Now, by 
setting the emissivity of the thermal camera to one and focusing on the 
sample, a temperature Td will be read by the camera which yields, 

Ed  = As cosθΔΩ (σTd
4)

                                                                           π

By substituting Ii (θ) and Ed into Eq. (3) and some simplifications, we 
can obtain, 

Td
4

  = ε (θ) Ts
4

 + (1 – ε(θ))Tbg
4

                                        (5) 

where the only unknown is the directional emissivity of the sample, ε(θ). 
Further details of the emissivity measurement technique and verifica-
tion can be found in Reference [27]. 

It is noteworthy that the spectral dependence is not considered when 
approximating the hemispherical emissivity, since the thermal imag-
ing camera operates in the wavelength range of 7.5 to 14 μm. This, in 
effect, averages the measured emissivity with respect to the operating 
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wavelength. Since the measured directional emissivities are for discrete 
angles, a numerical integration must be employed to calculate the hemi-
spherical emissivity. For the approximation, the average between the 
rectangular and trapezoidal numerical integration was used. The differ-
ence between the approximate error of both methods yields the over-
all numerical uncertainty in calculating the hemispherical emissivity 
[27]. Fig. 4 shows the measured directional and hemispherical emissiv-
ity of four different samples. The results depict that the magnitudes of 
the peak fluence and pulse count play decisive roles in the outcome of 
the overall emissivity. This is expected since the oxide layer thickness, 
structure height, and the periodicity of the microstructures depend on 
the magnitudes of the peak fluence and pulse count. A beam with lower 
fluence will result in finer structures, whereas a beam with higher flu-
ence will result in coarser structures. In addition, at higher fluences the 
oxide layer is not uniform, resulting in a lower emissivity. Hence, there 
exists an optimal peak fluence and pulse count that will yield an opti-
mal emissivity.  

Fig. 4. Measured directional distribution of emissivity and hemispherical emissivity 
values for four different FLSP samples: (a) Pulse count of 490 and fluence of 2.0 J·cm−2. 
(b) Pulse count of 6875 and fluence of 5.5 J·cm−2 . (c) Pulse count of 762 and fluence of 
2.10 J·cm−2. (d) Pulse count of 490 and fluence of 2.62 J ·cm−2 .   
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4. Data-driven prediction of hemispherical emissivity 

In this study, 116 different samples were fabricated, characterized, and 
tested to build the study’s dataset. The dataset consists of (i) laser op-
erating parameters: pulse count Pc , fluence Fp , and total fluence Ft ; (ii) 
surface characteristics data: average height Rz , average roughness Ra , 
average skewness Sk , average kurtosis Ku , mound surface area to planar 
area ratio SA , and mound concentration (or density) D ; and (iii) the mea-
sured hemispherical emissivity, εh . In addition, we collected 250 LSCM 
images from these samples. Multiple images were taken from different 
areas of each sample to create the image dataset. 

In order to test the capabilities of AI for emissivity prediction, we 
studied two different scenarios. First, we wanted to know if AI can be 
employed to predict the (specific range of) emissivity of a new sample 
just based on its 3D LSCM image, without providing any other informa-
tion about its surface characteristics or fabrication parameters. In other 
words, if we have a 3D surface morphology image of a sample without 
knowing anything else about it, can we estimate its expected emissivity 
within a narrow range? The successful accomplishment of this step is 
particularly advantageous for cases where an approximate surface ra-
diative property is needed, and the only available data is a 3D morphol-
ogy image of the sample and prior knowledge of the processing condi-
tions. In the second scenario, we wanted to go one step further to know 
if we can precisely predict the actual emissivity of a new FLSP sample 
based on its surface characteristics data and laser operating parame-
ters. Attaining such a model will provide us with a powerful tool that 
obviates the need for costly procedures to measure sample’s surface ra-
diative properties. Furthermore, such a model can enable reverse engi-
neering of surfaces with desired emissivities to obtain the required pro-
cessing parameters. 

To test the feasibility of the first scenario, we used the measured 
hemispherical emissivity as the ground truth and divided the entire im-
age dataset into seven categories ranging between 0.599 and 1, as illus-
trated in Fig. 5. 

Throughout this study, we used a split validation method by ran-
domly dividing the dataset into training, validation, and final test sub-
sets with an 80:10:10 split ratio. We developed an AI model, Model 1 
, that solely used the LSCM images. As a precursor to this model, we 
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Fig. 5. (a) Classification results for Model 1 , where the CNN’s extracted features were 
used as inputs. Here, an error is predominantly present between categories close to 
each other, suggesting that some samples have similar surface features, thus confus-
ing the CNN feature extractor. (b) Confusion matrix depicting the classification error 
in our Model 1 . A green shaded area represents a positive (correct) response and a red 
shaded area represents a negative (incorrect) response. From the positive and nega-
tive responses, the classification precision (i.e., the ratio of correct predictions to the 
total relevant samples) and recall (i.e., the ratio of correct predictions to the total pre-
dicted cases) were calculated for each emissivity range. Model 1 was tested on a to-
tal of 23 images.  
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implemented transfer learning (TL) by adopting VGG16 CNN architec-
ture that was pre-trained on the ImageNet dataset. VGG16 is an estab-
lished CNN architecture consisting of 16 computational layers. Visual 
Geometry Group (VGG) first introduced VGG16 in 2014 as a success-
ful architecture classifying ImageNet dataset. This model uses large 
kernel-sized filters with multiple small kernel-sized filters resulting 
in 13 convolution layers with 3 fully connected layers. Training a CNN, 
such as VGG16 requires a large dataset and is computationally expen-
sive. An alternative approach to mitigate these problems is TL. TL is a 
technique in which a model developed for one image analysis task is 
utilized as the basis for another model for a different image analysis 
task. Since a well-trained model is used as the starting point, the re-
quired processing and data reduces significantly for a TL model. More 
details regarding TL and the VGG16 CNN architecture can be found in 
[47]. To use this CNN as a feature extractor from the LSCM images, we 
replaced the final layer with 7 nodes to classify the images into the 
corresponding seven emissivity categories. A fine-tuning training ap-
proach was used by leaving the convolution layers of VGG16 unfrozen 
letting the weights to be updated during the training process. We ini-
tialized the classifier layers with random weights and trained the CNN 
using Adam optimizer with early stoppage criteria. We implemented 
the model using Tensor-flow (Keras) on a workstation comprised of 
an Intel(R) Xeon(R) Gold 6128 processor, 64GB of DDR4 RAM, and an 
NVIDIA Quadro P5000 graphic card. 

Fig. 5 shows the results obtained from the developed Model 1. It can 
be seen from Fig. 5(a) that the model performed well and there is a great 
match for the majority of our test samples. It can be noted that there 
is a mismatch in the classification of samples 6, 12, 15, 16, 17, and 23. 
From the confusion matrix in Fig. 5(b), it can be observed that the error 
is predominantly present between adjacent categories, except for sam-
ple number 16. The mismatch can be attributed to the samples having 
similar surface features between the adjacent categories, thus confus-
ing the CNN. It should be noted that by increasing the size and diversity 
of the image dataset, the model could get trained much better, signifi-
cantly improving its classification ability and mitigating such confusion 
between neighboring categories. With a larger dataset, the width of the 
selected categories could also be narrower to improve the accuracy of 
the estimations. 
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Now, to demonstrate the application of AI in the second scenario, 
we developed Model 2. For this model, we combined the extracted fea-
tures from the LSCM images with laser operating parameters and sur-
face characteristics to build a comprehensive dataset. Fig. 6 illustrates 
the AI architecture that was implemented by combining the image pro-
cessing through deep-learning with several machine-learning classifi-
ers to predict the emissivity. In this study, we refer to classifiers as the 
type of machine-learning models implemented to perform a regres-
sion analysis for prediction. These classifiers included k-nearest neigh-
bor (kNN), artificial neural network (ANN), generalized linear model 
(GLM), W-M5P, and decision tree (DT). A detailed explanation of these 
classifiers can be found elsewhere and will not be repeated here [48–
51]. We used the training subset (80% of our dataset) to develop this 

Fig. 6. General description of the AI architecture implemented in Model 2 to predict 
the emissivity of the FLSP samples. (a) Here, each captured LSCM image serves as an 
input to our CNN architecture. (b) The initial LSCM images are processed one-by-one, 
through a series of convolutional filters that produce a feature vector. (c) Final feature 
vector then serves as an input into (d) Model 1, a general neural network that classi-
fies each image into seven different emissivity categories. (e) A comprehensive data-
set is built consisting of the laser operating parameters, measured surface character-
istics and the detected features of the LSCM images. Then this data is fed into (f), our 
Model 2 that predicts the emissivity as a function of the input parameters. 
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model. Hyperparameters were optimized iteratively on the validation 
subset using a grid search strategy. The final models were tested on 
the test subset that was isolated from the training and validation pro-
cess. The performance of each model on the test subset is summarized 
and reported in Table 1, where root mean square error (RMSE), ab-
solute error (ABS), and the coefficient of determination (R2) are tabu-
lated for comparison.    

From Table 1, it can be observed that DT and ANN outperformed the 
rest of the classifiers. The obtained predictions from Model 2 by using 
DT and ANN classifiers are illustrated with red markers in Fig. 7. It can 
be observed that both classifiers performed well with great match be-
tween the predictions and the measurements. For the sake of compar-
ison, we have also included the prediction results using the same clas-
sifiers, but this time without the inputs from Model 1 (i.e., excluding the 
classifications obtained in Model 1 from the inputs). Blue markers in Fig. 
7 represent such predictions made based on the surface characteristics 
and the laser processing parameters. The comparison between the red 
and blue markers in Fig. 7(a) demonstrates that DT performed well with 
and without image-based classifications, showing approximate errors 
of 3.31% and 1.05%, respectively. However, the importance of inputting 
the image-based classifications on improving the predictions can be wit-
nessed in Fig. 7(b) using the ANN classifier. It can be seen that the ap-
proximate error of ANN predictions significantly drops  from 17.51% to 
3.88% when considering the image-based classifications. 

Now, to better understand the errors observed in some cases, we 
need to look into the individual data points. It can be seen that for sam-
ples number 6 and 12, there is a large deviation from the true value 
of measured emissivity in both DT and ANN methods when including 
the image-based classifications (i.e., red markers). This can be directly 

Table 1 Prediction performance of different machine-learning classifiers in Model 2. 

Model  RMSE  ABS  R2 

W-M5P  0.049  0.035 ± 0.034  0.966 
GLM  0.066  0.055 ± 0.038  0.952 
kNN  0.047  0.036 ± 0.030  0.978 
DT  0.039  0.026 ± 0.029  0.979 
ANN  0.039  0.030 ± 0.025  0.980   
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attributed to the error that originated in feature extraction from the CNN 
in Model 1 (see Fig. 5) that has now propagated into Model 2. This type of 
error can be addressed by acquiring a larger LSCM image-set and hence 
better performance of the CNN. Thus, the slight increase in the approx-
imate error of DT when including the image-based classifications is be-
cause of the high mismatch from Model 1 at samples number 6 and 12. 
Another important factor that can limit the accuracy of predictions and 
must be considered is the distribution of available samples within the 

Fig. 7. Prediction results from Model 2 using (a) decision tree (DT) classifier, and (b) 
artificial neural network (ANN) classifier. In both plots, the red markers represent the 
results obtained by including the images input (i.e., classifications from Model 1) and 
blue markers represent the results without images input. The approximate prediction 
errors are also shown for both cases in each classifier. It should be noted that these 
results are obtained from the testing subset (i.e., 10% of our dataset) which has been 
isolated from the training and validation subsets.   
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training subset. To elucidate this, we can observe that Fig. 7(b) shows a 
relatively high error in samples number 2 and 14 when the image-based 
classifications are not considered (i.e., blue markers). The high approx-
imate error of ANN in these two cases can be attributed to the fact that 
samples 2 and 14 correspond to the specific ranges of emissivity where 
we had limited available data. In other words, the number of samples 
that fit into those two categories was limited compared to the other cat-
egories. This can potentially lead to inadequate training of ANN on spe-
cific emissivity ranges short on samples. Hence, this demonstrates the 
advantage of combining image-based classifications with surface char-
acteristics and fabrication inputs into our Model 2 , when a limited da-
taset is available for training. 

5. Conclusion 

In this study, we have demonstrated the advantage of applying AI tech-
niques for emissivity prediction of complex surfaces. For this purpose, 
we fabricated 116 aluminum samples using FLSP. A comprehensive da-
taset consisting of surface characteristics, fabrication parameters, and 
250 LSCM images from these surfaces was established. The directional 
emissivity of each sample was measured using a thermal imaging cam-
era within 7.5 to 14 μm, and was used to calculate the hemispherical 
emissivity. 

We investigated the application of AI for emissivity prediction in two 
different cases. In case 1, we could show that the specific range of emis-
sivity for a given surface could be approximated merely based on its 3D 
morphology image. We pre-trained a CNN that served as a feature extrac-
tor on our training image dataset and developed an ANN to classify the 
test samples into seven emissivity categories. The obtained results re-
vealed the great advantage of AI-based methods in estimating the emis-
sivity by image processing. For case 2, we demonstrated that the com-
bination of deep-learning and machine-learning techniques could be 
implemented to accurately predict the emissivity of FLSP samples based 
on their surface characteristics and fabrication parameters. To accom-
plish this, several machine-learning classifiers were applied to the da-
taset where DT and ANN outperformed other classifiers with approxi-
mate errors of 3.31% and 3.88%, respectively. 



A c o s ta  et  a l .  i n  J .  Q ua n t.  S p e c t r .  &  R a d .  Tr a n s .  2 9 1  ( 2 0 2 2 )      18

The promising performance of these data-driven models can open 
new paradigms for predicting physical phenomena that might other-
wise be difficult to predict by classical physics-based modeling or may 
require tedious experimental procedures. However, it is noteworthy that 
as a standard limitation of AI, the obtained data-driven models are al-
ways restricted to the boundaries of the training domain, meaning that 
their application beyond the training dataset will be unreliable. Similarly, 
to obtain a data-driven predictive model for any other material, the AI 
model would need to be retrained on the proper dataset. 

•  •  •  •  •  • 
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