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Abstract

Animal disease surveillance is an important component of the national veterinary

infrastructure to protect animal agriculture and facilitates identification of foreign ani-

mal disease (FAD) introduction. Once introduced, pathogens shared among domestic

and wild animals are especially challenging to manage due to the complex ecology of

spillover and spillback. Thus, early identification of FAD in wildlife is critical to mini-

mize outbreak severity and potential impacts on animal agriculture aswell as potential

impacts on wildlife and biodiversity. As a result, national surveillance and monitoring

programs that include wildlife are becoming increasingly common. Designing surveil-

lance systems in wildlife or, more importantly, at the interface of wildlife and domestic

animals, is especially challenging because of the frequent lack of ecological and epi-

demiological data for wildlife species and technical challenges associated with a lack

of non-invasive methodologies. To meet the increasing need for targeted FAD surveil-

lance and to address gaps in existing wildlife surveillance systems, we developed an

adaptive risk-based targeted surveillance approach that accounts for risks in source

and recipient host populations. The approach is flexible, accounts for changing disease

risks through time, can be scaled from local to national extents and permits the inclu-

sion of quantitative data or when information is limited to expert opinion. We apply

this adaptive risk-based surveillance framework to prioritize areas for surveillance in

wild pigs in the United States with the objective of early detection of three diseases:

classical swine fever, African swine fever and foot-and-mouth disease. We discuss our

surveillance framework, its application towild pigs and discuss the utility of this frame-

work for surveillance of other host species and diseases.
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1 INTRODUCTION

Animal disease surveillance systems are an essential component of

the national veterinary infrastructure to protect animal agriculture.

National surveillance programs serve an important role in identifica-

tion of foreign animal disease (FAD) introduction and allow for dis-

ease freedom to be substantiated. Typically, national surveillance sys-

tems are solely focused on domestic animal populations. However, the

role of wildlife in livestock diseases has increased globally in part due

to spillover from livestock to wildlife resulting in some economically

important animal diseases now involving wildlife (Miller et al., 2013;

Siembieda et al., 2011). Once introduced, pathogens shared among

domestic animals andwildlife are especially challenging tomanage and

can challenge determination of disease freedom (Arias et al., 2018;

Gortazar et al., 2015; Wiethoelter et al., 2015). While the initial intro-

duction of a pathogen into wildlife may be the result of spillover from

domestic animals once a pathogen is established in wildlife it can be

difficult to control resulting in disease persistence and re-emergence

(Lloyd-Smith et al., 2009; VerCauteren et al., 2018). As a result national

surveillance and monitoring programs that include wildlife are becom-

ing increasingly common in part because substantiating national dis-

ease freedom and confirming the status of significant diseases in

wildlife is increasingly important (Morner et al., 2002; Portier et al.,

2019). Thus, early identification of FADs in wildlife is critical to mini-

mize outbreak severity and potential impacts to wildlife, biodiversity

and animal agriculture.

Important challenges for risk management of pathogen introduc-

tion include predictions of introduction risk, pathogen surveillance and

riskmitigation strategies focused onminimizing potential for introduc-

tion. Routes of pathogen introduction are often poorly understood and

can include trade in domestic animals and their products, air travellers,

movement of goods and in some cases wildlife movement (Bevins

et al., 2022; Herrera-Ibata et al., 2017; Jurado et al., 2019). Once

a pathogen is introduced into wildlife species spillover and spillback

dynamics between domestic animals and wildlife can introduce addi-

tional epidemiological cycles in host–pathogen systems (Chenais et al.,

2019). Consequently, introduction pathways are difficult to under-

stand and predict, since surveillance data for those pathways are fre-

quently unavailable. When data are available, the relative risks asso-

ciated among each pathway are typically unknown. These generally

ill-understood pathways of introduction and how they relate to the

likelihood of pathogen establishment complicate the development of

surveillance systems that are sensitive and robust in the face of chang-

ing risks through time. Quantitative approaches can be themost effec-

tual method for defining surveillance priorities because of their capac-

ity to assimilate and evaluate multiple, frequently complex processes

simultaneously while accounting for potential uncertainties (Huyvaert

et al., 2018;Manlove et al., 2019; Pepin et al., 2021, 2014).

These challenges are magnified for determining risks of FAD intro-

duction into wildlife populations and the implementation of surveil-

lance systems to mitigate these risks. In contrast to domestic animal

populations, ecological and epidemiological data such as host abun-

dance and host disease competence for wildlife species is frequently

unavailable (Stallknecht, 2007). This complicates multiple aspects of

surveillance system design and implementation including difficulty in

designing representative sampling strategies, a lack of diagnostic tests

validated in wildlife, unknown disease prevalence in wildlife, difficulty

interpretating surveillance data due to an absence of denominator

or population data and the absent or insufficient wildlife surveillance

infrastructure (Sleeman et al., 2012; Stallknecht, 2007). These chal-

lenges contribute to gaps in the development and implementation of

rigorous surveillance in wildlife populations.

An important gap of disease surveillance systems is accounting

for disease introduction risks arising from processes in source and

recipient host populations (Lloyd-Smith et al., 2009; Pepin et al.,

2021). Pathogen emergence and introduction risk can be altered

through changes in source or recipient population ecology and

should be accounted for when designing surveillance systems. Con-

sequently, inference from a sole host population may produce flawed

risk estimates, misallocating surveillance resources when conditions

change. Similarly, surveillance systems based on static risk criteria

can limit sensitivity of surveillance systems (Sleeman et al., 2012).

This is especially important when developing surveillance systems

at a national scale with potentially limited resources and fiscal

constraints.

One of the most important wildlife species for FAD surveillance in

the United States are wild pigs (Sus scrofa), commonly referred to as

feral swine (Brown et al., 2020a). Wild pigs pose a significant disease

risk to animal agriculturewith the potential of 87% ofWorldOrganisa-

tion for Animal Health (OIE) listed swine pathogens potentially causing

disease in livestock. In the United States, 57% of all farms and 77% of

all domestic livestock are co-located within the invaded range of feral

swine (Miller et al., 2017). In North America, wild pigs are considered

an invasive species with populations distributed across large areas of

the United States, Canada and Mexico causing significant ecological

and agricultural damage aswell as disease risks towildlife, humans and

domestic animals (Bevins et al., 2014; Lewis et al., 2017).

Wild pigs were first introduced into North America in the 16th cen-

tury with continued introductions throughout the period of European

colonization of North America (Mayer & Beasley, 2018; Mayer & Bris-

bin, 1991). Starting in the late 1800s wild boar were imported to the

United States from Europe and introduced into established wild pig

populations to improve hunting appeal of the species (Mayer & Bris-

bin, 1991). During the mid-20th century many states in the United

States began managing wild pigs as game species with stocking of wild

pigs into new areas becoming common (Keiter et al., 2016). The pop-

ularity of wild pigs as a recreational hunting species, their ability to

rapidly establish populations and the legal and illegal introductions

of wild pigs has resulted in their expansion throughout North Amer-

ica with free-ranging and breeding populations existing in the United

States, Canada and Mexico (Tabak et al., 2018; VerCauteren et al.,

2019). Genotypes of wild pig populations in the United States aremost

closely related to European wild boar and western heritage pig breeds

with increased wild boar ancestry potentially having improved fitness

and heightened invasive potential in some populations (Smyser et al.,

2020). Despite the damage caused by wild pigs in North America they
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remain an important wildlife species that is valued as a recreational

hunting resource.

The U.S. national disease surveillance in wild pigs started in 2006

and was primarily focused on classical swine fever (CSF) and various

endemic diseases of interest (DeLiberto&Beach, 2006; Pedersen et al.,

2012, 2013; Swafford et al., 2009). In 2014, the APHIS National Feral

SwineDamageManagementProgramwas createdestablishing an inte-

grated approach to wild pig operational removal activities and disease

surveillance (APHIS, 2015). Disease surveillance conducted inwild pigs

from 2006 to 2017 was opportunistically collected with a focus on

populations adjacent to landfills. Landfills have been proposed as a

potential pathway of introduction and release of FADs including CSF

and African swine fever (ASF), in wild pigs through discarded contami-

nated swine products that arrive in the country via international trav-

ellers (Herrera-Ibata et al., 2017; Jurado et al., 2019). Starting in 2017,

a spatially targeted approach was developed that prioritized antibody

surveillance in U.S. counties with landfills, ports of entry and livestock

production (APHIS, 2017). Increasing concern over the potential role

of wild pigs in the event of a FAD introduction, necessitated a revamp-

ing of wild pig surveillance to focus on FAD introduction risks (Brown

et al., 2020a). Three pathogens were identified as a primary concern

for introduction and surveillance in wild pigs—ASF, CSF and foot-and-

mouth disease (FMD). These diseases cause significant economic bur-

dens in countries where they are present (Brown et al., 2020b). In the

United States, sympatric livestock andwild pig populations pose signif-

icant risks if one of these diseases were to be introduced into wild pigs.

To meet the increasing need for targeted FAD surveillance and

address gaps and challenges in existing wildlife surveillance systems,

we developed an adaptive risk-based targeted surveillance approach

that prioritizes where to sample wild pigs and how many to sample.

This approach accounts for risks in source and recipient host popu-

lations. The approach is flexible, accounts for changing disease risks

through time, can be scaled from local to national extents, and permits

the inclusion of quantitative data or expert opinion. This allows our

surveillance framework to be rapidly implemented in any host species

to address new emerging disease threats while also being useful for

routine surveillance. We apply our adaptive risk-based surveillance

framework to prioritize areas for surveillance in wild pigs in the United

States with the objective of early detection for CSF, ASF and FMD.We

evaluated the resulting surveillance prioritization using sensitivity and

time series analyses to determine the influence of uncertainty in the

risk factors used and the resulting risk rank. We present the results

of our surveillance framework, its application to wild pigs, and discuss

the utility of this framework for surveillance in other host species and

diseases.

2 MATERIALS AND METHODS

We apply a spillover framework first described by Plowright et al.

(2017) and adopted to guide surveillance design at the wildlife–

livestock–human interface by Pepin et al. (2021). We extended these

frameworks by including directional risks associated with initial dis-

F IGURE 1 Conceptual framework and relationship among
introduction and spillover-spillback processes. Colored boxes are risk
factors for host pathogen availability within source countries (As,t),
domestic (Ad,t), and wildlife (Aw,t) host populations in destination
counties. These factors influence the dynamics of pathogen
availability in source countries (s) and available hosts in at-risk
counties. Risk factors that influence the contact and transmission (C)
between host groups (introduction and interface connectivity) are
shown in white boxes between the host groups that they connect.
Arrows indicate assumed transmission direction. Note transmission
among domestic andwildlife hosts is assumed to be bi-directional and
transmission from source countries to domestic andwildlife host
populations is unidirectional

ease introduction (Miller & Pepin, 2019), in our case, transboundary

introduction, to further prioritize areas for surveillancewith the objec-

tive of early detection. Thus, the process for risk ranking and prioritiz-

ing populations for surveillance first develops a risk ranking for intro-

duction risks, host abundance risks and host connectivity risks. A final

risk ranking is then createdwith these risks that canbeweighted to pri-

oritize introduction, host or between host risks depending on specific

policy goals.

Applying the frameworks of Plowright et al. (2017) and Pepin et al.

(2021), we expect the risk of FAD introduction into the United States

during a time interval t is highest for wild (w) and domestic (d) popu-

lations (Aw,t and Ad,t) that have contact (Cs-w,t and Cs-d,t) with popula-

tions (As,t) in source countries (s) where the FAD of interest is present

(Figure 1). Further, that potential transmission among domestic and

wild populations (Cd-w,t) is of greater importance for surveillance tomit-

igate spread and establishment of the disease in either. This framework

differs from that of Pepin et al. (2021) in that host pathogen availabil-

ity is only initially important in the source country. Additionally, each

component risk factor is time varying, representing the state of the risk

factor for a specified time interval (t).

The simplest proxy for risk can be defined as the multiplicative pro-

cess using Aw,t∙Ad,t∙Cd-w,t. Component risk factors within A and C, if

present, are also multiplicative (Table 1). The relative risk of each geo-

graphic area, counties in our case, can be represented as,

R∏

r=1

𝜔r,t𝜃j,r,t

where ω is the weight for risk factor r during time interval t and θj,r,t is
the relative risk score for risk factor r in county j during the same time
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TABLE 1 Risk factors used for triaging and targeting surveillance for FADs

Risk factor Component Description Scale and units Source

Pathogen availability in hosts (A)

FADPresence Ac,t Pathogen availability in source countries

represented as a binary variable

(1= present and 0= not present).

Country, binary by

year

(WAHIS, 2021)

Livestock host densitya Ad,t Livestock host density measured as

operation density by operation size for

domestic swine, cattle, sheep, goats,

cervids.

County, operations

per km2 by year

(USDA, 2020)

Wild pigs host density Aw,t Wild pig host presence and density. County, wild pigs per

km2 by year

Miller et al.

Unpublished data.

Connectivity (C)

Agricultural Quarantine

InspectionMonitoring (QMI)

Cc-d, Cc-w Movements of agricultural products by air

passengers and foreignmail from source

country to counties within the United

States.

County, QMI per km2

by year

(USDA, 2021a, 2021b)

Landfills Cw-d, Cc-d, Cc-w Landfills have been identified as an

important risk factor for FAD

introduction into wildlife host

populations.

County, landfills per

km2

infoUSA, Inc.

Seaports Cc-d, Cc-w Seaports provide a potential source of

introduction via smuggled or legally

imported products.

County, seaports per

km2

(BTS, 2020)

Airports Cc-d, Cc-w Airports provide a potential source of

introduction via smuggled or legally

imported products.

County, airports per

km2

(BTS, 2020)

Note: The scale and source columns describe the data sources used in ourmap examples. This is not an exhaustive list of possibilities, rather it represents risk

factors for which there are already available data and additional risk factors can be included as new evidence for additional risk factors arises.
aLivestock density is weighted by operation size to arrive at a final livestock density. Size categories by commodity are described in Table S1.

interval t. To consider risk factors equally each risk factor, θr, is nor-
malized using ordered quantile normalization transformation and then

placed on 0 to 1 scale using minimum–maximum scaling (Beasley et al.,

2009; Peterson & Peterson, 2020). This ensures that county values are

relative to one another such that the highest risk is represented by a

value of 1 (see). Theweights,ωr, determine the importance of each risk

factor relative to the other risk factors.Weights can be defined by data

(e.g., probability of transmission), based on expert opinion, or reflect

policy objectives (e.g., to maximize early detection an higher weight

would be placed on introduction risks, Cs-d,t or Cs-w,t). Here, we weight

each risk factor equally (ωr = 1; Figure 1) and conduct sensitivity analy-

sis (see section below on sensitivity analysis) over a range ofweights to

determine the importanceof the county for surveillance. Inpractice the

relationships among component risk processes are likely hierarchical

and many are potentially non-linear (e.g., Cross et al., 2019; Plowright

et al., 2017). However, in the case of FADs which may not have ever

been present in the at-risk populations there is frequently limited (or

no) information that allows for these relationships to be parameterized

appropriately. We implemented our risk ranking algorithm using cus-

tom code in R (R-project, 2020).

We implemented our risk ranking using the risk factors fromTable 1.

To generate measures of host density, data describing the nationwide

distribution (presence/absence) of wild pigs at the county level were

compiled from APHIS-Wildlife Services and the Southeastern Cooper-

ative Wildlife Disease Study (SCWDS) (Corn & Jordan, 2017). These

data represent the known nationwide county-level distribution of wild

pigs over the past 38 years and have been used to forecast the spread

of wild pigs (Snow et al., 2017), estimate occurrence (McClure et al.,

2015), estimate effects of management on spatial spread (Pepin et al.,

2019), determinewild pig risks posed to agriculture (Miller et al., 2017)

and predict corresponding policy activity (Miller et al., 2018). These

occurrence data were used with management removal data using a

Bayesian catch-effort model implemented on the scale ofmanagement

units (Davis et al., 2021) and scaled up to the county-level using spa-

tial statistics and environmental covariates (Miller et al., Unpublished

data). The catch effort model generates predictions of wild pig den-

sity for each county at a monthly scale while accounting for differing

removal methods, habitat, climate and other factors affecting either

population growth or probability of capture.

Livestock host densities were estimated using National Agricultural

Statistics Service (NASS) data (USDA, 2020). Because introduction risk

is at the operation level, we used the density of productionweighted by

operation size in each county to represent livestock host density.Oper-

ation size category definitions are provided in Table S1. Our interest is

potential introduction of risks associated with livestock FADs, specifi-

callyASF,CSFandFMD.Toaccount for thebroadhost rangeofFMDwe
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included all cattle, sheep, goat, cervid and domestic swine operations.

Counties that hadyearswithmissingdatawere imputedassuming a lin-

ear change in number of operations by inventory size among years.

Agricultural Quarantine Inspection Monitoring (AQIM) and

Mail287 data were used to represent connectivity among counties

and foreign countries with FADs of interest (i.e., introduction risk

pathway) (USDA, 2021a, 2021b). These data represent air passenger

and international mail inspections and interceptions for agricultural

quarantine materials (QM). AQIM data covers randomized inspection

data for air passenger and internationalmail and theMail287 database

covers targeted inspection data for the international mail pathway.

These data include the country of origin and the destination address

for the material. While there is targeted inspection data available for

the air passenger pathway, it does not include origin-destination data

needed for this analysis. The collected data were used with OIE data

(WAHIS, 2021) describing, by year, those countries known to have the

FAD of interest resulting in the number of observed QM events by

county, by year and by FAD.

In addition to these time varying risk factors, three static risk

factors were included to inform introduction risks and connectivity

among domestic swine and wild pigs. Landfills have been proposed

as a potential pathway of introduction and release of FADs into wild

pigs throughdiscarded contaminatedproducts from international trav-

ellers (Herrera-Ibata et al., 2017; Jurado et al., 2019). Landfills are

known to serve as a potential forage resource for wild pigs (Mayer

et al., 2021). While no empirical studies are available to substantiate

this proposed risk pathway, it may be an important route of introduc-

tion. To account for this pathway, we used landfill locations obtained

from InfoUSA, Inc. (Omaha, Nebraska).

Ports of entry can also serve as an important route of introduc-

tion via passengers, baggage or legal and illegally imported products

(Jurado et al., 2019). To represent these potential pathways, we used

airport and seaport location data (BTS, 2020). We assume that an

increasing number of ports in a county increases risks of introduction

and potential release into wild pigs or domestic swine. We assumed

that the size of the port is proportional to the volume of passengers,

baggage and products. We scaled each port by the number of docks or

runways as a proxy for total volume.

2.1 Sensitivity analyses

Sensitivity analyses were run to quantify the impact of the model

inputs on the relative risk ranking of counties, specifically changes in

risk factor weights, ω. Parameter sets for the sensitivity analyses were

created using Latin hypercube (LHC) sampling, selecting 100 values

across the ranges of all risk factor weights allowing weights to range

from 0.1 to 10. Each of the 100 parameter sets were used to calcu-

late relative risk rankings within each year from 2010 to 2020 for each

county resulting in110,000 realizationsof relative risk ranking for each

of the 3072 counties for a total of 337,920,000 realizations.

To estimate the effect and relative importance of each model

attribute, partial-rank correlation coefficients (PRCC) between the

county-level relative risk rank and the model attributes (both param-

eters and year) were used (Blower & Dowlatabadi, 1994). Prior to run-

ning the PRCC analysis, we checked the relationships between model

attributes and county level relative risk rank to ensure that mono-

tonicity assumptions were met. The PRCC estimates the effect of each

model attribute on county-level relative risk rank, but we are also

interested in the interactions between attributes (Buhnerkempe et al.,

2014). To explore the effect of these interactions, we estimated sen-

sitivities from regression coefficients. We checked the results from

regressions without interaction terms to ensure results were similar

to the PRCC, since the former includes an assumption of linearity. We

then proceededwith the regression analyses that included the interac-

tion terms betweenmodel attributes.

2.2 Temporal change in risk

A primary advantage of our surveillance framework is the capacity to

adapt surveillance in response to changes in the global distribution of

disease through timeaswell as changes inhostdensities andconnectiv-

ity. To investigate changes in surveillance prioritization through time,

relative risk rankings were generated annually from 2010 to 2020.

Four metrics were used to evaluate changes in relative risk ranking

through time. First, to investigate the importance of a single county

for surveillance through time the probability a county was ranked in

the upper and lower 5-percentile, upper and lower 25-percentile and

upper and lower 50-percentile in any given year was calculated. Addi-

tionally, the annual change in a county’s risk rank percentile was eval-

uated. Two autocorrelation metrics were used to investigate county

ranking variability through time. The autocorrelation function (ACF)

was used to determine the correlation in ranking across different time

lags and the partial autocorrelation function (PACF) was used to mea-

sure the linear correlation of each county time series with the lagged

version of itself with the linear dependence of removed.

3 RESULTS

3.1 Sensitivity analyses

In the PRCC analyses, the attributes that were consistently important

for determining relative risk rank were related to connectivity among

wild pigs and domestic animals (Figure 2). Attributes important for

determining relative risk rank were not associated with the variation

in the risk factors (see Table S1). Changes in metrics for domestic ani-

mal host density had the least impact on relative risk ranking. Similarly,

in the regression analyses, connectivity among wild pigs and domestic

animals had large impacts on relative risk ranking (Figure 3). With the

interactions included, some attributes became more important than

they were in the PRCC analysis. Specifically, the interaction between

domestic animal host density and introduction risks for domestic

animals had the second largest impact on relative risk ranking. Most

interactions had effects close to zero indicating little to no impact on
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F IGURE 2 Results from partial-rank correlation coefficients
(PRCC) sensitivity analysis for attributes used to determine targeted
surveillance priorities. Connectivity amongwild pigs and domestic
animals had the largest impact on relative risk ranking

relative risk ranking. The adjusted r2 value for the regression model

was moderate (r2 = 0.51), so the results and estimated magnitude of

impact for each of the attributes should be considered cautiously.

3.2 Relative risk ranking and temporal change in
risk

The relative risk ranking of counties changed through time with an

average 17.7% ± 0.018% of counties having their risk rank change

annually (Figures 4 and 5). The mean number of counties with an

increase (9.1% ± 0.013%) or decrease (8.5% ± 0.016%) in risk rank-

ing was similar but varied among years with the largest changes in risk

ranking occurring in 2012and2017.Countieswith a high probability of

being in the upper 5-percentile and upper 25-percentile demonstrated

spatial clustering (Figure 6). Those counties with the highest probabil-

ity of being in the upper quartiles for risk were frequently in regions

with high wild pig densities or areas with higher likelihood for intro-

duction or potential contact among wild pigs and domestic animals. A

F IGURE 4 Percentage of counties that had a change in relative
risk ranking quartile assignment from 2010 to 2020. On average
17.7% of counties change relative risk ranking annually. Most (15.9%)
only change one quartile (light red and light blue) while a small
percentage (1.8%) changemore than one quartile (darker red and blue
colours) when compared to the previous year ranking

small number of counties (n = 36, 1.2%) had a high probability (>0.90)

of being included in the upper 5-percentile of risk ranking (Figure 6).

Similarly, 552 (18%) of counties had a high probability (>0.90) of being

ranking in the upper 25-percentile. Autocorrelation and partial auto-

correlation in each counties risk ranking from 2010 to 2011 indi-

cates large variation in the temporal autocorrelation (Figure S2). Most

F IGURE 3 Sensitivity analysis showing relative effects (x-axis) of attributes used to generate relative risk ranking of counties to determine
targeted surveillance priorities. The relative effect (x-axis) was estimated as linear model coefficients for the county level risk rank. Connectivity
amongwild pigs and domestic animals had the largest impact on risk ranking. Most interactions had little influence on relative risk ranking except
for the interaction between domestic animal density and introduction risk into domestic animals that had the second largest impact on risk ranking
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F IGURE 5 Annual relative risk ranking from 2010 to 2020 using noweighting of risk factors. Changes in relative risk ranking are apparent
among years particularly in east Texas and states along the Atlantic coast

counties had positive linear correlation (mean = 0.36) in risk rank-

ing among the first- and second-time lags. Partial autocorrelation also

found a positive correlation with the first-time lag for most counties.

4 DISCUSSION

Disease surveillance systems are a foundational element of the ani-

mal health infrastructure used to detect and respond to disease

events and wildlife are an increasingly important component of these

systems. Wildlife have the potential to be involved in at least 79% of

OIE reportable diseases and once a livestock disease spills over into

wildlife significant challenges for disease control or eradication can

exist (Miller et al., 2013; VerCauteren & Miller, 2021). Once intro-

duced, pathogens transmitted at thewildlife-domestic animal interface

are challenging to manage and have a greater possibility for persisting

and becoming enzootic due to spillover and spillback dynamics (Arias

et al., 2018; Wiethoelter et al., 2015). Correspondingly, early identifi-

cation of FADs in wildlife that is critical to minimize outbreak sever-

ity and potential impacts to wildlife, biodiversity and to animal agricul-

ture. Surveillance frameworks are most useful when they are flexible,

can be rapidly implemented and are targeted to the highest risk pop-

ulations. The surveillance framework we developed addresses many

of the challenges associated with identifying at-risk wildlife popula-

tions and designing surveillance systems for wildlife populations. Our

framework supports representative sampling of at-risk populations,

adapts to changes in risks through time, incorporates risk factors for

both source and recipient populations and can be rapidly adjusted to

address newly emerging diseases.

Applying this framework to determine targeted surveillance prior-

ities in wild pigs we identified a small set of counties that remained

high priority over a large range of weighting schemes. Identification of

high priority areas demonstrates the value of using risk-based surveil-

lance strategies to efficiently sample across national spatial extents.

Only 1.2% of counties were in the upper 5% of risk ranking consis-

tently. Strict opportunistic approaches to surveillance are likely tomiss

or under sample these high-risk populations. Additionally, we found a

relatively large change in risk ranking annually across the 11 years we
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F IGURE 6 Annual mean probability a county is included in the upper and lower 5-percentile, upper and lower 25-percentile of relative risk
ranking across all 110,000 possible weighting combinations for each county. Dark red indicates a high probability of being included in the relative
risk rank percentile. Conversely dark blue indicates a low probability of being included in the relative risk rank percentile

investigated. This temporal change in risk highlights the importance of

annually updating surveillance priorities based on changes in risk fac-

tors included in the framework. Relatively short (1–2 years) temporal

autocorrelation of county level risk ranking in most counties indicates

that static risk determination and surveillance prioritization may only

be useful for a short period and may quickly result in misallocation of

surveillance resources to areas that have become lower risk.

Wildlife disease surveillance efforts, particularly at the national

scale, are fraught with challenges including difficulty designing rep-

resentative sampling strategies, unvalidated diagnostic tools, inaccu-

rate or incomplete denominator data and incomplete wildlife surveil-

lance infrastructure (Ryser-Degiorgis, 2013; Stallknecht, 2007). When

the goal of surveillance is early detection of an FAD in wildlife, obtain-

ing the number of samples required for disease detection at a preva-

lence level (e.g., 0.01% with 95% confidence) useful for animal dis-

ease control may not be fiscally or logistically feasible at the national

scale. Risk-based targeted surveillance approaches reduce the num-

ber of samples required for pathogen detection by focusing surveil-

lance efforts to those populations at greatest risk for disease introduc-

tion while maintaining levels of detection useful for early detection of

a FAD.

Once at-risk populations have been identified, an additional chal-

lenge for surveillance in wildlife populations is determination of a

statistically valid sample size to meet surveillance system objectives

(Sleemanet al., 2012). In the case ofwildlife this is frequently due to the

lack of population estimates for the at-risk population being surveyed.

Targeted surveillance strategies help to lessen this challenge because

the number of local populations to be surveyed is constrained reducing

the geographic extent that population data are required. This allows

for more focused development of data needed to develop population

estimates to support determination of sample sizes required to meet

surveillance system objectives.

Once populations important for surveillance are identified and

sample sizes determined, a frequent limitation when conducting

surveillance in wildlife is obtaining samples from at-risk host species.

Sampling wildlife populations for disease is most frequently done

using opportunistic surveillance of hunter harvested animals, through

routine handling of wildlife during population monitoring activities

(e.g., bird banding), or investigations ofmassmortality events (Sleeman

et al., 2012). Collecting samples via any of these methods can benefit

from targeted sampling, due to logistical challenges of collecting

from populations at national scales, especially when the objective of

surveillance is early detection of a FAD that are expected to be a rare

event. Targeting surveillance to those populations of greatest risk aids

in reducing logistics at national scales. For example hunter harvest

surveillance is typically implemented either through hunter check

stations or in some cases self-reporting of harvest and presenting the

animal for testing. Both approaches are logistically challenging and

result in sampling that is unbalanced and spotty. However, focusing

these methods to at-risk populations can improve sampling efficiency

by improving logistics and increasing the capture of samples.

After samples have been acquired from at-risk populations a

further complication is that diagnostic assays are frequently unvali-

dated in wildlife species which complicates interpretation of results

and often results in reduced sensitivity of the overall surveillance

system (Stallknecht, 2007). Consequently, sample sizes are frequently

increased to compensate for reduced diagnostic sensitivity. While

this may serve to improve the surveillance system sensitivity, the

potential for false positive findings remains. False positive results

can be a substantial consideration when conducting surveillance for

OIE reportable diseases that can have negative economic impacts

on domestic animal trade. This is of greatest concern when surveil-

lance relies on serological assays of apparently healthy animals

because tissue culture supporting confirmatory diagnosticsmay not be
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available for the suspect animal and can take time to implement.

However, with a targeted surveillance approach the at-risk population

is defined and can be resampled to acquire the necessary tissues to

support confirmatory diagnostic testing.

4.1 Application of adaptive surveillance to
address wildlife surveillance challenges

Adaptive management is an important concept that is often used

to optimize temporal and spatial allocation of limited resources.

In adaptive management frameworks, monitoring is structured to

improve learning about the system by iterating between monitoring

to reduce uncertainty about key drivers of management outcomes and

then updating management strategies based on the improved knowl-

edge (Williams et al., 2009). Adaptive management frameworks have

been proposed as a tool to manage disease (Merl et al., 2009; Miller

et al., 2013; Shea et al., 2014; Webb et al., 2017), optimize disease

risk assessment (Miller & Pepin, 2019; Pepin et al., 2021) and appor-

tion surveillance for pathogen detection (Gonzales et al., 2014), but

have seldom been used in practice or implemented to design risk-

based surveillance at national scales in domestic or wild species. Our

framework incorporates adaptive management concepts by allowing

new risk factors to be incorporated through time. Additionally, our

results indicate updating surveillance priorities at regular intervals

using themost recent risk factordata is important topreventmisalloca-

tion of limited surveillance resources. Designing surveillance plans that

are adaptable is particularly important for emerging diseases because

objectives will change from largely risk assessment to predominantly

control if the disease is introduced into a new population (Clow et al.,

2019).

4.2 Application for rapidly implementing
surveillance for emerging diseases

Our surveillance framework is founded in epidemiological theory

(Pepin et al., 2021; Plowright et al., 2017) and utilizes the principle

components of initial disease introduction, presence of suitable host

populations and contact among host populations to identify at-risk

populations that can be prioritized for surveillance (see Figure 1).

Empirical data can be used to inform these transmission risk com-

ponents or, in the case of emerging diseases that have limited or no

empirical data available, proxy information representing likely or

hypothesized risk factors can be used. In itsmost basic implementation

presence/absence information for the at-risk host populations and

proxy information on pathways of introduction (e.g., airline passenger

movements or product shipments from regions where the disease

occurs) can be used to rapidly identify and triage populations for

surveillance. As new information emerges on risk factors associated

with transmission, host range, environmental persistence, or pathways

of introduction (anthropogenic or wildlife movement) data repre-

senting these risk factors can be incorporated into the framework

and surveillance targeting further improved (Cook et al., 2019). Addi-

tionally, risk factor uncertainty can be addressed by conducting a

sensitivity analysis to identify those regions and populations that are

invariant to changes in risk factor ranking (see Figure 6).

4.3 Future improvements: Incorporating
dynamical models

Our adaptive risk-based targeted surveillance framework greatly

improves upon traditional surveillance strategies that are largely

opportunistic or utilize coarse risk factors that are static through time,

however, there are opportunities to improve. The current framework

does not currently incorporate potential consequences of a disease

introduction—that is surveillance should also be focused on popula-

tions where the consequences (outbreak size, economic costs, etc) are

large. Our framework can be further improved by incorporating mech-

anistic models—that is, articulating the potential hierarchical or non-

linear relationships that may exist between risk factors or different

species involved in the disease system. Models that allow risk to vary

through timebased on epidemiologicalmechanisms (e.g., compartmen-

tal models that track susceptible and infected individuals) can improve

effective risk-based surveillance approaches by concurrently evaluat-

ing how changes in introduction risk, host populations, implementa-

tion of surveillance, species sampled and subsequent disease control

affect time-to-detection and potential outbreak severity (Comin et al.,

2012; Miller & Pepin, 2019). Mechanistic modelling approaches allow

the inclusion of factors that may influence the likelihood of transmis-

sion among wildlife and domestic animals such as poor domestic ani-

mal biosecurity or frequency of contact. Furthermore, because the

mechanismsgoverning transmission risks areexplicitly includedamore

integrated approach to surveillance is possible allowing allocation of

surveillance effort to both domestic and wildlife species proportional

to their risk.

Using mechanistic models, a fully probabilistic approach can be

implemented that would improve upon the relative risk approach we

developed. Furthermore, formal optimization approaches can be used

to determine the optimal spatial distribution and frequency of sam-

pling that minimizes costs while maximizing risk reduction (Gonzales

et al., 2014). The integration of mechanistic models into surveillance

optimization has significant benefits for emergency preparedness. In

the event of a FAD introduction, the models can be immediately used

with existing surveillance data to predict areas where the disease may

be present but undetected. Mechanistic approaches capture the varia-

tion that could occur over space and time because risk predictions will

changewith the state of the system. Changes in the state of the system

can result from intrinsic processes (e.g., birth pulses) that do not corre-

late explicitly with a covariate-only statistical approach. Additionally,

because mechanistic approaches capture variation in the underlaying

process of the systemquantities such as time-to-detection of cases can

be estimated and used to inform predictions of outbreak severity and,

in turn, allocation of resources to improve response activities. Finally,

mechanistic models are useful for evaluating control actions allowing
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alternative control policies to be evaluated quickly. Mechanistic mod-

els can be adjusted as new surveillance data become available improv-

ing our understanding of the systems epidemiology (e.g., which trans-

mission factors are more important), that can provide more precise

predictions for risk assessment and improve our knowledge for devel-

oping the best control strategies.

5 CONCLUSION

Surveillance frameworks that are founded in epidemiological theory

and can be rapidly scaled to meet new and emerging disease threats

are most useful for national scale FAD surveillance and are particu-

larly useful for wildlife. Our adaptive risk-based targeted surveillance

approach is flexible, accounts for changing disease risks through time,

can be scaled from local to national extents and permits the inclusion

of quantitative data or when information is limited to expert opin-

ion. Additionally, it can be used to alleviate many of the challenges

associated with identifying at-risk wildlife populations of importance

for surveillance. Our framework is an advancement for developing

surveillance systems in wildlife at national scales. There remains an

opportunity to advance our framework using mechanistic modelling

approaches that would integrate surveillance targeting and disease

control evaluation thus improving both efficiency of the surveillance

system as well as emergency preparedness.

ACKNOWLEDGMENTS

The findings and conclusions in this publication are thoseof the authors

and should not be construed to represent any official U.S. Depart-

ment of Agriculture or U.S. Government determination or policy. This

researchwas supported by the U.S. Department of Agriculture, Animal

and Plant Health Inspection Service.We thank research librarianMary

Foley for her assistance and advice in conducting literature searches

and finding difficult to locate documents.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ETHICAL STATEMENT

The authors confirm to adhere to the ethical policies of the journal. No

ethical approval was required as this is an original research article that

did not use experimental data.

DATA AVAILABILITY STATEMENT

The data that support the findingswill be available in [repository name]

at [DOI/URL] following an embargo from the date of publication to

allow for commercialization of research findings.

ORCID

GerickeCook https://orcid.org/0000-0003-2741-787X

KimM.Pepin https://orcid.org/0000-0002-9931-8312

ViennaR. Brown https://orcid.org/0000-0002-2938-3987

REFERENCES

APHIS. (2017). Targeted antibody surveillane for national diseases of concern in
feral swine in the USA. United States Department of Agriculture, Animal

Plant Health Inspection Service.

APHIS. (2015). Final environmental impact statement—Feral swine damage
management: A national approach. United States Department of Agricul-

ture, Animal Plant Health Inspection Service.

Arias, M., Jurado, C., Gallardo, C., Fernández-Pinero, J., & Sánchez-Vizcaíno,

J. (2018). Gaps in African swine fever: Analysis and priorities. Trans-
boundary and Emerging Diseases, 65, 235–247.

Beasley, T. M., Erickson, S., & Allison, D. B. (2009). Rank-based inverse nor-

mal transformations are increasingly used, but are they merited? Behav-
ior Genetics, 39(5), 580–595.

Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T., & Deliberto, T. J.

(2014). Consequences associated with the recent range expansion of

nonnative feral swine. Bioscience, 64(4), 291–299.
Bevins, S.N., Shriner, S. A., Cumbee, J. C., Dilione, K. E., Douglass, K. E., Ellis, J.

W., Killian, M. L., Torchetti, M. K., & Lenoch, J. B. (2022). Intercontinental

movement of H5 2.3. 4.4 Highly Pathogenic Avian Influenza A (H5N1) to

the United States, 2021. Emerging Infectious Diseases, 28(5), 1006–1011.
Blower, S.M., &Dowlatabadi, H. (1994). Sensitivity and uncertainty analysis

of complexmodels of disease transmission:AnHIVmodel, as an example.

International Statistical Review/Revue Internationale de Statistique, 62(2),
229–243.

Brown, V. R., Marlow, M. C., Gidlewski, T., Bowen, R., & Bosco-Lauth, A.

(2020a). Perspectives on the past, present, and future of feral swine dis-

ease surveillance in the United States. Journal of Animal Science, 98(8),
skaa256.

Brown, V. R., Miller, R. S., McKee, S. C., Ernst, K. H., Didero, N. M., Maison,

R. M., Grady, M. J., & Shwiff, S. A. (2020b). Risks of introduction and eco-

nomic consequences associatedwith African swine fever, classical swine

fever and foot-and-mouth disease: A review of the literature. Trans-
boundary and Emerging Diseases, 68(4), 1910–1965.

BTS. (2020).National transportationAtlas database. Bureauof Transportation
Statistics https://www.bts.gov/ntad

Buhnerkempe, M. G., Tildesley, M. J., Lindstrom, T., Grear, D. A., Portacci,

K., Miller, R. S., Lombard, J. E., Werkman, M., Keeling, M. J., Wennergren,

U., & Webb, C. T. (2014). The impact of movements and animal density

on continental scale cattle disease outbreaks in the United States. PLOS
One, 9(3), e91724. https://doi.org/10.1371/journal.pone.0091724

Chenais, E., Depner, K., Guberti, V., Dietze, K., Viltrop, A., & Ståhl, K. (2019).

Epidemiological considerations on African swine fever in Europe 2014–

2018. Porcine HealthManagement, 5(1), 1–10.
Clow, K.M., Leighton, P. A., Pearl, D. L., & Jardine, C.M. (2019). A framework

for adaptive surveillance of emerging tick-borne zoonoses.OneHealth,7,
100083.

Comin, A., Stegeman, A., Marangon, S., & Klinkenberg, D. (2012). Evaluating

surveillance strategies for the early detection of low pathogenicity avian

influenza infections. Plos One, 7(4), e35956.
Cook, G., Jarnevich, C., Warden, M., Downing, M., Withrow, J., & Leinwand,

I. (2019). Iterative models for early detection of invasive species across

spread pathways. Forests, 10(2), 108.
Corn, J. L., & Jordan, T. R. (2017). Development of the national feral swine

map, 1982–2016.Wildlife Society Bulletin, 41(4), 758–763.
Cross, P. C., Prosser, D. J., Ramey, A. M., Hanks, E. M., & Pepin, K. M.

(2019). Confronting models with data: The challenges of estimating dis-

ease spillover. Philosophical Transactions of the Royal Society B-Biological
Sciences, 374(1782), https://doi.org/10.1098/rstb.2018.0435

Davis, A. J., Farrar, R., Jump, B., Hall, P., Guerrant, T., &Pepin, K.M. (2021). An

efficient method of evaluating multiple concurrent management actions

on invasive populations. Applied Ecology.
DeLiberto, T., &Beach,R.H. (2006).USDAAPHISWildlife Services’National

wildlife disease surveillance and emergency response system (SERS).

Proceedings of the Vertebrate Pest Conference, 2, https://doi.org/10.5070/
V422110036

https://orcid.org/0000-0003-2741-787X
https://orcid.org/0000-0003-2741-787X
https://orcid.org/0000-0002-9931-8312
https://orcid.org/0000-0002-9931-8312
https://orcid.org/0000-0002-2938-3987
https://orcid.org/0000-0002-2938-3987
https://www.bts.gov/ntad
https://doi.org/10.1371/journal.pone.0091724
https://doi.org/10.1098/rstb.2018.0435
https://doi.org/10.5070/V422110036
https://doi.org/10.5070/V422110036


MILLER ET AL. 11

Gonzales, J., Boender, G., Elbers, A., Stegeman, J., & de Koeijer, A. (2014).

Risk based surveillance for early detection of low pathogenic avian

influenza outbreaks in layer chickens. Preventive Veterinary Medicine,
117(1), 251–259.

Gortazar, C., Diez-Delgado, I., Barasona, J. A., Vicente, J., De La Fuente, J.,

& Boadella, M. (2015). The wild side of disease control at the wildlife-

livestock-human interface: A review. Frontiers in Veterinary Science, 1, 27.
Herrera-Ibata, D. M., Martinez-Lopez, B., Quijada, D., Burton, K., & Mur,

L. (2017). Quantitative approach for the risk assessment of African

swine fever and classical swine fever introduction into the United States

through legal imports of pigs and swine products. PlosOne,12(8), https://
doi.org/10.1371/journal.pone.0182850

Huyvaert, K., Russell, R., Patyk, K., Craft,M., Cross, P., Garner,M.,Martin,M.

K., Nol, P., & Walsh, D. (2018). Challenges and opportunities developing

mathematical models of shared pathogens of domestic andwild animals.

Veterinary Sciences, 5(4), 92.
Jurado, C., Mur, L., Aguirreburualde, M. S. P., Cadenas-Fernández, E.,

Martínez-López, B., Sánchez-Vizcaíno, J. M., & Perez, A. (2019). Risk

of African swine fever virus introduction into the United States

through smuggling of pork in air passenger luggage. Scientific Reports,
9(1), 1–7.

Keiter, D. A., Mayer, J. J., & Beasley, J. C. (2016). What is in a “common”

name?A call for consistent terminology for nonnative Sus scrofa.Wildlife
Society Bulletin, 40(2), 384–387.

Lewis, J. S., Farnsworth, M. L., Burdett, C. L., Theobald, D. M., Gray, M., &

Miller, R. S. (2017). Biotic and abiotic factors predicting the global dis-

tribution and population density of an invasive large mammal. Scientific
Reports, 7, 44152. https://doi.org/10.1038/srep44152

Lloyd-Smith, J.O., George,D., Pepin, K.M., Pitzer, V. E., Pulliam, J. R., Dobson,

A. P., Hudson, P. J., & Grenfell, B. T. (2009). Epidemic dynamics at the

human-animal interface. Science, 326(5958), 1362–1367.
Manlove, K. R., Sampson, L. M., Borremans, B., Cassirer, E. F., Miller, R. S.,

Pepin, K. M., Besser, T. E., & Cross, P. C. (2019). A management-centered

approach to modeling pathogen spillover risk at the wildlife-livestock

interface. Philosophical Transactions of the Royal Society B, https://doi.org/
10.1098/rstb.2018.0343

Mayer, J., & Brisbin, I. (1991).Wild pigs in the United States: Their life history,
morphology and current status. University of Georgia Press.

Mayer, J. J., & Beasley, J. C. (2018).Wild pigs. In G.W.Witmer, J. C. Beasley,

&W.C. Pitt (Eds.), Ecology andmanagement of terrestrial vertebrate invasive
species in the United States (pp. 221–250). CRC Press LLC.

Mayer, J. J., Edwards, T. B., Garabedian, J. E., & Kilgo, J. C. (2021). Sanitary

waste landfill effects on an invasive wild pig population. The Journal of
Wildlife Management, 85(5), 868–879.

McClure,M. L., Burdett, C. L., Farnsworth,M. L., Lutman,M.W., Theobald,D.

M., Riggs, P. D., Grear, D. A., &Miller, R. S. (2015). Modeling andmapping

the probability of occurrence of invasive wild pigs across the contigu-

ous United States. PLOS One, 10(8), e0133771. https://doi.org/10.1371/
journal.pone.0133771

Merl, D., Johnson, L. R., Gramacy, R. B., & Mangel, M. (2009). A statistical

framework for the adaptive management of epidemiological interven-

tions. PLOSOne, 4(6), e5807.
Miller, R. S., Farnsworth, M. L., & Malmberg, J. L. (2013). Diseases at the

livestock-wildlife interface: Status, challenges, and opportunities in the

United States. Preventive Veterinary Medicine, 110(2), 119–132. https://
doi.org/10.1016/j.prevetmed.2012.11.021

Miller, R. S., Opp, S. M., & Webb, C. T. (2018). Determinants of invasive

species policy: Print media and agriculture determine US invasive wild

pig policy. Ecosphere, 9(8), 2291–2307.
Miller, R. S., & Pepin, K.M. (2019). BOARD INVITEDREVIEW: Prospects for

improving management of animal disease introductions using disease-

dynamicmodels. Journal of Animal Science, 97(6), e02379.
Miller, R. S., Sweeney, S. J., Slootmaker, C., Grear, D. A., Di Salvo, P. A., Kiser,

D., & Shwiff, S. A. (2017). Cross-species transmission potential between

wild pigs, livestock, poultry, wildlife, and humans: Implications for dis-

ease risk management in North America. Scientific Reports, 7(1), 7821.
https://doi.org/10.1038/s41598-017-07336-z

Morner, T., Obendorf, D., Artois, M., & Woodford, M. (2002). Surveillance

and monitoring of wildlife diseases. Revue Scientifique et Technique-Office
International des Epizooties, 21(1), 67–76.

Pedersen, K., Bevins, S. N., Baroch, J. A., Cumbee, J. C. Jr, Chandler, S. C.,

Woodruff, B. S., Bigelow, T. T., & DeLiberto, T. J. (2013). Pseudorabies in

feral swine in the United States, 2009–2012. Journal of Wildlife Diseases,
49(3), 709–713.

Pedersen, K., Bevins, S. N., Schmit, B. S., Lutman, M. W., Milleson, M. P.,

Turnage, C. T., Bigelow, T. T., & DeLiberto, T. J. (2012). Apparent preva-

lence of swine brucellosis in feral swine in the United States. Human-
Wildlife Interactions, 6(1), 38–47.

Pepin, K. M., Miller, R. S., & Wilber, M. Q. (2021). A framework for

surveillance of emerging pathogens at the human-animal interface: Pigs

and coronaviruses as a case study. Preventive Veterinary Medicine, 188,
105281.

Pepin, K.M., Spackman, E., Brown, J.D., Pabilonia, K. L., Garber, L. P.,Weaver,

J. T., Kennedy, D. A., Patyk, K. A., Huyvaert, K. P., Miller, R. S., Franklin,

A. B., Pedersen, K., Bogich, T. L., Rohani, P., Shriner, S. A., Webb, C. T., &

Riley, S. (2014). Using quantitative disease dynamics as a tool for guid-

ing response to avian influenza in poultry in the United States of Amer-

ica. Preventive Veterinary Medicine, 113(4), 376–397. https://doi.org/10.
1016/j.prevetmed.2013.11.011

Pepin, K. M., Wolfson, D. W., Miller, R. S., Tabak, M. A., Snow, N. P.,

VerCauteren, K. C., & Davis, A. J. (2019). Accounting for heterogeneous

invasion rates reveals management impacts on the spatial expansion of

an invasive species. Ecosphere, 10(3), e02657.
Peterson, R. A., & Peterson, M. R. A. (2020). Package ‘bestNormalize’. Nor-

malizing transformation functions, Version 1.8.2.

Plowright, R. K., Parrish, C. R., McCallum, H., Hudson, P. J., Ko, A. I., Graham,

A. L., & Lloyd-Smith, J. O. (2017). Pathways to zoonotic spillover. Nature
ReviewsMicrobiology, 15(8), 502.

Portier, J., Ryser-Degiorgis, M.-P., Hutchings, M. R., Monchâtre-Leroy, E.,

Richomme, C., Larrat, S., van der Poel, W. H. M., Dominguez, M.,

Linden, A., Santos, P. T., Warns-Petit, E., Chollet, J. Y., Cavalerie, L.,

Grandmontagne, C., Boadella, M., Bonbon, E., & Artois, M. (2019). Multi-

host diseasemanagement: Thewhy and the how to includewildlife. BMC
Veterinary Research, 15(1), 1–11.

R-project. (2020). R: A language and environment for statistical computing. R
Foundation for Statistical Computing. https://www.R-project.org/

Ryser-Degiorgis, M.-P. (2013). Wildlife health investigations: Needs, chal-

lenges and recommendations. BMCVeterinary Research, 9(1), 1–17.
Shea, K., Tildesley, M. J., Runge, M. C., Fonnesbeck, C. J., & Ferrari, M. J.

(2014). Adaptivemanagement and the value of information: Learning via

intervention in epidemiology. PLoS Biology, 12(10), e1001970.
Siembieda, J., Kock, R., McCracken, T., & Newman, S. (2011). The role

of wildlife in transboundary animal diseases. Animal Health Research
Reviews, 12(1), 95–111.

Sleeman, J. M., Brand, C. J., & Wright, S. D. (2012). Strategies for wildlife

disease surveillance. USGS Staff – Published Research. 971. http://

digitalcommons.unl.edu/usgsstaffpub/971

Smyser, T. J., Tabak,M. A., Slootmaker, C., Robeson,M. S., Miller, R. S., Bosse,

M.,Megens,H. J.,Groenen,M.A.M., Paiva, S. R., deFaria,D.A., Blackburn,

H. D., Schmit, B. S., & de Faria, D. A. (2020).Mixed ancestry fromwild and

domestic lineages contributes to the rapid expansion of invasive feral

swine.Molecular Ecology, 29(6), 1103–1119.
Snow, N. P., Jarzyna, M. A., & VerCauteren, K. C. (2017). Interpreting and

predicting the spread of invasive wild pigs. Journal of Applied Ecology,
54(6), 2022–2032.

Stallknecht, D. E. (2007). Impediments to wildlife disease surveillance,

research, and diagnostics. In J. E. Childs, J. S. Mackenzie, & J. A. Richt

(Eds.),Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances

https://doi.org/10.1371/journal.pone.0182850
https://doi.org/10.1371/journal.pone.0182850
https://doi.org/10.1038/srep44152
https://doi.org/10.1098/rstb.2018.0343
https://doi.org/10.1098/rstb.2018.0343
https://doi.org/10.1371/journal.pone.0133771
https://doi.org/10.1371/journal.pone.0133771
https://doi.org/10.1016/j.prevetmed.2012.11.021
https://doi.org/10.1016/j.prevetmed.2012.11.021
https://doi.org/10.1038/s41598-017-07336-z
https://doi.org/10.1016/j.prevetmed.2013.11.011
https://doi.org/10.1016/j.prevetmed.2013.11.011
https://www.R-project.org/
http://digitalcommons.unl.edu/usgsstaffpub/971
http://digitalcommons.unl.edu/usgsstaffpub/971


12 MILLER ET AL.

and Consequences of Cross-Species Transmission. Current Topics in Microbi-
ology and Immunology (Vol. 315). Springer, Berlin, Heidelberg. https://doi.
org/10.1007/978-3-540-70962-6_17

Swafford, S. R., Schmit, B. S., Pedersen, K., Lutman, M. W., & DeLiberto, T. J.

(2009). Classical swine fever surveillance in feral swine.Proceedings of the
13thWDMConference.

Tabak,M. A.,Webb, C. T., &Miller, R. S. (2018). Propagule size and structure,

life history, and environmental conditions affect establishment success

of an invasive species. Scientific Reports, 8(1), 10313.
USDA. (2020). Quick stats. National Agricultural Statistics Service, US

Department of Agriculture http://quickstats.nass.usda.gov/

USDA. (2021a). Agricultural quarantine inspection monitoring datbase. Agri-
cultural Quarantine Activity System. Plant Protection Quarantine, US

Department of Agriculture http://quickstats.nass.usda.gov/

USDA. (2021b). Mail287 database. Agricultural quarantine activity system.
Plant Protection Quarantine, US Department of Agriculture http://

quickstats.nass.usda.gov/

VerCauteren, K. C., Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Roloff, G. J., &

Strickland, B. K. (2019). invasivewild pigs in north america: ecology, impacts,
and management. CRC Press.

VerCauteren, K. C., Lavelle, M. J., & Campa, H. III (2018). Persistent spill-

back of bovine tuberculosis fromwhite-tailed deer to cattle inMichigan,

USA: Status, strategies, and needs. Frontiers in Veterinary Science, 5, 301.
https://doi.org/10.3389/fvets.2018.00301

VerCauteren, K. C., & Miller, R. S. (2021). Characteristics and perspec-

tives of disease at the wildlife-livestock interface in North America. In

J. Vicente, K. VerCauteren, & C. Gortazar (Ed.), Diseases at the wildlife-
livestock interface: Research and perspectives in a changing world (Vol., 3).

Springer Nature.

WAHIS. (2021).World animal health information system (WAHIS). http://www.
oie.int/wahis_2/public/wahid.php

Webb, C. T., Ferrari, M., Lindström, T., Carpenter, T., Dürr, S., Garner,

G., Jewell, C., Stevenson, M., Ward, M. P., Werkman, M., Backer, J.,

& Tildesley, M. (2017). Ensemble modelling and structured decision-

making to support emergencydiseasemanagement.PreventiveVeterinary
Medicine, 138, 124–133.

Wiethoelter, A. K., Beltrán-Alcrudo, D., Kock, R., &Mor, S. M. (2015). Global

trends in infectious diseases at the wildlife–livestock interface. Proceed-
ings of the National Academy of Sciences, 112(31), 9662–9667.

Williams, B. K., Szaro, R. C., & Shapiro, C. D. (2009). Adaptive management:
The US Department of the Interior technical guide. https://www.doi.gov/
sites/doi.gov/files/migrated/ppa/upload/TechGuide.pdf

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Miller, R. S., Bevins, S. N., Cook, G.,

Free, R., Pepin, K.M., Gidlewski, T., & Brown, V. R. (2022).

Adaptive risk-based targeted surveillance for foreign animal

diseases at the wildlife-livestock interface. Transboundary and

Emerging Diseases, 1–12. https://doi.org/10.1111/tbed.14576

https://doi.org/10.1007/978-3-540-70962-6_17
https://doi.org/10.1007/978-3-540-70962-6_17
http://quickstats.nass.usda.gov/
http://quickstats.nass.usda.gov/
http://quickstats.nass.usda.gov/
http://quickstats.nass.usda.gov/
https://doi.org/10.3389/fvets.2018.00301
http://www.oie.int/wahis_2/public/wahid.php
http://www.oie.int/wahis_2/public/wahid.php
https://www.doi.gov/sites/doi.gov/files/migrated/ppa/upload/TechGuide.pdf
https://www.doi.gov/sites/doi.gov/files/migrated/ppa/upload/TechGuide.pdf
https://doi.org/10.1111/tbed.14576

	Adaptive risk-based targeted surveillance for foreign animal diseases at the wildlife-livestock interface
	
	Authors

	Adaptive risk-based targeted surveillance for foreign animal diseases at the wildlife-livestock interface
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Sensitivity analyses
	2.2 | Temporal change in risk

	3 | RESULTS
	3.1 | Sensitivity analyses
	3.2 | Relative risk ranking and temporal change in risk

	4 | DISCUSSION
	4.1 | Application of adaptive surveillance to address wildlife surveillance challenges
	4.2 | Application for rapidly implementing surveillance for emerging diseases
	4.3 | Future improvements: Incorporating dynamical models

	5 | CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	ETHICAL STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


