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a b s t r a c t

Screening for drought tolerance is critical to ensure high biomass production of bioenergy sorghum in
arid or semi-arid environments. The bottleneck in drought tolerance selection is the challenge of
accurately predicting biomass for a large number of genotypes. Although biomass prediction by low-
altitude remote sensing has been widely investigated on various crops, the performance of the predic-
tions are not consistent, especially when applied in a breeding context with hundreds of genotypes. In
some cases, biomass prediction of a large group of genotypes benefited from multimodal remote sensing
data; while in other cases, the benefits were not obvious. In this study, we evaluated the performance of
single and multimodal data (thermal, RGB, and multispectral) derived from an unmanned aerial vehicle
(UAV) for biomass prediction for drought tolerance assessments within a context of bioenergy sorghum
breeding. The biomass of 360 sorghum genotypes grown under well-watered and water-stressed regimes
was predicted with a series of UAV-derived canopy features, including canopy structure, spectral reflec-
tance, and thermal radiation features. Biomass predictions using canopy features derived from the mul-
timodal data showed comparable performance with the best results obtained with the single modal data
with coefficients of determination (R2) ranging from 0.40 to 0.53 under water-stressed environment and
0.11 to 0.35 under well-watered environment. The significance in biomass prediction was highest with
multispectral followed by RGB and lowest with the thermal sensor. Finally, two well-recognized yield-
based drought tolerance indices were calculated from ground truth biomass data and UAV predicted bio-
mass, respectively. Results showed that the geometric mean productivity index outperformed the yield
stability index in terms of the potential for reliable predictions by the remotely sensed data.
Collectively, this study demonstrated a promising strategy for the use of different UAV-based imaging
sensors to quantify yield-based drought tolerance.
� 2022 Crop Science Society of China and Institute of Crop Science, CAAS. Publishing services by Elsevier

B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bioenergy sorghum is a photoperiod-sensitive sorghum that
either flowers late or not at all in the northern hemisphere. Owing
to its enhanced photoperiod sensitivity and prolonged vegetative
growth duration, bioenergy sorghum has been found to produce
more than twice the biomass of grain sorghum [1,2] and is there-
fore being developed as an important feedstock for bioenergy pro-
duction. It grows in marginal areas, such as arid regions; hence,
drought tolerance is one of the most important traits for the pro-

duction of bioenergy sorghum. Although the prolonged vegetative
growth stage is one factor that enhances its drought-tolerance abil-
ity [3], selecting the most drought tolerant sorghum genotypes is
an important breeding goal to maximize biomass yields in mar-
ginal environments.

Over many decades, researchers have used direct or indirect
selection criteria for drought tolerance. As a direct selection crite-
rion, primary traits such as grain yield or biomass are of great
interest to researchers. Based on primary traits, numerous drought
tolerance indices have also been developed to evaluate the
drought-adaptive performance of different plant genotypes. Some
commonly used indices include geometric mean productivity
(GMP), mean productivity (MP), harmonic mean (HM), stress toler-
ance index (STI), stress susceptibility index (SSI), tolerance index
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(TOL), and yield stability index (YSI) [4,5]. These indices can be lar-
gely grouped into two categories. The first group includes GMP,
MP, HM, and STI, which have been found to be more reliable for
identifying genotypes with both high yield potential and stress tol-
erance potential [6,7]. YSI and SSI fall into the second group that is
useful for discriminating genotypes with higher stability across
multiple environments [8,9]. The indices within each group gener-
ally have strong correlations with each other [5,9]. In this study, we
were interested in the genotypes with both high biomass and yield
stability. Therefore, we identified two drought tolerance indices,
i.e., GMP and YSI, as the drought tolerance indicators for selecting
the best drought tolerant bioenergy sorghum genotypes.

In addition to the direct selection criterion, numerous sec-
ondary traits have also been evaluated and used as indirect selec-
tion criteria for drought tolerance [10]. Secondary traits are related
to primary traits but provide additional information on crop
growth. Compared to primary traits that are usually measured at
the end of the season, the secondary traits are easier and faster
to measure during the season, are highly heritable, and may have
good correlations with the primary traits [11,12]. For sorghum, a
suite of secondary traits has been evaluated in drought tolerance
breeding, such as leaf rolling, leaf water potential, stay-green,
stomatal conductance, plant height, and canopy temperature
[13,14]. Although these traits have shown to be useful in drought
tolerance selection, phenotyping them in a high-throughput man-
ner in the field remains very labor-intensive and slow. A promising
solution is to replace the traditionally labor-intensive manual mea-
surements with new advanced remote sensing techniques.

Remote sensing is capable of collecting data in a faster, nonde-
structive, and more cost-effective manner [15]. Remote sensing
data can be further used to estimate the above primary and sec-
ondary traits. For example, one of the most well-characterized
drought adaptative traits in sorghum, stay-green [16], has tradi-
tionally been evaluated using visual scores based on the fraction
of senesced leaf area [17] or the fraction of green leaves [18]. Using
remote sensing tools, it is possible to estimate stay-green nonde-
structively from spectral indices, such as the normalized difference
red edge (NDRE) [19] and the normalized difference vegetation
index (NDVI) [20]. Additionally, another important drought adap-
tative trait, canopy temperature, has been well-documented in sor-
ghum [21], wheat [22], potato [23], and other crops [24–26]. It is
usually measured by remote sensors, such as thermal infrared ima-
gery and infrared thermometry. Early in 1989, researchers used
handheld infrared thermometers to measure canopy temperature
and reported that the drought-resistant sorghum genotypes had
lower canopy temperatures than the drought susceptible ones
[27]. These successful applications of remote sensors in measuring
drought responsive secondary traits indicate the possibility of
applying such techniques to a drought tolerance breeding program.

Among various remote sensing platforms, the unmanned aerial
vehicle (UAV) has gained increasing attention since it provides
higher spatial resolution than satellite platforms and allows faster
data collection than ground platforms. Moreover, with the minia-
turization of optical cameras, a large number of successful applica-
tions of UAV systems have been reported in agricultural fields
[28–31]. Many canopy features can be derived from the sensors
attached to UAVs that may be directly or indirectly related to
drought responsive traits, such as canopy temperature, vegetation
indices, and plant height. This has led to the use of the UAV system
for evaluating the drought tolerance in a bioenergy sorghum asso-
ciation panel in this study.

Only a limited number of studies have applied UAV systems to
drought tolerance screening [5,32–34]. UAV thermal imaging was
used to evaluate the drought responses of 503 poplar tree geno-
types [5]. One-fourth of the population was identified as candi-
dates for drought-tolerant genotypes using a stress susceptibility

index calculated with canopy temperature. In addition to UAV-
acquired thermal imaging, RGB images were also added [32,33]
to assess the drought tolerance of 390 genotypes of forage grasses.
In that study, the drought tolerance was rated by visual scoring of
the amount of green biomass using the human eye. Multiple RGB-
based indices and thermal-based indices correlated with the bree-
der scores. The results showed that the thermal indices had weaker
correlations than the RGB indices with the visual scores. Given the
intrinsic complexity of plant drought adaptation mechanisms [10],
different genotypes may have a unique set of physiological and
biochemical responses. Therefore, many studies have emphasized
the importance of combining multiple selection criteria for select-
ing drought-tolerant genotypes [11,22]. Using UAV technology, the
utilization of data sets from multiple sensors such as thermal, RGB,
and multispectral cameras makes this approach more feasible.
Image features extracted from multiple UAV-based cameras were
used together with a support vector machine classifier to distin-
guish between two groups of genotypes with differential wilting
times with an average classification accuracy of 80% [34]. While
earlier results suggested that UAVs provide a rapid, objective,
and labor-saving method for distinguishing drought tolerance
within large populations of different plant genotypes, further stud-
ies are needed to quantitatively evaluate the potential of UAV-
based multimodal images (thermal, RGB, and multispectral) for
yield-based drought tolerance selection.

In our study, the quantitative evaluation was focused on the
estimation of biomass since this was the primary trait for the selec-
tion of drought tolerant bioenergy sorghum genotypes. Although
UAV-based remote sensing data have been used to estimate bio-
mass for various crops, such as maize [35], wheat [36], pea [37],
and sorghum [38,39], the estimation performance varies amongst
studies on the same crop species. For example, Masjedi et al. [38]
conducted experiments for sorghum biomass prediction using
UAV-based RGB, hyperspectral and LiDAR sensors. The number of
genotypes evaluated ranged from 4 to 840. Results showed that
the R2 between estimated and measured end-of-season biomass
ranged from 0.64 to 0.89. In another study that targeted biomass
estimation of ten sorghum varieties using vegetation indices
derived from UAV-based remote sensing data, the maximum R2

achieved was 0.91 [39]. Differences in the estimation performance
among these studies may be attributed to variation in experimen-
tal design, types of sensors used, modeling approach, number of
genotypes, sample size, and other factors. In contrast to other
studies highlighted above, our study sought to assess the use of
UAV-based single and multimodal data (thermal, RGB, and multi-
spectral) to quantify biomass production and to evaluate drought
tolerance in a large bioenergy sorghum association panel [40]. A
linear support vector regression model was first established to pre-
dict biomass using the canopy features extracted from UAV multi-
modal images. Thereafter, we assessed the reliability of using the
UAV predicted biomass to derive the yield-based drought tolerance
indices (i.e., GMP and YSI).

2. Materials and methods

2.1. Field experiment and biomass sampling

The experiment was conducted at the Panhandle Research and
Extension Center of the University of Nebraska-Lincoln located in
Scottsbluff, NE, USA (Fig. 1). The soil was relatively uniform
throughout the field. Four randomized blocks were arranged in
the field, including two well-watered (WW) replicates and two
water-stressed (WS) replicates in 30 plots � 12 ranges grid. The
size of each block was 75 m long and 52 m wide. A total of 360 sor-
ghum genotypes were planted in each block, consisting of 357
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accessions of the Bioenergy Association Panel (BAP) population
[40], one Grassl [40], one BTx623 [41], and one PI_92264. The
entries in each block were fully randomized. Individual plots were
4.5 m long and 1.5 m wide, consisting of two rows spaced 76 cm
apart. Each plot was planted with 100 seeds, with 50 seeds per
row.

On April 16, 2020, 112 kg ha�1 of nitrogen urea was applied to
the field and incorporated using tillage. Planting occurred on June
1, 2020 for all 1440 plots using a precision vacuum planter. For the
WW replicates, 29.35 cm of supplemental irrigation was applied
on a weekly basis. For the WS replicates, 3.05 cm of supplemental
irrigation was applied initially to establish the plants in the field.
Fresh and dry biomass was harvested on September 2–4, using a
tractor pulled a forage harvester with a weigh hopper. The entire
plot was harvested and chopped. Whole plot weights were
recorded by load cells below the weigh hopper to the nearest
0.23 kg. A subsample of the wet chopped-up plant material was
taken from each plot, and its fresh biomass was obtained. This sub-
sample was then put into a small mesh drawstring bag and placed
in drying ovens until sample weights stopped decreasing. Dried
plant material was taken out of the bag and weighed. Both fresh
and dry biomass units were finally converted to kg m�2 for each
plot.

2.2. Statistical analysis for fresh and dry biomass

Two-way ANOVA (analysis of variance) was carried out to eval-
uate the effects of water treatment, genotype, and the interaction
between genotype and treatment (G � T) on the observed fresh
and dry biomass. The difference was considered to be statistically
significant at a = 0.001. From the ANOVA output, the expected
mean of squares (EMS) can be estimated by ‘mean of squares’,
which were further used to calculate genotypic variance r2

G

� �
,

G � T variance r2
G � T

� �
, and residual variance r2

e
� �

following Equa-

tion (1–3) [11]. Thereafter, the broad-sense heritability (H2
bÞ was

estimated over combined treatments according to Equation (4) [5].

r2
G ¼ EMSG � EMSG�Tð Þ=rt ð1Þ

r2
G � T ¼ EMSG�T � EMSeð Þ=r ð2Þ

r2
e ¼ EMSe ð3Þ

H2
b ¼ r2

G=r
2
P;wherer2

P ¼ r2
G þ r2

G � T=t
� �þ r2

e=rt
� � ð4Þ

Where EMSG, EMSG�T, and EMSe are the mean of squares from
ANOVA output for genotype, G � T, and residual error components,
respectively. The number of replicates for a genotype within each
treatment is r, and t is the total number of treatments. The total
phenotypic variance is r2

P.
Additionally, the impact of water deficit on biomass was evalu-

ated by computing mean, percent reduction (PR) in WS as com-
pared to WW (Equation (5)) [42], and coefficient of variation (CV,
Equation (6)). Pearson correlation coefficient (r) was used to exam-
ine the correlations between biomass and UAV-derived individual
canopy feature.

PR %ð Þ ¼ lww � lws

� �
=lww � 100 ð5Þ

CV %ð Þ ¼ SD=l� 100 ð6Þ
Where lww and lws are the mean value under well-water and

water-stressed conditions. SD and l are the standard deviation
and mean of the target variable under well-water or water-
stressed conditions.

2.3. UAV systems and flight missions

Two unmanned aerial systems were used for data collection, as
depicted in Fig. 1. The six-rotor UAV is the DJI Matrice 600 Pro (DJI,
Shenzhen, Guangdong, China), equipped with the Zenmuse X5R
RGB camera (DJI, Shenzhen, Guangdong, China) and the five-band
RedEdge multispectral camera (MicaSense, Inc. Seattle, WA, USA).
RGB and multispectral images were obtained using this system.
Detailed specifications of the RGB and the multispectral cameras
were provided in Table S1. The four-rotor aerial vehicle, DJI Matrice
210 RTK (DJI, Shenzhen, Guangdong, China), was used to collect
thermal images by the carried Zenmuse XT2 camera (DJI, Shen-
zhen, Guangdong, China). This camera is a dual-sensor system: a
radiometric thermal sensor made up of uncooled Vox
microbolometers and a visible sensor. In this study, only the
images from the thermal sensor were used. Each thermal pixel
records temperature value in Celsius degrees. More specifications
of this thermal sensor are listed in Table S1.

Two UAV data collections were conducted in 2020. The corre-
sponding drone flight settings and weather conditions were listed
in Table S2. The weather during the flights was mostly sunny with
mild wind. All the images were collected within the period from
11:30 to 13:30 local time, except on August 5 when the thermal
images were collected at 15:50 local time due to unexpected sys-

Fig. 1. Field map and UAV systems. The RGB map was collected on August 5, 2020. WS represents water-stressed treatment; WW is well-watered treatment.
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tem malfunction. As suggested by Kelly et al. [43], the thermal
camera was turned on and stabilized for about 30 mins before
the flight. The purpose was to alleviate any temperature depen-
dency effect, which is the effect of the thermal sensor’s tempera-
ture on the thermal responsive signal [44].

2.4. Image processing and canopy feature extraction

Pix4Dmapper (Pix4D, Lausanne, Switzerland) software was
used to generate orthomosaic from raw aerial images. During the
map generation, geometric correction was performed in
Pix4Dmapper to correct geometric distortion and to ensure that
maps from different sensors or different times were well-aligned.
The correction utilized five ground control points, i.e., checkered
wooden boards, that were distributed evenly in the field. The
geo-locations of the center of those boards were surveyed in the
field with a Real-Time Kinematic GPS receiver (Topcon Positioning
Systems, Inc., Tokyo, Japan) with centimeter-level accuracy. The
radiometric calibration for the multispectral images involved two
sources of calibration references: (1) the MicaSense’s Calibrated
Reflectance Panel provided by the manufacturer; (2) three stan-
dard reflectance tarps laid out in the field. Details on the multi-
spectral radiometric calibration are described in Li et al. [45]. The
thermal calibration description can be found in Fig. S1. Specifically,
three reference targets were laid out in the middle of the field,
including a cold reference (a cooler containing water and ice mix-
ture), a plant sample representing medium temperature, and a hot
reference (the darkest radiometric correction tarp). The surface
temperature of these targets was measured concurrently with
the flights, using a handheld infrared radiometer (Apogee Instru-
ments, Inc., Logan, UT, USA). For each data collection, a linear cal-
ibration function was established between the measured
reference temperatures of the targets and their corresponding
pixel values averaged from the thermal map (Fig. S1). The linear
calibration function was then used to calibrate the original thermal
map. From the corrected orthomosaic (i.e., thermal, RGB, and mul-
tispectral maps), six canopy features were extracted: normalized
relative canopy temperature (NRCT), canopy cover, plant height,
and three vegetation indices.

2.4.1. Normalized relative canopy temperature (NRCT) and canopy
cover

The NRCT and canopy cover were extracted together, using the
RGB co-registration method to remove soil pixels from the RGB and
thermal map [46]. The co-registration method makes use of the
higher spatial resolution of the RGB map and could partially allevi-
ate the effect of the mixed pixels in the thermal map with lower
spatial resolution. The mixed pixel is the pixel that covers both
vegetation and soil [47]. The RGB co-registration workflow is
shown in Fig. S2. First, the RGB map was converted to the HSV
(i.e., Hue, Saturation, Value) color space. Based on the literature
[48] and manual adjustment, a pixel was considered to be plant
pixel when its value in the Hue channel ranged from 20 to 120,
in the Saturation channel ranged from 50 to 255, and in the Value
channel ranged from 80 to 255. Using this approach, a binary plant
mask was created, where one represents plant pixel and zero rep-
resents non-plant pixel. Second, the original thermal map was
resampled to the same size as the plant mask using the nearest
neighbor interpolation method. The resampling allows us to over-
lay the plant mask onto the thermal map to generate the seg-
mented thermal map, where the non-plant pixels were set to
Null value.

From the segmented thermal map, mean canopy temperature
(�C) was derived from each plot. To normalize across different data
collection events, the canopy temperature was converted to NRCT,
according to Equation (7) [49,50]. In other studies canopy-air tem-

perature difference was used, but because of the speed with which
the UAV can cover the entire field (approximately 10 mins), the air
temperature did not change significantly so that it was not neces-
sary to factor the air temperature into our data analysis. The
canopy cover was also derived from the segmented thermal map,
as the ratio between the number of plant pixels and the number
of all pixels falling into each plot.

NRCT ¼ Tcanopy � Tmin
� �

= Tmax � Tminð Þ ð7Þ
Where Tcanopy is the mean canopy temperature (�C) from the

soil-removed thermal map; Tmin and Tmax represent the minimum
and maximum temperature (�C) within all the pixels in the soil-
removed thermal map.

2.4.2. Plant height
To obtain the plant height map, the digital surfaced model

(DSM) was generated from the RGB images using the Pix4Dmapper
software. The DSM represents the elevation above sea level of the
surface, including the surface of natural or artificial features. More-
over, a digital elevation model (DEM) indicating the elevation
above sea level of the bare soil was also required. In this study,
the DEM was created by interpolating soil points sampled from
the DSM map, using the Kriging interpolation tool in ArcMap
10.5.1 (Esri Inc., Redlands, CA, USA). The plant height map was then
derived as the difference between the DSM and the DEM maps.
Then, for each plot, the trimmed mean value was extracted to rep-
resent plot-level average plant height: the mean value of all the
pixels falling into the range of 25th to 75th percentiles of plant
height pixel values within one plot.

2.4.3. Vegetation indices
Finally, three vegetation indices were computed from the mul-

tispectral bands: NDVI, NDRE, and RDVI (i.e., renormalized differ-
ence vegetation index). These indices have already been widely
used and were reported to be efficient in estimating crop water
stress [51]. The formulae for these indices were given in Equation
(8–10).

NDVI ¼ RNIR � RREDð Þ= RNIR þ RREDð Þ ð8Þ

NDRE ¼ RNIR � RRedEdge
� �

= RNIR þ RRedEdge
� � ð9Þ

RDVI ¼ RNIR � RREDð Þ= RNIR þ RREDð Þ1=2 ð10Þ
Where RNIR, RRED, RRedEdge are reflectance value of the near-

infrared, red, and red edge spectral band, respectively.

2.5. Linear support vector regressor for biomass prediction

To estimate the biomass using the extracted canopy features,
the support vector regressor with the linear kernel (Linear-SVR)
was utilized. The support vector regressor is the regression equiv-
alent of the support vector machine (SVM), a classical and popular
supervised machine learning algorithm [52]. Different nonlinear
kernel functions have been integrated into SVM to solve nonlinear
problems, such as Gaussian radial basis function, polynomial func-
tion, and sigmoid function [53]. While in this study, the linear ker-
nel was found to be the most efficient and was thus selected. The
objective of the SVR model is to find an optimal hyperplane that
fits the data. Besides, a flexible boundary is formed symmetrically
around the hyperplane. Within this boundary, the estimation
errors are tolerant during model training [54]. The width of this
boundary can be predefined or optimized by the analyst, referring
to the hyperparameter e. Conversely, the estimations outside this
boundary are penalized by a regularization term C. In this study,
both e and C were optimized for each model.
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Regression models were established separately for WS and WW
conditions. Under each water regime, 70% of the 360 genotypes
were randomly selected as the training set (i.e., 252 genotypes),
and 30% of the genotypes were used as the testing set (i.e., 108
genotypes). Given that each treatment was replicated twice, the
resulting training sample size was 504, and the testing sample size
was 216. The genotypes assigned to the testing set were consistent
between two water regions. Model hyperparameters were opti-
mized through a ten-fold cross-validation nested in a grid search
process, using the training samples only. Then, the model with
its optimized hyperparameters was further evaluated on the
stand-alone testing set. Three evaluation criteria, i.e., the coeffi-
cient of determination (R2) (Equation (11)) and the root mean
squared error (RMSE) (Equation (12)), and relative RMSE (RRMSE,
Equation (13)) were computed between the model predicted and
the measured biomass.

R2 ¼ 1�
Xn

i
yi � byi

� �2
=
Xn

i
yi � y

�� �2
ð11Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i
yi � byi

� �2
=n

q
ð12Þ

RRMSE %ð Þ ¼ RMSE= y
��100 ð13Þ

Where yi and byi are the actual and predicted values for ith sam-

ple; y
�
is the mean value of n total number of samples.

2.6. Yield-based drought tolerance indices

Selection criteria for drought-tolerant genotypes vary from case
to case. In this study, we selected GMP and YSI as drought toler-
ance indices, computed by equations (14) [6] and (15) [55], respec-
tively. These formulae were originally established based on grain
yield production. In this study, however, as biomass production
is the primary trait of bioenergy sorghum, grain yield terms were
replaced with biomass. Accordingly, we renamed these two indices
as ‘biomass-GMP’ and ‘biomass-YSI’, respectively. We understand
that the final decision on whether a genotype is drought tolerant
or not depends on individual breeders and breeding purposes in
each breeding program. In the present study, we considered the
top-ten genotypes as drought tolerant ones by ranking the geno-
types based on biomass-GMP and biomass-YSI indices.

In addition, to evaluate the biomass predicted from UAV-
derived canopy features, biomass-GMP and biomass-YSI computed
using the predicted biomass (i.e., all the canopy features were used
as predictors) were compared with those computed using ground
truth biomass.

BiomassGMP ¼ BiomassWW � BiomassWSð Þ1=2 ð14Þ

BiomassYSI ¼ BiomassWS=BiomassWW ð15Þ
Where BiomassWW is the biomass under well-watered condi-

tions; BiomassWS is the biomass under water-stressed condition.

3. Results

3.1. Statistical analysis for fresh and dry biomass

The biomass was statistically different (a = 0.001) due to treat-
ment, genotype, but not the interaction between treatment and
genotype (Table 1). The effects of water deficit on fresh and dry
biomass were further compared using mean values and CV within
each water regime and the percent reduction (PR) under WS con-
dition relative to WW condition (Table 1). In general, biomass pro-
duction was reduced under the water-stressed environment. The

reduction in the fresh biomass (32.99% PR) was larger than that
of the dry biomass (10.81% PR), which probably indicates that
the water deficit had a significant impact on plant water content.
Using the output of ANOVA, we computed the variance compo-
nents and the broad-sense heritability of fresh and dry biomass
(Table 1). Results showed that the heritability of fresh biomass
was higher than that of dry biomass.

3.2. Correlation between individual UAV derived canopy feature and
biomass

The correlations (i.e., correlation coefficient r) between UAV-
derived canopy features and biomass under each water regime
were explored (Fig. 2). In general, the correlations under WS con-
ditions were stronger than those under WW conditions, regardless
of fresh or dry biomass. For the three vegetation indices, the corre-
lations on August 5 were all stronger than those on August 28,
regardless of the water regimes or biomass components. Among
all canopy features derived from two dates of UAV data collections,
RDVI under WS conditions on August 5 had the strongest correla-
tion with fresh biomass (r = 0.70) and with dry biomass (r = 0.69).
On the other hand, the plant height under WW conditions on
August 5 and NRCT under WW conditions on August 28 showed
nonsignificant correlations with fresh biomass (a = 0.001). For
dry biomass, NRCT under WW conditions on both August 5 and
28, as well as the canopy cover from the WS block on August 5,
showed nonsignificant correlations.

3.3. Biomass predicted by combined canopy features

To predict fresh and dry biomass from UAV-based canopy fea-
tures, the linear-SVR model was trained with 70% of the 360 geno-
types and was tested on the remaining 30% genotypes under two
water regimes. Prediction results were given in Fig. 3 for fresh bio-
mass and in Fig. 4 for dry biomass. According to the dates of data
collection, three sets of input variables were compared: (1) com-
bined six canopy features (NRCT, plant height, canopy cover, NDVI,
RDVI, and NDRE) from August 5 (Fig. 3A,D, and 4A,D); (2) combined
six canopy features from August 28 (Fig. 3B,E, and 4B,E); (3) inte-
grating (1) and (2) (Fig. 3C,F, and 4C,F). Overall, the model per-
formed better under WS (R2 = 0.47–0.53 for fresh biomass in
Fig. 3D–F; R2 = 0.40–0.47 for dry biomass in Fig. 4D–F) than WW
environment (R2 = 0.28–0.35 for fresh biomass Fig. 3A–C;
R2 = 0.11–0.29 for dry biomass in Fig. 4A–C). Among the three sets
of inputs, the one that combined the canopy features from two
UAV data collections improved the estimation of the fresh biomass
but had no significant improvement for dry biomass prediction.

To further compare the contribution of different sources of aer-
ial images, we grouped these canopy features based on their source
image. The source images were: (1) thermal; (2) RGB; (3) multi-
spectral images. The corresponding canopy features were: (1)
NRCT from 5 and 28 August; (2) plant height and canopy cover
from two dates; (3) NDVI, RDVI, and NDRE from two dates. The
model was trained on each group of features and compared with
the model that used the canopy features from all three image
sources. As shown in Fig. 5, except for the dry biomass prediction
under WW condition, the multispectral images had the lowest
RRMSE and highest R2 values among the three images sources.
On the other hand, the thermal images mostly performed the worst
among the three image sources. Nevertheless, the model trained
with all canopy features performed the best for estimating the
fresh and dry biomass, which suggests that utilizing multimodal
data for yield-based drought tolerance evaluation is optimal.
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Table 1
Mean value, coefficient of variation (CV), percent reduction (PR), effect of source of variable in ANOVA, and variance component analysis for fresh and dry biomass.

Biomass Mean (kg m�2) CV (%) PR (%) Effect Variance components

WW WS WW WS T G T � G r2
G r2

G � T r2
e H2

b

Fresh biomass 6.76 4.53 27.83 29.12 32.99 Sig Sig NS 1.63 0.10 1.90 0.76
Dry biomass 1.11 0.99 29.27 27.87 10.81 Sig Sig NS 0.05 0.00 0.10 0.67

WW, well-watered treatment; WS, water-stressed treatment; T, treatment; G, genotype; r2
G, genotypic variance; r2

G � T, G � T variance; r2
e , G � T variance; H2

b, broad sense
heritability. Sig indicates significant at a = 0.001; NS indicates non-significant at a = 0.001.

Fig. 2. Correlations between UAV-derived canopy features and biomass. (A) Fresh biomass. (B) Dry biomass. Canopy features were derived from August 5, 2020 and August
28, 2020. Blue circles represent well-watered conditions; orange circles represent water-stressed conditions. * indicates correlation is statistically significant given a = 0.001.
NRCT, normalized relative canopy temperature; PH, plant height; CC, canopy cover; NDVI, NDRE, and RDVI are three vegetation indices.
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Fig. 3. Predicted versus measured fresh biomass from the testing dataset (n = 216) under (A–C) well-watered condition and (D–F) water-stressed condition. Canopy features
input into each model were derived from (A, D) August 5, 2020, (B, E) August 28, 2020, and (C, F) August 5 and 28, 2020.

Fig. 4. Predicted versus measured dry biomass from the testing dataset (n = 216) under (A–C) well-watered condition and (D–F) water-stressed condition. Canopy features
input into each model were derived from (A, D) August 5, 2020, (B, E) August 28, 2020, and (C, F) August 5 and 28, 2020.
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3.4. Yield-based drought tolerance indices

In this section, we extended the biomass prediction to the
drought tolerance assessment using two well-recognized yield-
based drought tolerance indices, i.e., the biomass-GMP and the
biomass-YSI indices. As shown in Fig. 6, biomass-GMP and
biomass-YSI were computed using predicted biomass and com-
pared with those computed using manually measured biomass. A
significantly better correlation was found for the biomass-GMP
index than that for the biomass-YSI index.

In Fig. 7, we highlighted the top ten genotypes by ranking the
biomass-GMP and biomass-YSI calculated from both measured
and predicted biomass. An assumption we made here was that
the higher biomass-GMP or biomass-YSI value corresponds to the
better drought tolerance. Results showed that using the biomass-
GMP index, four out of the top ten genotypes were selected by
the index derived by predicted biomass and the one derived by
manually measured biomass were in common (Fig. 7A, B); while
two or three out of ten genotypes were in common between
biomass-YSI indices calculated from predicted and manually mea-
sured biomass (Fig. 7C, D). These findings (Figs. 6, 7) indicated that
the biomass-GMP drought tolerance index might be the one that
can be estimated more reliably from remotely sense data.

4. Discussion

4.1. Capability and limitation of UAV-based remote sensing data for
biomass prediction and drought tolerance assessment of bioenergy
sorghum

In this study, we investigated the potential of UAV-based mul-
timodal remote sensing data (including thermal, RGB, and multi-
spectral data) for fresh and dry biomass predictions and drought
tolerance evaluation over a large group of bioenergy sorghum
genotypes and systematically compared the results with those

obtained from single data sources. Multimodal data has been used
previously for yield predictions for other crops such as soybean
[56] and maize [57], but to the best of our knowledge, this study
is the first for a large number of sorghum genotypes. In our study,
multimodal data did not result in noticeably better predictions
than the single-source data for both fresh and dry biomass. Results
showed that the multimodal data had comparable or slightly bet-
ter performance than the multispectral data in this study (Fig. 5).
Yet, in the study on soybean yield prediction [56], the multimodal
data had consistently superior prediction performance than single
modal data. The better performance obtained using multimodal
data might be due to the fewer soybean varieties (i.e., three vari-
eties), or different algorithms employed, or the addition of texture
features to spectral, structure, and thermal features. We noticed
that the correlation between plant height and sorghum fresh bio-
mass was 0.41 in the current study, which is not as high as in a
similar study with only 24 bioenergy sorghum genotypes
(r = 0.79) [58]. A major challenge in our study was the large
amount of genotypic diversity (360 genotypes). On the other hand,
we published a similar finding regarding the performance ranking
of three UAV-based sensors in the soybean study [56]. Namely, the
multispectral sensor contributed the most to the estimation of sor-
ghum biomass. RGB was also important, but its performance in
modeling was inferior to multispectral images in most cases. The
thermal sensor had the worst performance. Nevertheless, with rel-
atively better performance for fresh biomass prediction identified
using multiple image sources (R2 = 0.53 and RRMSE = 23.57%),
and given the inconsistency among different studies, collecting
multimodal data to start with the investigation may still be a more
reliable way to ensure better biomass prediction accuracy for
yield-based drought tolerance assessment in breeding studies.

In the applications that a drought tolerance index is preferred,
this study demonstrated the possibility of predicting the
biomass-GMP index from the remotely sensed data (Fig. 6). The
UAV predicted fresh and dry biomass was used to compute two

Fig. 5. Performance of different image sources (i.e., thermal, RGB, and multispectral) for (A, C) fresh biomass and (B, D) dry biomass prediction. R2 and RRMSE values are based
on the testing dataset (n = 216). Multimodal indicates the combination of all three types of images.
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Fig. 6. Drought tolerance indices calculated from predicted versus measured FB (fresh biomass) and DB (dry biomass). (A, B) Biomass-GMP. (C, D) Biomass-YSI.

Fig. 7. Top ten genotypes selected by (A, B) biomass-GMP and (C, D) biomass-YSI calculated from measured versus predicted biomass. The x-axis label is the pseudo-ID
number for each genotype. The length of the vertical color bar represents the magnitude of biomass-GMP or biomass-YSI value. FB is fresh biomass; DB is dry biomass.
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drought tolerance indices, namely, biomass-GMP and biomass-YSI.
The results (Figs. 6, 7) suggested that the UAV predicted biomass
was more reliable when using biomass-GMP as an index of drought
tolerance. The capability to obtain a rapid and reliable estimation
of biomass-GMP from the UAV multimodal data is encouraging
because biomass-GMP is one of the most widely used indexes to
identify elite genotypes in drought tolerance screening programs
[7–9,59–61]. On the other hand, the biomass predicted in the cur-
rent study appeared to be less reliable for derivation of biomass-
YSI. Future UAV-based remote sensing studies will be needed to
improve the biomass prediction for better estimation of biomass-
YSI, but the multimodal approach used in this study shows great
promise for the estimation of biomass-GMP.

Admittedly, the UAV-based remote sensing data applied in this
study also had certain limitations. As the results shown in Figs. 3, 4,
the overall performance under WS condition was better than that
under WW condition. This coincides with the generally stronger
correlations between canopy features and biomass under the WS
conditions than those under the WW conditions (Fig. 2). One factor
that possibly impacts the UAV data’s performance under WW envi-
ronment is the saturation of some canopy features, such as the
NDVI. The canopy under WW becomes dense quicker than that
under WS. However, the broadband reflectance that was sensed
in this study mainly comes from the top canopy layer. As the bio-
mass kept accumulating under water sufficient environment, some
of the remotely sensed canopy features would reach a plateau. By
looking at the distribution of each canopy feature (Fig. S3), values
of NDVI under WW condition had less variation and almost
reached one. The genotypic variation in NDVI was not enough to
explain the genotypic variation in the biomass. Previous studies
have suggested that using vegetation indices based on the red edge
band, such as NDRE, is better than NDVI in terms of saturation
issue [62]. In this study, however, the correlations between NDRE
and fresh/dry biomass were not as good as those between NDVI
and fresh/dry biomass, even though NDRE showed less saturation
(Fig. 2). This may be due to the complication of unknown factors
related to genotypic differences.

4.2. Perspectives on the use of UAV-equipped thermal camera in yield-
based drought tolerance screening

The utility of UAV-equipped miniaturized thermal cameras in
agriculture has been demonstrated in a number of studies that
have estimated plant water status to detect water deficit [28–
31,46,50,63,64]. Most of these studies used thermal data to quan-
tify instantaneous plant water status, usually with a single or a few
genotypes. Based on these studies, the use of thermal indices
appears to be useful for measuring short-term responses, such as
stomatal conductance and transpiration. For example, the crown
temperature within a citrus orchard was found to be well corre-
lated with manually measured stomatal conductance (r = 0.88)
and plant water potential (r = 0.58) [30]. In a study of cotton
[63], the crop water stress index (CWSI) was derived from a UAV
thermal map and correlated well with stomatal conductance
(r = 0.81). However, the good correlations between canopy temper-
ature and instantaneous traits may not be replicable in a drought
tolerance screening program that targets final yield or biomass.
In a study assessing genetic variation of 120 recombinant inbred
lines of Setaria grass under drought stress, correlations ranging
from � 0.32 to � 0.49 were observed between canopy temperature
and total biomass [65]. In our study, negative but relatively weak
correlations were found between canopy temperature and bio-
mass, with absolute r value ranged from 0.09 to 0.44 (Fig. 2). More-
over, the comparative results among the three image sources from
this study show that the thermal images performed the worst for
modeling biomass.

Under drought, the most common early response of plants is
stomatal closure [66]. Stomatal closure also may vary according
to a diurnal cycle with a midday reduction in transpiration occur-
ring due to elevated temperatures [67]. This may partly explain the
lower correlation between canopy temperature and biomass for
the drought stressed genotypes as compared to the stronger corre-
lations with NDVI, NDRE, and RDVI. However, canopy temperature
is not solely regulated by stomatal conductance and may not be
perfectly linked to transpiration rates in sorghum under drought
[67]. Canopy temperature is also affected by air temperature, solar
radiation, wind speed, etc. [68]. In addition, drought responses are
not only crop species specific but also vary amongst genotypes of a
single species [69]. Although midday reductions in stomatal con-
ductance occur and variation in genotype responses were
expected, even with a large number of sorghum genotypes
there was a significantly negative correlation between canopy tem-
perature and biomass under drought conditions (Fig. 2). An earlier
study evaluated 300 sorghum genotypes under irrigated conditions
[21] and showed no strong correlation between the leaf tempera-
ture and grain yield, which is similar to our results under
well-watered conditions. The earlier study [21] also validated the
simulation models and the hypothesis [67] that higher canopy
temperatures in sorghum may not be tightly linked to lower yields
due to stomatal closure that leads to conservation of water result-
ing in higher biomass. Therefore, the significant negative correla-
tions observed in our dataset between canopy temperature and
biomass may have been less than that observed for the spectral
indices because some high biomass genotypes conserved water
by stomatal closure as hypothesized [67] and shown previously
[21]. In this regard, we suggest that the use of thermal sensors
alone may not be sufficient to identify the most drought tolerant
sorghum lines in a screening program. Additional sources of phe-
notypic information are needed to fully elucidate the complexities
in genotypic responses for drought tolerance in sorghum.

From the sensing perspective, another possible factor that limits
the performance of the thermal index (i.e., NRCT) in estimating sor-
ghum biomass is the sensitivity and accuracy of the thermal cam-
era. In our study, the thermal camera we used was an uncooled
camera, which is suitable for UAV applications due to its compact
size and lightweight. However, compared to the cooled thermal
cameras that use cooling systems to reduce measurement noise,
the uncooled type is more likely to be affected by the temperature
of the camera body, as well as the environmental conditions such
as air temperature, relative air humidity, wind speed, cloud cover,
etc. [70,71]. Furthermore, according to the manufacturer, the esti-
mated temperature accuracy of the thermal camera used in this
study was around ± 5 �C under ideal environmental conditions.
This accuracy may not be sufficient in a screening or breeding pro-
gram that uses small plot designs, where the required accuracy
may be greater than 1 �C [72]. The measurement sensitivity to
weather conditions, along with the relatively low sensing accuracy,
may have reduced the performance of the thermal sensor used in
this study. Future studies will be required to investigate whether
the major limitation is because of different genotypic response
rates to canopy temperature and biomass production or because
of the measurement accuracy of this thermal camera. For the latter
question, a thermal camera with higher measurement accuracy,
such as ICI 8640P thermal camera that has an accuracy of ± 1 �C
[72], maybe an alternative for the UAV system.

4.3. Future improvements

In our study, images including six spectral bands were used for
sorghum biomass prediction and drought tolerance assessment:
blue, green, red, red edge, near-infrared, and thermal infrared.
The combination of this information provided acceptable perfor-
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mance for evaluating drought tolerance which was benchmarked
with biomass accumulation. However, given the complexity in
genotypic responses under drought stress, future work is required
to facilitate the UAV-based remote sensing in drought tolerance
selection. First, additional improvement will likely be gained if
more sources of data could be included, such as the information
from the hyperspectral imagery that has hundreds of continuous
spectral bands. With the development of sensing technologies,
UAV systems can now carry miniaturized spectrometers [73] that
have been used for yield or biomass estimation [74,75], crop dis-
ease detection [76], and water stress detection [30]. In the future,
UAV-based point spectrometers or hyperspectral cameras will
likely improve our ability to more precisely evaluate the drought
tolerance of a large population of plant genotypes. Another future
improvement is the collection of time-series data. In the present
study, the canopy temperature index was measured at only two
time points and thus provided only a snapshot in time. Therefore,
it does not provide an integrated canopy assessment that reveals a
long-term response to water deficit (i.e., biomass) [33]. Instead of
single or a few snapshots of crop traits, multitemporal crop traits
may be more beneficial for predicting biomass which is an accu-
mulated product over the growth season. In addition, intensive
data collection over the course of crop growth allows the
researcher to pinpoint the critical growth stages for final biomass
estimation, which will be helpful when frequent data collection
is not practical.

5. Conclusions

This study examined the use of UAV-based multimodal images
(i.e., thermal, RGB, and multispectral) for estimating biomass and
assessing drought tolerance of bioenergy sorghum. Biomass pre-
dictions using canopy features derived from the multimodal data
showed comparable performance with the best results obtained
from the single modal data with R2 up to 0.57 under the WS con-
dition where the canopy was less dense. Vegetation index RDVI
derived from the multispectral data had the highest correlations
with biomass and had a major contribution in the predictions
when multimodal data were used. RGB contributed less than the
multispectral images but was also important. Thermal images
alone had the lowest prediction power, indicating the limitation
of using this thermal camera alone for this particular drought tol-
erance screening project. These findings were similar to some pre-
vious studies but different than some others; hence, it indicated
the advantage of starting with multimodal data under unknown
conditions. Finally, for drought tolerance assessments using
yield-based indices, it turned out that the biomass-GMP index out-
performed the biomass-YSI index in terms of the potential to be
directly and more reliably predicted by the remotely sensed data.
Follow-up improvement in biomass prediction within a breeding
context based on low-altitude remote sensing is promising, by
enriching the available data sources through the use of time-
series data, hyperspectral imagery, or by incorporating a higher
accuracy thermal camera. Ultimately, UAV systems will be an
essential tool for drought tolerance screening programs. In this
case, instead of destructively sampling biomass or yield production
from all experimental plots, subsampling can be done together
with UAV mapping to greatly reduce cost and decrease time
commitment.
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