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 The purpose of this dissertation was to examine ways to improve and explore the 

network scale-up method (NSUM). This dissertation improved the NSUM by proposing a 

new mean of sums (MoS) estimation process, improving recursive back-estimation 

techniques, exploring how NSUM design changes effected estimates of personal network 

size, what predicts having larger personal networks, and the cognitive process used by 

participants taking a NSUM survey. Data was collected from an address-based survey 

(n=617) of Nebraskans conducted in 2014 and a series of cognitive interviews (n=19) 

conducted in 2016.  

The MoS estimator better predicted the size of a target group than the traditional 

estimator. Further, recursive back-estimation was shown to retain more scaling variables 

when used with the MoS than the traditional estimator. However, the MoS estimator did 

produce larger average estimates of personal network size. The application of recursive 

back-estimation reduced the average of both the MoS and traditional estimates of 

personal network size to comparable levels. Differences in the treatment of item 

nonresponse among NSUM scaling questions had little to no impact on the average 

estimate of personal network size.  

Eighteen different estimates of personal network size were calculated based upon 

different assumptions and methodological choices for regression models. In all eighteen 



 
 

models rural Nebraskans had larger networks than their urban counterparts, and those 

who made less than $25,000 had smaller networks than those who made between $50,000 

and $99,999. In some models education, religious attendance, and age were associated 

with expected network size, but these associations were erratic. This shows that NSUM 

methodological decisions NSUM can have effects on both estimates of network size and 

statistical inference. 

Finally, cognitive interviews revealed a series of issues around participants’ 

ability to accurately answer NSUM questions including memory search, definition 

retention, and differences between the known-population technique and the summation 

method. A series of suggestions for practical implementation and further testing of these 

issues are discussed. This dissertation demonstrates new ways to adapt the NSUM 

without having to use the generalized NSUM and explores how participants’ process 

NSUM style questions when developing their answers. 
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CHAPTER 1: INTRODUCTION 

 Establishing the size of a social phenomenon is a fundamental part of any 

research, policy, or legislative agenda. Considerable effort is thus devoted to developing 

the means and methods necessary to enumerate or estimate the size of phenomena, 

particularly those that are hidden or hard-to-count. Knowing the size of an event, 

occurrence, or subpopulation is often the first step in determining how a problem should 

be addressed and may lead to the development of research programs or government 

undertakings to further address the problem or phenomena. Differences in size estimation 

of social phenomena, and the accuracy of those estimates, have serious implications for 

the allocation of resources toward programs devoted to studying and addressing 

phenomena. As such, size discrepancies are often hotly contested by parties that wish to 

see more or less resources devoted to a given issue (Burt 2007; Williams 2011). The 

practice of counting and estimating population sizes is thus one that is central to wide 

array of issues and agendas, both political and academic. 

 Conceptually the simplest way to obtain the size of a population is to directly 

count everyone who is a member of that population. Taking a census is, however, both 

expensive and time consuming (Kish 1965). A common alternative to a census is to take 

samples of the population and look at the prevalence of certain groups or statuses as 

indicators of their prevalence in the larger population. Such sampling techniques become 

more complicated when the population of interest is defined by a characteristic that 

makes them hard to contact (e.g. homeless) or carries stigma such they actively avoid 

disclosing their status (e.g. HIV-positive) (Shelley et al. 1995). For these types of groups 
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several methods of direct estimation have been developed, such as respondent driven 

sampling (Heckathorn 2002) and venue based sampling (Jenness et al. 2011). These 

methods rely on being able to find members of a population and convince them to 

disclose their status to an interviewer(Heckathorn 2002a, Jenness et al. 2011). Although 

these methods are effective, they require more resources and time than mail or telephone 

surveys.   

 Indirect methods to estimate social phenomenon size seek to provide accurate 

results without directly counting the target population. One such technique that has 

become increasingly prominent is the network scale-up method (NSUM) (H. R. Bernard 

et al. 2010). The NSUM is a technique that is designed to generate estimates of a target 

subpopulation’s size, specifically those that are small, hard-to-reach, or stigmatized. 

Unlike direct methods that try to contact members of the target subpopulation, the NSUM 

uses a random sample of the larger population. Survey respondents are asked how many 

people they know in the subpopulation. When respondents’ counts are paired with an 

estimate of the respondents’ personal network sizes, it becomes possible to statistically 

scale-up reasonable estimates of a range of hidden populations that are otherwise difficult 

to enumerate. This approach has been used to assess populations such as heroin users 

(Kadushin et al. 2006), men who have sex with men (Ezoe et al. 2012), and populations 

at risk for HIV/AIDS (Khounigh et al. 2014). The NSUM provides researchers, public 

health practitioners, and policy experts the ability to assess the scale of various social 

phenomena in a time frame that allows them to respond to recent events, with a minimal 

budget, and at a geographic or political scale that is most appropriate for the social 

phenomena.  
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Dissertation Structure 

 This dissertation is organized around understanding, improving, and testing the 

NSUM’s performance under different conditions.   

  Chapter 2 provides an extensive review of the NSUM literature. Beginning with 

the method’s origin in social network analysis, the chapter presents the history and 

development of the NSUM. Then the mechanics of how the method works and its 

underlying assumptions about social structure are discussed. The NSUM has been in use 

for over two decades and several of the assumptions and their related errors have been 

problematic. Different researchers have developed statistical adjustments for these errors 

and these approaches are discussed in relation to their data requirements. Overall, chapter 

2 provides the baseline knowledge needed to understand the fundamental changes 

proposed by this dissertation.   

 Chapter 3 describes the two data collection projects upon which the dissertation is 

based. 

Chapter 4 gives attention to the basic estimation formulas used in the NSUM. The 

analyses critically examine the traditional estimation formula (Benard et al. 1991; 

Killworth, Johnsen, et al. 1998), propose an improved formula, and tests its accuracy 

using benchmark data from the American Community Survey. In addition, chapter 3 

explores the effects of using recursive back-estimation, and applying sampling weights to 

the NSUM process. Chapter 3 adds to the growing NSUM field of research by proposing 

a fundamental shift to how final estimates are calculated, demonstrates a way to correct 

for poor data, and formally introduces the use of post-estimation weights in the NSUM.  
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 Chapter 5 of the dissertation examines how the different estimation methods 

proposed in chapter 4 influence the estimate of personal network size generated by the 

NSUM. Although the NSUM methods estimates personal network size as a means to a 

different end, the population distribution of personal network size is itself an important 

social statistic. By examining variation in network size by method, chapter 5 shows how 

differing methods may produce different social network sizes. Further, by looking at 

associations between network size and participant characteristics chapter 5 not only 

demonstrates which personal attributes are associated with changes in estimated network 

size, but whether these associations are stable across different estimation methods. In 

doing so, chapter 5 adds to the literature on social network size at large, and as the data is 

representative of Nebraskans, gives unique insight into how network size varies across a 

state. 

Chapter 6 of the dissertation investigates how participants operationalize 

“knowing” someone and how they obtain their estimates when answering NSUM-type 

questions.  Using cognitive interviewing a particular focus is paid to how respondents 

arrive at their final counts, how they decide that a final answer is final, how different 

NSUM methods are perceived by participants, and how a participant gauges the amount 

of information they have about the people they know. Offering additional insight into 

these issues may greatly influence both post-survey adjustments and future NSUM 

designs. 

In the final chapter the major findings of this dissertation are discussed in relation 

to the growing NSUM field. Other research groups using the NSUM are continually 

evolving their methods and proposing new implementation practices. Drawing from 



5 
 

analyses presented in this dissertation and the lessons learned while collecting the data, a 

set of future suggestions are developed.   
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CHAPTER 2: THE NETWORK SCALE-UP METHOD 

A Brief History of Social Network Research 

 The development of the network scale-up method (NSUM) is part of the larger 

growth in social network research which came to prominence in the latter half of the 20th 

century (Freeman 2004; Prell 2012; Scott 2000). Modern social network analysis is 

defined as a research paradigm that is “motived by a structural intuition based on ties 

linking social actors,  grounded in systematic empirical data, makes heavy use of graphic 

imagery, and relies on computational or mathematical models (Freeman 2004).” 

Although there are incidents of researchers employing all four of these research elements 

dating back to the early 1930s, there was not a concentrated disciplinary awakening of 

social network analysis until the 1970s, which focused around Harvard University and 

the work of Harrison C. White (Freeman 2004).  

Conceptual forms of social network analysis can be found in the early roots of 

sociology. In Freeman’s (2004) history of network analysis, some of the earliest written 

work on social interconnections is traced back to the writings of Durkheim about how 

individuals were organized in society (Durkheim 1964). Other notable early researchers 

such as Georg Simmel, Gustave Le Bon, and Marcel Mauss also published work that 

dealt with how individuals interact with the social structure around them (Le Bon 2009; 

Mauss 1967; Simmel 1950). The idea of social network analysis thus arose early in the 

history of sociological theory and was reawakened by methodological advancements at 

the end of the 20th century.  

Modern social network analysis, as defined by Freeman, came about through the 

convergence of several fields, including: social psychology, social anthropology, 
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sociology, and graph theoretic mathematics (Freeman 2004; Prell 2012). The 

convergence was a gradual process that occurred between the early 1930s and the 1960s. 

The work of Jacob Moreno and Helen Hall Jennings is often credited as the earliest 

example of modern social network analysis, which they dubbed Sociometry (Jennings 

1937; Moreno 1937). During the same time considerable work was being done at Harvard 

University by a group of researchers headed by W. Lloyd Warner (Warner 1936).  For a 

decade these two groups developed and researched many early network studies, largely 

independently of each other. However, both groups gradually dissipated and social 

network research was scattered to small pockets of researchers located across the globe at 

Lund University, Manchester University, the University of Chicago, Columbia 

University, Iowa State University, and Michigan State University (Freeman 2004). 

During this time many of the smaller groups were isolated and the forward progress of 

social network analysis was limited. This changed in the 1970s as an intense focus on 

network research developed at Harvard and a rapid coalescence of the scattered research 

groups occurred as they formed into larger organizations and associations such as the 

International Network for Social Network Analysis.  This renaissance of social network 

research led to an influx of innovative data collection methods, analytic strategies, and 

the development of network theory which comprise the current state of network analysis 

(Freeman 2004).  

The Small World, Network Size, and the NSUM 

Despite its origins in sociology, many of the more remarkable advancements in 

network analysis emerged from cross-disciplinary partnerships.  For example, 

mathematician Ithiel del Sola Pool and social scientist Manfred Kochen collaborated to 
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investigate the small world problem (Pool and Kochen 1979). For over 20 years they 

worked to develop a theory of how the social networks of individuals interact. Their 

primary focus was to answer questions about the probability of two random people 

knowing each other, or the length of a chain of personal connections that may exist 

between two random people. These questions address the common phenomenon which 

occurs when two seemingly unrelated people realize they both know a person in 

common, often leading to one or both saying the phrase, “it’s a small world” and thereby 

naming the question Pool and Kochen tried to solve. In attempting to answer these 

questions the research of Pool and Kochen has proved remarkably salient to both social 

network analysis and sociology. They formalized both theoretical motivations and 

empirical techniques to measure the size of social networks, how they are bounded by 

social and geographic location, and what sort of structural limitations may define how 

individuals develop and access their networks. In doing so they set the ground for many 

sociological inquiries into social stratification of resources and access to power.   

Social networks in a general form can be thought of as resources. For the job 

hunter every relationship, or tie, to another person represents an additional chance to 

learn about new jobs and employment opportunities (Lin and Dumin 1986). 

Granovetter’s theory of weak ties (Granovetter 1973) suggests that not all ties represent 

equal resources and that a tie which brings unique, or less redundant information, may 

offer more new resources. For Granovetter, it was more likely that ties which crossed out 

of our normal and everyday connections could be more useful for the hypothetical job 

searcher. That is, the close friends of the job searcher may all be familiar with the same 

job openings, but a more distant friend or relative may have access to an entirely new set 
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of job possibilities due to their own set of close friends or their different geographic or 

social location.  Understanding how ties are distributed both by geographic location, 

through social structures, and by individual characteristics can indicate how the ability to 

find a job, gain political access, or attain and access many types of power are themselves 

distributed across a population. These sorts of distributions of access to resources speak 

to the heart of sociological concern with social stratification by addressing how our social 

networks may vary by social and geographic location, and the extent to which a network 

can provide a needed resource. Social network analysis offers methodologies to quantify 

measures of network size, how far the network may reach from a given starting location, 

and placement of individuals within larger social structures.  

Pool and Kochen were interested in answering the small world questions of 

quantifying probabilities of random people knowing each other, knowing people in 

common, the shortest distance between two people, and whether those two random 

people were aware of the paths between them (Pool and Kochen 1979). In order to 

address these questions they first had to measure the size of an individual’s personal 

network, the distribution of network size in a population, what individual characteristics 

are associated with differing network sizes, and how network ties are stratified (Pool and 

Kochen 1979). Their investigation into these problems sparked considerable interest in 

not just estimating probabilities of contact (Korte and Milgram 1970; Travers and 

Milgram 1969), but also many developments in techniques to measure network size(Hill 

and Dunbar 2003; Killworth et al. 1990; Marsden 1990; Pollet, Roberts, and Dunbar 

2011), which have in turn led to the ideas behind the NSUM itself.  
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Measuring network size is itself a surprisingly daunting task, and there have been 

several methods developed in an attempt to estimate network size, including the free 

recall task, contact diaries, name lists, and the name generator. The free recall task has a 

participant attempt to list everyone in their network. Sometimes they are provided with 

memory aides such as phone books, yearbooks, or email lists of friends. In such tasks it 

can be a challenge to correctly remember everyone in a network and research has shown 

that participants are more likely to forget a network contact if the tie between them is 

weak (Brewer 2000; Brewer and Webster 1999). It is often up the participant to decide 

when they should stop searching for more contacts to list in their memory when using a 

recall task. Terminating a memory search appears to be highly related to a participant’s 

internal sense that their continued efforts to remember more network contacts will be met 

with increasing failure (Davelaar et al. 2013; Dougherty, Harbison, and Davelaar 2014; 

Unsworth, Brewer, and Spillers 2011). 

One way to address memory issues is by asking participants to maintain contact 

diaries for a set period of time. Each participant lists everyone with whom they interact 

every day in a diary, either directly after a contact occurs or writing up summaries at the 

end of the day. Such a method captures everyday interactions, but has the potential to 

miss rare or infrequent contacts which may not occur during the time when the 

participant has the diary. Contact diaries also represent a substantial burden upon the 

participant and impose a significant delay in obtaining data for the researcher. However, 

the method has been shown to work and produce reasonable estimates of personal 

network size (Yen, Fu, and Hwang 2016). 
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Another method is to provide a participant with a list of names and ask them to 

indicate which of those names are in their network. Phone books have been used locally 

as proxy samples of a local population  (Freeman and Thompson 1989; Pool and Kochen 

1979). However, choosing pages in a simple random fashion gives undue weight to more 

common names and in the modern era would miss up to 40% or 60% of the population 

who no longer have a listed phone number (Centers for Disease Control 2016). Lists 

make sense within more tightly controlled areas, such as schools, where researchers 

attempting to complete a full network within the school can present a list of students. 

However, when attempting to estimate network size in a much larger population such as 

the United States lists become less practical.  

The standard approach to this question has become the name generator (Marin 

and Hampton 2007). Participants are asked to list the names of the people they know in a 

series of specific categories, such as ‘people they go to for help.’ By asking for those 

within a specific category the name generator limits some of the problems of free recall 

by providing a narrower range from which the participant retrieves their answers while 

reducing participant burden and field time from the contact diary, phonebook, or list 

approaches. After a participant finishes listing names they are then asked additional 

questions about either all, or a random subset, of the names they listed which are used to 

define to quantify the types of ties present between the participant and the people they 

listed.  

Each of these different approaches to estimating personal network size is defined 

by the ways they parameterize the scope of a participant’s ability to recall network 

members: free recall, diary, list, or focused free-recall. However, network researchers 
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also need to establish what it means to be a network member in the first place. There is 

evidence that personal networks are layered around the participant in a hierarchical 

fashion (Dunbar et al. 2015; Stiller and Dunbar 2007). The way this dissertation 

parameterizes what it means to be in a network may restrict our analysis to different 

layers. A network definition that asks only about people to whom a participant may go to 

for monetary support would likely produce a much smaller network than one that asks 

about those to whom a participant would go to for emotional support. For many larger 

studies, and the NSUM itself, the network boundary is focused on the limit of 

acquaintanceship or “knowing” someone. Here the study seeks to attain a maximal 

network size which retains reciprocal ties, meaning that ideally if a participant lists 

someone and by chance that someone was also given the same survey they would in turn 

list the participant. This limits the influence of popular nodes in a larger population and 

draws a line between knowing of someone, and knowing someone and being known in 

return.  

For Pool and Kochen, estimating social network size was a step towards being 

able to calculate the probabilities of two random people knowing each other. As research 

progressed, the study of network size and how it varies has become an end goal of itself, 

as a way to measure opportunity, access to resources, and stratification (Beggs, Haines, 

and Hurlbert 1996; Blakeslee 2015; Hill and Dunbar 2003; Mowbray and Scott 2015; 

Stauder 2014). For other researchers, particularly for those interested in hard-to-reach or 

stigmatized populations, network size remains as a step towards other estimations (H. R. 

Bernard et al. 2010; Heckathorn 2002). Both respondent driven sampling (RDS) and the 

NSUM, tools often employed to study hard-to-reach populations, require estimates of 
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network size to produce their final estimates. Although each produce that estimate in 

remarkably different ways. Given their increased use to measure health-related 

phenomena, there is a continuing impetus to refine how we estimate social network size, 

and to understand more fully the ways in which participants think and report about their 

social networks. Accordingly this project looks specifically at the NSUM and how its 

estimation of personal network size may be improved, how these improvements affect 

estimation and inference, and explores the cognitive demands the techniques makes upon 

participants. 

Fundamental Technique of the NSUM 

 The NSUM is a technique that is designed to generate estimates of a target 

subpopulation’s size, specifically those that are small, hard-to-reach, or stigmatized. 

Unlike methods that try to contact members of the target subpopulation directly, the 

NSUM uses a random sample of the larger population. These participants are asked how 

many people they know in the subpopulation, and their responses are statistically scaled-

up to generate an estimated size for the subpopulation. The fundamental assumption 

made by this method is that on average an individual’s personal network (i.e. the people 

they “know”) will be representative of the general population (Benard et al. 1991; 

Johnsen et al. 1995a). That is, the proportion of people in an average individual’s 

personal network who are members of a given subpopulation is indicative of the relative 

size of that subpopulation to the general population as a whole. This assumption is not 

without flaws, as illustrated in the discussion of error in the next section.  

The fundamental technique is expressed formally in Equation 2.1, where 𝑚 is the 

number of people known by the respondent in a given subpopulation, 𝑐 is the size of the 
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respondent’s personal network, 𝑒 is the size of the subgroup in the larger population, and 

𝑡 is the size of the larger population. 

 
𝑚

𝑐
=

𝑒

𝑡
 (2.1) 

 Estimating a respondent’s personal network size (𝑐) is the first challenge of the 

NSUM. A common approach for calculating this value is the known population method 

(McCarty et al. 2001). A respondent is asked a series of questions about how many 

people they know in a series of subpopulations whose size is already known to the 

researcher.  Knowing someone is typically defined as someone whom the respondent 

knows by name and with whom the respondent has had some form of communication in 

the past two years. Common subpopulations to ask about are those with certain first 

names (e.g. Walter, Emily) or jobs (e.g. firefighters, airline pilots). These known 

populations, or “scaling” variables, can then be used to derive the personal network size 

of 𝑐. Equation 2.2 describes the formal process of establishing this value, where 𝑖 

indicates a respondent, 𝑗 a scaling variable, 𝑚 the reported number of people known in 

scaling variable 𝑗, and 𝑒 is the total size of scaling variable 𝑗. In essence, the reported 

value of each scaling variable is summed and divided by the summed total population for 

the same scaling variables and then multiplied by the total population size. 

 �̂�𝑖 =
∑ 𝑚𝑖𝑗𝑗

∑ 𝑒𝑗𝑗
𝑡 (2.2) 

  Estimating personal network size is an intermediate step of the NSUM. The next 

step is to determine the size of the unknown subpopulation 𝑒. As before, the researcher 

asks the respondents how many people they know who are in the target unknown 

subpopulation. This count, 𝑚𝑖𝑗 , is inserted into Equation 2.3 to develop an estimate of 
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the target unknown subpopulation. The sum of the number of people known by all 

respondents (0,1, … 𝑖) in a given target subpopulation 𝑚𝑖𝑗, is divided by the sum of all 

respondent’s personal network size �̂� and multiplied by the total population size 𝑡. 

 �̂�𝑗 =
∑ 𝑚𝑖𝑗𝑖

∑ �̂�𝑖𝑖
𝑡 (2.3) 

The standard error of Equation 1.3 can be expressed as: 

 𝑠. 𝑒. (�̂�) = √
�̂�𝑗

∑ �̂�𝑖𝑖
𝑡 (2.4) 

 Equation 2.3, along with its associated standard error (eq. 2.4) are thus the final 

product of the NSUM technique, an estimate of how many people in a given 

subpopulation exist in a larger population. The method is flexible in that it can be adapted 

to differing geographic or political boundaries so long as it is possible to obtain the total 

size of the population to which the researcher wishes to generalize, and there are usable 

known scaling variables for that population. NSUM studies may be used within the 

context of cities (Shati et al. 2014), regions (Guo et al. 2013), countries (Killworth, 

McCarty, H. Russell Bernard, Shelley, et al. 1998), or any other geographic or political 

unit so long as this information is available, the respondents recognize the boundaries, 

and they can place the people they know within or outside of those boundaries.  

The Core Estimator 

 The heart of the NSUM is equation 2 which is used to derive the estimates of 

personal network size across the sample. This estimator has remained relatively 

unmodified since its formalization early in the NSUM literature (Killworth, McCarty, H. 

Russell Bernard, Shelley, et al. 1998). In this state the estimator is designed to minimize 

the influence of a given scaling variable by summing across the numerator and 
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denominator before dividing the sums. Although this approach may protect from outliers, 

it moves away from the base assumption of NSUM that the proportion of a single group 

within a personal network is indicative of the proportion of that group within a larger 

population. This assumption is problematized by an equation which does not consider 

individual proportions, and instead creates an aggregate proportion. Because prior work 

has not addressed this mismatch between the assumptions of the method and estimation 

formulas, how it affects eventual outcomes is unknown. Adjusting the equation to handle 

the individual proportions may provide more accurate results as it more readily conforms 

to the assumptions of the NSUM. 

Discovery of Error 

 The discovery of error in the NSUM framework was a gradual process over the 

course of many studies and the better part of a decade. Early uses of the NSUM were 

largely focused on whether the technique could produce reasonable outcomes and were 

less focused on defining specific errors in the process. The first studies were conducted to 

estimate the number of people who died in the 1985 Mexico City Earthquake (Benard et 

al. 1991), and the number of suicides, homicides, and AIDS/HIV+ cases in the U.S. 

(Johnsen et al. 1995a). The estimates of earthquake deaths and homicides were found to 

be reasonable and thus assumed to be relatively error free. However, Johnsen and 

colleagues (1995) discovered that their NSUM technique over-counted the number of 

suicides and AIDS/HIV+ victims by a factor of 1.6 and 3.7 respectively. The authors 

speculated that these two statuses (suicide and AIDS/HIV+) may not be disclosed within 

a person’s social network due to stigma, and would therefore result in cases where 

respondents to a NSUM study would not know the true status of some of the other people 
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in their social network (i.e., alters). Support for this speculation was found through in-

depth interviews with HIV+ patients (Shelley et al. 1995, 2006), which demonstrated that 

respondents with AIDS/HIV+ had smaller personal networks and often restricted 

information about their health status to key individuals in their personal network.  

These early NSUM studies led to a more formal consideration of how the 

assumptions of the NSUM method may be violated by error. Four general types of error 

were identified as specific concerns to the NSUM method: transmission errors, barrier 

effects, recall error, and cognitive errors.   

 Transmission errors, or the transmission effect, arise when a respondent has 

imperfect knowledge about the statuses (e.g. health, drug behavior) of their alters leading 

to under- or over-counts (Killworth et al. 2006). Through the work of these early studies 

it became apparent that the NSUM carried the assumption that respondents have perfect 

knowledge of all their alters. In reality knowledge about alters is flawed, but it seems to 

follow a systematic pattern such that as a given status becomes increasingly stigmatized, 

then the less likely it will become that information of that status will penetrate the entire 

social network (Shelley et al. 1995, 2006). Stigma is not the only factor in limiting 

information flow across a network. Societal notions of privacy and subjects that are taboo 

to discuss beyond certain types of ties (e.g. close friends, parents) also prevent the 

diffusion of information (Shelley et al. 2006). Additionally, there is considerable 

evidence that some types of information (e.g. HIV status) will have different transmission 

rates depending upon the relationship between a given alter and ego. The awareness of 

systematic transmission errors among NSUM researchers prompted the development of 

several adjustments, which are discussed below. 
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 Barrier effects occur when a respondent provides a response that is not 

characteristic of the subpopulation due to the uneven distribution of that subpopulation 

across the whole (McCormick, Salganik, and Zheng 2010). A respondent may report not 

knowing anyone who has been bitten by a shark in the past year, but shark bite victims 

are most likely not evenly distributed across the U.S.  If our respondent lives in Nebraska, 

they likely know fewer shark bite victims than someone who lives in Hawaii. This 

becomes more problematic when we consider that those who have a stigmatized or 

hidden status, such as AIDS/HIV+, are often more likely to know someone who has that 

same status compared to those who do not (Kadushin et al. 2006). This principle of 

homophily, that people tend to associate with those like themselves, creates problems not 

just for estimating a target subpopulation size, but also the scaling variables used to 

generate estimates of personal network size (Salganik et al. 2011). First names as scaling 

variables are particularly vulnerable to this as the popularity of certain names shifts over 

time, class and race, and thus some names are disproportionately clustered in different 

age cohorts. Using names that were only popular in the 1950s would results with a very 

different estimate of 𝑐 than if names were only used from the 1990s. This distribution 

problem, acknowledged early in the history of the NSUM technique, is discussed in 

almost all modern articles as a limitation, but is only addressed systematically a few 

times in the literature (Feehan and Salganik 2016; Maltiel et al. 2015; McCormick et al. 

2010; Salganik et al. 2011). 

 The third major source of error in the NSUM is commonly referred to as recall 

error. These effects broadly include the ability of a respondent to accurately recall and 

report the number of people they actually know in a given category This problem that is 
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not unique to NSUM studies and has received attention in the general survey literature 

(Sudman, Bradburn, and Schwarz 1996; Tourangeau, Rips, and Rasinski 2000). Whereas 

general survey researchers are often concerned with a participant’s ability to accurately 

recall a single event, NSUM researchers are asking participants to enumerate 30 or more 

different and unrelated populations in a small time frame. The most comprehensive 

examination of this error source to date in NSUM surveys found that respondents are 

prone to over-reporting the number of people they know in small populations and 

underreporting the number of those they know in large populations (McCarty et al. 2001), 

similar to general survey research results that found differences between rare and 

common events (Tourangeau et al. 2000).  

 Time was shown to be an additional factor for recall error in NSUM surveys.  For 

example, focus groups revealed that participants had a hard time estimating the number 

of people they knew in large populations when they were given little time to answer 

(McCarty et al. 2001). Participants in focus groups often confessed to using estimation 

and heaping techniques (i.e. providing answers that were divisible by 5 or 10) to generate 

their answers and save time instead of going through the process of actually counting 

their answers (McCarty et al. 2001). However, these heaping strategies were found to 

have little effect on final estimates (McCarty et al. 2001).  

 Cognitive error, is rarely discussed in any great detail within the NSUM 

literature, although it has been broadly discussed in survey research and is frequently 

addressed when developing new survey questions (Tourangeau et al. 2000; Willis 2005). 

Cognitive error has the potential to be particularly harmful to NSUM studies given their 

reliance on a participant understanding of what is meant by “knowing” someone and 
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shared definitions of what various phenomena are. Typically “knowing” is defined in the 

survey as a mutual recognition between the respondent and the alter by sight or name, 

and that there has been some sort of contact in the past two years (Killworth, Johnsen, et 

al. 1998). This definition is often modified to include different time ranges (Shelley et al. 

1995), or to include alters within a certain age range or geographical location (Guo et al. 

2013; Jing et al. 2014; Shati et al. 2014; Shokoohi, Baneshi, and Haghdoost 2012).  

It remains unclear how differential understanding of “knowing” may influence 

estimates of personal network size or subpopulation size estimates. Salganik and Feehan 

(2016) suggest that changing the written definition of “know” in a survey can change the 

final survey estimates; however, it is unknown how variation in in a respondent’s internal 

interpretation of “know” affects NSUM outcomes. Cognitive error may also occur when 

respondents define the target population differently internally (e.g. homeless as on the 

street, or living in a hotel, or being unstably housed). Briefly described in the literature 

(Killworth, Johnsen, et al. 1998; McCarty et al. 2001) as a potential problem, cognitive 

errors are largely unaddressed, and their effects unexplored in the context of NSUM 

studies.  

Checking Accuracy 

 Much of the work on error in the NSUM has used data benchmarks to gauge the 

accuracy of the method by comparing results to other sources of data, such as official 

homicide numbers (Killworth, Johnsen, et al. 1998), or by comparing results  to estimates 

generated by other estimation methods (Guo et al. 2013; McCarty et al. 2001). These 

types of comparisons are often not available for hidden and hard-to-reach populations, 

which can leave researchers unable to assess the accuracy of their estimates. The NSUM 
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method includes within it a way to perform a type of accuracy check when these 

benchmarks are not available, a process known as back-estimation. Back-estimation 

involves using Equation 1.3 to predict a scaling variable and then comparing the 

prediction to the known number. For example, if we know that there are 1,200 

professional firefighters in Nebraska but our estimate is 18,000, then we can identify that 

our respondents seem to know considerably more firefighters than would seem likely.  

Researchers have used this ratio of the estimated number to the known number 

(18,000/1,200) to gauge the quality of their scaling variables and how well they are 

performing in their sample, as well as an indicator of overall accuracy of their estimates 

(Ezoe et al. 2012; Guo et al. 2013; Killworth, Johnsen, et al. 1998; Rastegari et al. 2013; 

Shati et al. 2014; Snidero et al. 2007; Sulaberidze et al. 2016). It has been common 

practice to discard scaling variables that are deemed inaccurate beyond a certain 

threshold, often more than twice the known. There are differences, however, in the 

manner by which those scaling variables are discarded. Some researchers have removed 

all of the egregious scaling variables at once (Ezoe et al. 2012; Guo et al. 2013), while 

others have removed them in an iterative fashion (Shati et al. 2014; Sulaberidze et al. 

2016). The NSUM estimates are dependent upon how the scaling variables work together 

to produce estimates of personal network size. However, little is known how these 

different approaches to applying back-estimation affect the estimates of personal network 

size and final subpopulation estimates. 

Adjusting for Error in NSUM 

 NSUM offers significant potential to estimate subpopulation size, but issues 

associated with errors have not been fully addressed. Of the four error types listed 
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previously, transmission error has received the most attention by researchers attempting 

to develop statistical adjustments. One of the earliest suggestions was to avoid scaling 

variables and target subpopulations that are judged to have high transmission error 

(Killworth, Johnsen, et al. 1998). Although this is a practical suggestion for choosing 

scaling variables, it is problematic given that the method was largely implemented to 

estimate the size of stigmatized populations whose statuses would qualify them as having 

potentially high rates for transmission error.  

 To address transmission error, Killworth and colleagues (2006) suggested that 

researchers develop a way to categorize the difficulty of transmission for a given status or 

attribute. This approach has been widely adopted through several techniques that seek to 

gauge the likelihood that information is transmitted across a network. Some of these 

approaches involved seeking out those in the target population and asking them about 

how many of their own alters know their status (Ezoe et al. 2012; Killworth et al. 2006; 

Maghsoudi et al. 2014; Salganik et al. 2011).  Another approach involves asking 

professionals to gauge the likelihood that such information would be transmitted, 

typically on a scale of 0 to 1 (Guo et al. 2013; Rastegari et al. 2014; Snidero et al. 2007). 

In both cases the information is used to form a weight based upon the likelihood of 

information flowing across the network and then adjusting the number of reported people 

in that subpopulation accordingly. 

  It is important to note that in several of these cases (Ezoe et al. 2012; Maghsoudi 

et al. 2014; Salganik et al. 2011; Vardanjani, Baneshi, and Haghdoost 2015) adjusting for 

transmission error required contacting members of the target population, which shifts the 

NSUM away from its indirect and more cost effective method, into one more akin to 
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ethnography or respondent driven sampling. Several modifications of the NSUM have 

been based off this additional point of contact and are typically referred to as the 

generalized NSUM (Jing et al. 2014; Salganik et al. 2011). These transmission error 

adjustments weights are tailored to a single subpopulation size estimate, if a study has 

several target subpopulations than the adjustments need to be calculated for each possible 

outcome. Finally, although there are a variety of proposed techniques to adjust for 

transmission error which are of a similar theme, there is yet to be any one method that is 

viewed as best practice for addressing this type of error.  

  Although statistical fixes for barrier effects are not as numerous as those seen for 

transmission errors, there are still two major methods discussed to adjust for these 

problems. McCormick and his colleagues (2010) proposed and tested a solution using a 

latent nonrandom mixing model to account for the uneven distribution of scaling variable 

names by age and gender. This adjustment essentially estimates a respondent’s personal 

network differently based upon their age and gender, and characteristics of the potential 

alter population (i.e. the scaling variables). In a comprehensive test of this proposed 

method the authors found that their adjustment provides superior estimates than the base 

NSUM model provides. However, the authors also tested a far simpler adjustment, using 

what they called “scaled-down” scaling variables (McCormick et al. 2010). This 

technique requires that the scaling variables match population distributions. Using first 

names as an example, the chosen names would be distributed across the population such 

that if 15% of the population is males between 21 and 40, than 15% of the people asked 

about as scaling variables must also be males between 21 and 40. When comparing the 

base NSUM model with the latent nonrandom mixing model and the scaled-down model, 
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the researchers found that the scaled-down is equivalent to the latent nonrandom mixing 

model when the scaling variables represent a scaled-down version of the population 

(McCormick et al. 2010). This suggests that adjusting for the complexity of the mixing 

model is unnecessary when the scaling variables are appropriately selected. 

 When seeking to avoid recall error there appear to be two separate routes that 

current NSUM researchers have explored. The first lies in the careful selection of scaling 

variables. A growing consensus suggests that scaling variables should be sufficiently rare 

that respondents can quickly and accurately come up with responses without having to 

resort to shortcuts or response heaping strategies (Zheng, Salganik, and Gelman 2006). A 

commonly accepted definition of rarity is that the scaling variable should comprise 0.1%-

0.2% of the larger population. For example, if names are used to generate a scaling 

variable, the names should be chosen so that they ideally only have one spelling and no 

nicknames (McCormick et al. 2010; Zheng et al. 2006). The second path is to use a post-

estimation adjustment which fits a correction curve to the count data. This technique is 

based on documented trends of respondents to over count small populations and 

undercount large populations (McCarty et al. 2001).  The technique increases the count as 

the scaling variable becomes larger and decreases it for smaller populations (McCormick 

et al. 2010; Zheng et al. 2006). Although this method has been implemented in one 

analysis (McCormick et al. 2010), it remains unclear if the technique is solely responsible 

for improved estimates. 

 Cognitive errors in the NSUM remain largely unexplored, although exploring 

cognitive discrepancies in standard survey work is well established (Tourangeau et al. 

2000; Willis 2005). Some work has been done with focus groups to examine how NSUM 
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participants create their counts (McCarty et al. 2001), but this is more indicative of recall 

error than cognitive error. Several studies have altered the operational definition of 

“knowing” somebody in order to make it specific to a town (Shati et al. 2014), region 

(Jing et al. 2014), or within shorter time constraints (Feehan et al. 2016; Shokoohi et al. 

2012) than the typical two year window (Killworth, Johnsen, et al. 1998). However, these 

studies have not examined how changing this operational definition affects participant 

perceptions, the outcome estimates of personal network size, or target estimates. There is 

one study (Feehan et al. 2016) that does a split ballot experiment comparing different 

definitions of “knowing” someone and they found differences in both social network size 

and the final outcome estimates. Although this experiment is focused on changing 

definitions of “knowing” someone, it is based around ideas of making it easier to recall 

people in a personal network (Feehan et al. 2016),and not on the ways participants may 

differentially understand what it means to “know” someone. Despite recent variation in 

how “knowing” someone is defined, there is still a dearth of information about how 

participants understand this crucial element of the method.  

Current State of the NSUM  

 The NSUM has seen a recent growth of interest with almost two dozen published 

academic papers since the start of 2012. Many of these studies have continued to focus on 

populations related to HIV/AIDs transmission (Ezoe et al. 2012; Guo et al. 2013; Jing et 

al. 2014; Kanato 2015; Khounigh et al. 2014; Maghsoudi et al. 2014; Shokoohi et al. 

2012). There are several studies that have begun to broaden their populations of interest 

to study abortions (Rastegari et al. 2014), severe physical and mental disabilities 

(Mohebbi et al. 2014), prevalence of several types of cancer (Haghdoost et al. 2014), and 
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the frequency of spinal cord injury resulting from an earthquake (Daneshi et al. 2014). 

These new populations begin to extend the NSUM method into populations that may 

have less transmission error than HIV/AIDs statuses, but these innovations have so far 

been largely limited to the work being done by public health officials in non-Western 

contexts, including Japan (Ezoe et al. 2012), China (Guo et al. 2013), Iran (Rastegari et 

al. 2013), and Thailand (Kanato 2015).  

 Recent NSUM studies have also introduced new approaches for adjusting error. 

These developments have focused almost exclusively on transmission error, creating new 

ways to estimate the flow of information about a given status across a network. In Japan, 

Ezoe et al. (2012) estimated a coming-out rate where they attempt to determine the rate at 

which men who have sex with men tell others about their status. In China, Guo  et al. 

(2013) used  a social respect factor in which they asked participants how much they 

respected members of target populations on average and used those factors to adjust 

participant responses(Guo et al. 2013)(Guo et al. 2013)(Guo et al., 2013). In Iran, 

Maghsoudi et al. (2014) employed a visibility factor in which participants were asked 

how many people they knew in each scaling category were aware of their status. 

 Despite new experiments in adjusting for transmission error, little work has been 

done to account for other common error sources in the NSUM. By integrating the NSUM 

fully with respondent driven sampling, there have been methods developed to account for 

barrier and transmission effects in the generalized NSUM (Feehan and Salganik 2016) 

and through Bayesian adjustments (Maltiel et al. 2015). These techniques, however, 

require direct sampling of the hidden population in order to estimate transmission rates 

for statistical corrections. In requiring direct contact, the generalized NSUM and 
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Bayesian approaches sacrifices many of the advantageous qualities of the NSUM. Such 

as the ability to employ cost-effective sampling frames of the general population. Aside 

from these extensions of the NSUM there have been few other attempts to develop or 

further understand error in the NSUM due recall errors or cognitive errors. 

Dissertation Focus 

 One aspect of the NSUM that has remained relatively unquestioned since its 

development is the estimation process itself. First discussed in the original Mexico City 

study (Benard et al. 1991) and then formalized in a U.S. study (Killworth, Johnsen, et al. 

1998), the equations used to generate personal network size have remained the core of 

most NSUM studies. These formulas (Eq. 2 and Eq. 3) are designed to minimize the 

influence that a single scaling variable can have over the final estimate of either personal 

network size or the target population size. In doing so the formulas move away from the 

core assumption of the NSUM that the direct proportion of the number known in a 

population to total size of that population is of primary importance to the method. It is 

open question as to how modifying these equations may benefit or hinder the NSUM and 

its ability to produce accurate estimates of population size. A central part of this 

dissertation is thus to reexamine this formula and how it may be improved. 

 Another aspect of the NSUM that has frequently been implemented but not 

necessarily understood is the process of back-estimation. This technique was introduced 

early in the development of the NSUM (Killworth, Johnsen, et al. 1998).  Back-

estimation involves predicting the scaling populations using the previously estimated 

personal network size and comparing scaling estimates to their known values in recent 

years, the method has been reintroduced to the NSUM literature as a way to check the 
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accuracy of the process, and as a way to determine which scaling variables are 

performing poorly. NSUM researchers have implemented various cutoffs of error to 

determine when a scaling variable should be discarded or not. For example, Ezoe et al. 

(2012) discarded estimates if they varied “significantly” (Ezoe et al. 2012).  Guo et al. 

(2013) used a cutoff point when the estimate was twice or more the known value; 

whereas Rastegari et al. (2013) used a cutoff point of 1.5 times the known value in Iran. 

What remains unknown is if this discarding process truly improves the final estimates 

and what the consequences of using back-estimation are. 

 One part of the NSUM that may be affected by changes in the core estimator and 

the use of back-estimation is the estimation of personal network size. For most of the 

NSUM implementations used today, calculating personal network size is a crucial step in 

order to estimate the size of hidden and hard to reach populations. Not only is personal 

network size crucial to the NSUM, but reliable estimates of network size can inform 

some of the earliest questions in social network analysis (Pool and Kochen 1979). 

Population level estimates of personal network size, the variance of those estimates, and 

associations between those estimates and personal attributes can also reveal complex 

social structures. Understanding how choices in the NSUM estimation process result in 

differences in estimate network size is therefore any important issue to consider.  

 Beyond changes to the estimation and adjustment process, there remains a 

considerable amount of work to be done in regards to cognitive and recall errors in the 

NSUM. Of particular note is the limited understanding of how NSUM survey participants 

operationalize what it means to know someone and whether this is stable across the 

survey. Further, many definitions of knowing someone involve spatial and temporal 
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boundaries. In one study, researchers found that participants had an easier time with a 

smaller time boundary (Feehan et al. 2016), but more work needs to be done to 

understand how participants actually work through NSUM questions internally. Strongly 

related to this is understanding the motivations for when a NSUM participants decides to 

stop searching their memory for more that they know. 

 This dissertation seeks to address these limitations by proposing several new 

changes to the NSUM. The first is a new estimation process for the NSUM which 

estimates both personal network size and the size of the target population differently from 

traditional implementations. In addition, recursive back-estimation is proposed and tested 

using a set of census data as a target population in chapter 4. Chapter 5 explores how 

estimates of personal network size are affected by changes in NSUM estimators and the 

use of back-estimation. Further, associations between predicted network size and 

individual attributes are explored among Nebraskans in order generate statewide 

predicted personal network size values. Finally, Chapter 6 uses cognitive interviews to 

examine the response process used by NSUM participants and to identify problems which 

arise through recall and cognitive errors. These observations are used to develop a set of 

new practices for NSUM survey implementation.  
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CHAPTER 3: DATA COLLECTION 

The Nebraska Community Survey: 2014 

 

 Data for this dissertation comes from two sources. The first is the 2014 Nebraska 

Community Survey (NCS) which was implemented in the spring of 2014 and was sent to 

a random sample of 2,000 households in Nebraska. The sample was obtained from the 

United States Postal Service delivery sequence file (DSF) through the Bureau of 

Sociological Research (BOSR) at the University of Nebraska-Lincoln. Seasonal and 

vacant households were removed from the sample by the provider. The DSF covers 

approximately 97 percent of U.S. Households and provides a reasonable frame for the 

Nebraska population (Iannacchione 2011; Link et al. 2008). The Institutional Review 

Board at the University of Nebraska-Lincoln approved the research protocol and granted 

the project an exempt status (IRB# 20140314288 EX). Each household in the sample was 

sent a packet which included a letter introducing the survey, a one dollar incentive, a 

copy of the survey questionnaire (see Appendix A), and a pre-paid return envelope. The 

person in the household to take the survey was selected using the next-birthday method, a 

quasi-probability selection design (Gaziano 2005). Eligible respondents had to be at least 

19 years old, the age of majority in Nebraska, and be the next person in the household to 

have a birthday after April 14, 2014. A week after the initial mailing a reminder postcard 

was sent to any households that had not responded to the initial mailing. Three weeks 

later, a second survey packet was sent to non-responding households. If at any time a 

respondent asked to be removed from the address list, all further mailings were stopped. 

After the third mailing, data was collected for approximately another six weeks, allowing 

respondents ample time to complete and return their survey.   
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 The goal of this survey was to gather data about a wide variety of hidden and 

difficult to measure populations. Several researchers at the University of Nebraska-

Lincoln came together and developed a list of outcomes that ranged from domestic 

migration in the US and Nebraska, public health concerns, drug use, contact with the 

criminal justice system, and crime victimization. The NSUM technique allows for the 

easy incorporation of research questions that can be measured in counts of persons 

known to the respondent. Due to the unusual nature of the NSUM questions survey 

materials were written to emphasize the unique aspects of the survey. When data 

collection was ended, 618 of the surveys had been completed and returned, an AAPOR 

Response Rate 1 of 30.9% (The American Association for Public Opinion Research 

2015). This NSUM survey achieved a higher response rate than similarly incentivized 

mail surveys of Nebraskans in the same field timeframe, an increase attributed to the 

novelty of the NSUM approach.  

 The NCS used the known-population method to estimate personal network size 

for the NSUM hidden population estimates. Eighteen known-populations were chosen, 12 

names and 8 professions. The names were chosen based upon the prior work done by 

McCormick et al. (2010). McCormick and colleagues examined the set of names initially 

used by McCarty et al. (2001) in their early NSUM studies. They found that a subset of 

12 names held favorable properties for NSUM researchers in that they were distributed 

across age cohorts in popularity, they were sufficiently rare that they made up 0.02% of 

the US population, and they had limited pools of nicknames (McCormick et al. 2010). 

The NCS uses this list of names for the current study: Rose, Tina, Emily, Martha, Paula, 

Rachel, Walter, Bruce, Alan, Ralph, Kyle, and Adam. In order to supplement the list of 
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names, the NCS also included six questions about professions. These professions were 

inspired from the known-populations used by McCarty et al. (2001) and for which 

information could be obtained about Nebraska population numbers. The final list of 

occupations was: police officers, firefighters, US postal officers, correctional officers, 

licensed gun dealers, and airline pilots.  

Survey participants were asked to list the number of people they knew in each of 

the known-populations who currently lived in Nebraska and the total number they knew 

in the US. Unfortunately, only the number known in Nebraska was usable, as several 

participants answered the US count as being mutually exclusive from their Nebraska 

count. This resulted in answers where a participant would know 5 police officers in 

Nebraska, and 2 in the US. Unfortunately, there was no way to determine if all 

participants interpreted these questions this way, or if it was only a subset. As a result, the 

US questions are not used in this dissertation. For the NCS, knowing someone was 

defined as “… it means that you know them and they know you by sight or name, that 

you could contact them, and there has been some contact (either in person, by telephone, 

mail, or web) in the past 2 years.” This definition of knowing someone is consistent with 

prior NSUM work (Killworth, McCarty, H. Russell Bernard, Shelley, et al. 1998; 

McCarty et al. 2001). 

Cognitive Interviews 

The second source of data for this dissertation comes from a series of cognitive 

interviews which were conducted in the late summer and early fall of 2016. Cognitive 

interviews are a technique used to study how people understand, mentally process, and 

ultimately respond to questions (Beatty and Willis 2007; Willis 2005). A distinctive 
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feature of many cognitive interviews is the think-aloud process. A think-aloud is when a 

participant is asked to verbally state what they are thinking as they complete a survey or 

answer a smaller set of questions (Willis 2005). These types of interviews are able to 

capture high level mental processes which a participant goes through when answering a 

question (Conrad, Blair, and Tracy 1999). However, these interviews are not capable of 

revealing information about processes that are spontaneous or those that a participant is 

not truly aware of (Conrad et al. 1999; Ericsson and Simon 1993).  

In addition to the think-aloud process, many cognitive interview protocols may 

also include interviewer probes (Willis 2005). These may vary by both when they are 

constructed (prior or during) and what triggers the probe (the interviewer or subject 

behavior) (Beatty and Willis 2007; Willis 2005). Probes may also occur during the think-

aloud process or after the think-aloud has been completed (Willis 2005). Asking probes 

during the process has the advantage of the immediacy of the probe (i.e. there is little 

time delay between a behavior and a probe). However, there is evidence that concurrent 

or near-concurrent probes can effect both the results and the process of a think-aloud 

interview (Ericsson and Simon 1993; Russo, Johnson, and Stephens 1989; Willis 2005). 

Retrospective probing, which occurs after the think-aloud is complete avoids these 

reactive effects, but may make it more difficult for a participant to accurately recall what 

their response process was when they first answered that question (Ericsson and Simon 

1993; Willis 2005). However, when using a survey instrument that is self-administered 

(as the survey for this study is) it may be more beneficial to replicate how a participant 

would complete the survey in the field (Willis 2005). As such, the cognitive interviews 

designed for this dissertation attempt to minimize the number of concurrent probes in 



34 
 

favor of retrospective probes which occur after the survey had been completed by the 

participant. 

Participant Recruitment & Instrument Design 

A convenience sample was recruited by posting flyers in several classroom 

buildings on the UNL campus as well as several coffee shops located in the city of 

Lincoln, Nebraska. Participants had to be at least 19 years of age and current residents of 

the city of Lincoln or Lancaster County Nebraska. Interviews took place on the UNL 

campus. As an incentive, $20 cash was offered to compensate for the participant’s time as 

the interview was expected to last from 1.5 to 2 hours. The completed interviews ranged 

from 47 minutes to 2 hours and 15 minutes in length. The average interview was 1 hour 

and 20 minutes long. The interview protocol was approved by UNL’s IRB and given an 

exempt status (IRB# 20160716187 EX).  

The survey used in these cognitive interviews is an adaptation of the 2014 NCS 

(Appendix A) which has been modified in three key ways. The first is that in the 2014 

NCS there was a large section on attitudes about the media and crime. This section was 

removed for the cognitive interviews as it was not considered to be relevant to the aims of 

the study and would add more tasks for the participant to complete without a necessary 

reason. The second change is that a section of summation NSUM questions were added 

in order to directly contrast the known-population and summation methods. The third 

change is that the modified survey no longer asks about how many people a participant 

knows in the US in addition to those known in Nebraska. These questions were originally 

intended to be used as an experiment about simultaneously measuring nested networks. 

However, this experiment failed and retaining these elements for the cognitive interviews 
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was deemed to be unnecessary. The final survey for the cognitive interviews is replicated 

in Appendix B of this dissertation. 

A total of 19 interviews were completed out of a target goal of 20. Twenty 

interviews was set as the maximum due to funding availability. Recruitment began on 

August 22, 2016 when flyers were posted at five locations on the UNL campus and four 

locations in the city of Lincoln, Nebraska. The last interview was conducted on October 

11, 2016 and all flyers were pulled on October 14, 2016. Recruitment was ended one 

interview short of the target goal of 20 due to the lack of new participants being 

interested in the study. Interested participants contacted the interviewer directly through 

email in order to setup the interview on the UNL campus. 

Interview Protocol & Implementation 

All interviews were conducted in 104 Benton Hall. This is a room which is used 

as either a workroom or a classroom, and can comfortably accommodate up to 18 

students. The room is private, located near restrooms, and is located on the first floor of 

the building which is typically quiet. Every interview used the same room setup. A large 

table was placed in the middle of the room with four chairs on each side. The interviewer 

sat on one side of the table (with the windows at their back) and the participant sat on the 

opposite side. In front of the participant’s chair were three sheets of legal paper, a pen, 

and a liter of bottled water. In front of the interviewer’s chair were a legal pad, a pen, two 

copies of the survey, two copies of the interview consent form, a form to record the start 

and end time of the interview, and a plastic cup of water. A box of tissues and a digital 

audio recorder were placed in the middle of the table. While interviews were in progress 
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signs were posted on the two doors of the room which said, “Do Not Disturb – Interview 

in Progress – Thank You – Patrick Habecker.”  

Participants were greeted at the door of the room and welcomed by the 

interviewer. They were shown to their seat and asked to make themselves comfortable. 

The interviewer used a pre-scripted interview protocol as a framework to describe the 

study and what the participant will be doing during the interview (Appendix C). The 

participant was then given the informed consent form and the interviewer went over each 

element of the form, what it meant, and highlighted the rights of the participant. After 

jointly going over the consent form, the participant was encourage to ask questions and to 

take some time to look over the form on their own. Once they agreed, the participant 

signed a copy of the consent and gave it to the interviewer, who in turn gave the 

participant a blank copy for their records.  

Once the consent form was signed, the interviewer introduced what cognitive 

interviews are, why we do them, and what the process is like for the participant. As 

cognitive interviews are unusual, two example questions were used to give the participant 

a chance to practice the think-aloud technique. The first question asked, “How many 

residences have you lived in since you were born.” The second asked, “Think about 

where you live. How many windows are there?” For the first question participants were 

asked two follow-up questions: “how did you think about what it means to live 

somewhere?” and, “how did you define what it means to live somewhere?” For the 

second question, probes were used to ask if the participant was counting windows in 

doors or counting sliding glass doors. After the practice questions and their follow-ups 
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were completed, the participant was given a chance to ask any other questions before the 

interview started. 

After the practice questions were finished the audio recorder was turned on and 

the participant was given a copy of the survey (Appendix B). The interviewer followed 

along with their own copy of the survey and made notes on their copy of the survey and 

on their legal pad. Concurrent probes were meant to be limited in this interview protocol 

(Appendix C). Most of the probes were meant to encourage the participant to fully 

engage in the think-aloud process and to avoid periods of time where the participant may 

lapse into silence. A handful of probes were written beforehand to assess how accurate a 

participant may think a given question is, how they decided to stop counting, or how they 

came up with a response for a question (Appendix C). However, these probes were not 

linked to specific questions, and could be used at the discretion of the interviewer during 

the interview.  

Aside from the interviewer encouraging the participant to engage in the think-

aloud, there was little planned interaction between the interviewer and the participant 

while the survey was being completed. During the survey, the interviewer was focused on 

the process the participant was describing and took notes and wrote questions which 

would be asked after the survey was complete. These notes were added to a set of pre-

written end of survey questions (Appendix C) and were used to facilitate a retrospective 

discussion after the survey was finished. Here the interviewer encouraged the participant 

to reflect upon some of the choices they made and the behaviors they used while 

completing the survey. These retrospective questions ranged from queries about specific 

questions, to reflections about overall response processes. The pre-written questions 
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provided  a common set of questions for all participants while the interviewer’s notes 

allowed for emergent behaviors to be examined.  

After the end of survey questions were completed the participant was given a 

chance to ask questions of the interviewer. Once those were finished the digital recorder 

was turned off. The participant’s completed survey was collected by the interviewer as 

well as the scratch paper that was used by the participant. The participant was then given 

a $20 bill and a receipt to complete and sign in order to comply with UNL financial rules. 

At this point all parts of the cognitive interview were complete and the participant was 

walked to the exit of the building. Once the participant was gone all materials were 

collected, the table was cleaned, and the do not disturb signs were removed from the 

doors. The materials were taken to the interviewer’s office were they were locked in a file 

cabinet. The audio file was downloaded from the recorder, copied twice (once onto a 

USB backup and once onto the interviewer’s computer), and then the recording on the 

recorder was deleted. At this point the emails between the interviewer and the participant 

were deleted from the interviewer’s inbox and then purged from their deleted folder.  
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CHAPTER 4: THE MEAN OF SUMS, RECURSIVE BACK-ESTIMATION, AND 

WEIGHTING 

Note: Much of this chapter has been previously published elsewhere under a Creative 

Commons Attribution License (Habecker, Dombrowski, and Khan 2015). 

Introduction 

 The network scale-up estimation method is based on the assumption that, on 

average, an individual’s personal network will be representative of the general population 

(Johnsen et al. 1995b; Killworth, McCarty, H. Russell Bernard, Shelley, et al. 1998). That 

is, the proportion of people in an average individual’s personal network who are members 

of a given subpopulation is indicative of the relative size of that subpopulation to the 

general population as a whole. This can be formally expressed with Eq. 4.1, where 𝑚 is 

the number of people known by the respondent in a given subpopulation, 𝑐 is the size of 

the respondent’s personal network, 𝑡 is the size of the larger population, and 𝑒 is the size 

of a subgroup in the population. 

 
𝑚

𝑐
=

𝑒

𝑡
 4.1 

 The challenge of the NSUM method is estimating the size of an individual’s 

personal network, 𝑐.  Realizing that local conditions can influence mean network size 

(consider the difference between predominantly urban and predominantly rural 

populations) a popular method for calculating this value for a sample is the known 

population method (McCarty et al. 2001). This approach asks respondents to report the 

number of individuals they know from a population whose size can be estimated by other 

means (e.g. Census figures or other official statistics).  These data can then be used to 
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estimate the personal network size of each respondent, allowing researchers to “scale up” 

their answers for unknown populations to population level estimates. Eq. (3.2) describes 

how the counts for such “scaling” variables can be used to derive the personal network 

size of a single respondent, where i indicates a respondent and j a scaling variable. In 

essence, the reported value of each scaling variable 𝑚𝑖𝑗 (e.g. “firefighters”, or “airline 

pilots,” or “persons named Walter”) are summed across a range of such categories, and 

then divided by the total known population 𝑒𝑗 for these same groups. 

 �̂�𝑖 =
Σ𝑗𝑚𝑖𝑗

Σ𝑗𝑒𝑗
𝑡 4.2 

 

Common populations to ask about include the number of people with a given first name, 

such as Rose, or the number of people known who hold a certain job, such as postal 

worker; “knowing someone” is normally defined as someone whom the respondent 

knows by name and with whom the respondent has had some form of communication in 

the past two years (H. Russell Bernard et al. 2010). 

 Once an estimate for the respondent’s personal network size is in hand it is 

possible to calculate the size of a previously unknown subpopulation using the ratio of the 

respondents estimated personal network size to the total population. This is shown in Eq. 

4.3 (where data solicited from all respondents (0,1, … 𝑖) for a given “target” population 𝑗, 

over the sum of all respondent’s respective, estimated personal network size �̂�𝑗, is used to 

estimate the number of people in the target population (such as illegal drug users).  

 �̂�𝑗 =
Σ𝑖𝑚𝑖𝑗

Σ𝑖�̂�𝑖
𝑡 4.3 
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In the method above, the final value for the scaling variables determined in each 

survey are not treated individually. Rather, as originally practiced both the discovered 

variable values across all respondents, 𝑚𝑖𝑗, and the total (external) estimates of these 

“known” populations, 𝑒𝑗, are summed (see Eq. 4.2). The resulting ratio is used to 

calculate an individual’s personal network size. In this process, large estimates in one 

scaling variable 𝑚𝑖 are minimized in their ability to alter the resulting personal network 

size estimate, given relative uniformity across the other scaling variables. Further, by 

summing across the known network sizes, 𝑒𝑗, differences in the sizes of these known 

populations introduce a hidden weighting factor, whereby some variables contribute more 

to the size of the denominator than others. The latter problem is often dealt with by 

seeking scaling variables that are roughly equal in estimated size i.e. where 

a b c je e e e   
 , in order to minimize the hidden weighting that unequal sizes 

entails. Further, in a situation where no means are available to discover outliers and 

remove them from the estimation process, researchers may prefer a method that 

implicitly mutes the impact of outliers in our estimation process.  

Finding scaling variables of uniform size may be difficult, however, and muting 

the effect of outliers is not the same as removing them from the estimation process. In 

both cases, alternatives are available. Toward this end, this chapter discusses an 

alternative estimator that takes into account the performance of the each scaling variable 

individually and, allows for the selective removal of those that are performing poorly in 

comparison with the combination of all others. The new estimator and a comparison of 

results with the original estimation process are discussed below. 
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 Additionally, this chapter proposes a way to integrate sampling and post-

stratification weights into both of the estimation processes. One of the strengths of the 

NSUM technique is that it can use mainstream sampling techniques to generate 

representative samples and thereby accurate estimates of target populations. These types 

of frames also have the major advantage of having known distributions which can be 

used to create weights to ensure greater representativeness of the sample. Incorporating 

these types of weights in to the NSUM estimation process is a logical and much needed 

addition to the technique. This chapter demonstrates how weights can be included into 

both the original and proposed estimators and compares the differences in the final 

population estimates.  

The Mean of Sums Network Scale-up Estimator 

 The heart of the network scale-up estimation process is based around the number 

of people a respondent knows from a known subpopulation. When there is only one 

known subpopulation the ratio is simply that, the number of people an individual knows 

(say, for example, “persons named Walter”), divided by the total size of that 

subpopulation (in this case, the number of persons named Walter in the population). 

Network scale-up researchers, however, often use more than one scaling variable (and 

thus more than one known subpopulation) in building an estimate of personal network 

size.  Recent recommendations include the use of at least twenty (H. Russell Bernard et 

al. 2010). As above, the number of people known across all known subpopulations are 

summed and taken over the sum of the size of all the subpopulations (as shown in Eq. 

4.2).  
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This method can lead to a hidden masking of the performance of a single variable. 

This may be desirable when there are limited means to judge the performance of the 

scaling variables individually, but in general the effects on the resulting estimates are not 

discussed. An example can help make this process more clear. Consider an individual 

who provides counts for three scaling variables of known population sizes 1000, 1000, 

and 1000 respectively, who indicates that she knows 1 person in each of these categories. 

The result (see Eq. 4.5), using the conventional NSUM estimation procedure is that the 

respondent’s personal network size is 0.1% of the total population.   

 
1 + 1 + 1

1000 + 1000 + 1000
= 0.001 (4.5) 

However, if the size of one of the scaling variable’s actual populations is much smaller 

(say, 100 instead of 1000), and one is much larger (say 10,000 rather than 1000), then the 

size of this same respondent’s personal network is equal to 0.00027 or 0.027% of the 

total population (see Eq. 3.6).  

 
1 + 1 + 1

100 + 1000 + 10000
= 0.00027 (4.6) 

Though the number of individuals known remains the same, the differential 

contribution of the elements of the denominator means that the larger target population 

(10,000), virtually eliminates the fact that here a person from a rare population is known 

(1/100). Indeed, it would make little difference if she had reported knowing 2 persons in 

the first population (2/100). Where significant differences exist in the size of the scaling 

populations (i.e. the denominator), the significance of knowing individuals in smaller 

populations can make little difference in the estimate of personal network size. Given 
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this, it might make more sense to take the average of the individual scaling variable ratios 

(Eq. 4.7, here after the mean of sums (MoS) estimator).  

 
�̂�𝑖 =

Σ𝑗 (
𝑚𝑖𝑗

𝑒𝑗
)

𝑗
𝑡 

4.7 

Here, each scaling variable contributes equally to the final estimate. However, the issue is 

nearly reversed: the smaller population now dominates the sum, and the result is nearly 

more than 13 times the size estimated using the conventional method (see Eq. 4.8 

compared to Eq. 4.6).  

 
1

100 +
1

1000 +
1

10000
3

= 0.0037 
4.8 

Following the logic of equation 4.7, a MoS process can also be derived to estimate �̂�𝑗 

which is shown in equation 4.9 below.  

 
�̂�𝑗 =

Σ𝑖 (
𝑚𝑖𝑗

�̂�𝑖
)

𝑖
𝑡 

4.9 

Whether the traditional or MoS is the better method for estimating personal network size 

remains an open question.  However, this chapter shows that the MoS estimator performs 

far better than the traditional estimator in a recursive trimming process, and produces a 

better outcome estimate, especially when weights are added. 

Methodology 

 This chapter uses data collected through the 2014 Nebraska Community Survey 

(NCS) which is described in greater detail in Chapter 3. For this chapter item 

nonresponse proved to be an interesting challenge for the analysis. Item nonresponse is 

when otherwise complete surveys have individual questions which are missing. 

Unfortunately, several respondents appeared to favor only writing answers when they had 
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non-zero responses to enumeration questions, leaving large and seeming random numbers 

of questions blank, even though they completed the survey, and supplied no “0” answers 

for any of the questions. Faced with this situation, there were two general choices: a 

conservative approach where blank answers were considered to be missing and thus 

handled through standard practice such as listwise deletion or multiple imputation; or 

assume that the empty cell indicates that the respondent knows zero people for that 

question and substitute a zero for the missing value code. As this latter option infers 

respondent behavior that cannot be confirmed, it is considered a weaker assumption and 

was not implemented for treating the present item nonresponse. Instead, listwise deletion 

was used and the final sample of “mostly” complete surveys was 550 out of the original 

618 complete cases. 

 In order to calculate personal network the 2014 NCS used the known population 

approach discussed in Chapter 2 and Chapter 3. Each respondent was asked for counts of 

personal network members of eighteen populations of known size, including twelve 

categories of people with a given first name and six professions. The set of names are the 

subset of names identified by McCormick and his colleagues (2010) which are distributed 

across age cohorts, have limited numbers of possible nicknames, and are sufficiently rare 

in the larger population (≈0.02%). The six professions were pulled from those used by 

McCarty and his colleagues (2001) and for which data on Nebraska populations could be 

obtained.  The full list of names and professions can be seen in Appendix A in the 2014 

NCS survey and are referred to as scaling variables throughout this chapter. The 

definition for knowing someone was that there was mutual recognition, that there has 

been some sort of contact in the past 2 years, that they could contact the person if they 
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wanted to, and that the person currently lives in Nebraska. This definition of knowing 

someone is consistent with prior NSUM implementations (Killworth, McCarty, H. 

Russell Bernard, Shelley, et al. 1998; McCarty et al. 2001). 

In addition to the scaling variables, this chapter focuses on three target 

subpopulations as well: the number of people who had moved to Nebraska from another 

state in the U.S. in the last two years; the number of people in Nebraska who would not 

approve of interracial dating; and the number of people in Nebraska who had used heroin 

in the last 30 days. Each survey respondent was asked to count the number of people they 

knew in each of these categories, not including themselves, and these counts were used in 

Eq. 4.3 to create population estimates of the size of these subgroups in the state-wide 

population.  

Basic Comparison between the Traditional and MoS Estimators 

 Table 4.1 shows the differences in population estimates of our target populations 

using the original estimator (Eq. 4.3) and one derived from an estimator that incorporates 

the MoS method (Eq. 4.9) for three populations in Nebraska. Differences between these 

two estimators vary depending upon the target population being estimated. The American 

Community Survey reports that in the year 2013, 45,854 Nebraskans reported living in a 

different state 1 year ago (U. S. Bureau of the Census 2013). When added to the same 

report for 2012 of 43,266 people moving into Nebraska (U. S. Bureau of the Census 

2012), this provides a two year total of 89,120. The MoS estimate of 75,800 is 

considerably closer to the two year ACS total than the estimate of 12,184 provided by the 

traditional NSUM formula. Although the 95% confidence intervals for neither estimate 

contain the ACS statistic. In addition to an increase in estimated migration into Nebraska, 
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the MoS method also estimates that 22,614 Nebraskans do not approve of interracial 

dating compared to an estimate of 17,892 Nebraskans from the traditional formula. The 

estimate for the number of Nebraskans that have used heroin in the last 30 days increases 

from 368 to 454 when comparing the traditional to the MoS estimation. Not all of the 

differences in our survey were stark. Overall, of the 46 populations estimated in the larger 

study, 76% of them changed by less than a factor of 2 using the MoS estimator compared 

to the original estimator.  

 A key indicator of how the results change is shown by the differences in 

calculated personal network size between the two estimation methods. The average 

estimate network size of Nebraskans is 604 using the traditional method and 1,024 from 

the MoS. Additionally, the largest estimated network size increases substantially, from 

5,944 with the traditional formula to 16,794 when using the MoS. Given the importance 

that the estimates of personal network size play in the NSUM it is easy to see why the 

MoS estimates may differ considerably from those using the traditional method. 

Using Back Estimates as a Data Quality Check 

 As the network scale-up method is mainly used to estimate the size of hidden and 

hard-to-reach populations, it is difficult to gauge the quality of the estimation process. 

The technique of back estimation offers a way to check the robustness of the estimate of 

personal network size and, by extension, later estimates of target populations. Briefly, 

back-estimation works by using the estimated personal network size generated by 

equation 4.2 along with the number of people known by the participants in the scaling 

populations to estimate the size of our scaling populations (i.e. names and jobs) using 

equation 4.3. It is possible to then compare the estimate population size of a name or job 
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to its known population size which is obtained from administrative sources. As Guo and 

colleagues (2013) have recently shown, this back-estimation process can be used as a 

self-check for the performance of individual scaling variables. Significant variation 

between back estimates of target variables and the known values for those populations 

points to elements in the network size estimation process where respondents deviated 

most significantly from the expected values, based on the results of all of the other 

knowns.  This process can be used for all versions of the NSUM estimator discussed in 

this paper, original and MoS, weighted and unweighted. Table 4.2 lists all 18 of the 

scaling populations used in this study. For each, the known population size is listed in 

column 1 and the back estimated population size using the original estimator is listed in 

column 2. A visual comparison of the numbers quickly reveals that some of the estimates 

are sizably different. For example, the NSUM back estimate for firefighters in Nebraska 

shows a value of over 18,000, while data from the Bureau of Labor Statistics (which was 

used in Eq. 4.2 to calculate personal network size) suggests that there are only 1,200. 

Other back estimates are less drastically divergent, such as the number of people named 

Adam in Nebraska (which is estimated to be 4,754 while information from the Census 

suggests that there are 4,839).  

 Following Guo and colleagues (2013), the performance of the estimators  can be 

compared by using the ratio of the back estimates to the known values for each 

subpopulation. A larger (or smaller) ratio indicates a greater difference between the back 

estimate and the known population. Such a measure provides a scale from 0 to infinity, 

with an ideal value of 1 (where the back estimate, based on all of the scaling variables 

together, is equal to the known value).  In Guo and colleagues study (2013), a correction 
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process was employed that discarded any scaling variable from the estimation process if 

the ratio of estimated to known exceeded 2 or was below 0.5.  Using the over/under of 

0.5 and 2, these authors eliminated 11 of their 19 total predictors at once, using the 

remaining 8 as the basis for their actual estimates of their target population.  

Unfortunately, a one-step trimming process misses that the elimination of any 

single scaling variable will necessarily change the estimate of personal network size, and 

thus the back estimation of all of the other scaling variables. Under such conditions, 

viewing the performance of the scaling variables as fixed regardless of their combination 

seems problematic. In place of this one step elimination process, this dissertation 

proposes a recursive process of repeatedly removing the worst performing scaling 

variable, in light of the results of all those remaining at any given stage of the process. 

Rather than a flat cutoff point, the log base 2 of the ratio of back-estimated to known is 

used (in essence, the log of Guo et al’s ratio (2013)). This transformation produces a 

performance metric that is continuous and symmetrical around zero. The absolute value 

of this number indicates that the greater the value, the greater the distance between the 

back estimate and the known population of the particular scaling variable regardless of 

which is larger. 

Looking down column 3 of Table 4.2 it is apparent that the greatest difference 

between back estimates and known populations for the 18 scaling variables is the number 

of firefighters in Nebraska, with a value of 3.93. Discarding firefighters from the 

estimation equation is done by returning to Eq. 4.2, which calculates the respondent’s 

personal network size, and removing the firefighters count and known population from 

the estimation process. Personal network size is recalculated then the back-estimates are 
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rerun for the scaling variables using Eq. 4.3. The new back-estimates are shown in 

column 4 of Table 4.2, labeled as IT1 (Iteration 1). By repeating the process of 

calculating the ratio of estimates to known populations, applying base 2 logarithms, and 

then comparing the absolute values of the result, the next most extreme variable from the 

list of knowns can be found. In this case the difference in the NSUM estimate for the 

number of U.S. Postal Carriers in Nebraska and the known population is the greatest 

(with a value of 1.77). Removing the Postal Carrier estimator from Eq. 4.2 and 

recalculating personal network size and new back-estimates sets up the next round of 

calculating distance. 

 This process is carried out recursively, until the absolute value of the log distance 

between estimates and known values is below one for all remaining predictors. The 

choice of log base 2 absolute value of 1 means that in the ratio of back estimated 

population to known value, the denominator is no more than twice the size of the 

numerator, and vice versa—or in other words, that the ratios are the same cutoff used by 

Guo and colleagues (i.e. 0.5 and 2). The point here is that the recursive process allows for 

the reconsideration of the performance of every scaling variable in light of all those 

remaining. Such a process allows for the fact that scaling variables may not be 

independent, but rather may contain complex interdependencies. According to the initial 

back estimation at step 0, firefighters, Walter, Martha, and correctional officers 

performed the most poorly.  Yet once the firefighter variable is removed, postal carriers 

become the most problematic. In the third round airline pilots have the greatest distance 

between known and estimated values. Finally, at round four, Martha is eliminated. The 

second and third eliminations (postal carriers and airline pilots) were not among the top 4 
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worst predictors. Had the one step, block elimination process been used, a different set of 

variables would have been eliminated. This reordering at each step illustrates how the 

distance measure changes across iterations and why the bulk removal process could result 

in removing variables that would not actually need to be eliminated from the calculation. 

This is particularly important for researchers who have a limited number of predictors 

and are trying to make difficult decisions about which variables to cut for the best results. 

 The recursive trimming process also changes the target population estimates at 

each step. Using the original estimator, seven iterations were completed before the 

distance metric for all remaining predictors was below a value of one, as shown by Table 

4.2. Table 4.3 then shows the differences in the population estimates before the recursive 

process was begun, and the estimates after completing seven iterations. All three of the 

estimates increased sizably and by the same factor (1.26). The recursive process will thus 

have a larger raw effect on population estimates of larger numeric size.  Additionally,  the 

estimate of average personal network size decreased from 604.03 to 464.28 by the end of 

the recursive process, accompanied by a decrease in the variance and maximum size of a 

respondent's personal network as well. 

Incorporating Weights into the Network Scale-up Estimator 

 One of the strengths of the network scale-up estimator is that it can take 

advantage of sampling frames with known sampling probabilities to estimate the size of 

hidden and hard-to-reach populations. These sampling frames also allow for the 

incorporation of sampling weights into the population estimation process. Weights can 

adjust for probability of selection, survey nonresponse, and allow for post-stratification 

adjustments in order to make the sample more representative to the population. Using 
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weights would theoretically result in better target population estimates and the possibility 

of using NSUM techniques successfully with more complex sampling designs.  

 Weights can be added to both the original and the MoS estimation formulas with 

little trouble, modifying Eq. 4.3 and 4.9 respectively. In both cases the number of people 

known by the respondent in a given subpopulation (𝑚𝑖𝑗) is multiplied by the individual’s 

final weight (𝑤𝑖). Equation. 4.10 shows the weighted formula for the original estimator 

and equation 4.11 shows the weighted formula for the MoS estimator. For the current 

data, a weight which adjusts for the probability of selection within a household and then 

post-stratifies the sample to match the distribution of sex and age for Nebraska is used. 

The selection weight is necessary as the sample is address based which randomly selects 

households in Nebraska which may then have multiple potential survey respondents. 

Post-stratification by sex and age helps adjust our estimates to match population 

distributions.  

 �̂�𝑗 =
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 Table 4.4 shows how the three population estimates and the estimated personal 

network size change when weights are incorporated in both the original and MoS 

estimators. Sizable changes are seen in all three of the population estimates. According to 

both estimators, the number of people who moved to Nebraska from another state in the 

U.S. increases considerably. Compared to the two year ACS total of 89,120, the MoS 

estimator still performs better (providing a weighted estimate of 114,929 people, 
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compared to the weighted original estimate of 16,232). Although the weighted MoS 

estimator is now overestimating the population size compared to the ACS numbers, it is 

still considerably closer than the estimate provided by the weighted original estimate for 

the same population. The number of Nebraskans who do not approve of interracial dating 

also increased compared to the unweighted estimates using the original estimator, but 

decreased according to the MoS.  In both cases, the number of people who used heroin in 

the last 30 days decreased.  

Testing All Three Components 

 In the final stage of this article the previous elements are combined (MoS 

estimator, recursive back estimation trimming, and the use of population weights) in what 

is a significant step forward in the NSUM estimation procedure. Table 4.5 shows the final 

size estimates for our three subpopulations in Nebraska. Moving from left to right Table 

4.5 first displays the unweighted and then weighted estimates using the original 

estimator, and then the unweighted and weighted estimates using the MoS estimator. All 

four estimates have gone through the recursive trimming process proposed here to 

remove poor scaling variables.  

 The estimates for the number of people who have moved to Nebraska from 

another state in the U.S. vary considerably across all four procedures: 16,039; 21,390; 

64,320; and 90,073 respectively. Summing the ACS totals for the same type of migration 

during 2012 and 2013 gives us a total of 89,120. Each improvement made to the NSUM 

process provides an estimate which is closer to the ACS figure, but the combination of all 

three elements discussed in this paper provides a population estimate of 90,073 with 95% 

confidence intervals that include the ACS estimate of 89,120 (Figure 4.1). Estimates for 
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disapproval of interracial dating (22,734; 23,883; 21,907; 21,250) and heroin use in the 

last 30 days (535, 404, 385, 281) vary considerably across estimation methods as well. 

The accuracy of the estimate of state-to-state migration verified by the ACS data suggests 

that the final estimates for those who disapprove of interracial dating and who have used 

heroin in the last 30 days are more accurate when using all three of proposed methods as 

well. 

 The MoS estimator, used in conjunction with the recursive trimming process, also 

preserves the largest number of scaling variables (see Figure 4.2). The original NSUM 

estimator requires the discarding of seven scaling variables before meeting the distance 

threshold of 1, even given the recursive trimming process. However, the MoS estimator 

discards only four. Keeping as many scaling variables as possible in the estimation 

process is highly recommended for robust estimations. This becomes far more important 

when a researcher is limited in space and resources and can only field a small number of 

scaling variables.   

 Personal network size varies considerably between different estimation forms in 

Table 4.5. Average network size ranges from 397.38 to 584.39 the maximum estimated 

network size ranges between 1243.25 and 2100.17. Compared to the initial estimates of 

personal network size shown in Table 3.4 there has been a considerable decrease in both 

average and maximum network size. Although the recursive process does reduce the 

estimate of personal network size, the majority of the change between Table 4.4 and 

Table 4.5 is attributed to removing outliers after the recursive trimming process is 

completed.  

Conclusion 



55 
 

 The network scale-up method is an important tool in the study of hidden and hard-

to-reach populations. Its ability to generate accurate estimates of these populations using 

conventional sampling frames and survey techniques allows for data collection efforts 

that are considerably cheaper and faster than commonly used techniques to study hidden 

populations. Developing new improvements to the NSUM estimation process is 

important as the method begins to become more popular in new areas of the world and is 

applied to new populations.    

 This chapter proposed three adjustments to the original implementation of the 

network scale-up method. First, changing the estimation equations to take into account 

the mean of sums of ratios instead of the ratio of the sums (traditional estimator) 

preserves a respondent’s exposure to each scaling subpopulation and allows these 

differences to exert equal weight upon the estimates. In doing so, this chapter offers one 

of the few proposed changes to the core estimation procedure of the NSUM since its 

original inception (Feehan and Salganik 2016; Maltiel et al. 2015). These changes are 

simple conceptually, but as shown, can have considerable effect upon population 

estimates generated by the NSUM estimator (see Table 4.5).  

Second, this chapter discuss the benefits of using back estimation in a recursive 

fashion to improve population estimates. Instead of removing poor predictors in bulk, 

removing the most egregious predictor and then rerunning the back estimates is 

suggested. This process recognizes the dependency of the back estimates upon all the 

predictors that are used in the method. Removing poor estimators singly and in a 

recursive fashion allows researchers to examine how the removal of each estimator 

affects the other results. Although back-estimation has been discussed since some of the 
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early work in the NSUM (Killworth, McCarty, H. Russell Bernard, Shelley, et al. 1998), 

this chapter represents one of the first tests of recursive back-estimation in the NSUM 

literature. 

The recursive process provides an important check on scaling variables. A 

difference in performance across individual variables does not necessarily indicate 

problems with the estimation technique. Rather, it more likely reveals a measurement 

error or poor question design. If considering the example of the firefighters in the NCS, 

there was a wide discrepancy between the “known” value of 1,200 firefighters in 

Nebraska and the original back estimate of 18,000. This discrepancy likely represents a 

poorly phrased question. The number of firefighters which were obtained from the 

Bureau of Labor Statistics (1,200) represents professional and paid firefighters. The NCS 

did not specify that the firefighters needed to be paid professionals in order to match the 

criteria used by the BLS (and in retrospect, this may not have made that much of a 

difference). This is important because Nebraska is predominantly a rural state and thus 

has a sizeable portion of volunteer firefighters. These volunteers would not be 

represented in the BLS statistic, but would likely be identified as firefighters by the 

respondents. Because the question was incorrectly phrased, respondents were free to 

include anyone whom they considered a firefighter, professional or volunteer, 

significantly inflating the number of “knowable” firefighters in the population. This 

provides an unfortunately apt example of why pre-testing surveys and conducting 

cognitive interviews can eliminate considerable problems after a survey is complete 

(Dillman, Smyth, and Christian 2014; Willis 2005). The fact that this error can be 
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discovered (and corrected) by the back estimation procedure described here provides 

something of a safety net for situations where large scale pre-testing is not possible. 

 Establishing how many predictors to cut, and where an appropriate threshold 

point for stopping the recursive trimming process may be, is likely to be highly 

dependent upon the characteristics of the NSUM project. Studies using larger numbers of 

scaling variables can afford to trim all those that are suspect. However, when there are 

fewer total predictors, say less than 5-8, over trimming of scaling variables can 

potentially mask variation across the respondent pool and increase the error of an 

estimate (see Figure 4.2).  Researchers will need to balance the desire to remove 

inaccurate predictors with the need to maintain sufficient variation in the variables that 

are used in the estimation of personal network size. In these situations the recursive 

method becomes more important as analysts seek to eliminate the most egregious 

predictors while maintaining as many scaling variables as possible. 

Third, this chapter introduced the means to incorporate sampling and post-

stratification weights into the NSUM estimation process. Building weights into the 

equations allows researchers to take advantage of the sampling frames and their 

respective weighting adjustments which are seldom available to those interested in 

hidden and hard-to-reach populations. As shown above, neglecting to include weights in 

NSUM estimation ignores an important source of data correction that can greatly improve 

NSUM population estimates. Much of the recent NSUM literature has focused on 

exploring and improving transmission and barrier effects (Maltiel et al. 2015; 

McCormick et al. 2010; Salganik et al. 2011) and either reexamined old data collected by 

McCarty et al (2001) or has used direct samples of the hidden population (Salganik et al. 
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2011) . However, one of the strengths of the NSUM is its ability to use representative 

samples with equal or known probabilities of selection for much larger populations. In 

demonstrating the use of sampling weights, this chapter brings the NSUM back in line 

with one of its core strengths, representative sampling.   

 The final estimate of the number of people who have moved into Nebraska in the 

last 2 years from another U.S. state and its comparison to ACS benchmark data indicates 

that the estimation procedure changes introduced here provide a significant improvement 

over a one-step back-estimation procedure, and over the traditional estimator. This 

accuracy lends greater confidence to the other target population estimates, which are not 

as easily checked through verifiable sources. The implications of this new estimation 

procedure for previously estimated target populations may be a worthwhile question for 

researchers that have already carried out their own NSUM data collection. Looking 

ahead, the recursive back estimate trimming process may encourage researchers to 

rethink how many scaling variables they choose, and widen the potential list of these 

variables now that questions of equivalent size are less significant. Together this adds 

greater flexibility to the NSUM method, even as early results indicate that it also 

improves accuracy.  
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CHAPTER 5: SOCIAL NETWORK SIZE 

In chapter 4 several changes to the traditional NSUM were introduced: the MoS 

estimator, recursive back-estimation, and survey weighting. Although it was 

demonstrated how these changes improved the NSUM’s ability to estimate a target 

subpopulation against a benchmark, it is not clear how some of these changes alter the 

components of the NSUM, or the inference which can be drawn from the final estimates. 

This chapter takes the changes proposed in chapter 4 and systematically examines how 

two of them (back-estimation and MoS) alter the NSUM results when used with different 

missing data assumptions. This is achieved by examining three separate components: 

estimated social network size, regression associations between estimated network size 

and individual attributes, and differences in predicted social network size using the prior 

regression equations. In doing so, this chapter presents a systematic look at how 

estimation, inference, and prediction may change depending upon implementation 

choices of a researcher. 

Literature Review 

The network scale-up method (NSUM) is built around the estimation of social 

network size in almost all its forms (for an exception see: (Feehan and Salganik 2016)). 

Whether that estimate is derived through the known population or the summative method 

does not change the critical role that an individual’s network size plays in estimating the 

final hidden population statistic. Functionally, the estimated network size serves as the 

denominator in equations 3.3 and 3.9. Error in these equations may push a final estimate 

to be larger (when the network size is underestimated) or smaller (when the network size 

is overestimated).  Considerable effort is devoted to trying to get as accurate estimate of 
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social network size as possible. In fact, the entire purpose of back-estimation (presented 

in chapter 3), and the development of better scaling variables for the known population 

method is to refine the estimate of network size and reduce error. Therefore, 

understanding how estimates of network size change in response to NSUM methods (i.e. 

the MoS and back-estimation) and assumptions is important to explore. 

Although the NSUM uses estimated network size as a mean to an ends, it an 

interesting statistic on its own. Population variance of social network size has been of 

interest since at least Pool and Kochen’s work on the Small World problem (1979) and in 

a broader sense since the early sociological theorists began to think about the relationship 

between personal interconnection and social structure (Durkheim 1964; Simmel 1950). 

However, collecting accurate information about network size outside of samples that are 

geographically contained (e.g. schools, remote communities) is both financially and 

logistically challenging. As a result, attempts to estimate population networks have often 

focus on subsets of personal networks. These subsets are often limited in the number of 

connections they capture, frequently focusing on the top 5 or 10 people a participant is 

connected to. The NSUM is able to estimate entire acquaintance networks with minimal 

effort allowing for the estimation of representative samples of network size. As such, the 

NSUM may provide insight into how social network size varies in larger populations.  

Social Network Size 

One of the great strengths of the NSUM is its ability to use sampling frames 

which are representative of the general population. Such samples are only usable in the 

NSUM framework due to the personal network component. Because the network contains 

information about the target or hidden population, it is no longer necessary to directly 
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sample those groups. As a result, there has been considerable focus on ways to effectively 

estimate personal network size. When done accurately, such estimations free the NSUM 

method from the complex burden of attempting to obtain samples of hidden and hard-to-

reach populations. In cases where the estimated network size is not thought to be reliable, 

or the transmission and barrier effects seem too great to overcome, then the NSUM needs 

to collect additional data directly from the target group or population (Feehan and 

Salganik 2016; Maltiel et al. 2015). It is therefore of great interest to understand how 

changing the NSUM estimation process (e.g. traditional vs. MoS) also affects the 

estimation of personal network size in order to retain as many of the NSUM advantages 

as possible.  

 Not only is accurately estimating personal network size important for a given 

NSUM study, but it can also reduce costs and increase the flexibility of future NSUM 

research. Under two broad conditions the estimates of personal network size from a 

previous NSUM study may be used for future NSUM studies without having to re-

estimate network size. The first condition is that there should be no reason for personal 

network sizes on average to shift in a major fashion since it was last estimated. For this 

condition to work, it matters less that participants may have different people in their 

networks, so long as the network size remains similar, and the addition or removal of 

people from the network is not associated with the target group or subpopulation the 

NSUM survey is interested in. The second condition is that the prior network estimate is 

for the same area or frame that the later NSUM project is working with. This means that 

the personal network estimates for Nebraskans that are presented in this chapter could be 
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used for a future NSUM study in Nebraska, but may not be sufficiently accurate for a 

study in Iowa or Ohio.  

 When both conditions are met for using previously estimated network size, some 

interesting potential applications of the NSUM become available. The best example of 

this comes from the NSUM research group working out of Kerman, Iran. They spent 

considerable effort to produce an estimate of urban personal networks that is 

representative of all the major urban centers in Iran (Rastegari et al. 2013) and one 

additional estimate that was specific to Tehran (Shati et al. 2014). With these estimates in 

hand, the researchers were able to develop interview protocols which could be 

implemented in extremely short interviews on the streets of the cities. This allowed the 

interview to appear as a brief public conversation about people known by random 

samples of the population who engage in illegal and highly stigmatized behavior. This 

provides participants with a strong sense of privacy and a degree of confidentiality that 

approaches anonymity, as the researcher never knows their name or where they live. 

Using the NSUM in this way, the Kerman research group has been able to produce 

estimates for a wide variety of illegal subgroups with minimal costs for interviews (Ali 

Nikfarjam et al. 2016; A. Nikfarjam et al. 2016; Rastegari et al. 2014; Shokoohi et al. 

2012; Zamanian et al. 2016).  

 A critique of the Kerman approach is that although they established a national 

urban estimate of network size, they did not examine how their estimate varied by city or 

region of the country. In the one case where they did, they found that Tehran had a 

smaller network size (Shati et al. 2014) than their national average (Rastegari et al. 2013). 

Given that differences in the estimated personal network size can result in shifts in the 
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final estimates of population size (equations 3.3 and 3.9). It is important to determine 

how geographic and individual attributes may affect the estimates. This becomes critical 

when attempting to establish estimates of network size for future studies to build upon. 

It is not unreasonable to expect that personal social network size may be 

associated with characteristics of where a person lives or their attributes (e.g. age, 

rurality, etc.). Sociologists have long speculated the social networks and the social 

structures they represent may behave or emerge differently in urban and rural settings 

(Durkheim 1964; Wirth 1938). Durkheim and others thought that social relationships 

would shift in reaction to the industrialized nature of the cities compared to agrarian rural 

areas. Indeed, researchers have found that rural networks are denser (Beggs et al. 1996; 

Freudenburg 1986) and have greater levels of social capital (Beaudoin and Thorson 2004; 

Hofferth and Iceland 1998; Xu, Li, and Jiao 2016; Yang, Jensen, and Haran 2011). 

Despite these findings, it is unlikely that the relationship between space and network 

characteristics remains that simple, if it ever was. In the U.S. there is tendency to paint 

rural America in a simple, broad, all-encompassing stroke (Lichter and Brown 2011). 

However, the industrialized aspects of urban areas which first prompted Durkheim have 

now spread across the rural/urban divide. Industrial farming and herding practices are 

now the norm, rural areas are becoming sites for food processing factories, and are 

increasingly first destinations for new waves of immigrants (Lichter and Brown 2011). 

The extent to which network size itself varies on a rural to urban basis may be changing 

as a result and prior research which found smaller rural network sizes (Beggs et al. 1996) 

may no longer be accurate. There is additional research that suggests that there may be 
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considerable variation of network characteristics within rural areas as well (Entwisle et 

al. 2007). 

 Beyond spatial differences, there are also established links between network size 

and other individual attributes. Hill and Dunbar (2003) found that personal network size 

was smaller among younger and older participants while the largest network sizes were 

found among those in their 50’s and 60’s. The decline in network size among older 

individuals has been found as well (Marsden 1987) Further, the composition of the 

networks themselves  seems to change overtime (Hill and Dunbar 2003; van Tilburg 

1998). Larger networks have also been associated with higher levels of income and 

education (Campbell, Marsden, and Hurlbert 1986; Marsden 1987; McPherson, Smith-

Lovin, and Brashears 2006; van Tubergen et al. 2016). White participants in the U.S. 

have been found to have larger networks than black or Hispanic participants (Marsden 

1987; McPherson et al. 2006). 

Research Focus 

 Given the importance of network size to the NSUM estimation process and the 

general implications of network size in general, this chapter has three primary research 

foci. The first is how the known-population estimate of personal network size is affected 

by choices made by the researcher in three regards: traditional vs. MoS estimation, the 

use of recursive back-estimation or not, and the choices made about handling item 

nonresponse in the scaling variables. These three choices produce a 2x2x2 experimental 

design and eight independent estimates of personal network size. The second focus is 

how the separate estimates of network size from the first focus may differ in their 

associations with the attributes of participants (i.e. is gender associated with larger or 
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smaller network sizes for all types of estimates) and if missing data treatments influence 

those associations. The third focus is how the different associations between attributes 

and estimated network size may then produce different predicted network sizes derived 

from regression equations.  

Methods 

 Data for this chapter comes solely from the 2014 Nebraska Community Survey 

(NCS). The NCS used the known population method to estimate personal network size of 

Nebraskans using 18 scaling variables (12 names and 6 professions). The address-based 

sampling frame allows the data to be representative of Nebraskans and the questions were 

asked to restrict answers about the number of people a participant knew to those who 

were currently living in Nebraska. This means that personal network estimates are 

representative of Nebraskans (participants) about their current connections in Nebraska 

(personal networks). Although answers were restricted to those who lived in Nebraska, 

they were not restricted to those who were 19 years of age or older, thereby not perfectly 

matching the NSUM frame requirements discussed by Feehan et al (2016).  

 This chapter presents eight different estimates of personal network size using a 

2x2x2 comparison of NSUM techniques (Table 5.1). The first comparison is between the 

network size generated by the traditional NSUM and the MoS NSUM methods. 

Considering that the MoS method is still fairly new, it is important to examine the 

differences between an established method and a new technique. Estimates from the 

traditional NSUM are labeled “traditional” and those from the MoS NSUM are labeled 

“MoS.” 
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The second comparison comes from how missing data in the scaling questions is 

handled. As a reminder, scaling questions were those which asked a respondent how 

many people they knew with a given name or professions (e.g. named Walter). These 

questions and the way they are used (equation 4.2 and 4.7) are highly susceptible to item 

nonresponse (i.e. when a question is left blank in an otherwise complete questionnaire). 

As the traditional and MoS estimators use a different process, the estimates they produce 

should react differently to the presence of item nonresponse among the scaling variables. 

Item nonresponse is particularly problematic with count questions in a mail survey. In 

such a situation it is impossible to know whether a blank answer indicates that the 

respondent knew zero people named “Watler” and did not want to expend the effort to 

write a zero, or if they just skipped the question. Previous NSUM surveys have had active 

interviewer involvement either through the phone or in person which makes it easier to 

tell a true refusal or “skip” from a zero answer. Unfortunately, a zero is meaningfully 

different from missing when estimating personal network size, as shown by equations 5.1 

and 5.2.  

 �̂�𝑖 =
1 + 0 + 1

100 + 100 + 100
𝑡 =

2

300
𝑡 (5.1) 

 �̂�𝑖 =
1 + 1

100 + 100
𝑡 =

2

200
𝑡 (5.2) 

 For previous calculations with the NCS data (Chapter 4) the more conservative 

assumption was made, that item nonresponse was a result of missing data, and not a zero 

that the respondent chose not to write. Although this is the more cautious approach, it 

also resulted in the loss of complete cases to work with. Therefore this chapter also 

examines what happens to the estimates of personal network size when you assume that 
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such item nonresponse is the result of laziness and should truly be a zero. Estimates 

which use the first assumption (missing as missing) are labeled with a “1” and those 

which use the second assumption (missing as zero) are labeled with a “2”.  

 The third condition is the use of back-estimation. Although back-estimation has 

been in the NSUM literature for some time, only recently has there been any use of it in a 

recursive fashion as presented in Chapter 4 of this dissertation. There is thus still some 

uncertainty about the effects of using recursive back-estimation upon estimates of 

personal network size. This chapter compares estimates of personal network size when 

not using recursive back-estimation at all, and using the recursive thresholds proposed in 

Chapter 4. Estimates which do not use back-estimation are labeled “baseline,” and those 

which use the recursive bask-estimation are labeled “final.”  

 These three combined aspects provide eight different distributions of estimated 

personal network size (estimator, item nonresponse assumption, and back-estimation). 

However, in order to determine whether an individual’s attributes (e.g age, income) are 

associated with having different personal network sizes an additional step is required. 

These attribute variables have their own missing data problems which are addressed 

through two separate techniques, listwise deletion and multiple imputation. Listwise 

deletion is a missing data approach where cases (i.e. participants) are not included in the 

analysis if they do not have complete data for every variable being used in the model. 

Although a common approach, listwise deletion comes with strong assumptions about the 

random nature of missing data which are not easily verified. Multiple imputation on the 

other hand uses statistical models to predict what the missing data is likely to be. By 

repeating this process multiple times a pooled estimate of what an individual’s missing 
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data might be is generated. This process is more complex than listwise deletion, but has 

the advantage of retaining more cases. In order to compare how a listwise and a multiple 

imputation approach affects the outcomes of interest, the 8 separate estimates of personal 

network size are handled with both missing data approaches, creating 16 analytical 

models. 

 For this chapter, chained multiple imputation is used in Stata 12 with the .mi 

estimate command suite. Fifty imputations were calculated with a seed value of 3,1337 

and burn-in of 10 imputations (i.e. the first 10 imputations are discarded). Stata allows for 

the specification of model types to predict missing data in separate variables based on 

their data structure. As such, logistic regression is used to predict missing values for 

dichotomous variables, multinomial logistic regression for categorical variables, and 

predictive mean matching for linear variables which are interval in nature (i.e. age). The 

predictive mean matching produces estimates which do not exceed the bounds of the 

data, and maintains the internal distance between possible values. As age in this data is 

measured in year increments, this means that predicted values cannot appear as partial 

years (e.g. 32.5 years old) and will not drop below the boundaries of the data (i.e. less 

than 19 years old). 

 Eight independent variables are used in this analysis. Female is measured as a 

binary where male participants are coded (0) and female as (1). Age is measured as an 

interval variable in one year increments. Education measures the highest level of 

education completed by the participant and has four categories: high school or less, some 

college, four year degree, and a graduate or professional degree. Political Affiliation is 

self-reported and has three categories: liberal, middle-of-the-road, and conservative. 
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Race/Ethnicity is measured as white non-Hispanic (1) and all others (0). Although this 

split may seem unusual, it is a fairly accurate representation of Nebraskans. The 2010 

Census reported 89% of Nebraska as being white non-Hispanic and all other categories 

made up smalls groups individually (U. S. Bureau of the Census 2015). Religious 

Attendance is measured dichotomously where those who attend nearly every week or 

more are coded (1) and those who attend monthly or less are coded (0). Income is 

measured in four categories: $0 - $24,000; $25,000 - $49,999; $50,000 - $99,999; and 

$100,000 or more. Urbanicity is measured in three categories by classifying zip codes by 

their associated population centers. Urban areas are zip codes associated with areas of 

50,000 people or more. This includes Omaha, Lincoln, and Grand Island Nebraska. 

Papillion and La Vista were also counted as urban as they are immediate suburbs of 

Omaha. Midrange areas are those with 10,000 to 49,000 people which included several 

smaller towns such as Kearney, Scotts Bluff, Beatrice, Lexington, and a few others. Rural 

areas were zipcodes associated with less than 10,000 people which includes the vast 

majority of the land area in the state of Nebraska.  

 The analytic strategy for this chapter has three distinct phases. In the first, the 

eight separate estimates of personal network size are presented. Second, negative 

binomial regression models are used to test for associations between estimated social 

network size and attributes of the participant. This step requires 16 independent models to 

cover all eight network estimates using both listwise and multiple imputation to address 

missing data among the independent variables. Results from these models are discussed 

in terms of associations which appear in all models, those that appear occasionally, and 

then those which are never associated. Finally, these 16 models are used to estimate the 
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predicted size of personal networks in rural, midrange, and urban areas of Nebraska, 

while keeping other independent variables at their mean value. Predicted sizes were 

calculated using the margins and mimrgns commands in Stata 12. 

Results 

 Estimated Personal Network Size 

 Table 5.2 shows the eight different estimates of personal network size produced 

through the 2x2x2 design described in Table 5.1. The average estimate of personal 

network size for Nebraskans using the traditional estimator, treating missing as missing, 

and without recursive back-estimation is 610.94, which after recursive back-estimation is 

applied drops to 452.91. If instead, missing is treated as a zero, the average network size 

without recursive back-estimation is 607.2 and with recursive back-estimation increases 

to 622.39. Using the MoS estimator, treating missing as missing, and without recursive 

back-estimation results in an average personal network size of 1,039.71 which decreases 

to 490.49 with recursive back-estimation applied to the same data. When missing is 

treated as zero while using the MoS without recursive back-estimation the estimate of 

average network size is 1,034.93 which decreases to 484.17 once recursive back-

estimation is applied. The sample size difference for each estimated network size is a 

function of how item nonresponse is treated (1 versus 2) and the process of discarding 

erroneous scaling variables through back-estimation (baseline versus final). As the 

different estimators discard different scaling variables, and in different orders, the 

resulting item nonresponse patterns shift in kind, leading to different subsets of cases 

with complete data. 

 Back-Estimation 
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 The metrics used in recursive back-estimation for each of the eight estimates are 

shown in Table 5.3. All 18 scaling variables are listed in the first column and then each of 

the eight estimate types are listed. Rank indicates which scaling variables were the 

greatest distance from zero (the most inaccurate) using the distance metric (the absolute 

value, of the log base 2, of the ratio of the estimated scaling variable to its known value). 

For the baseline models no action was taken and all scaling variables were left in the 

estimation process. For the final type models, scaling variables were removed one at time 

by taking the variable with the greatest distance value from 0, recalculating distance, and 

repeating until all remaining scaling variables had a distance less than one (see Chapter 3 

for more details). The “eliminated #” indicates the order in which a given scaling 

variable was removed from the estimation process.  

 There are several important takeaways from Table 5.3. First, all 8 

implementations of the method removed (or would have removed) the same three scaling 

variables first (Firefighters, Walters, and Marthas) but, they did not do so in the same 

order. All but one of the implementations removed Ralph fourth. This suggests a possible 

alternative to using the debatably arbitrary threshold of one.  Instead, scaling variables to 

be removed could be identified through their common state of distance across multiple 

estimation methods. This option may be useful. Particularly if one is unsure how deep to 

cut into scaling variables, and if a researcher only has a small set of scaling variables to 

work with initially.  

Second, the starting distance rank of a scaling variable was not always accurate in 

predicting if it would be cut given a certain number of iterations of the recursive process. 

In the Traditional 1 Baseline model there were initially seven scaling variables with a 



72 
 

distance greater than the set threshold of 1 (in order: firefighters, Walter, Martha, Ralph, 

airline pilots, U.S. postal officers, Rose). When this same implementation was put 

through the recursive process (Traditional 1 Final) not only did the order of elimination 

change, but not all of the same scaling variables were removed (in order: firefighters, 

Walter, Martha, airline pilots, Ralph, U.S. postal officers, police officers, and corrections 

officers). In this example Rose was never eliminated, despite having a distance value 

beyond the threshold at baseline, but police and corrections officers were. This shows the 

value in the recursive process of back-estimation instead of a bulk cut. Although some of 

the initial cuts would be the same, the ones further along shift as the process iterates.  

Finally, Table 5.3 shows that the traditional and MoS estimators preserve 

different numbers of scaling variables. The traditional estimator removes eight or seven 

scaling variables depending upon the assumptions made about item nonresponse. 

However, the MoS estimator removes only five scaling variables for both item 

nonresponse assumptions. Again, in situations where the number of scaling variables is 

low, or where a research wants to preserve a higher number of scaling variables, the MoS 

appears to best serve. There is one caveat, such that the MoS 2 Final recursive back-

estimation process never actually crosses the threshold of 1. As shown in Table 5.3 police 

officers have a final distance value of 1.004. If they were removed in the recursive 

process, the remaining distance values were found to increase and never again approach 1 

in any meaningful way. Therefore, the recursive process was halted above the threshold. 

Considering the threshold value of 1 was somewhat arbitrary to begin (see Chapter 4), it 

should not be surprising to find limits to its usefulness. This lends weight to the 



73 
 

observation about using multiple estimation methods to identify scaling variables that are 

consistently erroneous for all estimation procedures.  

 Regression Results 

 The characteristics of the sample, beyond estimated network size, are presented in 

Table 5.4. In order to compare missing data treatments among the independent variables 

two separate datasets were created. The first used listwise deletion and the second 

multiple imputation. Table 5.4 shows the number of cases, mean or percent, and standard 

error for both datasets. The amount of missing data for each independent variable is also 

shown in the listwise deletion dataset and difference of the means between the two 

datasets is shown in the last column. The difference of means between the two datasets 

exceeds 1% for average educational attainment, income, and urbanicity, but no estimate 

was different by more than 3%. This suggests that despite the difference in cases, there 

are minimal differences in the sample composition between datasets. Unlike most listwise 

datasets, the cases in Table 5.4 are not restricted to the lowest number of complete data. 

This is because each predictive model in the listwise dataset will have a different sample 

size based upon both the descriptive statistics from Table 5.4 and the personal network 

size estimates from Table 5.2. 

 On average participants in samples were female (51% in listwise/51% in imputed) 

and were 47 or 49 years old on average (see Table 5.4). The highest degree completed for 

the sample was on average, high school or less (15%/17%), some college (37%/36%), a 

four year degree (27%/27%), or a graduate or professional degree (21%/20%). Most 

participants identified politically as “middle-of-the-road” (42%/42%), or conservative 

(41%/41%), with a smaller amount identifying as liberal (17%/17%). A large majority of 
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the sample was white and non-Hispanic (89%/89%) and less than half reported attending 

a religious service nearly every week or more (45%/45%). The percent of participants 

who reported earning less than $25,000 in the prior year was 11%/17%, for $25,000 - 

$49,999 (22%/23%), for $50,000 - $99,999 (42%/41%), and for earnings at or above 

$100,000 (25%/23%). Slighty more than 30% of the participants were classified as rural 

(32%/33%), midrange (13%/14%), or urban (55%/53%) based upon their zip code.  

 The results of the negative binomial regression models for the 16 different 

estimates of personal network size (see Table 5.1) are shown in Tables 5.5 and 5.6. Each 

model uses the same set of independent variables, but the conditions which produce the 

dependent measure vary by model, and the approach to missing data among the 

independent measures varies by table (5.5 uses listwise deletion, 5.6 uses multiple 

imputation).  

There are two significant associations which appear in in the same direction, with 

similar magnitude, in all 16 models. The first is that those in urban areas have expected 

personal network sizes that are significantly lower than those in rural areas. In all 16 

models this association is highly significant (p<.001) and varies in strength. At its 

weakest, an average person in an urban area is expected to have a social network size that 

is 41.3% smaller than an average person in a rural area of Nebraska (Table 5.5: Model 2). 

The strongest association suggests that an average person in an urban area will have an 

expected social network size that is 69.9% smaller than an average person in a rural area 

of Nebraska (Table 5.5: Model 5). Several models do show significant differences 

between midrange and rural areas as well. However, these associations only appeared in 
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10 of the 16 models. When they did appear, an average person in a midrange area was 

likely to have a smaller personal network size than an average person in a rural area.   

 The second association which is constant in all the models in Tables 5.5 and 5.6 is 

that those who reported having less than $25,000 in income in the prior year were 

expected to have on average significantly smaller personal networks compared to those 

who reported $50,000 - $99,999 of income in the prior year. At its weakest, this 

association suggested a 23.4% percent lower estimated network size when compared to 

those who make between $50,000 and $99,999 (Table 5.5: Model 2). The strongest 

association found a 50.2% decrease in the estimated network size for those who made 

less than $25,000 in the prior compared to the $50,000 - $99,999 income bracket (Table 

5.5: Model 5). Other income categories were occasionally significantly associated with 

network size. Having income at or exceeding $100,000 was associated with smaller 

network sizes when compared to the $50,000 - $99,999 income bracket twice (Table 5.5: 

Model 1, Table 5.6: Table 1), but was otherwise not associated. There were also two 

models where reporting prior income of $25,000 - $49,999 was associated with smaller 

expected networks than the $50,000 - $99,999 income bracket (Table 5.5: Model 2, Table 

5.6: Model 2).  

 Three other associations appear in some models, but are not consistent across all 

16. Achieving a graduate or professional degree was associated with smaller expected 

network sizes when compared to those who had completed a four year degree in 7 models 

(Table 5.5: Models 1, 3, 4 & 7, Table 5.6: Models 1, 3, & 4). The effects sizes were fairly 

consistent, ranging from a decrease in expected network size of 28% (Table 5.5: Model 

3) to a decrease of 25.1% (Table 5.6: Model 1) and were in the same direction. No 
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differences in estimated personal network size were found between having completed a 

high school degree or less, or completing some college when compared to completing a 

four year degree. 

 Religious service attendance was associated with personal network size in 4 of the 

16 models. In all four cases attending a religious service nearly weekly or more was 

associated with an approximately 21% larger expected personal network size compared 

to those who attended a religious service monthly or less (Table 5.5: Model 2, Table 5.6: 

Models 2,3, & 4). All four associations were significant (p < .05), were in the same 

direction, and had similar effect sizes.   

 The age of participants, which was measured with an included quadratic term, 

was significantly associated with estimated personal network size only once (Table 5.6: 

Model 5). For every one year increase in age the estimated size of an average personal 

network increased by 3% (p < 0.05) while also decreasing by 0.03% (p < 0.05) forming a 

gradually decreasing curve (Table 5.6: Model 5). This association was not, however, 

found in any other of the 16 models.  

 In all 16 models, no differences in personal network size were associated with 

self-identified political identity. There were also no differences between males and 

females in their expected personal network size. Finally, there was no difference in 

expected personal network size between white non-Hispanics and the combined minority 

measure.  

 Predicted Social Network Size from Regression 

 Using the 16 models from Tables 5.5 and 5.6, predicted social network sizes were 

estimated for rural, midrange, and urban participants in the sample while all other 
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coefficients were held at their mean value. The resulting predictions and their attendant 

95% confidence intervals are presented formally in Table 5.7. Differences between urban 

and rural areas are noticeably different, and in many cases the rural estimate is double 

that of the urban. In the first column of predicted network sizes in Table 5.7 the 

traditional 1 baseline with listwise deletion predicts an average rural network size of 

974.23 and an average urban network size of 396.56. The distinction between a midsize 

prediction and that of either an urban or rural estimate is more difficult as the confidence 

intervals occasionally overlap.  

 There are several interesting patterns among the predicted personal network sizes 

in Table 5.7. Figure 5.1 uses the values from to Table 5.7 to visually show how the 16 

different models and their rural, midrange, and urban estimates differ. Each set of 

urban/midrange/rural estimates is labeled using a four character identifier. The first 

character may be an “L” or “M” and indicates if that cluster was from the listwise 

deletion or multiple imputation data sets. The second character may be a “T” or “M” in 

order to indicate whether the traditional or MoS NSUM estimator was used. The third 

character may be a “1” or “2” and indicates which item nonresponse assumption was 

used (1 = missing as missing, 2 = missing as zero). The final character may be a “B” or 

“F” which stands for baseline (i.e. no back-estimation) or final (i.e. complete recursive 

back-estimation) estimates. In Figure 5.1, baseline models are grouped together on the 

left side of the figure, and final models are grouped on the right side.  

 Three key results may be seen in Figure 5.1. First, the much higher predictions 

based on MoS models in the baseline side are essentially pulled back in on the final side. 

The back-estimation process tempers the more extreme MoS estimates. In fact in almost 
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every case the final predictions were lower than the baseline (the LT2B-LT2F and 

MT2B-MT2F models are an exception). Changes in the MoS predictions are the most 

extreme, as that method is more susceptible to extreme values (as discussed in Chapter 

4).  

 The second, is that among the baseline models (left side of Figure 5.1) there 

appears to be little difference in predictions between 1 and 2 item nonresponse variants of 

the models for both traditional and MoS estimators. However, after back-estimation 

(right side of Figure 5.1) there is considerably more distance between the 1 and 2 item 

nonresponse variants.  For example, from Table 5.7, initially the difference between the 

LT1B and LT2B rural predictions was about 15 people (974.23-957.16). After back-

estimation the difference between the LT1F and LT2F rural predictions was about 255 

people in the network (611.59-866.53). 

 Finally, the back-estimation procedure not only generally reduced the estimated 

network size, but also greatly reduces the variance of the eight predictions. Using the 

adjusted sample variance equation below (Eq. 5.1), the variance for the urban, midrange, 

and rural predictions can be estimated for both the baseline and final groups of estimates. 

The variance of the predictions at baseline is considerably greater than the variance of the 

predictions after back-estimation. This suggests that the back-estimation process 

produces a more stable prediction over all of the experimental estimation processes used 

in the chapter.  
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Discussion 

 Experimental Effects on Estimated Social Network Size 
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It appears that the MoS estimator will produce estimates of personal network size 

that are approximately 1.7 times greater than the traditional estimator under the same 

assumptions. The use of back-estimation alone greatly reduced three of the four estimates 

of personal network size and also reduced the distance between the MoS and traditional 

estimates. Looking at the outcomes presented in Table 5.2, it is clear that although using 

the MoS may produce higher estimates initially, the use of back-estimation appears to 

find a common value across estimation procedures. The MoS with back-estimation was 

also able correctly predict the number of people who had moved into Nebraska in the 

prior two years compared to Census statistics while the traditional procedure with back-

estimation could not (Chapter 4). Additionally, the MoS achieved the back-estimation 

threshold with fewer iterations, and therefore lost fewer scaling variables. It seems 

reasonable to suggest that the MoS with recursive back-estimation should be the 

preferred estimator when considering only raw network estimates.  

Surprisingly, varying the item nonresponse assumptions resulted in very little 

change in personal network size when back-estimation was not used. There were, 

however, substantial differences in the number of cases which were preserved in the data 

depending upon item nonresponse assumption. Given the lack of variation in network 

size estimation, but the noticeable differences in available cases, it seems prudent to 

suggest adopting the “missing as zero” protocol when treating partial scaling data. 

Hopefully this entire scenario can be avoided in future surveys due to better questionnaire 

design which would specifically discourage this type of item nonresponse.  

Comparing Network Size Estimates to Other Studies 
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 Beyond internal comparisons of network size it is also possible to contrast the 

estimates from this chapter with other social network size estimates. Unfortunately, 

comparing the estimates of personal network size generated for Table 5.2 to other studies 

has several complications. Many studies of network size are focusing on small network 

circles (e.g. “top five friends”, or “closest people”). In studies such as these network size 

is often reported to be in single digits and rarely exceeds 100 (Hill and Dunbar 2003; 

Marsden 1987; McPherson et al. 2006). Such network estimates are clearly well below 

the range of the estimates produced here. Comparing NSUM results to other NSUM 

results may make more sense. One of the first NSUM studies in Florida found average 

network sizes of 105 and 113 (Killworth, Johnsen, et al. 1998) and in another study of 

286 (Killworth, McCarty, H. Russell Bernard, Shelley, et al. 1998). In a third study, 

which used a national telephone sample, estimates of average personal network size were 

found to be 290.8 and 290.7 for two different estimation methods (McCarty et al. 2001). 

Other NSUM studies conducted outside of the United States have found average network 

sizes of 947.3 for medical specialists in Italy (Snidero et al. 2007), 363.5 for Japanese 

adults (Ezoe et al. 2012), and 308 for urban Iranian adults (Rastegari et al. 2013). The 

average estimates presented in Table 5.2 are universally higher than previous U.S. and 

non-U.S. estimates (with the exception of the Italian estimate) although several are 

closer.  

 The problem with comparing network sizes from various estimation methods, 

including the NSUM, is that they are approximations of an unknown which are developed 

to save time and money during a survey. The network diary method on the other hand, is 

an attempt to obtain exhaustive detail about all network ties over a longer period of time 



81 
 

(Fu 2005, 2007). The NSUM and other network data collections techniques seek to 

generate estimates based on short interviews. Contact diaries create a log of contact 

between a participant and everyone else they interact with over a longer period of time. 

Logging daily interactions over a three month period (or less) produces a picture of 

network size that is less prone to recall error. However, contact diaries are not perfect. 

Even with a three month time frame a diary may not catch individuals with whom the 

participant does not interact with regularly, but would still fall in the two year window 

required by most NSUM and “acquaintance” studies. To help remedy this, and to allow 

diaries to be used in shorter time frames, the alter accumulation curve was developed 

(Yen et al. 2016). Using diaries to gauge the rate of new alter entrance into the log 

compared to repeated entries, the authors adapted a technique to estimate the possible 

numbers of unknown alters that may remain unlisted in the diary (ibid). Such method 

takes a highly reliable and comprehensive source of network data (a contact diary) and 

corrects its estimate for less frequently activated ties establishing a solid benchmark for 

acquaintance network size. In their recent application of this method, Yen et al. (2016) 

estimated an average personal network size of 576.27 and a range that included large 

networks which exceeded 2,000 alters. This estimated average is fairly close to the back-

estimated averages provided in Table 4.2 (452.91, 622.39, 490.49, 484.17). The MoS 

averages are smaller, and the traditional averages fall on both sides, but all estimates are 

reasonably close. 

 Back-Estimation Performance 

 Moving beyond estimated network size, the comparison of how back-estimation 

performed across the different estimators and assumptions provides several interesting 
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observations. The first is that there is a commonly identified group of worst scaling 

variables. The same three scaling variables were independently identified in all eight 

experimental versions. Although the different experimental versions discarded the three 

scaling variables in different orders, the commonality has potential applications. In future 

NSUM studies it might be worthwhile to further explore the idea of using multiple 

NSUM estimation methods to identify a common group of worst scaling variables which 

are discarded instead of using a threshold value. Such an approach might preserve a 

larger number of scaling variables and in some instances more cases in the data. This 

would be valuable for studies which use fewer scaling variables or those with smaller 

sample sizes.   

 This examination of back-estimation also shows that the MoS estimator, under all 

experimental variations, retains a greater number of scaling variables while attaining the 

same threshold as the traditional estimator. For studies with a limited number of scaling 

variables the MoS may prove to be the better choice in order to keep more scaling 

variables. The traditional estimator eliminated almost half of the scaling variables in this 

dataset (8 or 7 of 18) using a threshold value of one while the MoS removed only 4 or 5. 

 The final point from Table 5.3 is the value of recursive back-estimation when 

compared to a bulk cut of scaling variables. Looking between the baseline and final 

versions of the same estimator you can see how in some cases certain scaling variables 

are initially identified as being droppable. However, as the recursive process progresses, 

the performance of these scaling variables improves to such a point that they fall under 

the cut threshold. Using a bulk cut process wherein the researcher removes all scaling 

variables which exceed the threshold before the first cut is made would, in this case, 
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result in the removal of variables that should have been left in. Therefore, using a 

recursive back-estimation process is highly suggested for all practitioners.  

 Individual and Spatial Differences in Network Size 

 Examining the associations between individual attributes and social network size 

across the models in Tables 5.5 and 5.6 shows several interesting patterns. First, the 

rural/urban difference in the expected network size is undeniable. In all sixteen models 

rural networks are expected to be significantly and substantially larger than urban 

networks. In many models participants in midrange areas with 10,000 to 50,000 people 

also have smaller networks than those in rural areas. Historically sociologists have often 

thought of rural networks to be small and dense compared to urban networks which 

where sparse and superficial (Wirth 1938). The liberated community argument (Wellman 

1979) found that although urban dwellers may have networks which are less dense than 

rural counterparts, their networks are not lacking in support. Instead, that support is 

spread across multiple networks which may be only loosely interconnected. 

Unfortunately the NSUM is ill-equipped to measure density of a network, and the prior 

estimates of differences in network size are focused on intimate networks, or the closer 

subsets of the acquaintance network that the NSUM measures. This makes it exceedingly 

difficult to compare the rural/urban distinction found in the Nebraska NSUM estimates 

with prior findings. However, unless the NSUM rural/urban difference is a function of 

the method itself, or the statewide geographic boundary which is imposed upon listing 

alters, it seems likely that in the scope of network degree, rural dwellers have 

substantially larger network sizes in Nebraska.  



84 
 

The second universal finding in these tables it that those with yearly income of 

less than $25,000 have smaller networks than those who made between $50,000 and 

$99,999 in the prior year. Given the lack of other findings relating to income, this 

suggests a lower threshold where those at the lowest levels have the smaller networks and 

higher levels of income have similar network sizes. Network size is often associated with 

social capital and the ability to find employment (Lin and Dumin 1986).  Further, larger 

networks have more weak ties (Granovetter 1973, 1983) which often represent ties that 

bridge smaller network components. It is this bridging action which provides the 

potential “strength of weak ties” (Granovetter 1973) as a bridge can possess information 

which is not available to one of its components. Not all weak ties may serve this function, 

but a reduction in the total number of weak ties reduces the chance of a participant being 

able to successfully utilize a given tie. The association between lower income participants 

and smaller networks may be seen as somewhat self-fulfilling, as they may lack enough 

contacts to learn about opportunities to make more money (Lin and Dumin 1986). 

 Many of the other associations found in Tables 5.5 and 5.6 are inconsistent across 

the different experimental versions of social network size and across the different 

treatment of missing data amongst the individual attributes as well. Given the prior 

discussion on network estimates and back-estimation, Model 8 in both Table 5.5 and 5.6 

is most likely to be the best model to use (as this uses the MoS with recursive back-

estimation). In these models only the universal associations are present (i.e. rural/urban, 

$25k/$50k-99.9k). Under these two models participants in urban areas are expected to 

have personal networks which are on average 49% or 48% lower than their rural 

counterparts (Model 8 in Table 5.5 and Table 5.6 respectively). Further, participants who 
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made less than $25,000 are expected to have personal networks which are one average 

37.2% or 33.3% lower than those who made between $50,000 and $99,999 in the prior 

year (Model 8 in Table 5.5 and Table 5.6 respectively). There are no other significant 

associations between personal attributes and the expected size of personal networks. Sex, 

age, education, political affiliation, race, and religious attendance are non-significant.  

 There are serious differences in what statistical associations a researcher may find 

depending upon their decision to use the traditional or MoS estimator. The models which 

use the traditional estimates as outcomes show considerably more associations between 

network size and individual attributes. Depending upon the model chosen from Tables 

5.5 and 5.6 a researcher might offer evidence of the association between network size and 

religious attendance, or education. But these associations do not appear in the final MoS 

models which use back-estimation, or at all in the case of religious attendance. The 

choice of MoS or traditional estimator does have consequences for inference, and not 

even back-estimation (which initially brought traditional and MoS estimates closer 

together) serves to make these models show similar associations. Readers who might 

have thus far thought that they could use either estimation method are now faced with an 

important choice for their own applications of the NSUM. 

Limitations 

 The geographic boundary requirement for knowing an alter is a potentially serious 

limitation to the work in this chapter. This means that if a study participant knew a police 

officer in Iowa, they would not list them in their answer. Such a restriction makes sense 

when trying to develop estimates which are state (or any geographic region) specific. 

However, in this case, there is no reason to think that social networks are bound by non-
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enforced political boundaries, or even the rivers that often follow state borders (i.e. the 

eastern edge of Nebraska is the Missouri River). In such cases, there may be an 

association with living on a border with increased chances of not knowing someone in the 

scaling or target variables. This may be exacerbated by the location of Omaha (the largest 

urban area in Nebraska) directly on the Nebraska – Iowa border which could contribute 

the rural/urban difference found in Tables 5.5 and 5.6.  

Conclusion 

 There are several different estimation procedures an NSUM researcher may 

decide to use for their data. This chapter closely examined the traditional and mean of 

sums (MoS) estimators by comparing their estimates of personal network sizes under 

different conditions (item nonresponse assumptions and back-estimation). When 

recursive back-estimation is used the two methods produce roughly similar estimates of 

personal network size. Considering that the MoS is better able to predict sub-population 

sizes for which we have a benchmark (see Chapter 4), it seems that the MoS with back-

estimation is the better option to use.  

 Although estimates of personal network size are similar in most cases, the choice 

of estimator was shown to have consequences when attempting to predict individual 

personal network size using person attribute data. Depending upon which estimator, and 

which experimental conditions were used, a research may find results that are only 

significant under certain conditions and estimators. There were two associations which 

were constant for all models. Personal network sizes are larger among rural Nebraskans 

compared to urban Nebraskans and networks were smaller for Nebraskans who made less 

than $25,000 in the prior compared to those who made $50,000 to $99,999 in the prior 
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year. Other associations were found in subsets of models, but none were consistent across 

all. This means that a researcher’s choice of estimator and how they treat the data may 

have both significant and substantial differences in the outcomes that they find.  

 Considering the information presented here and in Chapter 4 it seems clear that 

NSUM researchers should engage in recursive back-estimation whenever possible. This 

technique reduces the variance in estimated outcomes and decreases some of the 

differences between the traditional and MoS estimator. The ideal estimator appears to be 

the MoS, but researchers who are cautious about its inflation of network size should 

consider using both estimators and comparing them in their own data. Item nonresponse 

had a much smaller effect than initially theorized. However, work should be done in the 

future with questionnaire design to completely eliminate this source of error.  
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CHAPTER 6: THE COGNITIVE NSUM 

 Where chapters 4 and 5 explored differences in the estimation, post-hoc data 

corrections, and statistical inference, chapter 6 turns to the survey participant’s response 

process. NSUM researchers typically focused on four sources of error: transmission, 

barrier, recall, and cognitive. A considerable amount of time and energy trying has been 

devoted on these types of errors. This has led to clever corrections for transmission errors 

(Feehan and Salganik 2016), and barrier effects (McCormick et al. 2010). Recall and 

cognitive errors have been given considerably less attention. In the NSUM framework 

recall errors deal with the participant’s ability to remember how many people they know 

and cognitive errors address a participant’s ability to understand the constraints of the 

question (e.g. definitions of knowing someone). This chapter uses cognitive interviewing 

to closely examine the thought process used by NSUM survey participants. In doing so 

several issues which may affect both recall and cognitive error are brought into focus. 

 Within the NSUM framework, recall errors are generally classified as inaccuracy 

in the counts provided by the participant for either the scaling questions used to estimate 

personal network size (e.g. names or professions) or the counts of how many people they 

know in a target subgroup (e.g. people with HIV). Systematic error in either the scaling 

questions or the target subgroup counts can have serious implications for final NSUM 

estimates. As such, several corrective efforts have previously been explored such as back-

estimation (Killworth, McCarty, H. Russel Bernard, Shelley, et al. 1998), recursive back-

estimation (Habecker et al. 2015), and allowing counts to be a random error in a Bayesian 

framework (Maltiel et al. 2015).  
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Statistical corrections may be effective in a post-hoc adjustment, but it would be 

beneficial to better understand the source of the errors and work to reduce them before 

they enter the data. McCarty et al. (2001) conducted a small set of focus groups to 

explore the differences between the known-population and summation methods to 

estimate personal network size. In the process they discovered that participants tended to 

estimate their answers for large populations instead of actually counting the number of 

people they knew in that population (McCarty et al. 2001). Not only did participants tend 

to estimate larger groups, they often provided answers that were divisible by 5 causing 

the data to become heaped on those numbers. Although McCarty et al. (2001) developed 

a post-hoc correction, they argued that more work needed to be done to assess the 

accuracy of NSUM estimates.  

Cognitive errors occur when the participant either misunderstands the group they 

are supposed to be thinking of, or alters the definition and boundaries of knowing 

someone from what the survey provides. An example of the former would be a case 

where the participant is asked to count the number of commercial pilots they know and 

they add to their count people they know who have a pilot’s license, but do not fly for a 

commercial carrier. The latter type of cognitive error would occur when the participant 

includes people that they have not have contact with in the last two years, or in the case 

of the NCS, people who live outside of Nebraska. Such inclusions would violate the 

temporal or spatial boundary that were placed on the definition of knowing someone. 

These types of cognitive errors may not be immediately apparent in an interview or 

survey. A participant may have a correct definition of knowing someone at the beginning, 

only to develop recall habits which lead them to unconsciously adjust their definition as 
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the survey progresses. For example, if a participant is frequently only finding candidates 

for their answers among their family and college friends, but not their work 

acquaintances, they may begin to spend less time thinking about their work acquaintances 

and more time on their family and college friends as they are able to find answers within 

those groups. This would put an artificial boundary on knowing someone that was not 

intended by the researcher.  

Some work has been completed on the cognitive aspects of what it means to know 

someone. McCarty et al (2001) asked their focus groups what they thought about the two 

year temporal boundary they had placed on knowing someone. Participants in those 

groups were generally happy with the definition, although some expressed concern alters 

with whom they contact less than every two years would still be important ties to them if 

they had a need to get in touch (McCarty et al. 2001). In another study the researchers 

reduced the temporal boundary to one year in an effort to make it easier for participants 

to remember all of whom they knew (Feehan et al. 2016). Here they found a reduction in 

error using the shorter temporal boundary, but they acknowledge that this was a trade-off 

for losing more of the outlying ties in their networks.  

Despite this prior work, a substantial amount of research remains to be done on 

the introduction of recall and cognitive error in NSUM studies. This chapter looks at 

several questions specific to these NSUM error sources. In order to place these questions 

in a meaningful order, a model of the survey response process is used to organize the 

questions into common groups.  

Survey Response Process 
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 The survey response process is a model of the mental steps a participant goes 

through when answering a question (Schwarz and Sudman 1996; Sudman et al. 1996; 

Tourangeau et al. 2000). Although describing the process as a series of steps implies a 

linear process, these steps may occur in overlapping or simultaneous moments, if they 

occur at all (Tourangeau et al. 2000). Response process models and their various steps 

serve as diagnostic tool to identify and sort different types of error. The model proposed 

by Tourangeau et al. (2000) has four components: comprehension, retrieval, judgement, 

and response. This chapter uses an extension of the Tourangeau et al. (2000) model 

which adds the step of perception before comprehension (Dillman et al. 2014). The five-

step model is then used to present the main research questions of this chapter and to 

organize the results of the cognitive interviews. 

 Step 1: Perception 

Perception refers to the participant’s ability to understand the structure of a 

survey, such as where to start, which question is next, and where they should look at all 

(Dillman et al. 2014). In self-administered surveys, an interviewer is not present to 

provide instructions that are not directly part of the written question itself. With self-

administered surveys many additional instructions are therefore presented for groups of 

questions instead of being repeated for each one. NSUM questions are typically fairly 

short (i.e. How many people do you know named Walter?). However, the word “know” 

has to be very specifically defined around spatial, temporal, and closeness boundaries. 

These definitions are complex and would substantially increase the survey length if they 

were repeated for each NSUM question. Additionally, the respondent would have to 

reread the same instructions for every single NSUM question. If the definition of “know” 
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is not seen by the participant, then their responses for NSUM questions may be 

substantially incorrect. To ensure the “know” definition was seen in the 2014 NCS 

survey, the definition was written as its own question (Appendix B: Question 4). 

However, there were several other sets of instructions in the 2014 NCS which were not 

written as a question, but were instead written above or below certain questions and 

question groups. This provides an opportunity to test whether participants saw 

instructions which were written as a question at different rates than those instructions 

which were not written as questions. 

 Step 2: Comprehension 

 The second step of this response process model is comprehension. This focuses 

upon the participant’s ability to understand what the question is asking and to link it to 

prior concepts. For the NSUM this has several implications. Given a question that asks 

the participant how many people they know who are firefighters, a participant needs to 

manage several comprehension tasks. First, the participant has to understand that the use 

of the word “know” is meant to recall the specific definition of knowing someone that 

they were previously provided with. Second, they then have to understand what the 

researchers mean by firefighters or another group. As chapter 4 previously discussed, in 

the NCS, participants’ comprehended firefighters as meaning anyone who worked for, or 

volunteered for a fire company. However, the researchers meant paid firefighters only 

and did a poor job of conveying that in the written survey. Finally, the participant has to 

understand that the question is asking them to think of all the firefighters they know 

(within the boundaries set by that definition) and then convert that list of people into a 

number which is what the question ultimately wants. The major risk to NSUM 
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researchers in this step is whether a participant is able to link back to the definition of 

knowing someone, and if their understanding of the target group matches the researcher’s 

understanding of that group. Discrepancies in either of these may lead to inaccuracy in 

the final answer.  

 This chapter looks at several comprehension questions. The first is whether the 

participant is able to correctly operationalize the definition of knowing someone 

according to the temporal (two year contact window) and geographic (currently in 

Nebraska) boundaries imposed upon that definition. The second comprehension question 

is whether the participant understands that knowing someone can be by general 

recognition or by name, and that both are not necessarily required. Finally, given that 

NCS and the cognitive interviews which are based on it ask a substantial number of 

NSUM questions, the third question is whether the participant’s comprehension of 

knowing someone remains stable across the survey or if it changes over time.   

 Step 3: Retrieval 

 The third step covers the actual process used by a participant to find their answer. 

For the NSUM this mostly involves a participant searching their memory or records to 

see if they know anyone in a given group. NSUM researchers already know that this is a 

step which under certain conditions may be shorted by estimating an answer instead of 

actually counting everyone they know (McCarty et al. 2001), a finding which occurs in 

other count situations as well (Sudman et al. 1996). However, there are several other 

aspects of this step which may cause problems. The first has to do with the rarity of the 

target population about which the participant is being asked. With the known-population 

method, it has often been recommended that the names used make up 0.02% of the 
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population (McCormick et al. 2010). This is in part due to the idea that it is easier to 

recall memories which are more distinctive (Sudman et al. 1996; Tourangeau et al. 2000). 

However, this sets up an interesting question of whether the response process changes 

when the answer differs between a zero, one, more than one, or some higher threshold. 

Prior research suggests that estimation may begin as soon as the count exceeds one (Blair 

and Burton 1987) or once single digits have been passed (McCarty et al. 2001). This 

chapter, therefore examines how a participant’s retrieval process changes depending upon 

the size of the answer they give for both scaling, summation, and target population 

questions. 

 The second major area of retrieval questions addressed by this chapter is how a 

participant decides to stop searching for more answers. Prior research suggests that 

participants will stop trying to remember more people for a given answer when they have 

successively encountered several failures to remember anyone new (Hussey et al. 2014). 

That is the more times they try to remember if they know more than three people named 

Patrick and fail to come up with a fourth, the more likely they will be to consider their 

answer of three to be complete. Other research has suggested that search termination is a 

function of how much time has been spent on the question, the change in the rate at 

which new answers are produced, the number of successive failures, and the total number 

of search failures (Dougherty et al. 2014). Here, the researchers found that the total 

number of failures best fit the decision of a participant to stop searching for more answers 

(Dougherty et al. 2014). For NSUM questions, a hypothetical best retrieval scenario 

occurs when the participant is able of complete a full review of everyone they know 

within the parameters. Given the prior research, however, this seems unrealistic. 
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Therefore, it is important to understand the extent to which NSUM participants are 

willing to search at all as NSUM researchers continue to adjust their recommended 

practices and post-hoc statistical adjustments.  

 Finally, there are two major NSUM methods used to determine personal network 

size: the known population method, and the summation method. These two methods are 

likely to engage different retrieval processes within a participant. The summation method 

in particular, by asking how many people a participant knowns in a set of mutually 

exclusive groups (i.e., family, friends that are not family, work acquaintances who are not 

friends or family, etc.) is likely to engage very different memory recall processes than 

asking someone how many people they know named Patrick. By asking for lists of 

members of groups within social contexts the summation questions are more likely to 

generate contextual memory references which would help the participant remember more 

people in that group (Tourangeau et al. 2000). The cognitive interviews, therefore use 

both the known population and the summation method in order to compare how the 

memory processes differ. Care is taken to ask the known population questions first, in 

order to avoid the priming effect which mentally listing everyone a participant knows for 

the summation method may create.  

 Step 4: Judgement 

 The fourth step in the response process is judgement. Here the participant decides 

if the entirety of their answer is relevant to the question, and most importantly for the 

NSUM, if they should omit certain parts of their answer. The NSUM is often, if not 

exclusively, interested in the number of people a participant knows in subgroups for 

which membership carries stigma. That stigma may alter the way a participant answers 
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the question. Specifically, if the participant is uncertain of a person’s group membership, 

they have to decide whether to report that person as a zero or one. For example, if the 

participant thinks that alter A has HIV, but they are not certain, they must choose to 

report alter A as either having or not having HIV. This is distinct from transmission error 

where a participant may be unaware of alter A’s HIV status completely.  

Unlike transmission error, which is ignorance of an alter’s status, the decision to 

use partial information is likely to be related to several aspects of the interview itself, 

particularly when the question is about a sensitive topic. Tourangeau et al. (2000) identify 

several reasons why a participant may adjust their response when dealing with partial 

information. The participant may be embarrassed to be associated by the interviewer with 

a group with a certain status (Tourangeau et al. 2000). They may also be concerned that 

the interviewer would disclose their associations to other people (Tourangeau et al. 

2000). For some sensitive topics these ideas may be extended such that participants may 

not want to attribute a stigmatized status to someone they know if they are uncertain 

about it. Finally, participants may decide that it is better to be cautious than potentially 

tell the interviewer about something that they are not sure of. Thus, cognitive interviews 

may reveal how participants are likely to treat partial data about group membership and 

whether they err towards a zero or one in their final count.  

 Step 5: Response 

 The last step of the response process is the final answer. Here the participant 

needs to convert whatever information they have retrieved and judged suitable to present 

to the researcher into the format dictated by the question. For the NSUM this is often the 

form of counts of the number of people known in a given group. Although problems with 
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this step were identified in one subsection of the NCS (and briefly discussed in Chapter 

5), the focus of this chapter is largely on the four prior steps.  

Research Focus 

 The purpose of this chapter is to look for cognitive and recall errors in the NSUM 

and use the survey response process to classify and examine these errors. These issues 

which may cause errors are grouped according to their best alignment with the survey 

response process and are presented here as a list. 

 Perception 

1. Seeing and reading survey instructions 

Comprehension 

2. Understanding the definition of knowing someone and the temporal 

and spatial boundaries of that definition 

3. Understanding that knowing someone could mean either knowing 

them by sight or by name, and not necessarily both 

4. Stability of a participant’s understanding of knowing someone across a 

survey 

Retrieval 

5. Differences in how a participant retrieves a zero, one, two or more 

count  

6. Memory search termination 

7. Differences in retrieval between the known-population and summation 

methods 

Judgement 
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8. Treatment of partial information about group status 

Methods 

Data for this chapter comes from a series of cognitive interviews which were 

conducted in the late summer and early fall of 2016. Cognitive interviews are a technique 

used to study how people understand, mentally process, and ultimately respond to 

questions (Beatty and Willis 2007; Willis 2005). A distinctive feature of many cognitive 

interviews is the think-aloud process. A think-aloud is when a participant is asked to 

verbally state what they are thinking as they complete a survey or answer a smaller set of 

questions (Willis 2005). These types of interviews are able to capture high level mental 

processes which a participant goes through when answering a question (Conrad et al. 

1999). However, these interviews are not capable of revealing information about 

processes that are spontaneous or those that a participant is not truly aware of (Conrad et 

al. 1999; Ericsson and Simon 1993).  

In addition to the think-aloud process, many cognitive interview protocols may 

also include interviewer probes (Willis 2005). These may vary by both when they are 

constructed (prior or during) and what triggers the probe (the interviewer or subject 

behavior) (Beatty and Willis 2007; Willis 2005). Probes may also occur during the think-

aloud process or after the think-aloud has been completed (Willis 2005). Asking probes 

during the process has the advantage of the immediacy of the probe (i.e. there is little 

time delay between a behavior and a probe). However, there is evidence that concurrent 

or near-concurrent probes can effect both the results and the process of a think-aloud 

interview (Ericsson and Simon 1993; Russo et al. 1989; Willis 2005). Retrospective 

probing, which occurs after the think-aloud is complete avoids these reactive effects, but 
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may make it more difficult for a participant to accurately recall what their response 

process was when they first answered that question (Ericsson and Simon 1993; Willis 

2005). However, when using a survey instrument that is self-administered (as the survey 

for this study is) it may be more beneficial to replicate how a participant would complete 

the survey in the field (Willis 2005). As such, the cognitive interviews designed for this 

dissertation attempt to minimize the number of concurrent probes in favor of 

retrospective probes which occur after the survey had been completed by the participant. 

Participant Recruitment & Instrument Design 

A convenience sample was recruited by posting flyers in several classroom 

buildings on the UNL campus as well as several coffee shops located in the city of 

Lincoln, Nebraska. Participants had to be at least 19 years of age and current residents of 

the city of Lincoln or Lancaster County Nebraska. Interviews took place on the UNL 

campus. As an incentive, $20 cash was offered to compensate for the participant’s time as 

the interview was expected to last from 1.5 to 2 hours. The completed interviews ranged 

from 47 minutes to 2 hours and 15 minutes in length. The average interview was 1 hour 

and 20 minutes long. The interview protocol was approved by UNL’s IRB and given an 

exempt status (IRB# 20160716187 EX).  

The survey used in these cognitive interviews is an adaptation of the 2014 NCS 

(Appendix A) which has been modified in three key ways. The first is that in the 2014 

NCS there was a large section on attitudes about the media and crime. This section was 

removed for the cognitive interviews as it was not considered to be relevant to the aims of 

the study and would add more tasks for the participant to complete without a necessary 

reason. The second change is that a section of summation NSUM questions were added 
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in order to directly contrast the known-population and summation methods. The third 

change is that the modified survey no longer asks about how many people a participant 

knows in the US in addition to those known in Nebraska. These questions were originally 

intended to be used as an experiment about simultaneously measuring nested networks. 

However, this experiment failed and retaining these elements for the cognitive interviews 

was deemed to be unnecessary. The final survey for the cognitive interviews is replicated 

in Appendix B of this dissertation. 

A total of 19 interviews were completed out of a target goal of 20. Twenty 

interviews was set as the maximum due to funding availability. Recruitment began on 

August 22, 2016 when flyers were posted at five locations on the UNL campus and four 

locations in the city of Lincoln, Nebraska. The last interview was conducted on October 

11, 2016 and all flyers were pulled on October 14, 2016. Recruitment was ended one 

interview short of the target goal of 20 due to the lack of new participants being 

interested in the study. Interested participants contacted the interviewer directly through 

email in order to setup the interview on the UNL campus. 

Interview Protocol & Implementation 

All interviews were conducted in 104 Benton Hall. This is a room which is used 

as either a workroom or a classroom, and can comfortably accommodate up to 18 

students. The room is private, located near restrooms, and is located on the first floor of 

the building which is typically quiet. Every interview used the same room setup. A large 

table was placed in the middle of the room with four chairs on each side. The interviewer 

sat on one side of the table (with the windows at their back) and the participant sat on the 

opposite side. During the interview only the interviewer and the participant were present 
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in the room. In front of the participant’s chair were three sheets of legal paper, a pen, and 

a liter of bottled water. In front of the interviewer’s chair were a legal pad, a pen, two 

copies of the survey, two copies of the interview consent form, a form to record the start 

and end time of the interview, and a plastic cup of water. A box of tissues and a digital 

audio recorder were placed in the middle of the table. While interviews were in progress 

signs were posted on the two doors of the room which said, “Do Not Disturb – Interview 

in Progress – Thank You – Patrick Habecker.”  

Participants were greeted at the door of the room and welcomed by the 

interviewer. They were shown to their seat and asked to make themselves comfortable. 

The interviewer used a pre-scripted interview protocol as a framework to describe the 

study and what the participant will be doing during the interview (Appendix C). The 

participant was then given the informed consent form and the interviewer went over each 

element of the form, what it meant, and highlighted the rights of the participant. After 

jointly going over the consent form, the participant was encourage to ask questions and to 

take some time to look over the form on their own. Once they agreed, the participant 

signed a copy of the consent and gave it to the interviewer, who in turn gave the 

participant a blank copy for their records.  

Once the consent form was signed, the interviewer introduced what cognitive 

interviews are, why we do them, and what the process is like for the participant. As 

cognitive interviews are unusual, two example questions were used to give the participant 

a chance to practice the think-aloud technique. The first question asked, “How many 

residences have you lived in since you were born.” The second asked, “Think about 

where you live. How many windows are there?” For the first question participants were 
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asked two follow-up questions: “how did you think about what it means to live 

somewhere?” and, “how did you define what it means to live somewhere?” For the 

second question, probes were used to ask if the participant was counting windows in 

doors or counting sliding glass doors. After the practice questions and their follow-ups 

were completed, the participant was given a chance to ask any other questions before the 

interview started. 

After the practice questions were finished the audio recorder was turned on and 

the participant was given a copy of the survey (Appendix B). The interviewer followed 

along with their own copy of the survey and made notes on their copy of the survey and 

on their legal pad. Concurrent probes were meant to be limited in this interview protocol 

(Appendix C). Most of the probes were meant to encourage the participant to fully 

engage in the think-aloud process and to avoid periods of time where the participant may 

lapse into silence. A handful of probes were written beforehand to assess how accurate a 

participant may think a given question is, how they decided to stop counting, or how they 

came up with a response for a question (Appendix C). However, these probes were not 

linked to specific questions, and could be used at the discretion of the interviewer during 

the interview.  

Aside from the interviewer encouraging the participant to engage in the think-

aloud, there was little planned interaction between the interview and the participant while 

the survey was being completed. During the survey, the interviewer was focused on the 

process the participant was describing and took notes and wrote questions which would 

be asked after the survey was complete. These notes were added to a set of pre-written 

end of survey questions (Appendix C) and were used to facilitate a retrospective 
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discussion after the survey was finished. Here the interviewer encouraged the participant 

to reflect upon some of the choices they made and the behaviors they used while 

completing the survey. These retrospective questions ranged from queries about specific 

questions, to reflections about overall response processes. The pre-written questions 

provides a common set of questions for all participants while the interviewer’s notes 

allowed for emergent behaviors to be examined.  

After the end of survey questions were completed the participant was given a 

chance to ask questions of the interviewer. Once those were finished the digital recorder 

was turned off. The participant’s completed survey was collected by the interviewer as 

well as the scratch paper that was used by the participant. The participant was then given 

a $20 bill and a receipt to complete and sign in order to comply with UNL financial rules. 

At this point all parts of the cognitive interview were complete and the participant was 

walked to the exit of the building. Once the participant was gone all materials were 

collected, the table was cleaned, and the do not disturb signs were removed from the 

doors. The materials were taken to the interviewer’s office were they were locked in a file 

cabinet. The audio file was downloaded from the recorder, copied twice (once onto a 

USB backup and once onto the interviewer’s computer), and then the recording on the 

recorder was deleted. At this point the emails between the interviewer and the participant 

were deleted from the interviewer’s inbox and then purged from their deleted folder.  

 Analytic Strategy 

 The results presented in this chapter are largely based on the retrospective 

discussion which occurred after the participant completed the survey. This discussion was 

focused around a number of retrospective probes which were written before the interview 
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implementation and several that were developed during the interview itself. Questions 

which were developed before conducting any interviews can be found in the interview 

protocol (Appendix C). These questions focused on how the participant answered NSUM 

questions and what it meant to “know” someone; whether it was easier to answer with a 

zero, one, or more than one; how accurate participants thought their questions were; how 

they decided to stop answering questions; what would help participants answer NSUM 

questions; and their knowledge of moving intentions among their networks. Some of 

these questions were derived from prior NSUM research and others were developed 

through problems with the 2014 NCS survey.  

Once the interviews began, new questions were written as other issues became 

apparent to the interviewer. Some of these questions focused aspects of those which were 

already developed. Such as questions about the temporal and spatial aspects of what it 

meant to “know” someone and how this changed over the survey. A common question 

was about how long a participant had lived in Nebraska and whether this made it easier to 

answer the NSUM questions or not due to behavior observed in the summation and 

known-population questions. The flexibility of the retrospective discussion allowed for 

new issues to be discovered and discussed as part of the interview.  

 Analysis of the retrospective discussion was completed in two phases. First the 

interviewer compiled their interview notes to develop potential sources of error that were 

evident in the cognitive interviews and were discussed in the retrospective portion of the 

interview. These issues were formed into the list of eight potential sources of error that 

were previously listed in this chapter. Due to the reactive nature of the interview process 

not all participants were asked about the same issues. Once the list was compiled, the 
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audio recordings of the retrospective portion of the interview were reviewed. Every 

participant’s response to each question was added to a document that catalogued 

participant responses by issue. If a participant’s response involved more than one issue 

their response was copied into both section of the catalogue. Their response was not 

transcribed, but written in a summarized form.  

 A text summary approach is used to describe the participant’s responses and 

behaviors for each of the eight issues identified by this chapter (Willis 2015). Text 

summaries use the interview and the interviewer’s notes to describe themes and problems 

which revolve around a question or issue, but do not use a formal coding system to 

examine notes or transcripts. The issues themselves are organized by their association 

with the Dillman et al. (2014) five step response process model.  

Results 

 Just over half of the interview participants were female (57%) and none of the 

participants chose to mark an answer other than male or female. Although Nebraska is 

predominantly non-Hispanic white (86.1% in 2010 (Anon n.d.)) approximately 57% of 

the interview participants were non-Hispanic white. Sixteen percent of the participants 

had completed a graduate or professional degree, 21% had completed a four year degree, 

57% had completed either some college or a two year degree, and 5% had completed a 

high school diploma or GED at the time of the interview. The average age of participants 

was 27, with the youngest being 19 and the oldest 61. 

 Perception: Seeing and Reading Survey Instructions 

 There were four sets of survey instructions written in the cognitive interview 

survey (Appendix B). The first instruction described who in a household should take the 
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survey (I1) and was located on the first page under the name of the survey. The second 

told the participant about the next section and what they should expect (I2) and was 

located above question 4. The third instruction defines what it means to know someone 

for the purpose of this survey (I3) and was embedded as question 4. The fourth 

instruction told participants to take their time on the next section as it was particularly 

important (I4) and was located before question 17. Participants were asked to read-aloud 

all instructions and questions in the survey. If a participant did not read-aloud the 

instructions it is assumed that they did not see the instructions. Interview recordings were 

examined for each instruction and counts were tallied if the participant read-aloud each of 

the individual instructions.  

 Only 22% of the survey participants read-aloud I1. This instruction was placed 

directly under the name of the survey and outside of the normal question flow. However, 

this number may be artificially low as the participants were not retrieving the survey from 

an envelope, but were instead handed the survey with a verbal instruction to start. 

Participants read-aloud I2 72% of the time. This instruction was placed in the flow of 

questions but was not listed as a question. All of the participants (100%) read-aloud I3 

which was written and numbered as a question (Appendix B: Question 4) and 

immediately followed I2. Even participants who did not read-aloud either I1 or I2, read-

aloud I3. One participant even re-read the instruction to ensure they understood it before 

moving to the response option. Finally, 74% of the participants read-aloud I4. This 

instruction was in the flow of questions, but was not marked as a question. As such, 

several participants simply moved from the prior question (#16) to the next (#17), 

skipping over the heading title and instructions that were in-between.  
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 Comprehension: Knowing Someone – Temporal & Spatial Boundaries 

 All NSUM type questions in the interview included a requirement that the people 

they knew lived in Nebraska. This repeated instruction kept the spatial boundary of what 

it meant to “know” someone fresh. When asked about their recall process during the 

retrospective interview, some participants described the spatial boundary as a hindrance, 

and others said it helped. Five participants specifically described how the spatial 

boundary made it easier for them to sort through everyone they knew because the 

boundary restricted who they had to think about. This seemed common for those who had 

only lived in Nebraska for a short period of time, as they said they only had to sort 

through a smaller subset of everyone they knew.  

“I think it made it a lot easier cause I know a lot more people outside of Nebraska 

than in Nebraska… It is a shorter list to go through.” 

These participants were essentially filtering out people who did not qualify for the 

question. However, this process was not always easy. One participant who said they 

knew a lot of people outside of Nebraska said they would immediately think of people 

who lived outside of Nebraska when trying to answer questions. But over the duration of 

the survey, the participant said that they were able to eventually think only about the 

people they knew in Nebraska, and not those they knew outside. Here the spatial 

boundary was initially a burden for the participant until they were able to streamline their 

response process to not include those outside of Nebraska. Overall, spatial issues came up 

in six of the retrospective interviews and five of the six reported that the spatial boundary 

made their responses easier and their awareness of that boundary seemed stable across 

the interview.  
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 The temporal boundary on knowing someone was initially set at two years, but 

was not repeated outside of the initial instruction. Participants therefore had to keep the 

temporal boundary in their mind throughout. For one subset of questions about criminal 

justice exposure, the temporal boundary was adjusted to be only those “known” in the 

calendar year of 2015. Temporal issues came up four times in the retrospective 

interviews. Three participants had difficulty remembering when a certain event occurred 

and mapping it back to the required timeframe. They knew something had happened, but 

said they had to think about when specifically it occurred. One participant also had a 

problem where instead of referencing events that occurred in 2015 (for the criminal 

justice questions) they instead used “last year” as a reference. When asked in the 

retrospective interview, this participant said they were thinking of “last year” as the 

school year. This shift could create opportunities for error if their definition of past year 

no longer matched that of the 2015 calendar year (e.g. an academic calendar instead). 

This specific type of behavior only occurred once, but demonstrates room for temporal 

boundary changes. 

 Comprehension: Knowing Someone – Sight OR Name 

 The definition of knowing someone required that a person be known by sight or 

name. However, in practice participants often created lists which were name-based only. 

During the cognitive interviews several participants began to write extensive lists of 

everyone they knew in certain groupings (e.g. family, work, school) on scrap paper. Such 

lists were usually created when the participant was answering the summation questions 

(Appendix B: Questions 29-43) which ask about how many people a person knows in 

several large categories (i.e. immediate family, coworkers). Occasionally, when asked 
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about the number of people in professions, or in extended friendship groups (e.g. friends 

of friends), participants would recall someone whose name they did not remember, but 

this was fairly rare. Many participants seemed to be caught on the idea that if they didn’t 

know a person’s name, they didn’t really know them well enough to include in their 

counts. This would certainly be true for studies of closer networks which focus only on 

friends and family. The NSUM frequently seeks to assess larger acquaintance networks, 

and here a name may not always be an indicator of network membership. Some the 

participants who made more extensive lists were asked in the retrospective portion of the 

interview if they thought they would have included people whose name they didn’t know, 

but who might frequently be in some of their groups. These participants said that by 

making a list they would eventually capture all of the people in their target groups, even 

if they didn’t initially know their names. This would be encouraging for NSUM 

researchers, but the participants revealed that they would likely not have bothered to 

make such a list if they had completed the survey outside of the cognitive interview.  

 Comprehension: Stability of Knowing Someone 

 Participants were told early on in the survey what it means to know someone 

(question #4), but are expected to keep that definition in mind throughout the survey 

(until question #80). For several participants, as they progressed through the survey they 

reported functionally altering this definition when asked about it in the retrospective 

interview. Many shifted to only thinking about closer friend and family groups instead of 

their larger networks. These participants often described developing several groups of 

people (i.e. mental lists of friends, family, coworkers) whom they knew, which they 

would then search when asked if they knew someone with a given attribute or experience. 
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For different questions they may go through those groups in different orders, but they 

would often stop searching if they exhausted their group list. If this list was exhaustive of 

their entire network, this would not be a problem. However, these groups seemed to be 

comprised of smaller subsets of their close network and not their larger acquaintance 

network as participants seemed to talk mostly about close friends and family. It seems 

likely that these participants were rarely considering people they knew who were not in 

their close groups.  

“Whenever I reverted back to friends, it’s always like this small close-knit group 

because you have your like giant friends, and then you those small, that small 

group fit that you hang out with all the time that you think about. So every time 

they asked questions about being beaten or attacked I would always revert back to 

that small group.” 

 A small subset of participants (3 of 19) near the beginning of the survey took the 

time to write down lists of everyone they knew by different social groupings – often 

prompted by the summation questions (Appendix B: Questions 29-43). These lists took a 

considerable amount of time to compile, often filling one or two legal sized pieces of 

paper. Once finished the lists served as a master reference sheet for the participants as 

they moved through the later questions. Here, as long as the participant was using the 

correct definition of knowing someone to build the list, they were then immune to 

definition decay later in the survey. However, when asked during the retrospective 

interview if they would create such a list if there were to obtain the survey through the 

mail, they indicated that they would be unlikely to do so.   

 Retrieval: Recalling a Zero, One, or More than One 

 Among the participants there was a theme common to many “zero” and some 

“one” responses where they described knowing the answer without a verbal response 
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process. This was most often accompanied by phrases such as “not ringing a bell,” 

“nothing jumps out,” or “nothing comes to mind.” These were often the only thing a 

participant would describe during the cognitive interview before writing a zero. When 

asked to further describe their response process for these questions during the 

retrospective interview, participants often talked about a nearly instant response. One 

they seemed to have almost no control over. They simply knew the answer. For a smaller 

number of “one” answers a similar response pattern would emerge. Here a participant 

immediately had an answer and seemed to give little thought beyond the quick reaction. 

These instances with a “one” were far less than the “zero” occurrences though. 

 Even among “zero” answers there was no absolute pattern to how a participant 

would respond. Several participants reported that although their “zero” responses were 

fast, they were actively searching, particularly in the cases where they thought that they 

should know someone. One participant said that it felt satisfying to complete an answer 

with something other than a “zero,” so they would try to find at least one person so that 

they could answer with a “non-zero.” Other participants described their “zero” or “one” 

process as fast because they had only lived in the area for a limited time and therefore 

could search through most of contacts with little effort before reaching a response.  

 Participants tended to be more uniform in their responses that were greater than 

one. Here participants seemed to be actively searching their memory or their written lists. 

However, these responses were still somewhat subjected to the idea that a participant felt 

they should know more people than they had already come up with, which would prompt 

a more extensive search. Despite this, answers of two or more seemed to have at least 

some part of the response process expressed in the cognitive interview and it was 
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exceedingly rare for a participant to say a phrase like “nothing jumps out to me” until 

they had already gone through a memory search process.  

 Retrieval: Search Termination 

 Participants reported several general strategies for search termination in the 

retrospective portion of the interview. These strategies were often dependent upon the 

method a participant used to search their memories. Participants who had created mental 

groupings (e.g. close friends, family, college people) they would stop trying to come up 

with more people once they had gone through each of the groups at least once. 

Sometimes they described going back through the groups a second or third time, but 

rarely tried to think of those who might be outside of the groups they had already created. 

Participants who had opted to write down a physical list of all the people they knew 

would simply go through their list name by name and count how many people qualified 

for a given question. Once they reached the end of the list they were generally satisfied 

with their final answer. A few participants also reported just knowing when they had 

come to the final number and gave little thought into whether they might know anyone 

else.  

 Although the search strategies and termination decisions seemed to vary, there 

was a common idea of a good faith effort which appeared frequently. Participants said 

that they would stop searching once they felt that they had made a reasonable attempt to 

continue coming up with answers after they started to come up empty on their continued 

memory searches. How much effort was qualified as “good faith” seemed to be 

subjective and is likely related to how much effort a participant is willing to put into a 

survey. When asked in the retrospective interview how accurate their answers were likely 
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to be, most participants felt that their answers were within one or two persons of the true 

answer. Unfortunately, the NSUM is built around the measurement of scarce populations 

and smaller answers, so that error of one or two could be substantial.  

 Retrieval: Known-Population & Summation Methods 

 There are currently two major methods used to estimate personal network size for 

the NSUM: the known-population and the summation method. The retrieval processes 

used by participants varied considerably between these two methods. The known-

population method asks a series of questions about how many people a participant knows 

who have a certain first name or have a certain profession. Participants were asked in the 

retrospective interview which questions they found to be particularly hard or easy and 

which were more accurate. The known-population questions were said to be easier and 

felt that they were more accurate. These questions also took substantially less time to 

complete. However, the known-population questions also featured more zero responses 

and cases where the participant appeared to spend little or no time on their response 

process. 

 Summation questions on the other hand required a considerable investment by the 

participant and were often identified as the most difficult questions in the survey when 

asked in the retrospective interviews.  

“Questions about knowing people in broader groups that was hard because I had 

to think back to it and calculate who I knew.” 

In some cases it took a participant up to 30 minutes to complete the set of 15 summation 

questions. Here, respondents very rarely had a zero answer and often had to engage in an 

extensive recall process. These questions were what prompted several participants to 

make comprehensive written lists of everyone they knew in Nebraska. Because of the 
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extra work, participants also said that they were inclined to take shortcuts and estimate 

their final responses instead of actually counting everyone they knew.  

 A surprising difference between the two methods was how they worked for 

participants who had not been living in Nebraska for a long period of time. Newer 

arrivals, particularly those with less than a year in the state often had straight zeros or 

only one or two non-zero responses in the known-population questions. However, in the 

summation questions they were able to list a larger number of people in work, school, 

and acquaintance categories. This likely represents a function of network development 

which occurs when a person moves to a new area. Someone who has recently moved to 

Nebraska knows many people who are outside of the state, but has not yet had time to 

develop contacts within the state. Participants who had moved from somewhere else in 

Nebraska seemed to be less likely to have all zeros in the know-population questions. The 

known-population method may be more likely to produce lower estimates of social 

network size for recent migrants to an area than the summation method. This is because 

the known-population method seeks to build an estimate off knowing rare populations. 

However, for a new arrival, their odds of knowing these rare populations would not be 

the same as someone who has lived in the area for their entire life, or for a substantial 

period of time. As the summation method seeks to capture everyone a person knows and 

not just scaling indicators it appears to be better able to reflect the network sizes of those 

who are recent arrivals and are still developing their networks. 

 Judgement: Partial Information 

 Participants were occasionally faced with questions where they recalled people 

whom they were not sure if they fell into the target group or not. A common question 
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where this appeared asked if they knew anyone who would not approve of interracial 

dating. Participants would often describe in their think-aloud people whom they thought 

held this view, but who had never expressed it to them personally. For this specific 

question the participants were using other cues to infer the presence of this attitude, such 

as age or political view. In such cases the participants tended to answer affirmatively only 

about people they were certain of, and who had directly expressed their views in this 

specific case. In other instances, such as questions about drug usage, the participant might 

say in their think-aloud that they thought a person used marijuana (for example) but were 

again not entirely sure. Here, the trend was the same. When uncertain, participants tended 

to stay away from counting that person. It may be that these behaviors were seen because 

these questions ask about illegal or stigmatized behavior. Unfortunately, the survey does 

not ask about people engaged in positive or normative behaviors, aside from professions, 

so no direct comparison can be made.  

Discussion 

 Cognitive interviews may reveal the inner response process a participant goes 

through which cannot be inferred from looking at an answer alone. Examining the 

response process in this way allows a researcher to see why a question or type of question 

may behave differently when viewed by a participant compared to its design. Using the 

information discovered through cognitive interviews a series of suggestions can be 

created to better future NSUM work. This section presents several possible changes to the 

NSUM implementation process and how these changes address issues found in the 

cognitive interviews.  

 Instructions as Questions 
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 It seems clear that when an instruction is important, it should phrased and 

numbered as a question. Even though a majority of participants in these interviews saw 

the non-question instructions, all of them saw and read the instruction which was set as a 

number. This is particularly important when the survey mode is unable to control the 

order in which a participant sees something (i.e. mail surveys). If questions are 

particularly sensitive to understanding a set of instructions, forcing a respondent to read 

the instructions becomes more critical. This suggestion also applies to other self-

administered survey modes. Web surveys have the capacity to force a participant’s 

attention to instructions through questionnaire design and rules about progressing to the 

next page or question. Although there are other ways to enhance the visibility of 

instructions through visual design, it seems that the simplest would be to turn the 

instruction into a question, thereby taking advantage of participant behavior which is 

likely already trained. 

 Repeating Definitions 

 For the NSUM surveys, participants often had difficulty retaining the exact 

boundaries of what it meant to know someone. They shifted timeframes, focused 

exclusively on names, or began to only search through memories about people that were 

closer to them. Given this behavior it seems reasonable that the definition of knowing 

someone should be reiterated at certain intervals throughout the survey. It is unclear from 

these cognitive interviews how fast a definition began to decay. However, it is possible to 

reinforce the definition by making it easily available for reference. Within a paper survey 

this could take the form of the definition always being on top of the page, or repeated 

every time a new set of pages was opened. Another possibility would be to refresh the 
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definition for every new NSUM section that is introduced in the survey. In the cognitive 

interview form, question #4 would be repeated after every NSUM section heading. This 

would refresh the definition six more times and in places where the participant is more 

likely to make a mental break due to the subheading and visual design which clusters 

similar questions together. Such repetition could do more harm as a participant grows 

weary of seeing the same question multiple times. However, there is likely a balanced 

design which is between too frequent and too few reminders.  

 Larger Known Populations 

 The issue of fast zero responses and the seemingly instant response process which 

many participants used for their zeros could pose a serious problem for NSUM 

researchers. One way to reduce some of these is to select known populations which are 

larger. Currently, when possible, the written standard has been to use known populations 

of approximately 0.02% of the total population (McCormick et al. 2010). However, this 

size range seems too often produce a zero or a one answer. It may therefore be beneficial 

to explore using larger populations which would be more likely to produce a 2-5 answer. 

From the cognitive interviews, spontaneous responses which involved a participant 

having an answer just occurring to them were restricted to response of zeros or ones. 

When asked about this behavior in the retrospective portion of the interview, many 

participants could not define how they had arrived at their answer. However, responses 

which were two or higher, always involved some sort of response process that was shown 

in the think-aloud portion of the interview. That is, these answers were not just simply 

known, but were actively retrieved and considered. However, questions which elicited 

larger responses, such as the summation questions (e.g. how many people do you know 
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through school?) often resulted in the participant not engaged in a count process in the 

think-aloud, but instead a tendency towards estimation (mirroring the heaping found by 

McCarty et al. (2001)). By slightly increasing the size of known-populations, researchers 

may encourage a full response process. Thereby improving the accuracy of the NSUM 

method. 

 Unfortunately, it is not possible to choose the size of a hidden population that the 

NSUM is being used to measure. Depending on the target group and the spatial and 

temporal boundaries placed upon the question by a researcher, participants may fall into 

quick zero memory recall. It may be possible to reduce this by asking participants to go 

back through their answers and gauge how accurate they think a given answer may be. 

Such a process would take advantage of the participant having gone completely through 

the survey. Other NSUM questions may remind them about people or occurrences they 

had previously forgotten. Asking participants to rate their own accuracy could also be 

used to as a corrective measure to scale up or down answers.  

 Encourage Participant Buy-In  

 It is clear that answering NSUM questions can be demanding for a participant. 

Even though many participants in the cognitive interview went to great pains to answer 

questions by writing extensive lists of contacts and reworking their memories in the 

think-aloud, they also often made it clear that they would not do so in a real-world survey 

setting. 

“I wanted to provide you, like, since I knew it was part of a research project, I 

didn’t want to give you just like, broad answers, I wanted to try to and do the best 

I could, so your data was accurate. But if I just got it in the mail, if it was up to 

me, I probably wouldn’t have even opened it.” 
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 Unfortunately, most of a researcher’s capacity to reduce burden rests on the design of 

questions and making it easier for a participant respondent. NSUM questions, when done 

correctly, require a heavy cognitive burden by asking for memory searches about 

everyone they know. This is likely why participants in the cognitive interviews began to 

take shortcuts in their recall by regressing to only checking through groups of people they 

were closer too. This burden could be reduced by suggesting and allowing a participant to 

check contact lists such as their address books or Facebook. However, this runs the risk 

of them referring only to those lists and missing other people. Another approach, is to 

reduce the scope of what it means to know someone. This is what Feehan et al. (2016) 

implemented by shifting to a one year timeframe for past contact, instead of a two year 

timeframe. They posed this adjustment as a way to reduce error in answers, but it also 

works to reduce respondent burden. A third approach would be to use small surveys 

which focus on only a handful of questions and target populations. Reducing survey 

length and only asking for a few instances of memory recall would hopefully increase a 

participant’s willingness to expend more energy on coming up with an answer. 

 Under a social exchange framework (Dillman et al. 2014) researchers may also 

work to increase the benefits of a survey. The most direct way to do this is by adding a 

cash incentive, however this is not always feasible. The 2014 NCS tried to express the 

novelty of the NSUM questions and the importance of the research. Additionally, the 

materials attempted to express the importance of the participant’s answers while also 

taking advantage of using the logos of the state’s largest public university. Combined 

with a $1 incentive this appeared to slightly boost the response rate to the survey. 
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 Using the logos associated with the university also works to build trust with the 

participant, assuming they trust/respect the university (Dillman et al. 2014). The more a 

participant trusts the researchers and the goals of the study, hopefully the more willing 

they are buy-in and devote more effort to the response process. Trust is important when 

asking participants to report on hidden and hard-to-reach populations which are often 

characterized by illegal or stigmatized behaviors. Fortunately the NSUM is advantageous 

in this regard as it only requires counts, and not any identifiable information about those 

who may be in a target group. Emphasizing this in the survey materials and questionnaire 

may decrease hesitation to become involved with the study. However, the NSUM does 

not remove ideas of guilt of association, which depending upon the population may be 

strong factor. Ultimately, NSUM researchers should take every advantage they have to 

increase participant buy-in to the survey. The goal should be not just to encourage a 

response, but to encourage thoughtful and thorough responses.  

Combining Known-Population & Summation Methods 

The known-population method of estimating personal network size always runs 

the risk that a participant may not know anyone in any of the scaling variables (e.g. 

names and professions). Zeroes across the board result in an estimated social network 

size of zero, which seems highly unlikely. The risk of straight zeroes, or disproportionate 

amounts of zeroes seems to decrease the longer a participant has lived in a target area. 

New residents to an area are unlikely to have extended their social networks to their local 

capacity and therefore would not have the same probability of knowing someone in the 

scaling categories as a person who grew up in Nebraska would.  
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The summation method on the other hand, should only provide an estimated 

network size of zero when that person truly knows no one. The disadvantage is that this 

method imposes a substantial response burden and seems prone to estimation instead of 

enumeration. However, an abbreviated form of the summation method may be a useful 

catchall to prevent the lower limit of network size from being zero, or relying strictly on 

just one or two known-population scaling variables. Such a method may ask about four or 

five mutually exclusive categories (e.g. family, friends, coworkers, other people) to 

quickly develop a baseline number of people known by a participant. Not only would this 

catch participants who are new to an area, but it would better serve those who come from 

backgrounds where the names typically used in NSUM studies are rare or completely 

absent. An NSUM study which might cover refugee communities would likely do very 

poorly with the names which were used in the 2014 NCS unless those refugees came 

from Western Europe. Using both methods imposes a burden, but would likely reduce 

several potential sources of error. 

Length of Residence as a Control/Scalar 

If it is not possible to add summation questions to an NSUM survey, it seems wise 

to add a question about how long a participant has lived in the target area. For studies of 

Nebraska this would likely include if they were born in Nebraska, how long they have 

currently been living in Nebraska, or what proportion of their life have they spent in 

Nebraska. When using other target frames (e.g. Florida, the U.S., Lancaster County) 

these questions would be adjusted accordingly. If length of residence has no influence on 

the outcomes it should be uncorrelated with network size and the target group estimates. 

If there is an association, it may be possible to develop corrections which scale-up reports 
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of a target group from those who have lived in the state for less time. At the very least, 

these questions should be asked as a check for network development in a given region. 

Knowns & Maybes 

For several target groups in the cognitive interviews, participants tended to be 

conservative in their reports of people for whom they were unsure of their status. 

Although false-positives should be avoided, it would be worthwhile to capture the 

number of people that a person is uncertain about as well as the number for which they 

are certain. Considerable effort in the NSUM literature is devoted to correcting for when 

participants do not fully know the status of their alters (transmission error). Capturing the 

number of maybes would give researchers as a way to assess uncertainty of information 

transmission and a framework for developing corrections. Such a framework would not 

require direct contact with the target group, a requirement of the generalized NSUM 

(Feehan and Salganik 2016). Two estimates could be produced for each target group, one 

without the maybes and one with the maybes providing a range of estimates under 

different assumptions. 

Awareness of Question Order 

The order in which NSUM questions are asked appears to have the potential to 

substantially influence questions. Of particular note are the summation method questions. 

In the cognitive interviews these questions were the most likely to prompt participants to 

develop written lists and mental groups, if they had not already done so. In some cases 

this action revealed people who had been missed previously and seemed to encourage a 

thorough review of who they knew. Given this, it may seem beneficial to place 

summation questions early in the survey. However, several participants also fell into the 
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habit of only using the list developed by the summation question and not allowing their 

mental searches to exceed their lists. If the list is perfect, such behavior is fine, but a 

perfect list seems unlikely and the action of a creating the list could shift responses all the 

way through the survey. In a survey mode where the interviewer is present it may be 

possible to minimize these effects. However, in a mail mode, only the survey instrument 

and its instructions can correct for these kinds of order effects. Here the solution may be 

to place the summation questions early (if using them) and then frequently remind 

participants of the “knowing someone” definition. This may prompt their response 

process to escape the lists created by the summation question and allow for the discovery 

of other people in their network. Ultimately, awareness of the issue for questionnaire 

design may have to be sufficient, as the data must be collected in some manner.  

Limitations 

 Cognitive interviews provide an excellent tool to observe otherwise hidden 

thought processes. However, this style of interviewing can only go so far to reveal 

response processes which happen simultaneously or so quickly that a participant cannot 

verbalize them. Cognitive interviews are therefore limited to those response processes 

which a participant is capable of focusing upon (Tourangeau et al. 2000). These 

processes may reveal higher cognitive function (Ericsson and Simon 1993; Tourangeau et 

al. 2000; Willis 2005), but miss those which outside of the participant’s control or 

recognition. There is also some danger that the participant’s response process may be 

altered by the cognitive interview itself (Tourangeau et al. 2000; Wilson, LaFleur, and 

Anderson 1996). By asking a participant to focus upon their response process in a way 
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they do not normally do, it is possible that their process in an interview will not match 

what would happen in the field and create a lab effect.  

 In addition to problems directly related to the cognitive interview process, there 

are also limitations based upon the way participants were recruited. For this study the 

participants were only recruited from the city of Lincoln and Lancaster county. Although 

this is a subset of the statewide sampling frame used for the 2014 NCS, it is possible that 

there may be substantial differences between those recruited for the cognitive interviews 

and those who received the original survey. Due to the nature of the recruitment process 

the participants for the cognitive interviews were also more likely to be associated with 

the University of Nebraska-Lincoln.  

Conclusion 

 Although cognitive interviewing has limitations, the interviews presented here 

revealed several potential problem areas in the NSUM implementation. The suggested 

changes to NSUM survey practice work towards a model of minimizing as much error as 

possible beforehand, without sacrificing many of the unique benefits of the NSUM. 

Several of the statistical corrections in the literature require either direct sampling of the 

target population (Feehan and Salganik 2016; Maltiel et al. 2015; Salganik et al. 2011) or 

reducing the size of the network that a participant has to recall from (Feehan et al. 2016). 

Having to directly sample the target population may add considerable expense and time 

to a project. Reducing the size of the recall network decreases the chance that alters on 

the periphery of the network and who may bridge into different communities may be 

missed by the NSUM process. Both of these sacrifices might be avoided by developing 

survey designs which encourage proper response processes.  
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 Through the use of cognitive interviews this chapter provides additional 

suggestions which through testing and further research may prevent measurement error 

from initially occurring. These suggestions complement the larger field of NSUM 

research which has focused on the post-hoc correction of transmission error and barrier 

effects. These suggestions are not a monolith, but represent several options that may be 

taken as a whole or piecemeal. Although it is hoped that all of the suggestions will be 

fruitful, more testing of these and other implementation practices designed to reduce 

cognitive and recall error in the NSUM should be encouraged. Through scrutiny of the 

response process NSUM researchers can continue to develop better questions and 

questionnaires and reduce the need for post-hoc statistical adjustments for future surveys.  
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CHAPTER 7: CONCLUSION 

 The network scale-up method (NSUM) provides a flexible, efficient, and timely 

way to generate estimates of hidden and hard-to-reach groups that are representative of 

larger populations. This method fills a niche between methods which require direct 

contact with hidden populations and those which are unable to include hidden 

populations in their sampling frames at all or in sufficient numbers. Although first 

proposed in the early 1990s (Russell Bernard et al. 1991) the NSUM only began to 

receive large amounts of attention with the work of McCarty et al. (2001), Salganik et al. 

(2007), and McCormick et al. (2010) among others. Since then the pace of NSUM 

research has increased, with almost two dozen NSUM papers published since 2012.  

 Several new NSUM procedures have been developed and tested in the recent 

wave of publications. Many of these innovations have been focused on addressing 

transmission error. This error occurs when a survey respondent is unaware of their alter’s 

group membership in a target population. Attempts to correct transmission error have 

roughly fallen into two groups: general weighting based off of estimates on the likelihood 

of and information being passed (Guo et al. 2013; Snidero et al. 2007), and the 

incorporation of another data collection phase with the target group to assess how many 

people they tell about their status (Feehan and Salganik 2016; Maltiel et al. 2015). There 

has been less attention to barrier effects or recall error, but what has been done remains 

focused on developing post-hoc statistical adjustments (Maltiel et al. 2015) or adjusting 

the temporal boundary when defining what it means to know someone (Feehan et al. 

2016). Cognitive errors have been seemingly ignored since the work of McCarty et al. 

(2001).  
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 In addition to the developmental focus on error, there has been some recent 

innovation in how the core estimation process works. Feehan and Salganik (2016) 

proposed a generalized NSUM which pairs respondent driven sampling with a traditional 

NSUM survey. The advantage here is that this method does not have to estimate personal 

network size and can directly adjust for transmission errors in addition to sampling frame 

and barrier effects. Another proposed change came from Maltiel et al. (2015) which takes 

a Bayesian approach to correcting for recall, barrier, and transmission errors. Like the 

generalized NSUM (Feehan & Salganik 2016), using this method requires direct contact 

in the form of an RDS or another probabilistic sample of the target population. As a 

result, these innovations leave room for improvements which can be made to the 

traditional NSUM which improve its accuracy without requiring direct contact with the 

target population.  

 In light of the recent NSUM developments and growing interest in the method as 

a tool for measuring hard to reach and hidden populations, this dissertation focused on 

several aspects of the NSUM which can be improved. The mean of sums (MoS) estimator 

is a new way to handle the core estimation processes which does not require direct 

contact with the target population. Unlike the traditional estimator, the MoS uses the 

average of the ratios of known scaling variables to estimate personal network size, and 

the average of ratio of known target population network members to estimate the 

population estimate of that target group. The MoS, when used alone, produces larger 

average estimates of personal network size with greater variance than the traditional 

estimator. However, when used to estimate the size of a target population, the MoS 

comes closer to the correct estimate than the traditional NSUM estimator.  
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 Back-estimation has been in the NSUM literature for some time, but has only 

recently been discussed as a way to remove scaling variables (Guo et al. 2013). This 

dissertation proposed using back-estimation in a recursive fashion instead of the bulk cuts 

which had been previously used (Guo et al. 2013). Recursive back-estimation when 

compared to bulk-cuts was found to frequently preserve more scaling variables, and 

removed different scaling variables than would have removed in a bulk cut. This is 

because back-estimation procedures are interdependent such that the removal of even one 

scaling variable can substantially influence the accuracy of the others. As a bulk cut 

removes all scaling variables over a set threshold in one step, variables which would have 

been corrected, or become less inaccurate are lost without recalculation.  

 When recursive back-estimation is combined with the MoS the average personal 

network size and variance of the MoS estimator is greatly reduced. However, the MoS 

estimator kept more scaling variables than the traditional estimator when using the same 

cut thresholds and recursive process. When comparing final estimates of the target 

population, the MoS with recursive back-estimation comes closest to correctly predicting 

the number of people who had moved into the Nebraska in the prior two years. The 

traditional estimate, even with recursive back-estimation was still substantially off the 

target value. When sampling weights were applied to both estimates, the MoS with 

recursive back-estimation generated an estimate that contained the true target value 

within its confidence intervals, while the traditional was still considerably off target.  

 Although the MoS estimator with recursive back-estimation has been shown to be 

more accurate than the traditional estimator under the same conditions, there are still 

several unknowns regarding the new process. This dissertation systematically examined 
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how using the MoS vs the traditional estimator, conservative item nonresponse 

assumptions vs. liberal, and the use of recursive back-estimation vs. none, affected three 

types of statistical outputs: estimated personal network size, associations between 

network size and individual attributes, and predicted network size. As before, the MoS 

generally produced larger network sizes compared to the traditional estimator, differences 

which were reduced through the use of back-estimation. Surprisingly, little difference in 

estimated network size were found by applying different item nonresponse assumptions, 

even though they resulted in substantial differences in the number of available cases for 

analysis.  

 Sixteen different estimates for personal network size were generated by the prior 

experiments. These were then used as an outcome to test for associations between 

network size and individual attributes. Identical models were used for every outcome, the 

only difference being the conditions that produced that specific estimate of personal 

network size, and how missing data in the attributes was handled (imputation vs. 

listwise). Across all the models there were only two constants. Participants in rural areas 

(less than 10,000 people) had considerably larger estimated personal networks than those 

in urban areas (more than 50,000 people). Further, participants who earned less than 

$25,000 always had smaller estimated network sizes than those who earned between 

$50,000 and $99,999. Although several other associations were occasionally significant, 

none were constant. This means that the choice of estimator, back-estimation, item 

nonresponse, and even broader missing data choices may have effects which alter the 

statistical inference of a model.  
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 These models were then used to develop predicted mean personal network sizes in 

rural, midrange, and urban areas of Nebraska. Each predictive means were stable in that 

rural was always larger than midrange, which was always larger than the urban 

prediction. However, there was often considerable variation between predictions based up 

MoS and traditional NSUM models. Here the use of back-estimation was shown to 

substantially reduce the variation of all the predictions, and greatly reduced the 

differences between the MoS and traditional predictions. 

 Finally, this dissertation used cognitive interviews to examine the mental response 

process used by NSUM survey participants. There interviews focused on several 

outstanding areas in the NSUM literature and produced a number of practical suggestions 

for future NSUM studies. Participants tended to alter their working definition of what it 

meant to know someone as they went through the survey, often falling back to only 

searching through groups of close contacts such as family and good friends. Fortunately, 

participants did not seem to have trouble with the spatial boundaries placed upon 

knowing someone. However, their grasp of the temporal boundaries was not as stable as 

it should be. To remedy this it is recommended researchers test implementations where 

the definition of knowing someone is repeated during a survey whenever practical, and 

that the definition should be easy to reference for participants.  

 There were also interesting recall differences when a participant was trying to 

remember counts that were a zero, and in fact it often seemed like their response was 

instantaneous and without thought. This effect was found among some responses of one, 

but never when a participant was counting two or more people in given group. 

Participants were also likely to stop searching their memory for more people once they 
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felt that had put forth a “good faith” effort, or enough time had passed since their last 

recall. The lack of conscious response process for zeroes and some ones is troubling 

given that the NSUM is often focused sampling from larger acquaintance networks which 

may not always be searched in such an instantaneous fashion. To remedy this, whenever 

possible, it is suggested that NSUM researchers test slightly increasing their scaling 

variable sizes to try and decrease the likelihood of an instant response.  

 The cognitive interviews also highlighted several other interesting aspects of 

participant behavior which should be the subject of future testing and research. The first 

of these is an increased likelihood to skip instructions which are not written as questions. 

Therefore, important and potentially all survey instructions which a researcher needs a 

participant to read should be written as numbered questions. Second, questions asking 

about how much time a participant has lived in the target area should be added to all 

NSUM studies in order to gauge how much time they have had to develop their networks. 

Several participants had recently moved and their response processes were substantially 

different in some areas compared to those who had lived in Nebraska for longer periods 

of time. Because of these differences, it may also be worthwhile to research combining 

the summation and known population methods in future studies. The summation method 

did surprisingly better at capturing network sizes of those who had recently moved as it 

was not contingent upon the participant knowing someone in a given population (i.e., a 

certain name). Finally, parts of the NSUM impose substantial respondent burden, and 

even in the cognitive interview setting participants were oft tempted to take shortcuts. 

Researchers need to fully explore ways that they can increase participant buy-in and the 
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potential rewards for completing an NSUM survey if they cannot find easier ways for a 

participant to answer NSUM style questions.  

 Unfortunately the data this dissertation is built upon is cross-sectional. Further, 

there is no way to assess how long a person has lived in Nebraska and to what extent their 

personal networks are still growing from the 2014 NCS data. These restrictions temper 

the findings of this dissertation as it is not practical to think that a) personal networks are 

static, and b) that networks of a recent arrival immediately reach their desired size. 

Further work on the changes in network size over time with a particular focus on how 

networks grow when an ego is placed into a new social environment are needed.  

Despite these limitations this dissertation has demonstrated several ways for the 

NSUM to be developed and refined into a more precise method. These suggestions will 

hopefully be incorporated into a wider set of NSUM studies as the method continues to 

be adopted and as more researchers explore both its assumptions and weakness. The 

applications of the NSUM are considerably broad, and the potential for the method 

reaches far beyond the standard hidden populations it has been used for to date. In 

particular, the ability of the NSUM to provide timely and cost effective estimates of any 

population should be a boon to researchers hoping to demonstrate just how big a given 

issue is. Here the NSUM fills a gap for researchers who lack the funding to do a 

comprehensive in person survey, but have just enough resources to field a basic mail or 

telephone NSUM survey to bolster their argument about just why they need more 

funding. I look forward to seeing the NSUM continue to evolve and hopefully 

incorporate many of the changes proposed in this dissertation.  
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Table 4.1: Change in Three Population Estimates and Personal Network Size over the Traditional and MoS 

Estimator 

    Traditional MoS 

    

Estimate 

(s.e) 95% CI 

Estimate 

(s.e) 95% CI 

Moved to Nebraska from within the US in last 2 

years 12184 [11673, 12695] 75800 [74821, 76777] 

  (260.60)  (499.14)  

Would not approve of interracial dating 17892 [17273, 18510] 22614 [22079, 23148] 

  (315.79)  (272.63)  

Heroin use in last 30 days 368 [279, 457] 454 [379, 530] 

  (45.28)  (38.64)  

Personal Network Size     

 Mean 604.03  1024.28  

 Standard Deviation 694.04  1559.17  

 Min 0.00  0.00  

 Max 5944.31  16794.19  

  N 555.00   555.00   
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Table 4.3: Change in Three Population Estimates and Personal Network Size over the Recursive Trimming 

Process through Seven Iterations using the Traditional Estimator 

    IT0 IT7 

    Estimate (s.e) 95% CI Estimate (s.e) 95% CI 

Moved to Nebraska from within the US in last 

2 years 12184 

[11673, 

12695] 15407.53 

[14761, 

16053] 

  (260.60)  (329.54)  

Would not approve of interracial dating 17892 

[17273, 

18510] 22624.97 

[21842, 

23408] 

  (315.79)  (399.33)  

Heroin use in last 30 days 368 [279, 457] 465.19 [353, 577] 

  (45.28)  (57.26)  

Personal Network Size     

 Mean 604.03  464.28  

 Standard Deviation 694.04  444.82  

 Min 0.00  0.00  

 Max 5944.31  4185.61  

  N 555.00   571.00   
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Table 5.1: Experimental Design 

NSUM Estimator 

Item Non-

Response 

Assumption 

Before and After 

Recursive Back-

Estimation 

Listwise or 

Imputed 

Independent 

Measures Model Location 

Traditional 

1 (missing) 

Baseline 
Listwise Table 4: Model 1 

Imputed Table 5: Model 1 

Final 
Listwise Table 4: Model 2 

Imputed Table 5: Model 2 

2 (zero) 

Baseline 
Listwise Table 4: Model 3 

Imputed Table 5: Model 3 

Final 
Listwise Table 4: Model 4 

Imputed Table 5: Model 4 

MoS 

1 (missing) 

Baseline 
Listwise Table 4: Model 5 

Imputed Table 5: Model 5 

Final 
Listwise Table 4: Model 6 

Imputed Table 5: Model 6 

2 (zero) 

Baseline 
Listwise Table 4: Model 7 

Imputed Table 5: Model 7 

Final 
Listwise Table 4: Model 8 

Imputed Table 5: Model 8 
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Table 5.2: Personal Network Size Estimates 

Variable N Mean S. E.  Min Max 

Traditional 1 Baseline 555 610.94 34.74 0 5944.31 

Traditional 1 Final 574 452.91 18.07 0 3349.89 

Traditional 2 Baseline 617 607.20 32.98 0 5944.31 

Traditional 2 Final 617 622.39 36.20 0 7031.43 

MoS 1 Baseline 555 1039.71 77.52 0 16794.20 

MoS 1 Final 561 490.49 33.70 0 6505.38 

MoS 2 Baseline 617 1034.93 73.05 0 16794.20 

MoS 2 Final 617 484.17 31.92 0 6505.38 
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APPENDIX A: 2014 NEBRASKA COMMUNITY SURVEY 
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APPENDIX B: 2016 COGNITIVE INTERVIEW SURVEY 
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APPENDIX C: COGNITIVE INTERVIEW PROTOCOL 
 

 

Preparation 

[Ensure that informed consent, payment, digital recorder, and paper survey are laid out and ready for the 

interview. Bottled water, tissues, a notepad, and pens are available for the participant to make use of if 

needed throughout the interview.] 

 

Introduction 

[Greet the participant and seat them at the table. Make sure they are comfortable. Describe what is going 

to happen.] 

 

First, thank you for your help! Today you will be helping us understand about how people think about 

other people they know and the ways they access their memories of other people. I am going to ask 

you complete a paper survey while speaking aloud the questions, the response options, your thought 

process, and your answers. During the survey I will ask you follow-up questions which may ask you 

go provide more detail or to think about a question in a different way. I will be recording this session 

for later reference and taking notes as we go through the survey. I expect the entire interview to take 

about two hours. Before we start, we are going to go over and sign the informed consent. 

 

Informed Consent and Explanation of Survey Type 

[Hand participant two copies of the informed consent form. Go over the key elements of the form with the 

participant. Ask them if they have any questions. Ask them to sign the top copy and give them the second 

copy. After completing the informed consent introduce the idea of cognitive interviews.] 

 

This is a think-aloud cognitive interview, which helps me understand how you are making your 

decisions in the context of this survey. When we are asked a question, we often go through an internal 

process before we respond: trying to understand the question, if we have an answer, if that answer is 

appropriate, and then providing the response. We may do this almost simultaneously or take our time 

trying to find our preferred answer. The way in which you think about a question will often tell us just 

as much as your final answer. To learn about how you answer a question we ask you to speak aloud 

your response process as you go through the survey. You should try to vocalize what you are thinking 

as you read a question, develop a response, and then finally decide how you want to respond. This 

type of speaking isn’t something we do regularly, so I want to ask you two warm-up questions to help 

you get a sense of what I’m asking you to do. 

 

Here is the first question: How many residences have you lived in since you were born? 

 Follow-up: How did you think about what it means to live somewhere? 

 Follow-up: How did you define what it means to live somewhere? 

 

Here is the second question: Think about where you live. How many windows are there? 

 Probe: Are you counting windows in doors? 

 Probe: Are you counting sliding glass doors? 

 Having gone through two examples do you have any questions before we start?  

 

The Survey 

I’m going to hand you the survey shortly and I would like you to start thinking aloud as soon as you 

receive the survey. Please don’t hesitate to drink water as needed throughout the interview. Ready? 

 

[Start recorder and hand respondent the survey] 
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Generic Probes/Responses 

What are you thinking about with this question? 

Please remember to try and say what you are thinking about. 

You are doing great. 

This is really great, keep on going. 

 

Specific Question Follow-ups 

How accurate do you think that answer was? 

How did you decide to stop counting? 

How did you come up with your response to this question? 

 

End of Survey Questions 

As you moved through the survey did you change how you answered questions? 

Were some questions easier than others? 

Was it easier to answer with a zero or non-zero number? 

Was it easier to answer with a one or a number greater than one? 

How accurate do you think your answers were? 

 Do any in particular strike you as off or probably wrong? 

How did you decide to stop thinking about how many people you knew for some of the questions? 

 Did this change for different sections of the survey? 

What would help you answer questions like this? [Text, visually, context, memory aides] 

If I were to tell you that the average person in Nebraska knows approximately 600 people… 

What would you think? 

Do you think you know 600 people? 

How many do you think are close people? 

 

Would you know if a person you know is planning to move in the next two years? 

Would the people you know be aware of your moving intentions? 

Is it easier for you to remember people who have moved here compared to those who have moved 

away? 
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