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LORENTZIAN POLYNOMIALS, HIGHER HESSIANS, AND THE

HODGE-RIEMANN PROPERTY FOR CODIMENSION TWO GRADED

ARTINIAN GORENSTEIN ALGEBRAS

PEDRO MACIAS-MARQUES, CHRIS MCDANIEL,

ALEXANDRA SECELEANU, JUNZO WATANABE

Abstract. We study the Hodge-Riemann property (HRP) for graded Artinian Gorenstein

(AG) algebras. We classify AG algebras in codimension two that have HRP in terms of

higher Hessian matrices and positivity of Schur functions associated to certain rectangular

partitions.

1. Introduction

In this paper we introduce the Hodge Riemann property (HRP) on an arbitrary graded

oriented Artinian Gorenstein (AG) algebra defined over R, and we give a criterion on the

higher Hessian matrix of its Macaulay dual generator (Theorem 3.1). AG algebras can

be regarded as algebraic analogues of cohomology rings (in even degrees) of complex

manifolds, and the HRP is analogous to the Hodge-Riemann relations (HRR) satisfied by

cohomology rings of complex Kähler manifolds. Higher Hessians were introduced by the

fourth author [10] to study the strong Lefschetz property (SLP) of an AG algebra defined

over an arbitrary field of characteristic zero (see also [4]); over the real numbers, HRP

implies SLP (Lemma 2.3).

In a recent paper [2], Brändén and Huh introduced a remarkable class of real homo-

geneous polynomials, extending the class of (real) stable polynomials, which they called

Lorentzian polynomials. Among other things, they showed that the first Hessian matrix

of a Lorentzian polynomial has exactly one positive eigenvalue and the others negative.

Murai-Nagaoka-Yazawa [5] further showed that the first Hessian of a Lorentzian polyno-

mial is non-singular, which, in terms of Macaulay duality, implies that its associated Ar-

tinian Gorenstein (AG) algebra satisfies the HRR in degree one, an analogue of the Hodge

index theorem for Kähler manifolds. In this paper, we extend the aforementioned result in

two ways in the special case of two variables. First, we prove conversely that if an AG al-

gebra satisfies HRR in degree one, then it has a Macaulay dual generator that is Lorentzian.

Second, we give sufficient conditions for a polynomial to generate an AG algebra satisfying

HRR in higher degrees, using a normalization operator introduced by Brändén and Huh.

Theorem A. (Theorem 5.3) Let F = F(X, Y) be any real homogeneous polynomial of

degree d in n = 2 variables and let A = R[x, y]/Ann(F) be the AG algebra it generates. If
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2 M-M,M,S,W

A satisfies HRR in degree one, then there exists a linear change of coordinates T : R2 → R2

such that the polynomial G(X, Y) = F(T (X, Y)) is strictly Lorentzian.

Following [2], we define the normalization operator N : R[X, Y] → R[X, Y] as the R-

linear operator defined on monomials by

N(XaYb) =
Xa

a!

Yb

b!
.

Theorem B. (Theorem 5.6) Let F = F(X, Y) =
∑d

i=0 ciX
d−iY i be a real homogeneous

polynomial of degree d in n = 2 variables with cd , 0, and let A = R[x, y]/Ann(N(F)) be

the AG algebra generated by the normalization of F.

(1) If the degree d univariate polynomial f (t) = F(1, t) has only real roots, then AN(F)

satisfies HRR in degree one.

(2) If F is Lorentzian then AN(F) satisfies HRR in degree 2.

(3) If F is positively stable, then AN(F) has the HRP.

In n = 2 variables, our Hessian condition boils down to a sign condition on the detem-

inants of the higher Hessians of N(F) up to what we call the plateau degree of AN(F). By

evaluating the Hessians at a special point, we identify their determinants in terms of Schur

polynomials in the roots of the univariate polynomial f (t) = F(1, t).

Theorem C. (Theorem 5.4) Let F = F(X, Y) =
∑d

i=0 ciX
d−iY i be a real homogeneous

polynomial of degree d in n = 2 variables with cd , 0, and let AN(F) be the AG algebra

generated by the normalization of F with plateau degree r. Let f (t) = F(1, t) be the real

univariate polynomial of degree d with possibly complex roots α1, . . . , αd, and let α =

(α1, . . . , αd) ∈ Cd be the vector with those entries. Then for each 0 ≤ i ≤ r, the determinant

of the ith Hessian of N(F), evaluated at X = 0 and Y = 1, is given by

det
(

Hessi(F)|(0,1)

)

= (−1)⌊
i+1
2 ⌋ · Ki · sλ(i)(α)

where 0 , Ki ∈ R, sgn(Ki) = sgn(ci+1
d

), and sλ(i)(α) is the Schur polynomial for the rectan-

gular partition λ(i) = (i + 1)i evaluated at α.

Theorem C allows us to give a sort of classification of HRR Macaulay dual generators in

two variables: AN(F) satisfies HRR in degree i if and only if the determinant of the Toeplitz

matrix

sλ( j) = det

((

e j−p+q

)

0≤p,q≤ j

)

= det





e j · · · e2 j

...
. . .

...

e0 · · · e j





is positive for each 0 ≤ j ≤ i ≤ r, where (ed, . . . , e0) is the coefficient sequence of F and

e0 > 0 (Corollary 5.5).

This paper is organized as follows. In Section 2 we introduce the HRP and HRR in

degree i for AG algebras, and compare them to the more familiar strong Lefschetz property

(SLP). We also give a matrix criterion HRR. In Section 3 we give necessary and sufficient

conditions for an AG algebra to have HRP in terms of the higher Hessian matrices of its

Macaulay dual generator. In Section 4 we recall the definitions of Lorentzian and stable

polynomials, together with some fundamental results about them from [2]. In Section 5 we

prove Theorem A, Theorem C and Theorem B.
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2. Hodge-Riemann Bilinear Relations

A graded Artinain Gorenstein (AG) F-algebra B of socle degree b is a graded algebra

with homogeneous graded components Bi such that d = max{i : dimR(Bi) > 0}, dimR(Bd) =

1, and for each 0 ≤ i ≤ ⌊ b
2
⌋ multiplication defines a nondegenerate pairing Bi × Bb−i → Bb.

A choice of an R-linear isomorphism
∫

B
: Bb → R is called an orientation on B and the

pair
(

B,
∫

B

)

is termed a graded oriented AG algebra over R of socle degree b. The element

σB ∈ Bd that satisfies
∫

B
σB = 1 will be called the distinguished socle generator of B.

Fix a linear form ℓ ∈ B1. For each degree i, 0 ≤ i ≤
⌊

b
2

⌋

, define the ith primitive subspace

to be the kernel of the multiplication map ×ℓb−2i+1 : Bi → Bb−i+1, i.e.

Pi,ℓ =

{

β ∈ Bi | ℓ
b−2i+1 · β = 0

}

⊂ Bi.

Definition 2.1 (Strong Lefschetz Property, Hodge-Riemann Property). (1) The linear form

ℓ ∈ B1 is strong Lefschetz (SL) for B if the multiplication maps

×ℓb−2i : Bi → Bb−i

are isomorphisms for each 0 ≤ i ≤
⌊

b
2

⌋

. We also say that the pair (B, ℓ) has the

strong Lefschetz property (SLP).

(2) The linear form ℓ ∈ B1 is Hodge-Riemann (HR) in degree i if for every 0 ≤ j ≤ i

and every β ∈ P j,ℓ, we have

(−1) j ·

∫

B

ℓb−2 j · β2 > 0.

We also say that the pair (B, ℓ) satisfies HRR in degree i. We say that the pair (B, ℓ)

has the Hodge-Riemann property (HRP) if it satisfies HRR in degree
⌊

b
2

⌋

.

Since B is Gorenstein, multiplication defines a symmetric bilinear and non-degenerate

pairing for each 0 ≤ i ≤
⌊

b
2

⌋

:

Bi × Bb−i
// R

(β1, β2)
∫

B
β1 · β2

Using the linear form ℓ ∈ B1 we get the ith Lefschetz pairing on Bi with respect to ℓ:

Bi × Bi
// R

(β1, β2)i
ℓ

∫

B
ℓb−2i · β1 · β2

The ith Lefschetz pairing is clearly symmetric and bilinear. The following result is known

as primitive decomposition.

Lemma 2.2. Assume that for some fixed degree 0 ≤ i − 1 ≤
⌊

b
2

⌋

, the (i − 1)st Lefschetz

map ×ℓb−2i−1 : Bi−1 → Bb−i+1 is an isomorphism. Then in degree i there is vector space

decomposition

Bi = Pi,ℓ ⊕ ℓ · Bi−1
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which is orthogonal with respect to the ith Lefschetz pairing. In particular, if ℓ ∈ B1 is SL

for B, then B admits an orthogonal decomposition with respect to the Lefschetz pairing:

B =

⌊ b
2⌋⊕

i=0

i⊕

j=0

ℓi− j · P j,ℓ

called the primitive decomposition with respect to ℓ.

Proof. There is a commutative diagram of linear maps

Bi−1
×ℓb−2(i−1)

//

×ℓ

��

Bb−i+1

Bi

×ℓb−2i+1

77
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣
♣

. (2.1)

Since the top horizontal map is an isomorphism, it follows that the diagonal map must

map the image of the vertical map ℓ(Bi−1) ⊂ Bi isomorphically onto its image, and since

its kernel is Pi,ℓ the decomposition follows from linear algebra. The orthogonality of the

decomposition follows directly from the definitions and its proof is left to the reader. If

ℓ ∈ B1 is SL for B, its primitive decomposition follows from an easy inductive argument

whose details are again left to the reader. �

Lemma 2.3. A linear form ℓ ∈ B1 is SL for B if and only if the ith Lefschetz pairing with

respect to ℓ is non-degenerate on the primitive subspace Pi,ℓ, for each 0 ≤ i ≤
⌊

b
2

⌋

.

Proof. Assume that ℓ ∈ B1 is SL for B. It follows that the ith Lefschetz pairing must be

non-degenerate, and by orthogonality of the primitive decomposition, it follows that it must

also be non-degenerate on the ith primitive subspace.

Conversely, assume that ℓ ∈ B1 is not SL for B, let 0 ≤ i ≤
⌊

b
2

⌋

be any index for which

×ℓb−2i : Bi → Bb−i is not an isomorphism, and suppose that α ∈ Bi is a non-zero element of

its kernel. Then α ∈ Pi,ℓ and we must have for every β ∈ Bi

(α, β)i
ℓ =

∫

A

ℓb−2iαβ = 0

which implies that the ith Lefschetz pairing is degenerate on Pi,ℓ. �

Lemma 2.3 shows that ℓ ∈ B1 is HR for B implies ℓ is SL for B. The converse does not

hold however; see Example 5.9.

Next we derive some matrix conditions for verifying HRR.

Recall that a real symmetric n×n matrix M has real eigenvalues λ1, . . . , λn. The signature

of M is then defined to be the difference between the number of positive eigenvalues and

the number of negative ones:

sgn(M) = #{λi > 0} − #{λi < 0}.

Sylvester’s Law of inertia implies that signature is invariant under the congruence relation,

i.e. if Q is a non-singular n × n matrix, and M′ = Q · M · QT where QT is the transpose of

Q, then sgn(M) = sgn(M′).
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Since B is Gorenstein, we may choose a homogeneousR-basis E = ⊔b
i=0
Ei for B such that

E0 = {1}, Eb = {σB} (the distinguished socle generator for B), and for each 1 ≤ i ≤ b − 1,

Ei and Eb−i are dual bases, that is, Ei = {e1, . . . , es} and Eb−i = { f1, . . . , fs} with
∫

B
ei f j = δi j.

We shall call such a basis a symmetric basis for B. Let Mi
ℓ
= Mi

ℓ
(E) denote the matrix for

the ith Lefschetz map ×ℓb−2i : Bi → Bb−i with respect to a symmetric basis E. Note that if

E′ is another symmetric basis for B, then there exists a non-singular matrix Q for which

Mi
ℓ
(E′) = Q · Mi

ℓ
(E) · QT . In particular, the signature of the matrix Mi

ℓ
(E) is independent of

our choice of E.

Lemma 2.4. Let B be a graded AG algebra of socle degree b. Assume that ℓ ∈ B1 is SL for

B. Then ℓ is HR for B in degree i if and only if for each degree 0 ≤ j ≤ i and for some (any)

choice of symmetric basis E

sgn(Mi
ℓ(E)) = sgn(Mi−1

ℓ (E)) + (−1)i · (dim(Bi) − dim(Bi−1))
︸                      ︷︷                      ︸

dim(Pi,ℓ)

. (2.2)

Proof. According to Lemma 2.2 we have

Bi = Pi,ℓ ⊕ ℓ · Bi−1 (2.3)

and also

Bb−i = ℓ
b−2i · Pi,ℓ ⊕ ℓ

b−2i+1 · Bi−1. (2.4)

Denote by −∗ = HomR(−,R) the R-vector space duality functor. Because B is AG we have

Bb−i � B∗i . Diagram (2.1) gives an isomorphism ℓb−2i+1 : (ℓBi−1) → Bb−i+1. Dualizing

one finds an isomorphism ℓb−2i+1 : (Bb−i+1)∗ → (ℓBi−1)∗. This establishes that (ℓBi−1) �

ℓb−2i+1(Bb−i+1)∗ � ℓb−2i+1Bi−1. By orthogonality of the decomposition, it follows from the

above displayed equations that
(

Pi,ℓ

)∗
� ℓb−2i · Pi,ℓ.

If we choose our basis E compatible with the decomposition (2.3) in each degree 0 ≤

i ≤
⌊

b
2

⌋

, then it follows that the dual basis to E will be compatible with the decomposition

(2.4). Thus matrix Mi
ℓ
(E) will have a block diagonal form:

Mi
ℓ(E) =

(

Ai
ℓ

0

0 Mi−1
ℓ

(E)

)

where Ai
ℓ

is the matrix for the multiplication map ×ℓb−2i : Pi,ℓ → ℓ
b−2i · Pi,ℓ. Since

sgn(Mi
ℓ) = sgn(Ai

ℓ) + sgn(Mi−1
ℓ )

the result follows. �

In the special case where the primitive subspace is one dimensional in each degree (as

in the codimension two case), the HRP can be checked by the following determinantal

condition.

Lemma 2.5. Assume that ℓ is SL for B, and assume that dimR(Pi,ℓ) ≤ 1 for each 0 ≤ i ≤
⌊

b
2

⌋

.

Then ℓ is HR for B in degree i if and only there exists a symmetric basis E such that for

each 0 ≤ j ≤ i,

(−1) j ·
det

(

M
j

ℓ
(E)

)

det
(

M
j−1

ℓ
(E)

) > 0.
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In particular, if dimR(Pi,ℓ) = 1 for 0 ≤ i ≤ r and Pi,ℓ = 0 for i > r, then ℓ is HR for B in

degree i if and only if for each 0 ≤ j ≤ i ≤ r,

sgn
(

det
(

M
j

ℓ
(E)

))

= (−1)
⌊

j+1
2

⌋

.

Proof. Let E be any symmetric basis respecting the primitive decomposition of B with

respect to ℓ. Then for each 0 ≤ i ≤
⌊

b
2

⌋

, the matrix for the ith Lefschetz map is a block

matrix of the form

Mi
ℓ(E) =





∫

B
ℓb−2i · β2 0

0 Mi−1
ℓ

(E)





, (2.5)

where β ∈ E ∩ Pi,ℓ, and the first assertion follows. Note that if Pi,ℓ is one dimensional for

0 ≤ i ≤ r and zero for i > r, and if 0 ≤ i ≤ r, then the matrix in Equation 2.5 is block

diagonal with 1 × 1 blocks, and hence the second assertion follows by induction on i. �

3. A Hessian Criterion for HRP

Let R = R[x1, . . . , xn] and Q = R[X1, . . . , Xn] be polynomial rings where R acts on Q by

differentiation, i.e.

xi ◦ F =
∂F

∂xi

, 1 ≤ i ≤ n, F ∈ Q.

A homogeneous polynomial F ∈ Q of degree d determines an oriented graded AG algebra

A = R/Ann(F) of socle degree d with orientation given by
∫

A
α = (α ◦ F) (0), ∀ α ∈ A.

Fix any homogeneous basis E for A, and for each degree 0 ≤ i ≤
⌊

d
2

⌋

suppose that Ei =
{

ei
1
, . . . , ei

m

}

. Define the ith Hessian matrix of F with respect to E as the m × m polynomial

matrix

Hessi(F) = Hessi(F,E) =
(

ei
je

i
k ◦ F

)

1≤ j,k≤m
.

Note that the entries of Hessi(F) are polynomials in the variables X1, . . . , Xn. Given real

numbers C1, . . . ,Cn, we shall write C = (C1, . . . ,Cn) ∈ Rn in vector notation and write

Hessi(F)|C to mean the numerical matrix obtained by substituting the real number Ci for

the variable Xi for each 1 ≤ i ≤ n.

Theorem 3.1. Let E be any symmetric basis for A = R/Ann(F) and let ℓ = ℓ(C) =

C1x1 + · · · + Cnxn ∈ A1 be any linear form in A. Then for C = (C1, . . . ,Cn) ∈ Rn

Hessi(F,E)|C = Mi
ℓ(C)(E).

In particular, the signature of Hessi(F,E)|C is independent of our choice of basis E.

Proof. The key observation here is the following formula: for any homogeneous form G ∈

Q of any degree a, and any linear form ℓ = C1x1 + · · · + Cnxn ∈ R1 as above, we have

ℓa ◦G = a! ·G(C1, . . . ,Cn).

To see this, note first that it holds for G = X
e1

1
· · ·X

en
n a monomial:

ℓa ◦G =
a!

e1! · · · en!
C

e1

1
x

e1

1
· · ·Cen

n xen

n ◦ X
e1

1
· · ·Xen

n = a!G(C1, . . . ,Cn),
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and then it must hold for all homogeneous G by linearity of the R-action on Q. Since the

orientation on A satisfies ∫

A

α = (α ◦ F) (0), ∀ α ∈ A,

the ( j, k)-entry of Mi
ℓ(C)

(E) is

mi
j,k =

∫

A

ei
kℓ

d−2iei
j =

(

ℓd−2iei
ke

i
j ◦ F

)

(0) = ℓd−2i ◦
(

ei
je

i
k ◦ F

)

=

(

ei
je

i
k ◦ F

) ∣
∣
∣
C
,

which is the ( j, k)-entry of Hessi(F)|C as claimed by the first assertion. The second assertion

follows from the first. �

Theorem 3.1 gives a criterion on the Macaulay dual generator for the associated AG

algebra A = R/Ann(F) to have HRP, via Lemma 2.4. We state this as a corollary below.

Incidentally Theorem 3.1 also shows that the signature (and the determinant) of the ith

Hessian matrix of a homogeneous form F = F(X1, . . . , Xn) is invariant under the action of

GL(n,R).

Corollary 3.2. Given an oriented graded AG algebra A = R[x1, . . . , xn]/Ann(F), a lin-

ear form ℓ = ℓ(C) = C1x1 + · · · + Cnxn ∈ A1 is HR for A in degree i if and only if

det(Hess j(F)|C) , 0 and

sgn
(

Hess j(F)|C
)

= sgn
(

Hess j−1(F)|C
)

+ (−1) j (dimR(Ai) − dimR(Ai−1))

for all j ≤ i.

In particular, ℓ ∈ A1 satisfies HRR in degree 1 if and only if F(C) > 0, det (Hess1(F)|C) ,

0, and sgn (Hess1(F)|C) = 1 − (n − 1) = 2 − n.

4. Lorentzian and Stable Polynomials

Let Q = R[X1, . . . , Xn] be the standard graded polynomial ring in n-variables with real

coefficients, let Qd ⊂ Q be the degree d graded piece, i.e. the set of homogeneous polyno-

mials of degree d, and let Pd ⊂ Qd denote the subset of homogeneous polynomials whose

coefficients are positive.

The following definitions are taken directly from [2, Defintion 2.1].

Definition 4.1. Define the set of strictly Lorentzian polynomials
◦

Ld ⊂ Pd inductively as

follows:
◦

L0 = P0,
◦

L1 = P1, and
◦

L2 =
{

F ∈ P2 | sgn (Hess1(F)) = 0
}

.

Then for d > 2 define
◦

Ld =

{

F ∈ Pd | xi ◦ F ∈
◦

Ld−1

}

.

Definition 4.2. The set of stable polynomials S d ⊂ Qd consists of homogeneous poly-

nomials F with non-negative coefficients satisfying the following condition: For some

U = (U1, . . . ,Un) ∈ Rn
≥0

, F(U) > 0 and for every V = (V1, . . . ,Vn) ∈ Rn, the univari-

ate polynomial F(tU −V) ∈ R[t] has only real roots. We shall use the term positively stable

for the set of stable polynomials with positive coefficients, and denote this set by S d ∩ Pd.
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Definition 4.3. A subset J ⊂ Nn is called M-convex if it satisfies the following exchange

property: For each α, β ∈ J and each index i satisfying αi > βi, there exists an index

j satisfying α j < β j and α − ei + e j ∈ J, where ei ∈ N
n is the ith standard basis vec-

tor. A homogeneous polynomial F =
∑

α∈Nn cαX
α ∈ Qd is called M-convex if its support

supp(F) = {α | cα , 0} ⊂ Nn is M-convex.

According to [2], every stable polynomial is M-convex, i.e. S d ⊂ Md.

Definition 4.4. Define the set of Lorentzian polynomials Ld ⊂ Qd inductively as follows:

Set L1 = S 1, L2 = S 2, and for d > 2 define

Ld = {F ∈ Md | xi ◦ F ∈ Ld−1, ∀ 1 ≤ i ≤ n} .

According to [2, Theorm 2.25], the set of Lorentzian polynomials is the closure of the

set of strictly Lorentzian polynomials in the Euclidean topology on Qd. Define the normal-

ization operator N : Q→ Q as the R-linear map acting on monomials by

N(Xa1

1
· · ·Xan

n ) =
X

a1

1
· · ·X

an
n

a1! · · · an!
.

Fact 4.5. The following important facts were established in [2] and [5].

(1) [2, Proposition 2.2] Every stable polynomial is Lorentzian, i.e. S d ⊂ Ld.

(2) [2, Corollary 3.7] If F is Lorentzian, then N(F) is Lorentzian.

(3) [2, Proposition 2.16] If F is strictly Lorentzian, then for any C = (C1, . . . ,Cn) ∈

R
n
>0

, det(Hess1(F)|C) , 0 and sgn (Hess1(F)|a) = 2 − n.

(4) [5, Theorem 3.8] If F is Lorentzian, then for any C = (C1, . . . ,Cn) ∈ Rn
>0

, the pair

(AF , ℓ(C)) satisfies HRR in degree one.

In n = 2 variables, one can derive the following simpler, i.e. non-recursive, characteri-

zations of Lorentzian and stable polynomials; see [2, Example 2.3, 2.26]:

Fact 4.6. Let F = F(X, Y) =
∑d

i=0 ciX
d−iY i ∈ R[X, Y] be a homogeneous polynomial of

degree d in n = 2 variables. Then

(1) F is strictly Lorentzian if and only if its coefficient sequence is strictly positive and

strictly ultra log concave, i.e. ci > 0 for all i and




ci
(

d

i

)





2

>





ci−1
(

d

i−1

)









ci+1
(

d

i+1

)




, ∀1 ≤ i ≤ d − 1.

(2) F is Lorentzian if and only if its coefficient sequence is non-negative, ultra log

concave, and has no internal zeros, i.e. ci ≥ 0 for all i,




ci
(

d

i

)





2

≥





ci−1
(

d

i−1

)









ci+1
(

d

i+1

)




, ∀1 ≤ i ≤ d − 1,

and

cick > 0⇒ c j > 0 ∀0 ≤ i < j < k ≤ d.

(3) F is (resp. positively) stable if and only if the coefficients are (resp. positive) non-

negative and the univariate polynomial F(1, t) has only real roots.



LORENTZIAN POLYNOMIALS, HIGHER HESSIANS, AND THE HRP 9

Remarks 4.7. (1) It is not true that every positively stable polynomial is strictly Lorentzian.

For example the quadratic polynomial

F = X2
+ 2XY + Y2

is positively stable and Lorentzian, but not strictly Lorentzian. In [2], the term

“strictly stable” is used to mean the interior of S d, and perhaps deserves the notation
◦

S d. In fact in their proof of Fact 4.5(1) they actually show that every strictly stable

polynomial is also strictly Lorentzian, i.e.
◦

S d ⊂
◦

Ld.

(2) In two variables, Fact 4.5(1) taken together with Fact 4.6(1) is a classical result that

goes back to Newton and Maclaurin; see [7] or [6].

(3) Evidently the containment in Fact 4.5(1) is strict, even in two variables. In fact,

according to [2, Example 2.3], the polynomial

Fθ(X, Y) = X3
+ 18X2Y + 12XY2

+ θY3

is Lorentzian for 0 ≤ θ ≤ 9, but is only stable for 0 ≤ θ ≤ 8.

(4) The condition for ultra log concavity is equivalent to

c2
i ≥ ci−1ci+1

(

1 +
1

d − i

) (

1 +
1

i

)

, ∀1 ≤ i ≤ d − 1.

In particular, ultra log concavity implies the usual log concavity condition.

(5) As we shall see, the hypothesis F Lorentzian or even strictly Lorentzian, as in

Fact 4.5(3) and (4), is not sufficient to conclude that AF satisfies HRR in degrees

i > 1; cf. Example 5.9.

(6) In two variables, the stable version of Fact 4.5(2) is a well known fact that Brenti [3,

Theorem 2.4.1] attributes to Pólya and Szegö.

5. HRR in Codimension Two

Our first task is to prove Theorem A. First some notation.

Let A be a graded oriented AG algebra of codimension two and socle degree d, and let

F ∈ R[X, Y] be its Macaulay dual generator, so that A = R[x, y]/Ann(F) with orientation
∫

A

α = (α ◦ F) (0), α ∈ A.

To an element ℓ ∈ A1, we associate to the quotient algebra

T = Tℓ =
A

(0 :A ℓ)

which is also a graded oriented AG algebra of socle degree d − 1; see e. g. [9, Lemma 4].

There is a natural surjection π : A → T for which the Thom class is τ = ℓ, meaning the

orientation for T is defined by the equations
∫

A

ℓ · α =

∫

T

π(α), ∀α ∈ A. (5.1)

If F1 = F1(X, Y) is the Macaulay dual generator of T , then it satisfies F1 = ℓ ◦ F.
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Lemma 5.1. If the pair (A, ℓ) satisfies HRR in degree i, then the pair (T, π(ℓ)) also satisfies

HRR in degree i.

Proof. First note that for each 0 ≤ i ≤
⌊

d−1
2

⌋

, we have an inclusion

Pi,π(ℓ)(T ) ⊂ π
(

Pi,ℓ(A)
)

.

Indeed, suppose that β ∈ Pi,π(ℓ)(T ), and fix α ∈ π−1(β). Then π(ℓd−1−2i+1α) = 0 = π(ℓd−2iα),

and hence for any α′ ∈ A, we must have
∫

A

ℓd−2i+1α · α′ =

∫

T

π(ℓd−2iα · α′) = 0

which implies that ℓd−2i+1α = 0, and hence that α ∈ Pi,ℓ.

Next, fix β ∈ Pi,π(ℓ) and α ∈ Pi,ℓ ∩ π
−1(β). Then we evidently have

(−1)i

∫

A

ℓd−2iα2
= (−1)i

∫

T

π(ℓd−1−2iα2) = (−1)i

∫

T

π(ℓ)d−1−2iβ2 > 0

and the result follows. �

If F = F(X, Y) =
∑d

i=0 ciX
d−iY i is the Macaulay dual generator for A, then we have

∫

A

xd−iyi
= xd−iyi ◦ F = (d − i)!i! · ci = d! ·





ci
(

d

i

)




. (5.2)

The following lemma is based on an idea of Adiprisito-Huh-Katz [1, Proposition 9.8].

Lemma 5.2. Assume y ∈ A1 is a linear form satisfying HRR in degree one. Then there

exists another linearly independent linear form x ∈ A1 for which the sequence (b0, . . . , bd)

is positive and strictly log concave, where

bi ≔

∫

A

xd−iyi, 0 ≤ i ≤ d.

Proof. First, since y ∈ A1 is HRR in degree 1, it must satisfy
∫

A
yd > 0. Then for any

linearly independent linear form z ∈ A1, define the form x = x(ε, z) = y + εz. Then it is

clear that for ε , 0, x is also linearly independent from y, and also
∫

A

xd−iyi
=

∫

A

yd
+ ε · (other terms).

It follows that if we choose ε sufficiently small, we get bi =

∫

A
xd−iyi > 0. Moreover by

the openness of the HR condition, we may even choose ε so small so as to guarantee that

x satisfies HRR for A in degree one. In fact, we can even choose ε so that π j(x) ∈ T j
=

A/(0 :A y j) satisfies HRR in degree one for every 0 ≤ j ≤ d. For such a choice of x and y,

set bi ≔

∫

A
xd−iyi. Then bi > 0 and it remains to see that this sequence (b0, . . . , bd) is strictly

log concave. We will show this by induction on d ≥ 1, the base case being trivial.

For the inductive step, assume it holds for d − 1; in other words, assume that for any

graded oriented AG algebra A′ of socle degree d − 1, and for any linear forms x′, y′ ∈ A′1
where y′ is HR in degree one for A′ and x′ is HR in degree one for A′/(0 :A′ (y′) j) for every

0 ≤ j ≤ d − 1, satisfying b′i =
∫

A′
(x′)d−i(y′)i > 0, then the sequence (b′0, . . . , b

′
d−1

) is strictly
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log concave. Then with A, x, y, and bi =

∫

A
xd−iyi as above, we will show that (b0, . . . , bd)

is strictly log concave. Let T = A/(0 :A y) with π : A → T the natural surjection. By

Lemma 5.1, (T, π(y)) also satisfies HRR in degree 1. By (5.1) we deduce

b′i =

∫

T

π(x)d−1−iπ(y)i
=

∫

A

xd−1−iyi+1
= bi+1 > 0.

Hence our induction hypothesis implies that the sequence (b′
0
, . . . , b′

d−1
) = (b1, . . . , bd) is

strictly log concave. Hence to complete the induction we need only show

b2
1 > b0b2, or

(∫

A

xd−1y

)2

>

(∫

A

xd

)

·

(∫

A

xd−2y2

)

.

By Lemma 2.2, we have A1 = 〈x〉 ⊕ P1,x, and therefore we must have y = ax+ bα for some

a, b ∈ R and α ∈ P1,x; moreover since y is linearly independent from x we can deduce that

b , 0. Then we have

b1 =

∫

A

xd−1y =

∫

A

xd−1 (ax + bα) = a

∫

A

xd
(

since xd−1α = 0
)

b0 =

∫

A

xd

b2 =

∫

A

xd−2y2
=

∫

A

xd−2(ax + bα)2
= a2

∫

A

xd
+ b2

∫

A

xd−2α2

(

since 2ab

∫

A

xd−1α = 0

)

Since
∫

A
xd−2α2 < 0 because x is HRR on A, and b2 > 0, it follows immediately that

b2
1
> b0b2, and hence the sequence (b0, b1, . . . , bd) is strictly log concave. �

We are now in a position to prove Theorem A.

Theorem 5.3 (Theorem A). Let F = F(X, Y) be a real homogeneous bivariate polynomial

of degree d ≥ 2 and let A = A = R[x, y]/Ann(F) be its associated AG algebra. If A satisfies

HRR in degree one, then there exists a linear change of coordinates T : R2 → R2 such that

the polynomial G(X, Y) = F(T (X, Y)) is strictly Lorentzian.

Proof. Assume A satisfies HRR in degree one. Then according to Lemma 5.2 we can

choose linear forms ℓ1, ℓ2 ∈ A1 for which the sequence bi =

∫

A
ℓd−i

1
ℓi

2
, 0 ≤ i ≤ d is positive

and strictly log concave. Let L1, L2 ∈ Q1 be their Macaulay dual linear forms, meaning that

ℓi ◦ L j = δi, j the Kronecker delta, and suppose X = aL1 + bL2 and Y = cL1 + bL2. Then

define T (X, Y) = (aX+bY, cX+dY), and G(X, Y) = F(T (X, Y)) so that G(L1, L2) = F(X, Y).

Then if G has coefficient sequence (c0, . . . , cd), we must have bi =

∫

A
ℓd−i

1
ℓi

2
= d!ci/

(
d

i

)

by

(5.2). Since the sequence (b0, . . . , bd) is positive and strictly log concave, it follows that the

sequence (c0, . . . , cd) is positive and strictly ultra log concave, and hence G is Lorentzian

by Fact 4.6 (1). �

Before proving Theorem C, we recall the notion of a Schur polynomial. A partition

λ = (λ0, . . . , λr) is a weakly decreasing sequence of non-negative integers; if λr , 0 we

call it the length of λ and write ℓ(λ) = r. Given any partition λ with ℓ(λ) ≤ n, define a

semi-standard Young tableau SSYT(λ) as any filling of the Young diagram of λ with the

numbers {1, . . . , n} in which the rows are weakly increasing and the columns are strictly
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increasing (repeats allowed). For T ∈ SSYT(λ), let mi denote the number of i’s in T and

define the monomial xT
=

∏n
i=1 x

mi

i
. The Schur polynomial associated to λ is the sum of all

the monomials xT , i.e.

sλ = sλ(x1, . . . , xn) =
∑

T∈SSYT(λ)

xT .

Recall that the normalization is an R-linear operator N : R2 → R2 defined on monomials

by

N(XaYb) =
Xa

a!

Yb

b!
.

Note that in n = 2 variables, every graded AG algebra A = R[x, y]/I has Hilbert function

of the form

H(A) = (1, 2, 3, . . . , r − 1, rs, r − 1, . . . , 3, 2, 1)

for some 1 ≤ r ≤
⌊

d
2

⌋

and 1 ≤ s ≤ d. Define r = r(A) to be the plateau degree of A; it is the

smallest degree of a minimal generator of I.

Theorem 5.4 (Theorem C). Let F = F(X, Y) =
∑d

i=0 ciX
d−iY i be a real homogeneous poly-

nomial of degree d ≥ 2 in n = 2 variables with cd , 0, let AN(F) be the AG algebra

generated by the normalization of F, and let r be the plateau degree of A. Let f (t) = F(1, t)

be the real univariate polynomial of degree d with possibly complex roots α1, . . . , αd, and

let α = (α1, . . . , αd) ∈ Cd be the vector with those entries. Then for each 0 ≤ i ≤ r, the

determinant of the ith Hessian of N(F), evaluated at X = 0 and Y = 1, is given by

det
(

Hessi(N(F))|(0,1)

)

= (−1)⌊
i+1
2 ⌋ · Ki · sλ(i)(α) (5.3)

where 0 , Ki ∈ R, sgn(Ki) = sgn(ci+1
d

), and sλ(i)(α) is the Schur polynomial for the rectan-

gular partition λ(i) = (i + 1)i evaluated at α.

Proof. Fix 0 ≤ i ≤ r, and choose a symmetric basis E for A = AN(F) so that in degree i,

Ei is the natural monomial basis
{

ei
j
= xi− jy j

}

0≤ j≤i
. Then the ( j, k) entry for the ith Hessian

matrix for N(F) with respect to E evaluated at X = 0 and Y = 1 is

∂2i

∂x2i− j−k∂y j+k
N(F)

∣
∣
∣
(0,1)
=

(2i − j − k)! · (d − 2i + j + k) · · · (d − 2i + 1) · cd−2i+ j+k

(2i − j − k)!(d − 2i + j + k)!
=

cd−2i+ j+k

(d − 2i)!
.

Then setting α = (α1, . . . , αd) ∈ Cd to be the vector whose entries are the negative roots

of f (t), we have ci = cd · ed−i(α), where ei(x) is the ith elementary symmetric function in

d-variables x = (x1, . . . , xd). Hence the ith Hessian matrix takes the form

Hessi(F)|(0,1) =

(

cd

(d − 2i)!
· e2i− j−k(α)

)

0≤ j,k≤i

.

Taking the determinant then yields

det
(

Hessi(F)|(0,1)

)

=

(

cd

(d − 2i)!

)i+1

︸          ︷︷          ︸

Ki

· det
(

e2i− j−k(α)
)

0≤ j,k≤i
. (5.4)
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On the other hand, the (dual) Jacobi-Trudi identity for Schur functions, see e.g. [8, Corol-

lary 7.16.2], states that for any partition λ of length ℓ(λ) ≤ d with conjugate partition λ′

that the Schur polynomial satisfies

sλ(x) = det
(

eλ′
j
− j+k(x)

)

0≤ j,k≤ℓ(λ′)
.

Taking λ = λ(i) = (i + 1, . . . , i + 1)
︸              ︷︷              ︸

i

, then λ(i)′ = (i, . . . , i)
︸   ︷︷   ︸

i+1

, and we get

sλ(i)(x) = det

((

ei− j+k(x)
)

0≤ j,k≤i

)

. (5.5)

Then it is clear that the matrix in Equation (5.4) is obtained from the matrix in Equation

(5.5) by exchanging column k with column i − k for all 0 ≤ k ≤ i, resulting in
⌊

i+1
2

⌋

column

exchanges, and evaluating at α. Therefore we see that

det
(

Hessi(F)|(0,1)

)

= Ki · (−1)⌊
i+1
2 ⌋ · sλ(i)(α).

Note that we may replace the negative roots with the actual roots because the Schur poly-

nomial sλ(i) is a homogeneous polynomial of even degree, and hence sλ(i)(−α) = sλ(i)(α),

and the result follows. �

We derive the following useful corollary from Theorem 5.4.

Corollary 5.5. Let F = F(X, Y) =
∑d

i=0 ciX
d−iY i be a homogeneous polynomial of degree d

in n = 2 variables with cd , 0, and AN(F) the AG algebra generated by the normalization of

F, and let r be the plateau degree of A. Let f (t) = F̂(1, t) be the real univariate polynomial

of degree d with roots α1, . . . , αd, and let α = (α1, . . . , αd) ∈ Cd. Then (A, ℓ = y) satisfies

HRR in degree i if and only if F(0, 1) = cd > 0 and sλ( j)(α) > 0 for each 1 ≤ j ≤ i. In

particular, (A, ℓ = y) has the HRP if and only if F(0, 1) = cd > 0 and sλ(i)(α) > 0 for all

1 ≤ i ≤ r.

Proof. This follows directly from Equation (5.3) and Lemma 2.5. �

We are now in a position to prove Theorem B.

Theorem 5.6 (Theorem B). Let F = F(X, Y) be a homogeneous polynomial of degree d in

n = 2 variables with cd , 0 and let AN(F) be the AG algebra generated by its normalization.

(1) If the univariate polynomial f (t) = F(1, t) (with possibly zero or negative coeffi-

cients) has only real roots with at least one non-zero, then (AN(F), y) satisfies HRR

in degree one.

(2) If F is strictly Lorentzian, then (AN(F), y) satisfies HRR in degree two.

(3) If F is stable, then (AN(F), y) has the HRP.

Proof. To prove (1), we note that for i = 1, λ(1) = , and

sλ(1)(x) =
∑

1≤i, j≤d

xix j =
1

2
(x2

1 + · · · + x2
d) +

1

2
(x1 + · · · + xd)2

which is positive definite on Rd. It follows that if f (t) has only real roots, say α =

(α1, . . . , αd), then sλ(1)(α) > 0, hence by Corollary 5.5, AN(F) satisfies HRR in degree one.
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To prove (2), assume that F is strictly Lorentzian. Then by Fact 4.6(1) its coefficient

sequence (c0, . . . , cd) is positive and strictly ultra log-concave, and hence so is the sequence

(e0, . . . , ed) where ed−i = ci/cd. It follows that the determinants

sλ(1)(α) = det

(

e1 e2

e0 e1

)

= e2
1 − e0e2

sλ(2)(α) = det





e2 e3 e4

e1 e2 e3

e0 e1 e2




= e2(e2

2 − e1e3) − e3(e1e2 − e0e3) + e4(e2
1 − e0e2)

are both positive and since F(0, 1) = cd > 0 it follows from Corollary 5.5 that (AN(F), y)

satisfies HRR in degree two.

To prove (3), note first that if F is positively stable then f (t) = F(1, t) has only real

negative roots, say −α1, . . . ,−αd, by Fact 4.6(1). Let α = (α1, . . . , αd) ∈ Rd
>0

, then it

follows that sλ(i)(α) > 0 for each 0 ≤ i ≤ r(AN(F)) because Schur functions are sums of

monomials with positive coefficients. Moreover since sλ(i) is homogeneous of even degree,

it follows that sλ(i)(−α) > 0 too. Therefore it follows from Corollary 5.5 that (AN(F), y) has

the HRP. If F is only stable, then some of the (negative) roots α1, . . . , αd may be zero; we

can label the roots so that α1 = · = αk = 0 and αk+1, . . . , αd are non-zero (positive). In

this case, F (and hence also N(F)) has the form F = Yk · G where G is not a multiple of

Y . It follows that r = r(AN(F)), the plateau degree of AN(F), is at most the degree of G, i.e.

r ≤ d − k. It follows that for each 1 ≤ i ≤ r, there is at least one semi-standard Young

tableau on λ(i) with entries consisting only of the d−k indices {k+1, . . . , d}. It follows that

sλ(i)(α) > 0 and hence by Corollary 5.5, (AN(F), y) satisfies HRP. �

Remark 5.7. There is a connection to the theory of Polya frequency (PF) sequences, stud-

ied by Brenti [3] and others. A sequence of real numbers (a0, . . . , ad) is called a PF sequence

if the Toeplitz matrix M =
(

a j−i

)

0≤i, j≤d
has all its minors non-negative (we count ak = 0 if

k < 0). Then according to Brenti [3, Theorem 2.2.4], the sequence (a0, . . . , ad) is PF if and

only if the polynomial A(t) =
∑d

i=0 ait
i has non-negative coefficients and only real roots.

This together with Corollary 5.5 provides another proof of Theorem 5.6 (3).

Extrapolating from Fact 4.5(4) and Theorem 5.6, we formulate the following conjecture:

Conjecture 5.8. If F is Lorentzian, then (ANi−1(F), y) satisfies HRR in degree i.

The following example shows that f (t) = F(1, t) having real roots is not sufficient for

AN(F) to have HRR in degree two.

Example 5.9. Let f (t) = t4 − t2 so that F = Y4 − X2Y2 and hence N(F) = 1
24

Y4 − 1
4
X2Y2

=

1
24

(Y4 − 6X2Y2). Then we have

det
(

Hess1(N(F))|(0,1))
)

= det
1

24

(

−12 0

0 12

)

= −
1

4
< 0,
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and it follows that ℓ = y is HR in degree one for A. However upon computing the second

Hessian, we see that A cannot have any linear forms satisfying HRR in degree two:

det (Hess2(N(F))) = det
1

24





0 0 −24

0 −24 0

−24 0 0




= 1 > 0.

Note however that ℓ = y is SL for A. Also note that Theorem 5.3 implies that N(F) is

GL(2,R) equivalent to a Lorentzian polynomial G. Therefore this example also shows that

G Lorentzian is insufficient to conclude that AG satisfies HRR in degree two.
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