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Phase Modulated Continuous Wave (PMCW) radar an emerging technology for au-

tonomous cars. It is more flexible than the current frequency modulated systems, offering

better detection resolution, interference mitigation, and future development opportunities.

The issue preventing PMCW adoption is the need for high sample-rate analog to digital

converters (ADCs). Due to device limits, a large increase in cost and power consumption

occurs for every added resolution bit for a given sampling rate. This thesis explores radar

detection techniques for few-bit and 1-bit ADC measurements. 1-bit quantization typically

results in poor amplitude estimation, which can limit detections if the target signals are

weak. Time Varying quantization Thresholds (TVTs) are a way to preserve that amplitude

information.

An existing few-bit Fast Iterative Shrinkage Thresholding Algorithm (FISTA) was

adapted to use 1-bit TVT quantization. Three test scenarios compared the original FISTA

using 1 and 2-bit quantization to the TVT approach. Tests included widely spaced targets,

adjacent targets, and high dynamic range targets. Performance metrics included normalized

mean squared error (NMSE) of target amplitude estimation and Receiver operating char-

acteristic (ROC) curves for detection accuracy. Results showed the TVT implementation

operated over the widest range of SNR values, had the lowest amplitude estimate NMSE at

high SNR, and comparable NMSE with 2-bit FISTA at low SNR. There was an 84−93%

reduction in NMSE compared to 1-bit FISTA without TVTs. Few-bit FISTA had the best

detection rates at specific SNR values, but was more sensitive to noise. AUC values averaged

across the full SNR range for TVT FISTA were the most robust, measuring 13−46% higher

than 1-bit FISTA and 48−74% higher than 2-bit FISTA.
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CHAPTER 1

Introduction

Advanced driver assistance systems (ADAS) are a collection of sensors and computing

power designed to enable autonomous driving. Automotive radar is one of the essential parts

of these systems, valued for performance even in adverse conditions such as rain, fog, snow,

and at night [1]. It can inherently gather information about the relative speed, direction, and

distance of nearby objects. It can be designed for both long and short range applications. In

an advanced setup, more than one radar module will be mounted to a car, each pointing in

different directions to create a full coverage of the environment. These are the reasons why

radar is commonly included in an ADAS design.

Demands on ADAS are great due to the number of environments cars operate in. Com-

plex areas with dense traffic, pedestrians, and cyclists must be interpreted accurately and

quickly . Many unique cases also occur and have to be accounted for. Situations such as

road debris, driving in tunnels, and on roads with poorly defined boundaries each have

unique challenges. One noteworthy example from 2020 is a crash that occurred in Taiwan

[2]. A Tesla Model 3 failed to detect an overturned truck on the highway, leading to the

car driving directly into the truck at highway speeds. This happened despite clear, sunny

weather and otherwise good road conditions. Accidents like this raise concerns about the

safety of autonomous cars. Those concerns grow as more cars become equipped with ADAS
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sensors, which increases signal interference on the road [3]. These challenges have pushed

ADAS radar designs to use higher capability, more efficient, and smaller package designs

[4]. This has pushed development towards phase modulated radars because they offer tighter

integration and other opportunities for growth in ADAS.

The chapter below provides the background necessary to understand the demands of

ADAS and the fundamentals of radar.

1.1 Vehicle Automation

Modern cars are evolving to use more technology aimed at driver comfort, convenience,

and safety. The ultimate realization of this goal is the fully autonomous car, that can

take a passenger from start to destination with no human input. This would allow people

to travel regardless of age, disability, or impairment such as fatigue. Autonomous cars

also promote the safety of others, with collision avoidance and pedestrian detection as

fundamental requirements. Within the industry this has resulted in an increasing amount

of ADAS sensors embedded in each car. This section will discuss the sensors used in an

autonomous car and the different levels of autonomy that can be achieved.

1.1.1 Levels of Automation

The abilities of ADAS are categorized into five levels of autonomy, defined by the society of

automotive engineers (SAE). [5]. Each level ascending from L0 to L5 increases the amount

of control that the car is capable of while operating autonomously. At L0 the driver is solely

responsible for controlling the vehicle with no assistance. L1 is considered to be assistance

only, introducing basic abilities such as radar cruise control. These are simple systems that

only try to maintain a safe distance to a car directly ahead, in the same lane as the controlled

vehicle. They can also have the ability to do some braking. L2 automation is the first stage

to be considered automation, with lane keeping and other steering controls forming a basic
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ADAS system. There is no capacity for planning at this stage, so the driver has to make

decisions about things like passing a slow vehicle.

Figure 1.1: Levels of automation as defined by SAE International.

L3 is the first level with true automation. The system is expected to know its limitations

and monitor for failures, but otherwise it is capable of fully independent operation. The

driver in this case has to be able to take control when the system identifies that it is outside

of its design constraints. L4 introduces the ability to reach a minimal risk condition if the

system fails, so the driver is no longer expected to provide any input or supervision. Alerts

can still be issued that the driver should take over, but the car can still find safety if the driver

does not respond. This level does not require the ability to handle all environments, so an

example system might only handle highway operation with the driver taking over once it

is time to exit the highway. Finally, L5 represents complete autonomy, with the ability to

handle a full trip with the destination as the only input. The system will find a safe condition

for extreme events such as a blizzard or flood where it cannot continue.



4

Hardware and software performance demand is high regardless of which level a vehicle

is operating at. Hazardous events must go from detection to action as quickly as possible,

with the safest outcome always chosen. Each level has to be clear about how well the car

can make these decisions so the driver knows when to take over. From the perspective of

ADAS, this becomes a balance between detection speed and detection accuracy. Failure to

strike that balance can cause a false detection or a missed detection. Both can be equally

dangerous.

1.1.2 Sensor Types

Autonomous cars need to be able to interpret their surroundings in order to work. There

are three main sensors used for this purpose: light detection and ranging (Lidar), cameras,

and radio detection and ranging (Radar) [3][6]. Each has unique strengths and weaknesses

that determine how they are used in ADAS. This section will explore the properties of these

three sensors and how they contribute to autonomous driving.

First is Lidar, which provides very detailed distance measurements. It works by sending

out laser pulses, then tracking the time-of-flight for each pulse to reflect off an object before

returning [3][7]. Because it is a round trip journey, each measurement is twice the distance

between the Lidar and the nearby object. The collected measurements are called a point

cloud, which can be thought of as a list of every direction the light was aimed, and the

corresponding delay at that angle. The scanning area depends on the design of the Lidar

module, with one, two, and three dimensional options. The requirements for Lidar in

ADAS includes at least 100 m of range, the ability to distinguish objects closer than 25

cm apart, and at least 25 frames per second (fps) update rate [8]. There is a large number

of manufacturers producing Lidar modules that meet these specifications [7]. The range

and resolution capabilities of Lidar mean that it is effective for tasks such as lane changes,

adaptive cruise control, parking, and collision warnings.

There are a few drawbacks to Lidar that must be considered [7][9]. First, the preci-
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sion of using a laser-based system makes proper calibration a challenge. Imperfections

during manufacturing and installation, or damage accumulated over time can disrupt the

accuracy of measurements. Next there are environmental challenges. Interference from

other autonomous cars occurs anytime signals from one Lidar module interfere with the

measurements of another. This is addressed by using unique transmit patterns from vehicle

to vehicle. Lidar is also weak in poor weather because the signals reflect off of heavy rain,

snow, or fog. These reflections stand out when compared to neighboring point cloud values,

allowing for identification and filtering through software.

There are challenges in data processing as well. A 3D Lidar with high resolution creates

a large amount of data that has to be processed, in the Gbps range. Interpreting and acting on

that volume of data is difficult. Solutions focus on compressing the data before processing.

Once the data size is reduced enough for processing, the final task is identifying what

has been measured. Ground segmentation is the process of identifying the area in the

point-cloud associated with road surfaces. Isolating this area makes it easier to focus on

lane-keeping, and to identify non-ground objects nearby. The relative position of the car with

its surroundings has to be tracked as well, using Simultaneous Localization and Mapping

(SLAM). The difficulty here lies in identifying which groups of distance measurements can

be combined into one object. Overall the weaknesses of Lidar are either being addressed

directly, or by combining data with other sensors which will be discussed in the sensor

fusion section [7][10].

Cameras are the next major sensor common to ADAS. They collect information by

storing light color and intensity measurements in a grid of values, called a frame [11]. A

video is made up of a series of frames, while a picture is just one frame. Each grid location

within the frame is called a pixel. For black and white data each pixel is a single value

representing brightness. For color, three values are stored that represent the relative amount

of red, green, and blue (RGB) detected. The resolution of the camera is defined by the

number of these pixels that can be measured at a time. Camera requirements for ADAS
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include resolutions up to 1920x1080, or 2 Megapixels, while capturing up to 60 fps [12].

Of the three main ADAS sensors, cameras collect the most detailed information. They are

used for object detection and classification, but also have the unique ability to read signs

and identify colors [3]. They are useful in all typical driving operations including pedestrian

detection and emergency steering.

Cameras have a few big challenges. They do not provide their own illumination, so they

only work in areas that are clearly lit and visible [9]. Next, a camera chosen with enough

resolution for ADAS will end up collecting too much data. Computer vision algorithms

have to sort through potentially millions of pixels, each of which could be stored as the

three RGB values. This is a resource intensive process. The images themselves can be

distorted by vibrations while driving. Finally, the data cameras collect only represents a

two-dimensional version of the environment [6]. Detecting the distance between objects

cannot be done using only one camera. There are stereo cameras that combine two camera

sensors a fixed distance apart. This allows the cameras to process the angles between objects

in their frames to calculate distance. Altogether cameras capture the most detail, but also

have the greatest computational load in an ADAS setup.

The last common sensor in ADAS is radar. It works by transmitting a radio frequency

signal in a fixed direction, where it will bounce off of any object close enough to be detected

[1]. Reflected signals return back to the radar receiver where they are processed. This is

the same process as Lidar, with the key difference being the use of radio waves instead

of laser signals. The signals that return to the receiver experience a delay and a Doppler

shift. The delay comes from the time required for the signal to reach the target and return,

providing a distance measurement. The Doppler shift is a change in the signal frequency

that occurs when there is a speed difference between the radar source and the objects being

detected. Vehicles traveling the same speed and direction will observe no frequency shift.

This comes from the Doppler effect, where a signal source moving closer has a shift to a

higher frequency, and moving away shifts the frequency lower. Angle measurements are
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also possible. More detail will be provided in the radar fundamentals section.

Radar used in ADAS can be divided into two categories [3]. There is short-range radar

which uses 24 GHz or 79 GHz signals to detect targets across a wide field of view. The range

is limited to 30 meters, so the priority for detection is nearby vehicles or other obstacles.

Long range radar uses 77 GHz signals. A narrower field of view is required to increase in

range, but targets can be detected as much as 250 meters away [13]. ADAS radar is used for

lane keeping, cruise control, and blind spot detection [9].

The main weakness in radar is a lack of measurement resolution [3]. As of 2019, the

state of the art systems were only capable of 10 cm accuracy [13]. This makes it hard to

detect small targets, but it also means that objects that are close together will be seen as

one entity. Radar is also vulnerable to noise and interference[14]. This can come from

radar modules on other cars, but can also appear in highly reflective environments where

the original signal may bounce between multiple objects before returning. Improving both

detection capability and interference rejection are active research areas for radar.

1.1.3 Sensor Fusion

As the previous section established, each of the three sensors used in ADAS applications has

strengths and weaknesses. While research is always improving their individual performances,

the solution for ADAS systems on the road today is to combine them. Sensor fusion is the

process of taking data from a group of individual sensors to create one unified understanding

of the environment [15]. This approach uses the complementary sensor features to provide

higher ADAS performance. Examples include the combination of Lidar and cameras. Here

the large data size of a camera image can be filtered by referencing Lidar data, which

indicates where objects are likely to be [10]. A similar approach can be taken when

combining cameras with radar [16]. Using both approaches provides even more redundancy,

since Lidar can provide high resolution data in good weather, and radar can provide accurate

data in bad weather.
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Companies that are testing autonomous cars rely on sensor fusion to get the best ADAS

performance. A real world example is Google’s early modified Toyota Prius, that used

two Lidar systems, four radars, and a camera [17]. More recent is Waymo’s autonomous

Fiat-Chrysler Pacifica, which also features four radar modules but increases to three Lidars

and a 360 degree camera [18]. Both of these cars completed hundreds of thousands of miles

driving autonomously. Other autonomous car approaches also use at least two of the three

sensors [6]. This shows that no one sensor is favored for ADAS applications.

1.2 Radar Fundamentals

This section will focus on the core concepts of radar. First is a high level look at the stages a

radar signal goes through from start to finish. Next is a breakdown of how range, speed, and

angle measurements are extracted from the returned signals. Finally, the process of taking a

signal from analog to digital is explored.

1.2.1 Radar System Model

There are many approaches to building a radar module, but all designs incorporate the

following elements in some way. First a signal is created in the transmitter. The choice

of signal has a significant impact on what hardware is required both in the transmitter and

receiver. Next the signal is transmitted, where it will reflect off of nearby objects, or targets.

This is when the useful information about the target distance and speed is formed. The

reflected signal returns to the receiver where it is mixed with a copy of the original signal.

How this is done depends on the signal type, but the goal is to highlight the differences

between the original and reflected signals.

The next stage removes any unnecessary frequencies through filtering to reduce the data

size. The final hardware stage is an analog to digital converter (ADC). As the name suggests,

it turns the analog signal into a binary equivalent output. The accuracy of the signal after
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Figure 1.2: Block diagram of a typical radar system.

conversion is a consideration when choosing an ADC, and will be discussed in the sampling

and quantization section. Finally, the signal is ready to be processed. This stage includes

identifying the distance, speed, and angle information within the signal, tracking targets

as more reflections arrive, and managing interference. The signal-specific details of these

stages will be covered later in the transmit signal approach section.

1.2.2 Radar Performance Metrics

This section will cover how range, velocity, and angle information is measured with radar.

The quality of these measurements is described in terms of coverage, resolution, and scan

time [1]. Coverage describes the span of values that can be measured, and is affected by

signal attenuation, signal structure, and levels of noise and interference. The individual step

size that can be distinguished within the coverage area is called resolution. Resolution is

determined by the signal frequency and the waveform type. Scan time is the rate of data

collection, which depends on the hardware and software design chosen.

Radar measures range by the time elapsed between transmitting and receiving. The radio

waves used in radar travel at the speed of light c, so for a given travel time τ , the range is

R =
cτ

2
(1.1)

This delay can only be measured if there is a distinct feature in the signal to use as a
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timing reference [19]. The range coverage is determined by the maximum unambiguous

delay, which is determined by the type of signal transmitted. The most basic example of this

is a pulsed radar that sends a short burst and then waits for it to return. If two identical pulses

were sent in close succession, there would be no way to know if a reflection came from

the first pulse or the second. Range resolution is based on the bandwidth of the transmitted

signal, and is defined as

∆R =
c

2B
(1.2)

Increasing the signal bandwidth therefore provides better range resolution. Signal

specific range details will be covered while discussing waveform types.

Velocity measurements are taken using the Doppler shift in the received signal [1] [20].

They are based on the carrier frequency and the difference in velocity between the radar

source and target. It is calculated by

∆ f = ∆v
2 fc

c
(1.3)

A target traveling at the same speed and direction as the radar source will appear with

zero Doppler shift. Velocity coverage comes from the max unambiguous velocity, which

depends on the transmit signal type, as does the velocity resolution. Improving velocity

measurements generally requires a longer signal duration though, which increases the scan

time [20].

The last measurement category is the angle of the target relative to the radar module.

Angle measurements require more hardware in the radar system. One approach is mechanical

scanning, where the radar is rotated so that signals are sent in multiple directions. With this

approach a target will appear to be closest when the signal is sent directly at it. Aiming

the signal in different directions like this takes time, so it increases the scan time. A better

option is to use more antennas at the transmitter and receiver. This is referred to as a multiple
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input, multiple output (MIMO). With this approach reflected signals reach the antennas at

different times, which is used to determine the angle it originated [20]. Mathematically, this

is calculated with

θ = sin−1(
λ∆φ

2πl
) (1.4)

Where the signal wavelength is λ , ∆φ is the change in phase due to a difference in travel

time, and l is the distance between the antennas. The angle coverage and resolution both

depend on the radar field of view and are inversely related. Transmitting over a wider area

decreases the resolution.

1.2.3 Sampling and Quantization

Before a signal can be processed digitally it must be converted from a continuous analog

signal into a discrete digital representation. This is done by the ADCs in the receiver

through sampling and quantization [21]. Sampling occurs first. This involves measuring

the amplitude of the signal at the input of the ADC. The frequency that the measurements

can be taken is called the sampling rate or conversion rate. It is represented in Hertz and

is the inverse of the sampling interval, or the time between two samples. Figure 1.3 shows

what the sampling process looks like with a sinusoidal signal. In this example there is an

average of three samples per period of the wave. The sampling interval is small enough

that a wide range of amplitude measurements are captured. A signal cannot be accurately

represented if the sampling rate is too low, because there will be too many changes in signal

level between samples. The standard sample rate for signals of finite bandwidth is twice the

signal frequency, called the Nyquist rate [22].

Once the signal is sampled, it can then be quantized. This involves a set of thresholds

called a partition, and a set of binary output values called a codebook. Each threshold is set

at a voltage level that allows for even spacing across the range of inputs. One codebook value
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Figure 1.3: Sampling a sinusoidal signal with an ADC.

is assigned for each region created by the thresholds. The amplitude of each sample is then

compared to determine which region it belongs to. The result is a stair-step approximation

of the original signal. Figure 1.4 shows an example comparing an original signal to its

quantized output. Note the first two samples, which have nearly the same amplitude but are

assigned different values due to how close they are to a threshold. Similarly, the symmetric

shape of the original signal is distorted because of the sampling rate and the number of

output levels.

Figure 1.4: Quantization by assigning binary values to ADC samples.

When designing an ADC, manufacturers choose how many bits will be available to
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represent the output values. This is called the bit depth or resolution of the ADC [23]. For

n bits there are 2n available values and 2n-1 thresholds. The resolution determines how

well changes in signal amplitude can be measured. Because signals are effectively rounded

to the nearest discrete value, using more bits will reduce the error from quantization [24].

Depending on the application this can have an impact on the power consumption or the

sampling rate.

1.2.4 Radar Digital Representation

After quantization the radar data is now in a discrete digital form. After processing this data

can be thought of as a grid formed by every possible combination of range and Doppler

measurements for a given transmit pattern. The original analog signals are not likely to land

exactly on a grid point, so the grid must be made as fine as possible to reduce the potential

estimation error.

Figure 1.5: Discrete grid based representation of radar data.

Another important note is that most of the grid values will not have targets associated

with them. This is because many of the radar signals will not reflect off of objects close

enough to be detected. The result is a signal comprised mostly of noise, interference, and a
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small number of target reflections. A signal like this with few non-zero entries is considered

to be sparse.

1.2.5 Sparse Signal Processing

The mathematical technique for estimating the non-zero entries is called sparse signal

processing, or compressed sensing. It was first developed in 2005 by Candes, Romberg, and

Tao [25], and was further defined by Donoho in 2006 [26]. The fundamental concept adapts

classic linear regression to favor sparse solutions by adding a penalty term. This penalty

term is typically an L1, L2, or log norm scaled by a sparse regularization coefficient. A

larger regularization term causes the regression to favor the all-zero vector, while a smaller

term gives results closer to the original linear regression output.

1.3 Thesis Organization

The remainder of the thesis is divided into the following sections: First, the problem

statement section will compare two popular ADAS radar signal types to isolate the current

research challenges. Next, the literature review section summarizes existing research

solutions to those challenges, noting their strengths and weaknesses. After that is the

proposed solution section that covers the specific solution explored in this work. All results

generated from that approach are discussed in the results and analysis section. Finally a

conclusion summarizes this work and any open research questions that remain.
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CHAPTER 2

Problem Statement

The goal of this thesis is to examine how the continued growth of ADAS radar can be

met without sacrificing power efficient design. This chapter will begin by examining two

popular transmit signal approaches for ADAS radar. They will then be compared against

the current problems in the industry. The best modulation scheme will then be selected for

further exploration.

2.1 Radar Transmit Signal Approaches

The waveform parameters at the transmitter have a large impact on overall detection capabil-

ity. The signal structure will determine the maximum range, vulnerability to interference,

and the ability to distinguish targets. There are two methods that will be discussed. The

first is frequency modulated continuous wave (FMCW), which is the most common in the

industry today. The other is phase modulated continuous wave (PMCW). It is an approach

that has recently become feasible due to advancements in circuit technology. This section

will discuss their characteristics and necessary considerations for their implementation.
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2.1.1 FMCW Radar

FMCW radar is the current standard in the automotive industry. It works by sending a

continuous series of frequency modulated signals called chirps. Each chirp is a waveform

with linearly increasing or decreasing frequency over a fixed period in time. The signal

produced at the transmitter is defined as

s(t) = e j2π( fc)+0.5αt)t 0≤ t ≤ T (2.1)

Where fc is the carrier frequency and α is the chirp slope [19].

Figure 2.1: A frequency modulated chirp waveform.

After transmission, any reflections from the environment return to the receiver. The

mixing stage combines a delayed copy of the original signal with the received signal. This

process is called dechirping, which preserves only the differences between the two signals

[27]. What remains is called a beat signal, or intermediate frequency, which contains the

data about all target returns with additive noise. The range of beat frequencies is lower than

the chirp frequencies, so the signal then goes through a low pass filter before sampling. This

means that the signal bandwidth entering the ADC is much smaller than the transmitted

waveform, which is one of the main advantages of FMCW radar. Finally, detections are

made using Fast-Fourier Transforms to locate peaks in the beat signal.

The use of the chirp waveform is due to the benefits it offers when processing target data.

The maximum unambiguous range for FMCW is defined as
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Rmax =
cTc

2
(2.2)

Where Tc is the duration of one chirp. The range resolution is defined as

∆R =
c

2B
(2.3)

Where B is the bandwidth of one chirp. These two equations provide insight into why

FMCW is useful in radar. Without the modulation there is a trade-off between signal duration

and bandwidth. Increasing the range decreases the resolution and vice versa. The frequency

sweeping pattern in FMCW allows for both a longer duration signal and a larger bandwidth,

providing both range and resolution benefits. This concept is called pulse compression.

Velocity processing in FMCW compares the phase of two returned chirps. It is calculated by

v =
λ∆φ

4πT∆c
(2.4)

Where ∆φ is the phase difference between the signals, T∆c is the delay between the first

and second chirp, and λ is their wavelength [20]. Velocity resolution is calculated with

∆v =
λ

2Tf
(2.5)

Where Tf is a frame, or collection of chirps. Velocity resolution improves for longer

signal lengths, which gives it an inverse relationship with range resolution.

2.1.2 PMCW Radar

PMCW radar relies on changes in phase instead of frequency when generating the transmit

signal. Sequences of binary values called chips are used to alternate the phase of the transmit

waveform. Mathematically, this appears as
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s(t) = cαcos2π fct (2.6)

Where α is the signal power and c is the chip value, either +1 or -1 to create alternate

phases [1]. When the signal returns to the receiver it is down converted in the mixing stage

before being sampled by the ADC. The key difference here compared to FMCW is that the

signal still has the full transmitted bandwidth, so there is more data to convert at this stage.

This also means the full received signal is available for signal processing. Detections are

made using the auto-correlation of the transmitted and received waveforms.

Figure 2.2: A Binary Chip Sequence.

The use of a chip sequence is the reason PMCW is useful in radar. In addition to

providing the pulse compression aspects of FMCW chirps, they also have the ability to

design for better auto-correlation properties [28]. The ideal sequence would have a large peak

at zero-offset, and values as small as possible otherwise in the side-lobes. Range coverage

in PMCW is based on the overall sequence length, with the maximum unambiguous range

given by

Rmax = c
TcLc

2
(2.7)

Where Tc is the duration of a chip, c is the speed of light, and Lc is the number of chips

in the sequence [1]. The maximum range can also be thought of as the furthest distance
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measured before the chip sequence has to be repeated. The range resolution is based on an

individual chip length

∆R =
cTc

2
(2.8)

Which means that a smaller chip duration will allow for closer range measurements.

Velocity measurements in PMCW are based on the length of the chip sequence. The velocity

coverage has a maximum unambiguous range of

Vmax =
c

4 fcTcLc
(2.9)

Where fc is the carrier frequency. The number of collected sequences N being processed

reduces it to

Vmax =
c

4N fcTcLc
(2.10)

Velocity resolution in PMCW is purely based on the carrier frequency

∆v = ∆ f
c

2 fc
(2.11)

Where ∆ f is the Doppler frequency shift.

2.2 The Future of ADAS Radar

This section will use the information from chapter 1 to decide which modulation scheme is

the best for the future of ADAS radar. The ideal design has to take into account three areas.

First, the solution must have ways to handle the growing problem of radar interference. Next

is the ability to make both capable and efficient designs. Finally, radar is only one element

in the larger ADAS environment, so there needs to be support for future growth towards full

autonomy. Once a design has been selected, the remaining challenges will be identified as
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the core problem to be addressed.

2.2.1 Interference Considerations

Radar interference occurs anytime the signal from one radar disrupts the detection ability

of another. The range of effects from interference can include ghost targets, lines or ridges

in the range-Doppler map, or a general increase in the noise floor at the receiver [29]. It

depends on the type of modulation used, and the parameters within that modulation type. A

worst case example would be two FMCW radars transmitting the same chirp slope, duration,

and carrier frequency or two PMCW radars with the same chip sequence, rate, and frequency.

In these cases there is no way to determine which signal originated from which radar. The

obvious solution is then to use a variety of chirp parameters or chip sequences so that there

is distinction in the signals. This is a common part of the designs for both systems, but

without coordination between vehicles it is still possible for the parameters to synchronize

accidentally.

For PMCW-PMCW interference, it has been shown that slight differences in the wave-

form parameters result in complete disruption in detection ability [30]. The range-Doppler

grid in this case shows interference appearing either as a ridge that dominates an entire

velocity range, or as noise that obscures all range-Doppler measurements. A similar level

of impairment is shown for an FMCW-FMCW case as well [29]. These extreme cases are

unlikely in practice. When comparing unrelated signal parameters for both FMCW-FMCW

and PMCW-PMCW, it was shown that either combination can result in a raised noise floor

level [31]. The only notable difference was that FMCW-FMCW interference resulted in

a ridge-like pattern across the range-Doppler grid while PMCW-PMCW interference had

uniform increase in the noise floor. This gives PMCW a slight detection advantage in the

presence of unmitigated noise.
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2.2.2 Hardware Efficiency

The push to improve detection capabilities in ADAS radar has made energy efficiency a

concern. The current range resolution of 10 cm is still too large to separate close objects or

small obstacles. That resolution corresponds to a signal bandwidth of 1.5 GHz, which is

enough to limit hardware choices. For FMCW the limit is in the transmitter, where the chirp

slope has to remain highly linear to preserve the range resolution [32][33]. PMCW does not

have this linearity requirement.

In PMCW the limit is in the receiver, where the large signal bandwidth requires ADCs

with a high sample rate. The problem here is the relationship between sampling rate

and ADC resolution. Two Figures of Merit (FoM) have been established that link ADC

resolution, sampling rate, and power consumption into one comparable value [34]. First is

the Walden FoM that states that power consumption rises at a rate of 2x per added bit of

depth. This is an older standard that described ADCs that were limited by the efficiency of

their design. It is still relevant for low speed ADC designs. Newer high speed ADCs are

limited by thermal noise instead, and use the Schreier FoM which shows a 4x increase in

power consumption per added bit.

Figure 2.3: Efficiency of ADCs by sampling rate using the Schreier FoM [34].
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ADC data compiled by Boris Murmann in Figure 2.3 shows how sampling rate affects

the Schreier FoM. There is a clear drop in performance starting at a sampling rate of 100

MHz. This is far below the mmWave frequencies used in ADAS radar, which can have

signal bandwidths as large as 4 GHz [4]. A compromise must be made then between the

high sampling rate that is required, and the number of resolution bits that can be added while

maintaining acceptable power consumption. This gives PMCW a clear advantage as long as

it can maintain detection capabilities with fewer ADC resolution bits.

2.2.3 Future Growth

Autonomous cars have a long way to go before they become the standard. A big step on

that journey would be cooperation between individual cars. To do this they would need

a medium to communicate quickly and effectively. Radar modules have the potential to

perform that role because they use the same fundamental equipment other communications

devices. Joint radar-communication systems is an area of research that is trying to integrate

both functionalities in one device.

This is no convenient way to do this with FMCW. The chirp waveforms cannot be

modified to add communication data due to the linearity requirement. Other approaches

have to be used, like isolating segments of bandwidth to dedicate to communication [35].

This means less bandwidth for both applications. The PMCW approach is already very

similar to a communications system. The chip sequence can be used to encode data as long

as the auto-correlation properties are preserved [36]. This is a clear advantage for PMCW.

2.3 Summary

Advantages in both hardware requirements and the potential for future development makes

PMCW the clear choice for ADAS radar. The challenge then is the choice of ADC, where

every added bit of sampling resolution increases power 4x. The problem can be approached
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from both a hardware and software perspective. Existing detection algorithms can be

explored to determine how many bits are required for adequate performance. Similarly,

modifications to algorithms can be explored to determine if they can adapt to lower resolution

ADCs.
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CHAPTER 3

Literature Review

This chapter will review current research to find approaches to the reduced resolution

ADC problem for PMCW radar. Solutions that use lower resolution ADCs will be favored

based on the conclusions from chapter 2.

W. Van Thillo et al. looked at this problem by asking how many ADC bits were required

to perform pedestrian detection [37]. They performed a full system simulation in MATLAB

for a 79 GHz PMCW radar. The model transmitted a signal towards two targets then passed

the return signal through an ADC. From there correlators estimated target range and Fast

Fourier Transform (FFT) blocks estimated the Doppler shift. Their results compared outputs

with no quantization noise, equivalent to an infinite-bit ADC, then with 4, 3, 2, and 1

bit quantization. The 4-bit version offered identical performance to the no quantization

approach. The 3-bit and 2-bit models began to see distortion in the Doppler domain, and

1-bit model did not work at all for their model. The explanation for this was signal spillover

from the transmitter to the receiver due to their close proximity. Overall this paper shows

that 2-4 resolution bits could be enough PMCW radar. This was a proof-of-concept paper

however, so the scope of the results is narrow. Only a single 2-target scenario is presented,

and their results are analyzed through visual inspection of one output. It is not clear then

how successful radar detection software can be using the outputs of this model.

The field of communications is very similar to radar, so low resolution ADC approaches
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need to be considered there as well. A task very similar to radar detection is channel

estimation. The goal of channel estimation is to determine how a signal changes as it travels

from the transmitter to the receiver. To do this, predetermined values called pilot signals

are added to the signal being sent, with a known spacing between each pilot. The receiver

can then analyze an incoming signal against knowledge of the pilot signals to determine

how the channel has affected the data. It is then possible to recover information that may

have changed during transmission. This is analogous to the radar receiver having a known

transmit signal used to classify radar returns.

The work of Jianhua Mo, Philip Schniter, and Robert Heath looks at using one-bit ADCs

to perform channel estimation for mmWave systems [38]. This paper investigates how

few-bit ADCs impact channel estimation capabilities. It takes advantage of group sparsity

to get better estimations. ADC resolutions of 1-4 bits are considered. Their unique insight

was to relate sparsity observed in delay measurements to sparsity in angle measurements to

form groups. This allowed for modifications to the Approximate Message Passing (AMP)

algorithm that did not require prior information about channel sparsity, somthing that had

limited other sparse channel estimation approaches. Two versions of AMP are considered:

Generalized AMP (GAMP) and Vector AMP (VAMP). The novel modified versions use

elements from Expectation Maximization (EM) to estimate a prior on channel distribution,

which normally has to be provided in normal GAMP and VAMP.

The simulations considered the Normalized Mean Squared Error (NMSE) between the

real and estimated channel parameters. In a test comparing ADC bit depth and SNR, the 2,

3, 4, and infinite resolution approaches had identical performace below 10 dB of SNR. For

higher SNR values each added bit showed a small improvement to NMSE before leveling

off, with the infinite resolution example showing a linear improvement as SNR increased.

The 1-bit approach had slightly higher error to begin with, and stopped improving above 5

dB of SNR. This shows that most applications would have no benefit from using more than

2-4 bit ADCs, and could use a 1-bit setup if some error is tolerated. Finally, comparison
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plots were provided showing how the proposed algorithms compared against four existing

algorithms. The modified GAMP performed similarly to the other methods, but the modified

VAMP had much lower error even in the first iterations than any approach. Clearly then the

choice of algorithm has a large impact on performance.

For a closer look at algorithm considerations for few-bit ADCs, the mathematics domain

was explored. Ji Liu and Stephen Wright provided one of the first optimization approaches

specifically for data with low resolution quantization [39]. They use an understanding of

both quantization and saturation errors to develop a constrained optimization problem. First

they show a standard basis pursuit model, minimizing the L1 norm of the sparse vector such

that the L2 least squares error is less than noise both from the channel and quantization. A

modification is proposed where the objective function is now minimizing the least squares

error, with the scaled L1 norm of the signal estimate as a penalty term. A new constraint was

introduced, bounding the infinity norm of the estimation error, the largest estimation error

value, to be less than the quantization noise. This method was named LASSO(infinity).

The Alternating Direction Method of Multipliers (ADMM) algorithm was used to find an

efficient solution. It uses an augmented Lagrangian to maintain separability while creating

a convex approximation. They define constraints in separate u and v terms, representing

quantization and saturation terms respectively. Each iteration alternately solves for these

values and their Lagrange multipliers before finding an updated signal estimate. The

signal update step requires the use of an additional algorithm, and the authors make a

few suggestions including Sparse Reconstruction by Separable Approximation (SpaRSA)

and the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) [40]. Simulations were

performed using a Gaussian random measurement matrix, and a sparse vector with random

entries of random amplitude between 0 and 1. The results compare this novel approach to

four similar algorithms. Each algorithm is evaluated based on the average SNR value across

30 trials for each set of test parameters. Most of the tests use a quantization bit-depth of 3-5,

and in each of these tests the proposed algorithm is competitive, though all five algorithms
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tend to show similar results. Most significantly, the test comparing bit depths from 2-12

shows a linear increase in SNR for every algorithm as more bits are added.

Overall this showed how to form constrained optimization approach when lower ADC

resolutions were used. The need to pass a stage of this algorithm into another algorithm at

every iteration, as well as the calculation and storage of the augmented Lagrangian terms

makes it resource intensive. The linear relationship of performance to bit-depth also means

the promising 2 and 3 bit data from the previous paper would suffer from both the hardware

and software side.

Interestingly, Chao-Yi Wu et al. used FISTA as the main algorithm for few-bit signal

recovery instead of nesting two algorithms together [41]. This paper was specifically trying

to solve the few-bit ADC, PMCW radar problem. The original problem formulation used

unconstrained optimization to define the objective function. A negative log-likelihood

term was developed that determined the probability of the estimated signal vector given

prior knowledge of the measured signal. Specifically, this model uses the standard normal

distribution to find how well the current estimate is explained by the two thresholds that the

known measurement fell between. Uniquely, this paper added a group sparse penalty term

by separating the real and imaginary signal amplitudes to form real valued groups.

The use of FISTA was due to the large data sizes created by the combined range, Doppler,

and angle dimensions. The algorithm was modified to use the group sparse model of the

objective function. Each iteration found separate gradient values for the real and imaginary

parts. The combined magnitude of change for each group was calculated for use in the signal

update step. Here, each real and imaginary index was updated based on the ratio of their

individual change over the combined magnitude of change. Simulations were performed to

detect three targets in close and widely spaced configurations. A measurement matrix was

derived from the selected range, Doppler, and angle parameters. Comparisons were made

between 1 and 2 bit quantized estimates. In the widely spaced case both bit depths were

able to detect the targets accurately, though significant amplitude loss was noted in the 1-bit
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case. When two of the targets were close together the 1-bit version created a false-positive

near the two real targets.

This paper showed that leveraging information about the measurements could result in

successful detections, even with 1 and 2 bit quantization. The loss of amplitude information

is a concern though, with lower SNR making accurate detections more difficult.

Another few-bit PMCW radar specific paper from Chao-Yi Wu et al. looks at a more

sophisticated estimation algorithm [42]. The unique contribution is a detection approach

for cases where the noise variance is unknown. To do this a modified version of Sparse

Learning via Iterative Minimization (SLIM) is used. Outputs from this algorithm are then

fed into the relaxation algorithm RELAX to improve results. They begin by finding the

Cramer-Rao bound for 2 and 3 bit models to evaluate their results against. It is noted that

this bound does not exist for the 1-bit case with unknown noise variance. The SLIM problem

formulation begins with the same negative log-likelihood function used in the previous

paper, with separate terms for the real and imaginary amplitudes. A sparse penalty term

is added using a sub-L1 pseudo-norm. The problem is then solved using a Maximization

Minimization (MM) approach, alternating between updates of the sparse vector estimate

and the unknown noise variance. A closed form solution is provided for the sparse vector,

but the variance is updated by passing information to another algorithm, the interior point

method. Once a solution has been found, the RELAX method uses the estimated noise

variance to iteratively thresholding the sparse vector estimate.

The simulation results compared the algorithm outputs to the Cramer-Rao bound of

the Normalized Root Mean Squared Error (NRMSE). In each test error was reduced when

additional ADC bits were added, but performance was generally similar between the 2 and 3

bit approaches. They were also able to show that the combined SLIM and RELAX approach

performed better than SLIM by itself for all bit-depths. The 3-bit case performed nearly as

the infinite-resolution result. In a final test, detection performance was evaluated when the

dynamic range of the target amplitudes was high. 2-bit and infinite-bit estimations were
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compared, and the 2-bit case showed lower estimated target amplitudes and some false

positive detections. Altogether this paper showed a promising direction of signal estimation

with unknown noise variance for few-bit applications. It did continue the trend of poor

amplitude estimates in fewer-bit solutions, which lead to bad performance when target

dynamic range was high. The need to call on a separate algorithm as a step in each iteration

also makes it more resource intensive.

The amplitude estimation issues from the previous methods may come from algorithms

designed for higher resolution. Christopher Gianelli, Luzhou Xu, Jian Li, and Petre Stoica

looked at designing a 1-bit algorithm that would preserve signal amplitude [43]. Their paper

focused on the communications problem of multi-tone parameter estimation. This is another

area where high sample rates force lower-resolution ADCs to be used. The authors note

that most of the research prior to theirs used a fixed threshold of zero for 1-bit quantization,

and that amplitude information is unnecessarily lost because of it. As an alternative, they

suggest using Time Varying Thresholds (TVT) that retain more amplitude information by

leveraging the threshold level. To study this effect, a novel RELAX algorithm is introduced

that is modified to use TVT.

Their signal model at the receiver keeps the sign of the signal, plus noise, minus the

threshold value. A negative measurement therefore indicates that the signal amplitude was

lower than the threshold amplitude. The threshold values are then used as prior information

for the estimation algorithm. The likelihood function used for optimization finds the

difference between the current signal estimate and the known threshold, then multiplies by

the sign from the corresponding measurement value. The novel 1-bit RELAX algorithm

takes a greedy optimization approach. It finds the single strongest signal index to update,

and improves the estimate of that signal until it converges. It then finds the next strongest

signal index and it updates it and the previous index until convergence. Each new index

increases the dimension of the problem by 1. The negative log-likelihood version of the

defined likelihood function is used, and two versions are provided to show how to add
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dimensions for each major iteration.

The simulation used 8 random TVT values per run, with values between -1 and 1. Six

signals were used, each with amplitudes set at 1. Results were averaged over 100 trials

for 1-bit RELAX and three similar likelihood based approaches. It was shown that 1-bit

RELAX outperformed other methods at both frequency and amplitude estimation, based

on the average MSE. Overall this paper showed that an algorithm designed to match the

limitations of 1-bit quantization performs better than more general approaches.

The TVT approach has been applied to radar by Xiaolei Shang, Heng Zhu, and Jian Li

[44]. This paper looked at range-Doppler target estimation with unknown noise variance and

a 1-bit specific approach. Their model used the same 1-bit negative log-likelihood function

as the previous paper. Similar to the FISTA paper, they also separate the real and imaginary

signal components, but they do not use them to create a group sparse problem. To promote

sparsity, they use a log norm penalty term, which tends to favor sparser solutions. Their

model is not convex, so they use the MM algorithm to solve it. A second order Taylor series

is used to upper bound the objective function, which is minimized at each iteration to find

the new signal estimate. In order to be solved efficiently, two values in the algorithm have to

be found by separate instances of Conjugate Gradient Least Squares (CGLS).

For simulation parameters, a range-Doppler measurement matrix formulation is provided.

Their sparse signal vector has 20 randomly placed targets with random amplitudes between

0 and 1. Measurements are quantized by keeping the sign after subtracting one of eight TVT

values from the full measurements. The thresholds are selected randomly from a set of eight

values between -1 and 1. Noise variance is set for 10 dB SNR. With this setup the results

show range-Doppler plots of their algorithm compared to two matched filter estimations,

one with infinite precision the other using a 1-bit ADC. The matched filter approaches show

large sidelobes across the range bins around most of the targets. A traditional matched filter

does nothing to prevent sidelobes on its own, and no additional processing was indicated,

so this is normal. The proposed algorithm does not show these sidelobes and was more
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accurate with the signal amplitudes. The final test shows that for SNR values between -10

and 10 the algorithm converges in less than 15 iterations.

In summary, this paper provided useful insight into how TVTs can be added into a radar

detection algorithm. It also showed a slightly different MM technique to signal estimation

with unknown noise variance to the SLIM-RELAX algorithm above. Just as in that method,

each iteration requires an additional algorithm to compute values, which could be resource

heavy. The results again suggest that a TVT approach provides good amplitude estimates.

It is hard to say how this algorithm performs in the larger scheme of sparse, few-bit radar

detection algorithms though. It was not compared against any other algorithms, only a

matched filter output. This might be due to a lack of comparable algorithms in PMCW radar

currently. Finally, it would have been good to include plots showing the average estimation

error rate under different SNR values.

Finally, Xiaolei Shang, Jian Li, and Petre Stoica provided a way to adapt a whole class

of algorithms to a 1-bit form [45]. Sparse Iterative Covariance-based Estimation (SPICE)

algorithms are valued because they require no parameter tuning. An example of such a

parameter from the previous papers is in the sparse penalty terms. These terms are scaled

by a sparse regularization parameter, a coefficient that determines the level of sparsity

the algorithm will favor. This paper presented four 1-bit specific algorithms: 1bSPICE,

1bLIKES, 1bIAA, and 1bSLIM. The original versions of each of these algorithms work

through different minimizations using the covariance matrix for the sparse measurements.

The main difference between them is unique weighted sparse penalty terms in their objective

function. To tie them together, the authors adapt the MM approach from the previous paper,

which included a 1-bit TVT specific negative log-likelihood definition. The result is an

approach very similar to the SLIM-RELAX algorithm [42], but with an added step to update

the weights for 1bSPICE, 1bLIKES, and 1bIAA.

To simulate the performance of these new adaptations, a range-Doppler sparse measure-

ment matrix is defined, eight random TVT thresholds are selected based on the maximum
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signal amplitude, and the noise variance is set for 20 dB of SNR. For comparison, the

ADMM algorithm and a 1-bit periodogram (1bPER) were included. Both FMCW and

PMCW radar detection examples are provided. In an average of 500 FMCW test runs,

the 1bSLIM, 1bLIKES, and 1bIAA had the best NMSE as SNR was swept from 0-25

dB. The sidelobe power across these runs was also measured, and 1bSLIM performed

significantly better than the other approaches for all SNR values. In CPU computation time

measurements, the four proposed algorithms performed the best, with 1bSLIM running the

fastest. In the PMCW test range-Doppler plots were provided for each algorithm. The new

methods performed well, but 1bSPICE had false positives and 1bSLIM missed a weaker

target. 1bIAA performed the best in this test.

The final experiment returned to FMCW, showing range-Doppler plots of each algorithm.

Two additional plots showed the result of FFT measurements and conventional IAA with

high-resolution measurements. Again the proposed methods perform well, and it is noted

that 1bIAA performs almost the same as high-resolution IAA. A lot of work was covered

in this paper. Ultimately it showed that 1-bit specific algorithms can perform well for both

FMCW and PMCW applications. It was also the only known paper to compare 1-bit adapted

algorithms against each other. The inclusion of 1bPER, ADMM, and conventional IAA

approaches was also good, though it would be nice to see a comparison with few-bit IAA

along with high-resolution.

The trends from the literature can be summarized like this:

1) In all reviewed papers, there was never a benefit to using more than 4-bit ADC

resolution outside of the highest SNR environments. In many cases 2 and 3-bit resolution

was enough.

2) 1-bit estimation is possible, but generally performs worse than higher bit-depths in a

more general few-bit algorithm. A clear loss of amplitude information is shown in the 1-bit

case.

3) The use of time-varying quantization thresholds and 1-bit specific algorithms can
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capture more amplitude information. This is the main solution found to improve 1-bit

detection capabilities.

4) While several papers introduced novel few and 1-bit algorithms, very little work has

directly compared their performance. When comparisons were made, it was not between a

1-bit specific TVT approach and its few-bit equivalent. No research was found that would

indicate when a 1-bit TVT approach would be a better choice than 2-bit without TVT, for

example.

5) Radar signals can be recovered without prior noise variance information, but the

current techniques require multiple algorithms combined to be computationally efficient. For

larger data sets, it would be good to know how this affects resource usage such as memory

and processing time.
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CHAPTER 4

Proposed Solution

The analysis from the previous chapter showed that signals could be recovered in the

1-bit quantization case, but algorithms not adapted for 1-bit quantization lose amplitude

information normally provided by having multiple quantization thresholds. It was shown

that a TVT adaptation allows this amplitude information to still be estimated using a 1-bit

ADC. A lack of work comparing few-bit and 1-bit specific approaches was apparent. The

novel contribution of this thesis is to adapt a few-bit FISTA implementation [41] into a 1-bit

specific TVT FISTA using a TVT-based negative log-likelihood function [43][45]. This

approach will be called FISTA-1b. Test results from both the TVT and original few-bit

methods will be directly compared in the next chapter.

The rest of this chapter will be as follows: First the original group-sparse FISTA model

will be provided. Next, the changes necessary for a 1-bit specific modification will be

provided. Finally the evaluation criteria will be specified to allow for quantitative analysis

of both methods.

4.1 Problem Formulation

In the reviewed FISTA approach for PMCW radar, a useful technique was shown that created

a group sparse problem out of separated real and imaginary signal components. This allowed
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the estimation algorithm to be relatively simple compared to other approaches that combine

two or three algorithms together to be solved efficiently. Unfortunately their approach was

too general for the 1-bit case. Their results showed that target amplitudes were not preserved,

which lowers the SNR for target detection and may have caused the poor performance when

targets were closely spaced. Even the more complex few-bit SLIM-RELAX algorithm

suffered amplitude-related dynamic range issues. Few and 1-bit algorithms need to be

designed to preserve signal amplitude if they are to address these issues. This section will

show how to modify FISTA using the techniques shown in the development of 1-bit SPICE

algorithms.

4.1.1 Taking Sparse Measurements

To begin, a sparse vector x ∈ CN is defined as the collection of K target signals out of N

measurement locations, where K≪ N. The values of x are then given by

xi =

 γk : xi = k ∈ K

0 : xi ̸= Ki

(4.1)

Where γk is the complex amplitude of the kth target. Measurements are taken using a

measurement matrix A ∈ CM×N , where M corresponds to the number of samples collected

from each location N. The final measurement vector is then found by

y = Ax+ e (4.2)

Where e ∈ CM is additive white Gaussian noise. These measurements need to be

converted to an all-real equivalent before they can be quantized. The new form of the

measurements becomes

ỹ = Ãx̃+ ẽ (4.3)
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Where real and imaginary magnitudes are separated by

ỹ =

ℜ{y}

ℑ{y}

 , Ã =

ℜ{A} −ℑ{A}

ℑ{A} ℜ{A}

 ,

x̃ =

ℜ{x}

ℑ{x}

 , ẽ =

ℜ{e}

ℑ{e}


(4.4)

Now that the data is all-real, it can be quantized by passing through a q-bit resolution

ADC. This process is different between the few-bit and 1-bit TVT cases. The few-bit case

will be shown first. The measurements now take the form

v̄ =Q (v) when v ∈ [ud,ud+1) (4.5)

With ud as the threshold immediately below v, and ud+1 the threshold immediately

above. Given q resolution bits, there are D = 2q +1 thresholds forming the partition and

2q output values for the codebook. The outermost thresholds take the values u1 = −∞

and uD = ∞. The step size ∆s is set using the largest measurable amplitude Rmax to get

∆s = Rmax/2q. In practice the value Rmax would be found using automatic gain control. The

remaining thresholds can then be calculated with

ud = (−2q−1 +d)∆s, d = 1, ...,2q−1 (4.6)

With the partition thresholds set, the quantization codebook values are offset by half the

step size

v̄0 =−(2q−1−2−1)∆s

v̄d = ud +
∆s
2
, d = 1, ...,2q−1

(4.7)
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The 1-bit TVT approach to quantization begins by establishing the TVT vector h ∈ CM.

Its values are defined by h = hR + jhI , where real and imaginary thresholds hR,hI ∈ [u1,uD)

are drawn from D uniformly distributed discrete values. The all-real arrangement of h is

then

h̃ =

ℜ{h}

ℑ{h}

 (4.8)

Finally, the quantized values are found by

ȳ = sign(ỹ− h̃) (4.9)

Where sign() takes values [-1, 1]. Both quantization methods are now established.

4.1.2 Few-bit FISTA Model

The original few-bit specific FISTA had two main model components. First was the negative

log-likelihood function, which was defined as

L(x̃|ȳ) =−
2M

∑
m=1

ln
[

Φ

(
ud+1− ãT

mx̃
σ/
√

2

)
−Φ

(
ud− ãT

mx̃
σ/
√

2

)]
(4.10)

Where ãT
l x̃ a single value in the vector of measurements, ỹl . The noise standard deviation

is given by σ , and the cumulative distribution function (CDF) of the standard normal

distribution is given by Φ(). This function essentially finds the probability of the signal

values given prior knowledge of the two thresholds the resulting measurements fell between.

The other component to this model is a group-sparsity promoting penalty term. Groups

are formed from the real and imaginary magnitudes of x, therefore the penalty term is

defined
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∥x̃∥2,1 =
G

∑
g=1

(x̃2
g + x̃2

g+G)
1/2 =

G

∑
g=1
∥x̃g∥2 (4.11)

Where G = N groups of x̃g = [x̃g, x̃g+G] are created. The objective function is the

minimization of those two terms, given by

min
x̃

F(x̃) = L(x̃|ỹ)+ρ∥x̃∥2,1 (4.12)

Where ρ is the sparse regularization coefficient that determines the level of sparsity that

will be promoted. To solve this problem efficiently a quadratic approximation is formed by

ˆ̃x i = argmin
x̃

{
G

∑
g=1

∥x̃g−h(z)g∥2
2

2ζ
+ρ∥x̃g∥2

}
(4.13)

where ˆ̃x i is the signal estimate for iteration i, z ∈ R2G is a FISTA specific scaled version

of ˆ̃x i that will be defined later, ζ is the step size, and h(z)g = z−ζ ∇L(z|ȳ). The gradient

∇L(z|ȳ) is defined

∇L(z|ȳ) = ∂L(z|ȳ)
∂z

=

√
2

σ
ÃT f ′(z) (4.14)

Where f ′(z) is

f ′(z) =
φ

(
Ud+1−Ãz

σ/
√

2

)
−φ

(
Ud−Ãz
σ/
√

2

)
Φ

(
Ud+1−Ãz

σ/
√

2

)
−Φ

(
Ud−Ãz
σ/
√

2

) (4.15)

which is the ratio of the standard normal probability density function (PDF) to the CDF

for the current value of z. The variables Ud+1 and Ud are vectorized versions of the threshold

priors based on ȳ. The groups are now leveraged by finding the combined magnitude of

change for this iteration, given by

∥h(z)g∥2 =
√

h(z)2
g +h(z)2

g+G (4.16)
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The signal estimate ˆ̃x i calculation is separable, so a parallel shrinkage operation is

performed to update it. The amount of shrinkage is scaled using the group magnitudes as

follows

ˆ̃x i
g =

h(z)g

∥h(z)g∥2
max(0,∥h(z)g∥2−ρζ ), g = 1, ...,G (4.17)

The last two steps are the reason for the "Fast" part of FISTA. A variable η is introduced

that is used accelerate updates to z as the number of elapsed iterations grows. The two are

updated by

ηi+1 =
1+

√
1+4η2

i

2
, (4.18)

zi+1 = ˆ̃x i +

(
ηi−1
ηi+1

)
( ˆ̃x i− ˆ̃x i−1) (4.19)

The update of z takes the current signal estimate and adds to it a fraction of the change

that occurred from the previous estimate. The ratio of the η terms starts at zero then grows

with each iteration, allowing the difference in signals between iterations to have more effect

over time. This completes the FISTA algorithm, which is summarized in Algorithm 1.

Algorithm 1 FISTA

Input: ρ,ζ , i = 1,η1 = 1,z1 = ˆ̃x 1 = 02G
Output: ˆ̃x

1: repeat
2: Solve for ˆ̃x i+1 using (4.17)
3: Compute ηi+1
4: Compute zi+1

5: i← i+1
6: until max iterations or convergence

Output: ˆ̃x
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4.1.3 Proposed FISTA-1b

The model for FISTA-1b requires few changes compared to the few-bit model. The objective

function needs to be rewritten first to account for the use of TVT. For this the negative

log-likelihood function from [44][45] is modified in two ways. First, the noise standard

deviation is assumed to be known. Second, all complex values have been separated to create

all-real data to match the required inputs to FISTA. The result is

L(x̃|ȳ) =−
2M

∑
m=1

ln
(

Φ

(
ȳm

ãT
mx̃− h̃m

σ/
√

2

))
(4.20)

This function works by estimating the probability that the sign of the measurements has

been flipped. The same sparse penalty term can be used, which means the objective function

(4.11) takes the same form. The same separable quadratic approximation is used, but now

the new likelihood function is used when computing the gradient. The new gradient is given

by

∇L(z|ȳ) = ∂L(z|ȳ)
∂z

=

√
2

σ
ÃT f ′(z) (4.21)

Where f ′(z) is

f ′(z) =−
φ

(
ȳ Ãz−h̃

σ/
√

2

)
Φ

(
ȳ Ãz−h̃

σ/
√

2

) (4.22)

Because the gradient calculation is the only functional change, the new approach uses

the same steps listed in Algorithm 1.

4.2 Evaluation Criteria

The experiments performed will focus on three approaches. They are the 2-bit FISTA,

1-bit FISTA, and finally FISTA-1b. There are a four metrics to define in order to provide a
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fair evaluation. The first is the SNR measurement, which is based on the strongest signal

magnitude and the noise standard deviation. It is given by

SNR = 20Log
(

max(|γk|)
σ

)
(4.23)

The use of the maximum signal amplitude here provides a higher SNR value than an

average signal amplitude calculation would. This should therefore be considered an upper

bound on SNR. In all tests there will be high and low SNR examples included to provide a

complete depiction of functionality. The second metric is the NMSE measurement, which

will compare the measured amplitude at each target location to the actual amplitude. It is

defined

NMSE =
1

250

K

∑
k=1

50

∑
i=1

|γ̂ i
k− γk|2

γ2
k

(4.24)

Together these two will be used to determine how accurately the target amplitudes are

estimated as the noise level is varied. For theses tests the priority is the amplitude estimation

accuracy. The calculation will include the amplitudes of missed targets since a missed

detection is another form of underestimation. This creates an upper bound to the amount of

error contributed by each target.

The estimated amplitude is always less important than overall detection accuracy in

radar applications. The last two metrics represent target accuracy by determining the rates

of true detections and false positives. The combination of the two rates are represented by a

Receiver Operating Characteristic (ROC) curve. They are calculated by

T PR =
T P

T P+FN

FPR =
FP

FP+T N

(4.25)

Where TP is the number of true positives, or correctly identified targets, FN is the
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number of false negatives, or missed detections, FP is the number of false positives, or

detections where no target is present, and TN is the number of true negatives, or locations

correctly identified as having no targets. This results in the true positive rate (TPR) and

false positive rate (FPR), which represent the relative likelihood of both conditions. These

rates are calculated while sweeping a threshold for noise rejection across the signal estimate.

Signals above the noise threshold are counted as detections, while all signals below are

classified as noise. Once the rates are found for all threshold values they can be plotted as

ROC curves. The area under the curve (AUC) will be found for each ROC plot, which is

used as a way to compare the relative rates of each method. An AUC of 1 indicates that all

targets can be found with no false positives. Any AUC of 0.5 or lower indicates that the

algorithm has worse detection ability than random guessing.

Within the scope of radar signal estimation, false positives come from noise peaks large

enough to be counted as detections. In a traditional radar setting there is always some level

of noise measurable at every possible target location. This is not true for the sparse signal

processing approach used in this thesis. Almost all signal indices with low measurement

contributions have their values reduced to zero during signal recovery. This creates a large

number of true negatives with some possible false negatives. The large number of true

negatives in a sparse signal distorts the false positive rate, so for these tests any signal set to

zero will not be included in the true negatives calculation. This introduces the possibility of a

FPR of zero for all thresholds if all noise is rejected, which is not typical in radar estimation.

In these cases, the AUC will be approximated by the largest TPR value measured. This is a

lower bound on the AUC, which is always increasing with FPR.
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CHAPTER 5

Simulation and Analysis

This chapter contains analysis of the algorithms presented in section 4. Each of the

following sections will present the test that was performed, the testing parameters, and the

results obtained. All results were obtained through MATLAB simulations. Section 5.1 will

test widely spaced targets, 5.2 will test closely spaced targets, and 5.3 will test targets with a

large dynamic range. Finally, section 5.4 will draw conclusions based on the the results and

note areas in need of future work.

5.1 Widely Spaced Targets

The goal of this test was to determine how accurately targets were detected under ideal

conditions. The targets had similar amplitudes and wide spacing, with the goal that no single

target would bias the ability to detect the others.

5.1.1 Test Configuration

A measurement matrix A ∈ CM×N was formed from Gaussian random values. The dimen-

sions of A were chosen as M = 1016 and N = 4064. The sparse signal vector had K = 5

targets with their locations and amplitudes given in table 4.1. The FISTA iteration step size

was set to 10−6. The two versions approached solutions at different rates, so they were
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tuned differently. The original FISTA used ρ = 60 and stopped after 1000 iterations or when

a minimum change of 10−6 was reached. FISTA-1b used ρ = 150 and stopped after 100

iterations or when a minimum change of 10−5 was reached. The NMSE was gathered to

determine the accuracy of the amplitude estimates as the SNR was increased from -30 to 50

dB. ROC curves were produced to determine the detection accuracy of each method. All

plots show data averaged over 50 trials.

Index Amplitude
Target 1 2 2.5e j0.7821

Target 2 1400 3e− j0.349

Target 3 2500 2.5e j0.7821

Target 4 3250 2.5e j0.7821

Target 5 3750 3e− j0.349

Table 5.1: Target parameters for widely spaced tests

5.1.2 Results

A typical output for widely spaced target detection can be seen in Figure 5.1. It shows the

complex magnitudes of the signal values for each method, as well as the original target

signal. A few things stand out; First, it is clear that 1-bit FISTA retained far less signal

amplitude than either of the other approaches. Second, the 2-bit FISTA and FISTA-1b

estimates both have targets that were confidently identified, and some that were not. The

second and fifth targets were poorly estimated by FISTA-1b, while the fifth target was low

for 2-bit FISTA. This shows that all of the methods tested have the potential for estimation

errors.

There is also noise present for all three estimates. In each case it is proportional to the

overall detection amplitude. The 1-bit FISTA estimate shows very small noise amplitude,

for example. The noise detected by 2-bit FISTA is large enough that it would mask the

detection of the fifth target. FISTA-1b had relatively few indices with noise signals.

The NMSE data showing the accuracy of the amplitude measurements can be seen in
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Figure 5.1: Sample detection output for widely spaced targets

Figure 5.2: Average NMSE for widely spaced targets over 50 trials

Figure 5.2. As expected, the 1-bit FISTA approach had much higher error levels regardless

of noise. The lowest error rate was 42% between the 0 and 5 dB SNR levels, with error

rising steadily in both directions from there. The other two approaches had error rates

that decreased quickly until a plateau from -10 to 5 dB. FISTA-1b continued at the same

error rate of 3.8% until 45 dB, where it stopped functioning abruptly. 2-bit FISTA had the

narrowest working range of the three, with performance breaking down sharply above 5

dB. Before that it reached a minimum error of 1.3%. A summary of the NMSE values is
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provided in Table 5.2.

There are a few trends on this plot that stand out. First, the error rates of both FISTA-1b

and 2-bit FISTA converge at a similar minimum level near 0.04. This suggests that there is

a lower limit to the noise level that needs to be identified. Tests with higher quantization

levels would also need to be performed to see if this limit is consistent for all bit-depths.

Next, 1-bit FISTA has an error rate that rises slowly after 5 dB SNR. This shows that

the additive channel noise dominates performance below that point. Additive noise might

actually increase the amplitude estimates when the noise power is large enough, reducing

the error. Something else is causing the error increase above 5 dB, possibly quantization

noise. Finally, the 1-bit approaches are much less sensitive to changes in noise level, with

much wider functional SNR ranges than 2-bit FISTA. These trends are all good topics for

future research.

FISTA-1b 1-bit FISTA 2-bit FISTA
Min NMSE 2.5% 42.8% 1.3%
SNR at Min 40 dB 5 dB 5 dB
Optimal Range 55 dB 10 dB 15 dB
SNR Limits [NA,45] [-20,NA] [-25,10]
Total SNR
Range

75< 70< 35

Table 5.2: Summary of NMSE data for widely spaced targets. Optimal range is the width in dB
where error rates are within 10% of min NMSE. Total SNR range is the width in dB that an

algorithm is able to make detections.

Finally, three ROC curves are shown in Figure 5.3. These were captured at different

SNR levels to see how well the detection accuracy related to trends in the NMSE plot. The

plot in the top left was captured at an SNR of -20 dB, which is the point that 2-bit FISTA and

FISTA-1b converge. In the top right the curves were found at 0 dB SNR, one of two points

where the NMSE was lowest for all three approaches. The bottom center shows results at 40

dB SNR, after 2-bit FISTA had broke down and shortly before FISTA-1b did.

The two original FISTA methods detected targets without false positives at -20 dB,

indicating that all noise was being eliminated during estimation. Some real targets were
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Figure 5.3: ROC curves for widely spaced targets. SNR levels are -20 dB top left, 0 dB top right,
40 dB bottom.

being eliminated as well, with 2-bit FISTA finding 65% of targets and 1-bit FISTA only

finding 15%. Adjusting the sparse regularization term might allow for more detections for

SNR this low, at the risk of introducing false positives. The curve for FISTA-1b shows that

some false positives are admitted before reaching a TPR of 0.6, with only 50% detection

without false positives.

The 0 dB SNR case shows perfect detections for all three methods, making it the best

case scenario. The only distinguishing factor is the amplitude of smallest false positives.

Both 1-bit approaches only make it partway across the top of the graph, which means that

most of the ROC thresholds were larger than the noise signals. The precision of MATLAB

data means that small values functionally equal to zero are still represented by positive

decimal values. Finally, in the third plot for 40 dB SNR there is near identical performance

from the two 1-bit methods, with 1-bit FISTA detecting all targets with fewer false positives
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than FISTA-1b.

FISTA-1b 1-bit FISTA 2-bit FISTA
-20 dB 0.58 0.15 0.65
0 dB 1 1 1
40 dB 0.99 0.99 0
Average 0.86 0.71 0.55

Table 5.3: AUC of the ROC curves for widely spaced targets

Finally, the AUC calculations for each test is shown in Table 5.3. As expected based on

the NMSE and ROC curves, 1-bit FISTA does not work effectively at the low -20 dB SNR.

The other two methods have poor rates but are still over 50%, showing that they are still

functional. There is only a 1% loss observed for the 1-bit approaches from 0 to 40 dB.

5.2 Closely Spaced Targets

The goal of this test was to see if detection errors were more likely when two targets were

close together. It would be noteworthy if the number of false positives increased, or if fewer

targets were detected.

5.2.1 Test Configuration

The only change for this test was the locations of the targets within the sparse signal vector.

To get a better understanding of the impact of proximity, two different target pairs were

formed. The first pair had a separation of 15 and the second pair had a separation of 1. The

target parameters are provided in table 5.2.

5.2.2 Results

The initial tests of the estimation with closely spaced targets showed that performance did

not change much compared to the widely spaced case. In Figure 5.4 the detections at 10 dB
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Index Amplitude
Target 1 2 2.5e j0.7821

Target 2 2485 3e− j0.349

Target 3 2500 2.5e j0.7821

Target 4 3250 2.5e j0.7821

Target 5 3251 3e− j0.349

Table 5.4: Target parameters for closely spaced tests

show the same trends as the previous section. When taking a closer look at the two pairs,

shown in Figure 5.5, it is clear that there are no false detections made in this case.

Figure 5.4: Sample estimates for closely spaced targets at 10 dB

Figure 5.5: Close up view of the close targets

It’s possible that the lack of change is due to the method of taking measurements.



50

Because the measurement matrix is composed of Gaussian random entries instead of entries

constructed by real signal measurements, there is a lack of inter-symbol interference between

adjacent indices. Revisiting this test with full PMCW radar signal simulation would be a

good option for future research.

Figure 5.6: Average NMSE for closely spaced targets over 50 trials

When looking at the NMSE for amplitude estimation, the results are fairly similar to the

widely spaced tests. The most noticeable change is that FISTA-1b stops detecting at 45 dB

instead of 50 dB SNR. It has a lower minimum error level of 2.3% The 2-bit FISTA error is

exactly the same as before at 1.3%, indicating that close proximity between targets is not

affecting it. There is still a sharp breakdown above 10 dB. 1-bit FISTA has a lower error

minimum of 37% at 5 dB. It has a linear increase in error as SNR increases from there, and

does not break down at high SNR. This shows that 1-bit FISTA has predictable results, even

if the estimation error is high. A summary of the NMSE data is provided in Table 5.5.

The ROC curves are shown in Figure 5.7. The three SNR values tested remained the

same due to the similarity in the NMSE graphs. In the top left the curves are measured at

-20 dB SNR. All three curves match the results from the widely spaced test, with only a

slight increase in TPR from 1-bit FISTA. At 0 dB SNR, shown in the top right, FISTA-1b is

no longer detecting all targets without false positives. The plot on the bottom is taken at
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FISTA-1b 1-bit FISTA 2-bit FISTA
Min NMSE 2.3% 37.7% 1.2%
SNR at Min 40 dB 0 dB 5 dB
Optimal Range 50 dB 25 dB 15 dB
SNR Limits [NA,40] [-20,NA] [-25,10]
Total SNR
Range

70< 70< 35

Table 5.5: Summary of NMSE data for closely spaced targets. Optimal range is the width in dB
where error rates are within 10% of min NMSE. Total SNR range is the width in dB that an

algorithm is able to make detections.

40 dB SNR, which again matches the widely spaced equivalent. The AUC values show the

same results, and are shown below in Table 5.6. Overall the closely spaced target scenario

only affected FISTA-1b at mid-range SNR.

Figure 5.7: ROC curves for closely spaced targets. SNR levels are -20 dB top left, 0 dB top right,
40 dB bottom.
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FISTA-1b 1-bit FISTA 2-bit FISTA
-20 dB 0.57 0.24 0.63
0 dB 0.95 1 1
40 dB 0.99 0.99 0
Average 0.84 0.74 0.54

Table 5.6: AUC of the ROC curves for closely spaced targets

5.3 Targets With Large Dynamic Range

The goal of this test was to see if targets with the amplitudes from previous tests were still

detected when a single large amplitude signal was present. In order to test this, one of the

five targets was given a much larger amplitude than the others. This difference in amplitudes

is referred to as dynamic range (DR), and it can be measured in decibels using

DR = 20Log
(

max(|γk|)
min(|γk|)

)
(5.1)

5.3.1 Test Configuration

The fourth target was assigned the higher amplitudes for this set of tests. Three different

DR values were tested: 6, 12, and 15 dB. These correspond to a ratio of 2:1, 4:1, and 6:1

between the largest and smallest signal amplitudes. The algorithms were more sensitive to

noise in these tests, so the low SNR ranges were limited to -10 and -5 dB for the 12 dB and

15 dB dynamic ranges, respectively.

Index Amplitude
Target 1 2 2.5e j0.7821

Target 2 1400 3e− j0.349

Target 3 2500 2.5e j0.7821

Target 4 3250 [5,10,15] ∗
e j0.7854

Target 5 3750 3e− j0.349

Table 5.7: Target parameters for dynamic range tests
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5.3.2 Results For 6 dB Dynamic Range

Figure 5.8 shows an example output from the 6 dB dynamic range tests. The noise level

was 15 dB in this case, and all three approaches have visible noise below an amplitude of

0.5. FISTA-1B has a few noise peaks that are higher than that, which could be mistaken

for targets during detection. None of the three approaches get close to estimating the full

magnitude of the largest target, which would cause the NMSE to be proportionally higher

even though it was detected.

Figure 5.8: Sample detection output for dynamic range of 6 dB

The 6 dB DR case was the closest to the target parameters from previous tests, and the

NMSE in Figure 5.9 shows similar behavior. All three approaches have their minimum error

rates shifting to the right compared to before. 1-bit FISTA reaches its minimum at 10 dB

instead of 0, for FISTA-1b the minimum moves from 40 dB to 50, and 2-bit FISTA has a

narrower minimum at 5 dB instead of being stable from -5 to 5. This shows that dynamic

range impacts the noise sensitivity for each approach. Error rates are also higher. 1-bit

FISTA’s minimum error raised to 50%, up from 40%. The other two approaches still reach

similar minimums, showing that noise is not the only source of error still. Outside of the

minimums their error rates have steeper slopes as SNR is reduced. It is worth noting that
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estimations on the large signal can account for a higher percentage of the total error since it

has a larger percentage of the signal power. The NMSE data is summarized in Table 5.8.

Figure 5.9: NMSE for each approach at a dynamic range of 6 dB

FISTA-1b 1-bit FISTA 2-bit FISTA
Min NMSE 2.3% 48.5% 2.6%
SNR at Min 50 dB 10 dB 5 dB
Optimal Range 40 dB 25 dB 10 dB
SNR Limits [NA,50] [-10,NA] [NA,15]
Total SNR
Range

65< 70< 30<

Table 5.8: Summary of NMSE data at 6 dB dynamic range. Optimal range is the width in dB
where error rates are within 10% of min NMSE. Total SNR range is the width in dB that an

algorithm is able to make detections.

The ROC curves in Figure 5.10 are similar to before, with only a few changes. First, the

SNR values they were measured at had to be adjusted to account for the shift in NMSE. The

top left is measured at -10 dB SNR, where error rates have risen for each approach due to

noise. In the top right the curves are measured at 5 dB SNR, the point where 2-bit FISTA

has the lowest error. The bottom plot is at 50 dB SNR, where FISTA-1b has its lowest error

rate.

The same patterns are present compared to the last two tests. At low SNR none of the



55

Figure 5.10: ROC curves for dynamic range of 6 dB. SNR levels are -10 dB top left, 5 dB top right,
50 dB bottom.

approaches detect all of the targets. 1-bit FISTA stops working entirely here, while the other

two methods detect around 60% of the targets. FISTA-1b is still the only one with false

positives, which could potentially be reduced by increasing the sparse regularization term.

At 5 dB SNR 2-bit FISTA has perfect detections, which corresponds with its minimum

NMSE at this point. The two 1-bit approaches are only detecting around 90% of targets,

so there is a 10% reduction in their detection abilities. At high SNR the 1-bit approaches

are still the only two functioning, and both show a small increase in false positives before

reaching 100% detection. The AUC values in Table 5.9 reflect these trends.

FISTA-1b 1-bit FISTA 2-bit FISTA
-10 dB 0.54 0.02 0.60
5 dB 0.89 0.93 0.99
50 dB 0.98 0.99 0
Average 0.80 0.65 0.53

Table 5.9: AUC of the ROC curves for dynamic range of 6 dB
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5.3.3 Results For 12 dB Dynamic Range

A sample output for the 12 dB dynamic range tests is shown in Figure 5.11. The SNR for

this sample is at 20 dB. It shows that both 2-bit FISTA and FISTA-1b have noise rising

to an amplitude of 0.5, with some detections at similar values. Targets 1, 3, and 4 have

confident detections from both. The estimates from 1-bit FISTA are almost to small to see

for targets 1 and 3, with the only large estimate limited to target 4. The general reduction in

amplitude estimates shows that the higher dynamic range is beginning to have an impact for

each method.

Figure 5.11: Sample detection output for dynamic range of 12 dB

The NMSE measurements for this test continue the trends that started at 6 dB of dynamic

range. Figure 5.12 shows that each algorithm has higher minimum error, and that the

minimums occur at higher SNR values than before. 2-bit FISTA rose from 2% minimum

error at 5 dB SNR to 13.6% at 15 dB SNR. There is a noticeable narrowing of the functional

range as well, with only 20 dB of SNR values below 80% error instead of 30 dB in the last

test. The large jumps in error occur when the smaller four targets are no longer detected.

This shows a lack of robustness to increasing dynamic range in 2-bit FISTA.

1-bit FISTA had its minimum estimation error rise from 48% to 63%, and has a flatter
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Figure 5.12: NMSE for each approach at a dynamic range of 12 dB

error curve than before. It hovers near its lowest error rate from 20 dB to 40 dB SNR, which

is much broader than the 5 dB width minimums in all previous tests. At 40 dB SNR the

error rate is 66%, compared to 65% and 68% from previous tests. The NMSE slope as

SNR increases from 40 dB is also similar to previous tests. This is continued evidence that

channel noise is not the main source of error at higher SNR values. Moving down from 10

dB SNR there is a distinct change in the error slope. Sharp changes like this indicate that

fewer targets are being detected, which upper limits the amount of error when estimating

those targets. The NMSE data is summarized in Table 5.10.

FISTA-1b 1-bit FISTA 2-bit FISTA
Min NMSE 10.0% 63.0% 13.6%
SNR at Min 55 dB 35 dB 15 dB
Optimal Range 25 dB 30 dB 5 dB
SNR Limits [NA,55] [-5,NA] [NA,20]
Total SNR
Range

65< 65< 30<

Table 5.10: Summary of NMSE data at 12 dB dynamic range. Optimal range is the width in dB
where error rates are within 10% of min NMSE. Total SNR range is the width in dB that an

algorithm is able to make detections.

FISTA-1b was the least impacted by the increase in dynamic range. Its minimum error
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had the smallest increase, from 2.3% to 10%. Like the other two approaches the minimum

shifted to a higher SNR value of 55 dB, up from 50 dB in the last test. The estimation error

level increases at a steady rate as SNR decreases, until a maximum NMSE of 83% is reached

at -10 dB SNR. This shows that FISTA-1b is noise limited across its entire working range.

Once again the changes in the NMSE plot meant that new SNR values were selected

to produce ROC curves. The low SNR example was taken at 5 dB, the point where 2-bit

FISTA’s NMSE rose above that of FISTA-1b. Next was 15 dB SNR, the location of 2-bit

FISTA’s minimum NMSE value. The last set of curves was produced at 55 dB SNR, where

FISTA-1b had its lowest NMSE value. Figure 5.13 shows the results.

Figure 5.13: ROC curves for dynamic range of 12 dB. SNR levels are 5 dB top left, 15 dB top
right, 55 dB bottom.

The low SNR plot is surprisingly unchanged compared to all previous tests. 2-bit FISTA

and FISTA-1b still have maximum TPR values near 60%, with FISTA-1b admitting false

positives to get there. 1-bit FISTA still performs poorly, with only 20% of targets detected.
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It is only when moving to the medium SNR case that the impact of higher dynamic range

can be seen. For the first time 2-bit FISTA cannot detect all targets without admitting some

false positives. 1-bit FISTA is only detecting 50% of targets. When considering that with

the shift of minimum NMSE to a higher SNR, it appears that 1-bit FISTA needs more than

15 dB of SNR to operate at this dynamic range. Like the previous tests, FISTA-1b settles

into a detection rate of 90% at medium SNR. The difference this time is false positives start

appearing much sooner, starting at 60% instead of 75% and 85% before. In the 55 dB SNR

curves there is still similar performance between the two 1-bit methods. Both are able to

detect all targets with some false positives. The AUC values for each curve are listed in

Table 5.11.

FISTA-1b 1-bit FISTA 2-bit FISTA
5 dB 0.64 0.24 0.65
15 dB 0.89 0.50 0.98
55 dB 0.96 0.98 0
Average 0.83 0.57 0.54

Table 5.11: AUC of the ROC curves for dynamic range of 12 dB

5.3.4 Results For 15 dB Dynamic Range

An Example of detection outputs at 15 dB of dynamic range are shown in Figure 5.14. In

the higher SNR case of 20 dB all three methods are shown to work, though 1-bit FISTA

only has one apparent detection. The other two methods have a large amount of noise close

to the same amplitudes as their smaller target estimates. The amplitude estimates for the

large target are low for all three methods, which will cause a large increase in the NMSE

test if it happens consistently.

The NMSE for 15 dB of dynamic range can be seen in Figure 5.15. Once again error

rates were higher across all SNR values. 2-bit FISTA appears to be at its limit here. The

narrowing of the functional SNR range has continued with only one NMSE value below

50%. This minimum has a value of 27% and occurs at 20 dB SNR, 5 dB higher than the
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Figure 5.14: Sample detection output for dynamic range of 15 dB

last test. The flattening of 1-bit FISTA’s NMSE continues as well, with all measurements

above 30 dB SNR between 74% and 78%. Noise is a more dominant source of error here as

dynamic range increases. The error rates for FISTA-1b have a steeper slope than before, but

still gradually increase as SNR is lowered from the minimum error of 23% at 50 dB SNR.

The NMSE data is summarized in Table 5.12.

Figure 5.15: NMSE for each approach at a dynamic range of 15 dB

The ROC curves for this test are shown in Figure 5.16. In the top left the curves were
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FISTA-1b 1-bit FISTA 2-bit FISTA
Min NMSE 23.0% 74.2% 27.6%
SNR at Min 50 dB 40 dB 20 dB
Optimal Range 20 dB 30 dB <5 dB
SNR Limits [NA,55] [0,NA] [NA,20]
Total SNR
Range

60< 60< 25<

Table 5.12: Summary of NMSE data at 15 dB dynamic range. Optimal range is the width in dB
where error rates are within 10% of min NMSE. Total SNR range is the width in dB that an

algorithm is able to make detections.

measured at 10 dB SNR, where the NMSE for 2-bit FISTA crosses higher than FISTA-1b.

The top right shows curves taken at 20 dB where 2-bit FISTA has the lowest NMSE. The

last set of curves in the bottom plot are at 50 dB SNR, where FISTA-1b has its minimum

NMSE.

Figure 5.16: ROC curves for dynamic range of 15 dB. SNR levels are 10 dB top left, 20 dB top
right, 50 dB bottom.

In all three plots the high dynamic range lowered detection rates. At low SNR 2-bit
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FISTA was worse than FISTA-1b for the first time, with maximum TPR values of 35% and

62% respectively. Despite having the best maximum TPR, FISTA-1b only detected 20% of

targets without any false positives, which was the same as 1-bit FISTA. At the mid-range

SNR of 20 dB the detection rates still did not reach 100%. The best results were from 2-bit

FISTA at 75%, followed by 60% for FISTA-1b, then 30% for 1-bit FISTA. Finally at 50

dB SNR 2-bit FISTA had stopped detecting as in previous tests. FISTA-1b was unable to

detect all targets even though its NMSE was lowest here. The only good detection rate at

this dynamic range came from 1-bit FISTA at high SNR. These results are reflected in the

AUC values in Table 5.13.

FISTA-1b 1-bit FISTA 2-bit FISTA
10 dB 0.49 0.20 0.35
20 dB 0.55 0.30 0.69
50 dB 0.80 0.96 0
Average 0.61 0.49 0.35

Table 5.13: AUC of the ROC curves for dynamic range of 15 dB

5.4 Final Conclusions, Limitations, and Future Work

The main goal of these experiments was to see if a 1-bit specific algorithm would provide

better amplitude estimation than its few-bit equivalent for 1-bit measurements. Ultimately

this was achieved, with the modified FISTA-1b performing much better than 1-bit FISTA. In

the best case, the difference in minimum NMSE between the two was 35%. In the worst case

it was 53%. The result is amplitude estimations with 84−93% less error using FISTA-1b.

2-bit FISTA showed the same reduction in NMSE, but over a much smaller range of SNR

values. Overall, FISTA-1b was the most robust to changing noise levels. For the tests

with low dynamic range it stayed within 10% of its minimum NMSE over 2-5 times wider

SNR range, with the best case covering a 55 dB span. At high dynamic range both 1-bit

approaches maintain minimum NMSE over the same SNR width. 1-bit FISTA has over 60%
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NMSE at that point, while FISTA-1b stays below 25%. 2-bit FISTA never operated near

its minimum NMSE for more than a 15 dB span, and as dynamic range increased that was

reduced to a single SNR level.

While FISTA-1b was great at amplitude estimation, it’s detection accuracy tended to

be lower than the original FISTA for each individual SNR value tested. The only time

that it’s individual performance was higher than the other two was at low SNR and the

highest dynamic range. At high SNR it performed just below 1-bit FISTA, frequently 1−2%

lower based on the AUC values. At mid-range SNR it frequently didn’t detect all targets,

achieving 90−95% at the maximum FPR. 2-bit FISTA was the best at these SNR values,

which is expected since the 2-bit NMSE was lowest in that range. At low SNR none of the

approaches detected all of the targets. FISTA-1b and 2-bit FISTA had TPR values within

10% of each other until the high dynamic range tests, but FISTA-1b would reach that rate

with false positives. 1-bit FISTA did not perform well at low SNR, consistently detecting

25% or fewer targets. The real advantage of FISTA-1b was its operational range. It was able

to make detections across the full span of SNR values, while 1-bit FISTA was weak to low

SNR and 2-bit FISTA failed at high SNR. The average AUC values reflect the advantage

in noise tolerance. FISTA-1b had 13− 46% higher average AUC than 1-bit FISTA and

48−74% higher average AUC than 2-bit FISTA.

As for the tests themselves, the widely spaced target test was the best case scenario

as intended. Aside from the low-SNR range, all three methods were able to detect all

targets with few to no false positives. No significant change was observed when testing

closely spaced targets. The only difference was a 5% lowering of the TPR for FISTA-1b

at medium SNR. The best explanation for the lack of change is the Gaussian measurement

matrix, which does not create the inter-symbol interference that would obscure adjacent

target indices in a full PMCW radar simulation. The dynamic range tests clearly stresses

all three methods, with NMSE rising and detection rates dropping as dynamic range was

increased. There was a pattern in the NMSE plots of error curves rising and shifting towards
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higher SNR as each dynamic range was tested. At 12 dB of dynamic range false positives

became more common before reaching maximum TPR, and by 15 dB of dynamic range the

only approach still reaching 100% TPR was 1-bit FISTA. This only happened at the highest

SNR values.

One of the more interesting results was the rise in error rate for 1-bit FISTA as the SNR

increased. The best culprit for this error is the quantization process. The main problem

with using 1-bit depth in the original FISTA model is that the thresholds are [−∞,0,∞]. All

estimations will gravitate closer to zero in this case, since it will always be closer to the real

signal amplitudes. This will keep the amplitude estimates low, raising the NMSE. When

enough noise is present there is a better chance that a noisy estimate is moved closer to the

correct amplitude, reducing NMSE. Eventually there is enough noise that it becomes the

main source of estimation error, and the NMSE rises again.

There are a few limitations to the results obtained here. First, the ROC curves are a

good way to show how accurate each approach is, but the impact of using sparse signal

processing algorithms to create them needs to be explored further. Specifically, in classic

radar detection each target index is relatively independent aside from interference from

neighboring cells. In sparse signal processing all target indices are measured simultaneously

and processed as a group. Another limitation is that only one sparse parameter tuning

was used. Additional testing here was beyond the scope of the thesis but will be part of

future development. Finally, both FISTA versions assume a known noise standard deviation.

In practice this would have to be estimated, and mismatches of that estimate need to be

explored.
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CHAPTER 6

Conclusion and Future Work

This thesis explored how one-bit specific design impacts detection algorithms for ADAS

radar. First it was established that there are benefits to PMCW radar replacing the current

FMCW standard given improvements to both hardware implementations and future develop-

ment. With that in mind the literature was reviewed to determine what the biggest challenges

facing PMCW development are today. It was shown that the high frequencies used for

ADAS radar push the capabilities of the ADCs in the receiver, specifically the balance of

sample rate, power consumption, and resolution. The sampling rate could not be lowered,

so a way to minimize the resolution bits was required to keep power consumption low.

Solutions were explored to find how many bits were required to prevent poor detection

capabilities. The research showed that few and even 1-bit approaches were possible, but

algorithms using 1-bit quantized data lost valuable amplitude information. This is because

traditional 1-bit quantization only compares inputs to a single fixed threshold. A method

was found to fix this problem, which came from the communications field. The 1-bit ADC

sampling threshold was varied over time to capture more information about the signal

amplitude. This resulted in better signal estimations despite only having one resolution bit.

To further explore this concept, a few-bit approach using FISTA was adapted to use 1-bit

TVT measurements, called FISTA-1b. Both the original and the adapted model were then

tested on their ability to preserve signal amplitudes, distinguish closely spaced targets, and
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handle targets with large dynamic range. In trials measuring the NMSE of real vs estimated

signal amplitudes, it was shown that FISTA-1b had significantly better amplitude estimation

compared to the original method using 1-bit measurements. A reduction in NMSE 84−93%

was achieved depending on the SNR level. The original FISTA with 2-bit measurements

had almost identical NMSE performance to FISTA-1b at low to medium SNR, but it was

much more sensitive to the noise level and stopped detecting above 10 dB in most tests.

With regards to detection accuracy, 2-bit FISTA was consistently the best over the range

it operated. At low SNR FISTA-1b had similar detection rates, but a higher number of false

positives. At mid-range SNR 2-bit FISTA had perfect detections until it hit its upper SNR

limit. At high SNR both 1-bit methods detected all targets with fewer than 5% FPR. While

there wasn’t an individual SNR level where FISTA-1b outperformed the original FISTA, it

did achieve similar performance and over a much larger range of SNR values. The average

AUC for each test shows how robust it is to noise, outperforming 1-bit FISTA by 13−46%

and 2-bit FISTA by 48−74%.

There were several opportunities and limitations discovered in the process of this work.

First, the detection of targets that are closely spaced showed no performance drop, which

is likely due to the ideal conditions of the Gaussian random measurement matrix. Part of

the future work for this project is to implement a full PMCW radar transceiver simulation

to generate the measurement matrix data. There were also trends in the NMSE plots that

warrant further investigation, such as the source of the error that created the lower limit

for 2-bit FISTA and FISTA-1b, and the error that affected 1-bit FISTA in high SNR cases.

Finally, future tests will explore aspects related to sparsity, such as the number of targets

and the tuning of the sparse regularization parameter. Altogether this work will help create

a framework for comparing and evaluating few and 1-bit radar algorithms like FISTA to

achieve the best detection capabilities with power efficient ADCs.
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APPENDIX A

Radar Simulation Code

This section contains all MATLAB code created by the author to produce the results of this
thesis.

A.1 NMSE Testing Code

A.1.1 Main Code

1 %% nmse_main
2 %
3 % Author: Ethan Triplett
4 % Created: 5/31/22
5 % Last Edited: 7/24/22
6 %
7 % This code aims to test the amplitude estimation accuracy of all

three
8 % FISTA approaches.
9 %

10 clc;
11 %clf;
12 disp(" Welcome to the NMSE FISTA radar program - " + datestr(now));
13

14 %% Global Variables
15 C = 127; % Number of chips per pulse
16 Q = 8; % Number of pulses per coherent processing

interval
17 N = 4064; % Width of measurement matrix
18 M = Q*C; % Number of samples [2]
19 sigma = 1.81; % Noise variance
20 q_bits = 1; % Number of bits for quantization
21 num_tvt = 2; % Number of TVT values
22

23 %% Create sparse vector using target data
24

25 % % Closely Spaced Target Parameters
26 %amp1 = 3*exp(1i*0.7854);
27 %amp2 = 2.5* exp(1i*0.7821);
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28 %target_data = [
29 % 2, amp2;
30 % 2485, amp1;
31 % 2500, amp2;
32 % 3250, amp2;
33 % 3251, amp1 ;];
34

35 % Widely Spaced Target Parameters
36 amp1 = 3*exp(1i*0.7854);
37 amp2 = 2.5* exp(1i*0.7821);
38 target_data = [
39 2, amp2;
40 1400, amp1;
41 2500, amp2;
42 3250, 5*exp(1i*0.7854); % amp2;%
43 3750, amp1 ;];
44

45 % Create the sparse vector and measurement matrix
46 x = create_sparse_x(target_data ,N);
47 x_tilde = [real(x); imag(x)];
48

49 A = randn(M,N) + 1i.* randn(M,N);
50 A_tilde = [real(A), -imag(A); real(A), imag(A)];
51

52 snr = 20*log(max(abs(target_data (:,2)))/( sigma));
53

54 % sigma = [13.44 , 10.46, 8.14]; % low DR, -30--20 SNR
55 sigma = [6.36 , 4.96, 3.86 3.0, 2.33, 1.81, 1.42, 1.1, 0.86 ...]; %

low DR
56 0.67, 0.52, 0.406, 0.316 , 0.246]; % low DR 30-50 SNR
57

58 % sigma = [10.6 , 8.24, 6.42, 5.0, 3.88, 3.02, 2.36, 1.83, 1.43 ,...];
% 6dB DR

59 % 1.116 , 0.868, 0.676 , 0.526, 0.41]; % 6dB DR 30-50 SNR
60 %sigma = [0.32 , 0.25]; % 6dB DR 55-60 SNR
61

62

63 %sigma = [16.5 , 12.84, 10, 7.8, 6.06, 4.72, 3.68, 2.86, 2.24]; % 12
dB DR -10 to 30 SNR

64 % 1.73, 1.34, 1.05, 0.82, 0.64, 0.5]; % 12dB DR 35-60 SNR
65 %sigma = [0.64 , 0.5, 0.39, 0.3]; % 12dB DR 55-70 SNR
66

67 %sigma = [19.26 , 15, 11.68, 9.1, 7.08, 5.5, 4.3, 3.34, 2.6 ,...
68 % 2.02, 1.58, 1.22, 0.96, 0.74]; % 15dB DR -5 to 60 SNR
69

70 %sigma = [0.96 , 0.74, 0.58, 0.44]; % 15dB DR 55-70 SNR
71

72

73 trials = 50;
74 vars = length(sigma);
75 test_data_tvt = zeros([vars ,trials ]);
76 test_data_org1 = zeros ([vars ,trials ]);
77 test_data_org2 = zeros ([vars ,trials ]);
78
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79 for j = 1:vars
80 snr = 20*log(max(abs(target_data (:,2)))/sigma(j))
81 for i = 1: trials
82

83 noise = sigma(j).*( randn(M,1)+1i*randn(M,1));
84 y = A*x + noise;
85 yri = [real(y); imag(y)];
86 [yq_tvt , hri , yq_org1 , ud1 , udplus1_1 , yq_org2 , ud2 ,

udplus1_2] = ...
87 get_quantized3(yri , q_bits , num_tvt);
88

89 % Solve
90 xhat1 = tvt_FISTA(A_tilde , yq_tvt , hri , sigma(j), 1e-5, 100,

150);
91 xhat2 = org_FISTA(A_tilde , ud1 , udplus1_1 , sigma(j), 1e-5, 1

e3 , 60);
92 xhat3 = org_FISTA(A_tilde , ud2 , udplus1_2 , sigma(j), 1e-5, 1

e3 , 60);
93

94 % Convert estimates to complex magnitudes
95 xhatc1 = abs(xhat1 (1:N) + 1i*xhat1(N+1: end));
96 xhatc2 = abs(xhat2 (1:N) + 1i*xhat2(N+1: end));
97 xhatc3 = abs(xhat3 (1:N) + 1i*xhat3(N+1: end));
98

99

100 %display_real_v_2est(abs(x),abs(xhatc1),abs(xhatc2),abs(
xhatc3));

101

102 %Organize relevant amplitude data
103 amplitudes = [abs(target_data (:,2)), ...
104 xhatc1(target_data (:,1)), ...
105 xhatc2(target_data (:,1)), ...
106 xhatc3(target_data (:,1))];
107

108

109 % Calculate error in amplitudes
110 test_data_tvt(j,i) = sum( ...
111 (abs(target_data (:,2)) - xhatc1(target_data (:,1))).^2

...
112 ./abs(target_data (:,2) .^2));
113 test_data_org1(j,i) = sum( ...
114 (abs(target_data (:,2)) - xhatc2(target_data (:,1))).^2

...
115 ./abs(target_data (:,2) .^2));
116 test_data_org2(j,i) = sum( ...
117 (abs(target_data (:,2)) - xhatc3(target_data (:,1))).^2

...
118 ./abs(target_data (:,2) .^2));
119

120

121 end
122 disp("Trial batch complete - " + datestr(now));
123 end
124
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125

126 % Calculate final error by summing rows and dividing by 6*100
127 tvt_nmse = (1/(5* trials)).*sum(test_data_tvt ,2);
128 org1_nmse = (1/(5* trials)).*sum(test_data_org1 ,2);
129 org2_nmse = (1/(5* trials)).*sum(test_data_org2 ,2);
130

131

132 writematrix(test_data_tvt);
133 writematrix(test_data_org1);
134 writematrix(test_data_org2);
135

136 display_nmse(tvt_nmse , org1_nmse , org2_nmse);

Listing A.1: ROCmain

A.1.2 Supporting Functions

1 function display_nmse(tvt , org1 , org2)
2 %% display_nmse
3 %
4 % Author: Ethan Triplett
5 % Created: 7/15/22
6 % Last Edited: 7/24/22
7 %
8 % This code displays the averaged NMSE for all three FISTA methods
9 %

10

11 figure1 = figure;
12 x_axis = -15:5:60;
13 tvt = plot(x_axis ,tvt);
14 tvt.Color = ’red’;
15 tvt.LineStyle = ’--’;
16 tvt.Marker = ’x’;
17 hold("on")
18 org1 = plot(x_axis ,org1);
19 org1.Color = ’cyan’;
20 org1.LineStyle = ’:’;
21 org1.Marker = ’p’;
22 hold("on")
23 org1 = plot(x_axis ,org2);
24 org1.Color = ’blue’;
25 org1.LineStyle = ’:’;
26 org1.Marker = ’|’;
27 hold("off")
28

29 title("NMSE vs SNR")
30 ylabel ("NMSE")
31 xlabel ("SNR - dB")
32 legend ("FISTA -1b", "1-bit FISTA", "2-bit FISTA", ...
33 ’location ’,’northeast ’)
34 saveas(figure1 ,"nmse.jpg");
35 saveas(figure1 ,"nmse",’fig’);

Listing A.2: ROCmain
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A.2 Detection Accuracy Testing Code
This section contains the code used to measure detection accuracy. The main function
calculates the error rates for all three FISTA methods then averages the results over all trials.

A.2.1 Main Code

1 %% ROC_main
2 %
3 % Author: Ethan Triplett
4 % Created: 7/15/22
5 % Last Edited: 7/24/22
6 %
7 % This code tests detection accuracy of each algorithm by

producing ROC
8 % curves. Curves are generated by classifying targets as either

detected
9 % or not based on a set of amplitude thresholds.

10 %
11 clc;
12 %clf;
13 disp(" Welcome to the FISTA ROC curve program - " + datestr(now));
14

15 %% Global Variables
16 C = 127; % Number of chips per pulse
17 Q = 8; % Number of pulses per coherent processing

interval
18 N = 4064; % Width of measurement matrix
19 M = Q*C; % Number of samples [2]
20 q_bits = 1; % Number of bits for quantization
21 num_tvt = 2; % Number of TVT values
22

23 %% Create sparse vector using target data
24

25 % % Closely Spaced Target Parameters
26 % amp1 = 3*exp(-1i*0.349);
27 % amp2 = 2.5* exp(1i*0.7821);
28 % target_data = [
29 % 2, amp2;
30 % 2485, amp1;
31 % 2500, amp2;
32 % 3250, amp2;
33 % 3251, amp1 ;];
34

35 % Widely Spaced Target Parameters
36 amp1 = 3*exp(-1i*0.349);
37 amp2 = 2.5* exp(1i*0.7821);
38 target_data = [
39 2, amp2;
40 1400, amp1;
41 2500, amp2;
42 3250, 5*exp(-1i*0.349); %amp2;%
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43 3750, amp1 ;];
44

45 % Create the sparse vector and measurement matrix
46 x = create_sparse_x(target_data ,N);
47 x_tilde = [real(x); imag(x)];
48

49 A = randn(M,N) + 1i.* randn(M,N);
50 A_tilde = [real(A), -imag(A); real(A), imag(A)];
51

52 sigma = 10.6; % Noise standard deviation
53 snr = 20*log(max(abs(target_data (:,2)))/( sigma));
54 snr_mean = 20* log(mean(abs(target_data (:,2)))/( sigma));
55

56 % Initialize data storage matrices
57 trials = 50;
58 vars = 40;
59 tp_tvt = zeros([vars ,trials ]);
60 fp_tvt = zeros([vars ,trials ]);
61 tp_org1 = zeros([vars ,trials ]);
62 fp_org1 = zeros([vars ,trials ]);
63 tp_org2 = zeros([vars ,trials ]);
64 fp_org2 = zeros([vars ,trials ]);
65

66 npv_tvt = zeros([vars ,trials ]);
67 ppv_tvt = zeros([vars ,trials ]);
68 npv_org1 = zeros ([vars ,trials ]);
69 ppv_org1 = zeros ([vars ,trials ]);
70 npv_org2 = zeros ([vars ,trials ]);
71 ppv_org2 = zeros ([vars ,trials ]);
72

73 % Perform trials
74 for i = 1: trials
75

76 % Generate new noisy measurements
77 noise = sigma .*( randn(M,1)+1i*randn(M,1));
78 y = A*x + noise;
79 yri = [real(y); imag(y)];
80 [yq_tvt , hri , yq_org1 , ud1 , udplus1_1 , yq_org2 , ud2 , udplus1_2]

= ...
81 get_quantized3(yri , q_bits , num_tvt);
82

83 % Solve
84 xhat1 = tvt_FISTA(A_tilde , yq_tvt , hri , sigma , 1e-5, 100, 150);
85 xhat2 = org_FISTA(A_tilde , ud1 , udplus1_1 , sigma , 1e-5, 1e3 , 60)

;
86 xhat3 = org_FISTA(A_tilde , ud2 , udplus1_2 , sigma , 1e-5, 1e3 , 60)

;
87

88 % Convert estimates to complex magnitudes
89 xhatc1 = xhat1 (1:N) + 1i*xhat1(N+1: end);
90 xhatc2 = xhat2 (1:N) + 1i*xhat2(N+1: end);
91 xhatc3 = xhat3 (1:N) + 1i*xhat3(N+1: end);
92
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93 %display_real_v_2est(abs(x),abs(xhatc1),abs(xhatc2),abs(xhatc3),
snr)

94

95 for j = 1:vars
96

97 % Get true positive rates and false positive rates
98 [tp_tvt(j,i), fp_tvt(j,i), npv_tvt(j,i), ppv_tvt(j,i)] = ...
99 get_error(x,xhatc1 ,j);

100 [tp_org1(j,i), fp_org1(j,i), npv_org1(j,i), ppv_org1(j,i)] =
...

101 get_error(x,xhatc2 ,j);
102 [tp_org2(j,i), fp_org2(j,i), npv_org2(j,i), ppv_org2(j,i)] =

...
103 get_error(x,xhatc3 ,j);
104

105 end
106 disp("Trial batch "+i+" complete - " + datestr(now));
107 end
108

109 % Average the TPR and FPR over all trials
110 tpr_tvt = mean(tp_tvt ,2);
111 fpr_tvt = mean(fp_tvt ,2);
112 tpr_org1 = mean(tp_org1 ,2);
113 fpr_org1 = mean(fp_org1 ,2);
114 tpr_org2 = mean(tp_org2 ,2);
115 fpr_org2 = mean(fp_org2 ,2);
116

117

118 % Display ROC curves
119 display_roc ()
120

121 AUC = [trapz(flip(fpr_tvt), flip(tpr_tvt));
122 trapz(flip(fpr_org1), flip(tpr_org1));
123 trapz(flip(fpr_org2), flip(tpr_org2))];

Listing A.3: ROCmain

A.2.2 Supporting Functions

1 %% get_error
2 %
3 % Author: Ethan Triplett
4 % Created: 7/15/22
5 % Last Edited: 7/20/22
6 %
7 % This code takes a signal estimate and the original signal and

produces
8 % the rates of false positives and true positives based on a

detection
9 % threshold amps(j). All targets below the selected amplitude are

10 % considered "not -detected ".
11 %
12 function [tpr , fpr , npv , ppv] = get_error(x,xhat ,j)
13
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14 top = max([max(abs(x)), max(abs(xhat))]);
15 % Thresholds for classifying "detected" vs "not -detected"
16 amps = [0.000000001 , linspace (0 ,0.01 ,10), linspace (0.02 ,1 ,16), ...
17 1.3, 1.6, 2.0, 2.2, 2.6, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0,

0.1+ top];
18

19 abs_xhat = abs(xhat);
20

21 % Sort estimated values by detection state
22 p = find(abs_xhat > amps(j)); %
23 n = intersect(find(abs_xhat <= amps(j)),find(abs_xhat > 0));
24

25 % Find true targets
26 act = find(x);
27

28 % Calculate confusion matrix values
29 tp = sum(ismember(act ,p));
30 fp = length(setdiff(p,act));
31 fn = 5-tp;%sum(ismember(act ,n));
32 tn = length(setdiff(n,act));
33

34 % Calculate the rates of true positive and false positives
35 tpr = tp/(tp+fn +0.00001);
36 fpr = fp/(fp+tn +0.00001);
37

38 npv = fn/(fn+tp +0.00001); % Actually NPV
39 ppv = tp/(tp+fp +0.00001); % Actually PPV

Listing A.4: ROCmain

1 %% display_roc
2 %
3 % Author: Ethan Triplett
4 % Created: 7/15/22
5 % Last Edited: 7/20/22
6 %
7 % This code plots the ROC curves of three data sets. For each

curve there
8 % needs to be two variables representing the TPR and FPR. The rows

should
9 % represent each threshold level. The columns are the result of

each
10 % trial. Data sets are averaged across all trials before plotting.
11 %
12

13 disp("ROC curve - " + datestr(now));
14

15 % Display ROC curves
16 figure1 = figure;
17 xp = plot(fpr_tvt ,tpr_tvt);
18 xp.Color = ’red’;
19 xp.Marker = ’x’;
20 hold(’on’)
21 xh1 = plot(fpr_org1 ,tpr_org1);
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22 xh1.Color = ’blue’;
23 xh1.LineStyle = ’--’;
24 xh1.Marker = ’x’;
25 hold("on")
26 xh2 = plot(fpr_org2 ,tpr_org2);
27 xh2.Color = ’green’;
28 xh2.LineStyle = ’:’;
29 xh2.Marker = ’s’;
30 hold("off")
31

32 title("ROC Curves ")
33 xlabel ("FPR")
34 ylabel ("TPR")
35 legend ("FISTA -1B", "1-bit FISTA","2-bit FISTA","Location"," southeast

")
36 saveas(figure1 ," ROC_curve.jpg");
37 saveas(figure1 ," ROC_curve",’fig’);

Listing A.5: ROCmain

A.3 FISTA Implementations
This section contains the original and TVT FISTA-1b implementations

A.3.1 Original FISTA

1 function xhat = org_FISTA(A, ud, udplus1 , sigma , step ,
max_iterations , rho)

2 %% FISTA - Fast Iterative Shrinkage -Thresholding Algorithm
3 %
4 % Author: Ethan Triplett
5 % Created: 2/23/22
6 % Last Edited: 4/12/22
7 %
8 % Solves a group -sparse radar detection problem using FISTA.
9 %

10 % Inputs:
11 % A - the all -real dictionary matrix [R, -I; I, R]
12 % ud - lower quantization threshold per measurement y
13 % udplus1 - upper quantization threshold per measurement y
14 % sigma - standard deviation of the additive noise
15 %
16 % Outputs:
17 % detections
18 %
19

20 %% Initialization
21 %disp(" Initializing org_FISTA algorithm - " + datestr(now));
22 grid_length = length(A(1,:));
23 G = grid_length /2;
24 eta = 1;
25 %rho = 30; % Regularization parameter determining

sparsity
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26 xhat = zeros([ grid_length , 1]);
27 z = zeros ([ grid_length , 1]);
28

29 % Stop conditions
30 min_change = 10^-6;
31

32

33 %% Main FISTA loop
34 %disp(" Beginning FISTA iterations - " + datestr(now));
35 for i = 1: max_iterations
36 prior_xhat = xhat;
37 prior_eta = eta;
38

39 mean = (A*z);
40 pdf_up = normpdf ((udplus1 ’-mean)./( sigma/sqrt (2)));
41 pdf_down = normpdf ((ud’-mean)./( sigma/sqrt (2)));
42 cdf_up = normcdf ((udplus1 ’-mean)./( sigma/sqrt (2)));
43 cdf_down = normcdf ((ud’-mean)./( sigma/sqrt (2)));
44 e = (pdf_up - pdf_down)./( cdf_up - cdf_down);
45 gradient = (sqrt (2)/sigma).*(A’*e);
46

47 % Perform shrinkage operation
48 h_z = z-step*gradient;
49 normed_h = sqrt(h_z(1:G).^2 + h_z(G+1:end).^2);
50 xhat (1:G) = (h_z (1:G)./ normed_h).*max(0,normed_h -step*rho);
51 xhat(G+1:end) = (h_z(G+1:end)./ normed_h).*max(0,normed_h -step*

rho);
52

53 % Update FISTA parameters
54 eta = (1+ sqrt (1+4* eta ^2))/2;
55 z = xhat + ((prior_eta -1)/eta).*( xhat - prior_xhat);
56

57 if ((max(xhat -prior_xhat)) < min_change)
58 %disp(" FISTA ended due to min_change restriction - " +

datestr(now));
59 break;
60 elseif sum(isnan(xhat)) > 0
61 %disp("ORG FISTA failed due to NaNs on iter - "+i+" - "+

datestr(now));
62 xhat = prior_xhat;
63 break;
64 end
65 end
66 %disp(" Returning estimated xhat value - " + datestr(now));
67 end

Listing A.6: ROCmain

A.3.2 FISTA-1b

1 function xhat = tvt_FISTA(A_tilde , ysq , hri , sigma , step ,
max_iterations , rho)

2 %% FISTA - Fast Iterative Shrinkage -Thresholding Algorithm
3 %
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4 % Author: Ethan Triplett
5 % Created: 6/29/22
6 % Last Edited: 7/15/22
7 %
8 % Solves a group -sparse radar detection problem using FISTA.
9 %

10 % Inputs:
11 % A - the all -real dictionary matrix [R, -I; I, R]
12 % z - complex signs created from one -bit TVT quantization
13 % hr - known real TVT thresholds
14 % hi - known imaginary TVT thresholds
15 % sigma - known noise variance
16 %
17 % Outputs:
18 % xhat - The estimated target locations
19 %
20

21 %% Initialization
22 %disp(" Initializing tvt_FISTA algorithm - " + datestr(now));
23 grid_length = length(A_tilde (1,:));
24 G = grid_length /2;
25 eta = 1;
26 %rho = 140; % Regularization parameter

determining sparsity
27 xhat = zeros([ grid_length , 1]);
28 z = zeros ([ grid_length , 1]);
29 alpha = sqrt (2)/sigma; % Replaces eta from MM paper
30

31 % Stop conditions
32 min_change = 10^-5;
33

34 %% Main FISTA loop
35 %disp(" Beginning FISTA iterations - " + datestr(now));
36 for i = 1: max_iterations
37 prior_xhat = xhat;
38 prior_eta = eta;
39

40 % Compute the gradient
41 beta = alpha.*z;
42 xri = ysq .*(( A_tilde*beta) -(alpha .*hri));
43 x_pdf = normpdf(xri);
44 x_cdf = normcdf(xri);
45

46 gradient = A_tilde ’*-( x_pdf./ x_cdf);
47

48 % Perform shrinkage operation
49 h_z = z - step.* gradient;
50 normed_h = sqrt(h_z(1:G).^2 + h_z(G+1:end).^2);
51 xhat (1:G) = (h_z (1:G)./ normed_h).*max(0,normed_h -step*rho);
52 xhat(G+1:end) = (h_z(G+1:end)./ normed_h).*max(0,normed_h -step*

rho);
53

54 % Update the estimated sparse vector and check for convergence
55 eta = (1+ sqrt (1+4* eta ^2))/2;
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56 z = xhat + ((prior_eta -1)/eta).*( xhat - prior_xhat);
57

58 if ((max(xhat -prior_xhat)) < min_change)
59 %disp(" FISTA ended due to min_change restriction - " +

datestr(now));
60 break;
61 elseif sum(isnan(xhat)) > 0
62 %disp(" FISTA failed due to NaNs - " + datestr(now));
63 xhat = prior_xhat;
64 break;
65 end
66 end
67 %disp(" Returning estimated xhat value - " + datestr(now));
68 end

Listing A.7: ROCmain

A.4 Generic Functions
This section contains all support functions not specific to the NMSE or ROC code.

1 function sparse_x = create_sparse_x(target_data ,dim)
2 %% create_sparse_x
3 %
4 % Creates a sparse vector of length dim , with non -zero indices

provided
5 % by the first column of target_data , and amplitudes provided by

the
6 % second column
7 %
8 if ~isscalar(dim)
9 len = length(dim);

10 else
11 len = dim;
12 end
13

14 sparse_x = zeros ([len ,1]);
15 sparse_x(target_data (:,1)) = target_data (:,2);
16 % The targets are directly on the grid for now , in the paper they

are not

Listing A.8: ROCmain

1 %% get_quantized
2 %
3 % Author: Ethan Triplett
4 % Created: 6/31/22
5 % Last Edited: 7/5/22
6 %
7 % This code provides quantized versions of a measurement vector

based on
8 % the bit depth provided. One -bit depth is a special case that

provides
9 % values for both time varying threshold quantization and regular

fixed
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10 % threshold quantization.
11 %
12 %
13

14

15 function [yq_tvt , h, yq_org1 , ud1 , udplus1_1 , yq_org2 , ud2 ,
udplus1_2] = ...

16 get_quantized3(y, q, num_tvt)
17

18 rmax = 0.95 * max(abs(y));
19 delta_s = rmax /(2^q);
20

21 tvt = [rmax *0.2, rmax *0.4, rmax *0.8];
22 h = tvt(randi ([1 num_tvt] ,size(y)))’;
23 yq_tvt = sign(y - h);
24

25 partition = [0]; % Only threshold without TVT
26 codebook = [-delta_s , delta_s ];
27 [index ,yq_org1] = quantiz(y,partition ,codebook);
28

29 partition_w_inf = [-inf , partition , inf];
30 ud1 = partition_w_inf(index +1);
31 udplus1_1 = partition_w_inf(index +2);
32

33 q_bits = 2;
34 D = 1:(2^ q_bits) -1;
35 partition = (-2^(q_bits -1)+D).* delta_s;
36 codebook = partition + (delta_s /2);
37 codebook = [-codebook(1,end) codebook ];
38 [index ,yq_org2] = quantiz(y,partition ,codebook);
39

40 partition_w_inf = [-inf , partition , inf];
41 ud2 = partition_w_inf(index +1);
42 udplus1_2 = partition_w_inf(index +2);

Listing A.9: ROCmain

1 %% get_error
2 %
3 % Author: Ethan Triplett
4 % Created: 6/15/22
5 % Last Edited: 7/20/22
6 %
7 % This code displays the complex magnitudes of the original signal

x vs
8 % the three signal estimates. The SNR level is added to the

filename
9 % while saving plots.

10 %
11

12 function display_real_v_3est(x, xhat1 , xhat2 , xhat3 ,snr)
13

14 disp(" Plotting real vs estimated data - " + datestr(now));
15 figure1 = figure;



84

16 xp = plot(x);
17 xp.Color = ’black’;
18 xp.Marker = ’o’;
19 hold(’on’)
20 xh1 = plot(xhat1);
21 xh1.Color = ’red’;
22 xh1.LineStyle = ’--’;
23 xh1.Marker = ’x’;
24 hold("on")
25 xh2 = plot(xhat3);
26 xh2.Color = ’green’;
27 xh2.LineStyle = ’:’;
28 xh2.Marker = ’s’;
29 hold("on")
30 xh3 = plot(xhat2);
31 xh3.Color = ’blue’;
32 xh3.LineStyle = ’--’;
33 xh3.Marker = ’p’;
34 hold("off")
35

36 title(" Signal Estimation vs Real Signal ")
37 xlabel (" Target Grid Location ")
38 ylabel (" Target Signal Amplitude ")
39 legend ("True Signal", "FISTA -1B", "2-bit FISTA","1-bit FISTA ")
40

41 saveas(figure1 ,"output -"+ round(snr)+".jpg");
42 saveas(figure1 ,"output -"+ round(snr)+".fig");

Listing A.10: ROCmain
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