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Modern agriculture is reliant on agricultural machinery for the production of food, 

fuel, and other agricultural products.  The need for producing large quantities of quality 

agricultural products while sustainably stewarding environmental resources has led to the 

integration of numerous digital technologies into modern agricultural machinery, such as 

the CAN bus and telematic control units (Liu et al., 2021).  An unintended drawback of 

these integrated digital technologies is the opportunity for these components to become 

cyberattack vectors.  Cyberattack instances have increasingly targeted critical 

infrastructures, with numerous reports from agencies such as the Federal Bureau of 

Investigation (FBI) and Department of Homeland Security (DHS) warning of the 

significance of cyberattacks targeting the agricultural infrastructure specifically 

(Boghossian et al., 2018; Federal Bureau of Investigation, 2021; Federal Bureau of 

Investigation, 2022).  Agricultural machinery, which is included in the agricultural 

infrastructure, has the potential to be targeted by cyberattacks, although the impacts are 

not well quantified or understood.  This project demonstrates a hypothetical case study, 

where cyberattacks targeting in-season side-dress nitrogen application to corn could 

cause as much as $100 or more in profit loss per acre.  Literature discussing practical 

cybersecurity solutions for agricultural machinery from both industry and academic 
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institutions is absent, therefore two possible solutions were demonstrated in this project: 

modeling and the use of security testbeds.  A four-step modeling methodology was 

developed and investigated as a solution in identifying the most security-critical areas of 

a machine.  Two specific cyberattack scenarios were modeled to demonstrate the 

potential of the modeling methodology.  A Security Testbed for Agricultural Vehicles 

and Environments (STAVE) was also developed as a useful solution for the identification 

of cybersecurity vulnerabilities to agricultural machinery (Freyhof et al., 2022).  A replay 

attack and wireless signal recordings were performed to evaluate various components on 

STAVE. 
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Chapter 1: INTRODUCTION  

1.1. Background and Motivation 

Modern agricultural equipment has been an essential component during the transition 

from small acre subsistence farming to agriculture as we know it today (Liu et al., 2021). 

As a result, today’s modern agricultural production system is heavily dependent on 

agricultural machinery such as tractors and combine harvesters to efficiently produce 

large amounts of food, fuel, and other agricultural products. Recent increases in 

production and efficiency can largely be attributed to improved agronomic practices and 

precision agricultural techniques, enabled by the integration of digital and networking 

technologies into modern equipment (Freyhof et al., 2022).  These technologies have 

allowed farmers to transition to the ‘next era’ of data-driven agriculture that is heavily 

dependent on precision agricultural practices. 

 According to the International Society of Precision Agriculture (ISPA), precision 

agriculture is a general area of agricultural management that utilizes “temporal, spatial 

and individual data” to make informed management decisions to improve “efficiency, 

productivity, quality, profitability and sustainability of agricultural production” 

(“Precision Ag Definition,” n.d.). The continued advancements of modern technologies 

such as autonomy, will further the implementation of precision agricultural practices 

(Boubin et al., 2019).   For example, John Deere recently released a tractor (Model: 8R) 

that will operate autonomously without an operator (Tibken, 2022).  The introduction of 

autonomous technologies and equipment will continue to accelerate the implementation 

of precision agricultural practices by allowing more data to be collected and reducing 
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barriers to farmers such as labor shortages (Rahmadian and Widyartono, 2020).  

However, the increased integration of digital and autonomous technologies has created 

many vulnerabilities within modern agricultural equipment (Federal Bureau of 

Investigation, 2022; Nikander et al., 2020; Sparrow and Howard, 2021).   

In the past few years, a number of cyberattacks (Federal Bureau of Investigation, 

2021; McVan and Midwest, 2021) have targeted farms and other agricultural 

infrastructure.  For example, in January 2021, a ransomware attack targeting a US farm 

caused around $9 million in financial losses (Federal Bureau of Investigation, 2021), 

while a major meatpacking company was reported to have paid $11 million in ransom to 

cybercriminals in another ransomware attack (McVan and Midwest, 2021).  Multiple 

recent reports have warned that agricultural machinery could be the next targets for 

cyberattacks since agricultural production is so heavily reliant on them (Baker and Green, 

2020; Boghossian et al., 2018). 

This results in the question: what is being done to protect agricultural equipment, and 

consequentially, agricultural production systems from further cyberattacks?  For the 

purposes of this research, the cybersecurity of agricultural machinery is defined as the 

process of ensuring that agricultural machinery will be available and secure to safely 

perform tasks as intended, without allowing critical data, for example yield or planting 

data collected during farming operations, to be accessed by unauthorized parties.  

Cybersecurity of agricultural machinery would protect against events such as 

ransomware, denial of service, or unsafe equipment manipulation. 
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In the broader agricultural community, cybersecurity research has examined solutions 

to areas such as IoT devices and communication networks (Demestichas et al., 2020; 

Ferrag et al., 2022). Other literature sources have emphasized the importance of 

cybersecurity to agriculture and agricultural machinery (Boghossian et al., 2018; “Risks 

of using AI to grow our food are substantial and must not be ignored, warn researchers,” 

2022) but provide little to no practical implementation or solutions. Cybersecurity 

research in the automotive industry (“Automotive Cybersecurity by Design,” 2021; 

Burkacky et al., 2020; Yu and Luo, 2020) supports the need to include cybersecurity 

practices during the entire lifecycle of the vehicle or machine, including the design 

process.  These findings are directly applicable to agricultural machinery since modern 

automotive and agricultural vehicles contain similar, complex digital communication 

structures.  Since there is very limited research describing practical solutions to mitigate 

cyberattacks targeting agricultural machinery, there is a need for further research that 

could provide solutions to this emerging issue. 

The problem statement for this thesis is as follows: What potential solutions can be 

used to strengthen the cybersecurity and design process of agricultural machinery 

and vehicles?  The problem statement will be answered through three specific 

contributions:  

1) Demonstrate a case study that calculates the direct financial costs associated with a 

specific cyberattack impacting a modern agricultural machine.  The results from 

this approach will be discussed from the perspective of how this information can 
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help mitigate risk and identify potential countermeasures for the specific, modern 

agricultural machine. 

2) Investigate a modeling methodology, which can be used to aid in the design of 

secure agricultural machinery and assist with identifying critical parts of the 

subsystem where cybersecurity vulnerabilities could be the most detrimental. 

3) Develop STAVE, a Security Testbed for Agricultural Vehicles and Environments, 

for identifying and evaluating current machinery or prototypes for cybersecurity 

vulnerabilities through testbed solutions. 

1.2. Thesis Outline 

The following is an overview of the chapters in this thesis: 

Chapter 2 presents an overview of the literature related to modern agricultural 

equipment, general cybersecurity terminology, and existing solutions for cybersecurity of 

agricultural machinery and the broader agricultural community.  Further literature will be 

presented throughout the thesis, where appropriate for each chapter. 

Chapter 3 presents an approach to analyze the costs associated with a cyberattack 

involving an in-season nitrogen application operation.  The research contributions for this 

chapter will include multiple charts describing the attack, including financial analysis and 

a discussion of the broader impacts of cyberattacks targeting modern agricultural 

machinery.  

Chapter 4 presents an approach to include cybersecurity as a central focus during the 

early design process of agricultural machinery.  This approach focuses on the use of finite 

state machine and automata theory modeling to assist in the identification of security 
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threats early in the design phases of agricultural machinery.  The research contribution 

will present a case-study, where modeling is used to aid in the design of a subsystem on 

an agricultural machine: Flexible Structured Robotic Platform (Flex-Ro).  

Chapter 5 continues the discussion surrounding the discovery and identification of 

cybersecurity vulnerabilities in agricultural machinery and presents STAVE – a Security 

Testbed for Agricultural Vehicles and Environments, as one solution to assist in this 

effort.  The research contribution will be the demonstration of STAVE and testbeds, as a 

tool to assist in the identification of cybersecurity vulnerabilities to agricultural 

machinery. 

Chapter 6 concludes the research and presents potential areas for future research related 

to cybersecurity and agricultural machinery. 

 

Chapter 2: LITERATURE REVIEW 

2.1. History of Agriculture 

Agriculture has seen many major advancements throughout history (Liu et al., 2021).  

The first agricultural revolution saw the transition from hunting and gathering to more 

organized agriculture as we know it today (Bowles and Choi, 2019).  The second 

agricultural revolution saw an increase in productivity due to labor availability and the 

increase in production of farming grounds (“agricultural revolution,” n.d.).  The third 

agricultural revolution of the 1950-60’s, or Green Revolution, featured the utilization of 

synthetic chemicals and fertilizers which greatly increased the productivity of agricultural 

production systems (Pingali, 2012).  Modern agriculture, or the fourth agricultural 
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revolution, will be heavily dependent on Artificial Intelligence (AI) and autonomous 

solutions to solve many current challenges facing agriculture today (Chivers and Rose, 

2020).  Modern agriculture utilizes precision agricultural techniques which leverage 

highly technical equipment to improve productivity (Raj et al., 2021).   

Precision agriculture plays a critical role in modern agriculture (“Precision Ag 

Definition,” n.d.).  Modern farming equipment has made these practices possible, since 

this equipment has improved in the collection of high-resolution data for a variety of 

production systems.  For example, corn production has seen the benefit of modern 

technologies in precision agricultural applications and practices such as variable rate 

applications or site-specific crop management (Daberkow and McBride, 2000). Variable 

rate application refers to the practice of adjusting input rates throughout a field based on a 

variety of input factors to maximize profit (Alley et al., 2011).  Site-specific crop 

management is a more general term that includes variable rate application, with goals of 

increasing profitability and sustainability by managing resources based on the specific 

‘site’ (Alley et al., 2011).  Utilizing variable rate applications, for inputs such as nitrogen, 

is an area of research that is being practiced by numerous corn producers across the U.S.  

and globally (Iqbal et al., 2020; “Precision Nitrogen Application,” 2014). 
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  Figure 2.1: Timeline of agricultural 
machinery and cybersecurity 
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Agricultural equipment has advanced greatly since the introduction of the gasoline 

tractor (Figure 2.1) in 1892 (“The Tractor,” n.d.).  With the increase in farming 

productivity and acreage per farm, agricultural equipment quickly increased in 

horsepower and size.  The year 1920 saw the establishment of the Nebraska Tractor Test 

Lab (NTTL) as a means for validating tractor performance, as agricultural equipment 

advanced rapidly (“NTTL: Only U.S. OECD Tractor Test Lab,” n.d.).  Modern 

agricultural equipment has been built with as much as 640 horsepower to manage the 

large size of many modern farms (“9 Series Tractors | 9RX 640 | John Deere US,” n.d.).  

Moreover, the dependence on synthetic chemicals and fertilizer during the Green 

Revolution, has increased the need for specialty agricultural equipment such as fertilizer 

applicators (“Tractors and Green Revolution in India,” n.d.).  Another advancement is the 

introduction of Controller Area Network (CAN) in 1986, and its integration into 

agricultural equipment in the years that followed, which has allowed for larger equipment 

to offer more precision control and functionality (“CAN in Automation (CiA): History of 

the CAN technology,” n.d.; John Deere CAN Bus Presentation, 2021).  Navigation 

innovations such as Real-Time Kinetic (RTK) and the introduction of auto-steer in 1992 

and 1999 respectively, have allowed for more precise navigation of agricultural 

equipment (“Timeline of Ag Equipment ‘Firsts,’” 2009).  Modern equipment is 

commonly equipped with Global Positioning System (GPS) guidance, auto-steer, CAN, 

telematics, and numerous other technologies that enable equipment to be used for diverse 

applications (Baillie et al., 2018).  
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Autonomous technologies have greatly advanced over the last decade, with numerous 

autonomous technologies being applied to the agricultural industry in efforts to improve 

efficiencies and reduce pressure from challenges such as labor shortages (Rose et al., 

2021; Sparrow and Howard, 2021).  Some examples of autonomous agricultural 

machinery offered by original equipment manufacturers (OEMs) include John Deere’s 

newly released autonomous model 8R tractor (Tibken, 2022), Raven’s OMNiPOWER 

platform (“Gains For the Farmer and the Farm,” 2022), and the Monarch Electric Tractor 

(“Monarch Tractor Electric Tractor,” n.d.).  Numerous other autonomous technologies 

are being integrated into many other areas of agriculture, including specialty crop 

equipment, meatpacking, large combine harvesters and much more.  The future will see a 

significant amount of automation be integrated into agriculture (Paukner, 2022).  

However, with all the introduction of autonomous technologies, cybersecurity will 

become a greater concern to the agricultural community. 

2.2. Introduction to Cybersecurity 

Cybersecurity is the protection of computer networks, data, and devices from 

unauthorized access or criminal use and the practice of ensuring confidentiality, integrity, 

and availability of information (Fidler, 2017; “What is Cybersecurity?,” 2019).  

Cybersecurity can also include securing areas where computers are used to harm the 

greater society such as hate crimes or cyberbullying (Veale and Brown, 2020). The recent 

increases in digital technologies and their integration into numerous areas of modern 

society, such as industrial control systems, personal home applications, automotive, 

agricultural, and business operations, have increased the significance of cybersecurity 
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(Veale and Brown, 2020).   For this thesis, cybersecurity will focus mainly on the 

definition related to the CIA triad and the goal of securing data and computer systems 

from unauthorized access or attacks. 

The CIA triad of cybersecurity refers to the confidentiality, integrity, and availability 

of cyber systems. Confidentiality in cybersecurity means that only authorized people, 

parties, or systems can access specific data (Pfleeger et al., 2015).  This also could be 

known as the principle of least privilege, where only the minimum number of people 

necessary are given access to data (Gegick and Barnum, 2005).  Within agriculture, there 

are many data sources where maintaining confidentiality will give a farmer a competitive 

advantage.  For example, the leaking of confidential data pertaining to the specific 

operations of a farm, such as yield or agrochemical inputs, could help an adversary to 

‘understand potential market drivers or to identify struggling farms with underutilized 

land that can be bought lower than the standard market price’ (Baker and Green, 2020).  

A lack of confidentiality could potentially expose a farmer or personnel’s private 

information, leading to identity fraud. 

Integrity within the cybersecurity context means that data or systems remain 

consistent and unaltered, unless modified in appropriate ways by authorized parties 

(Pfleeger et al., 2015).  In the context of agriculture, examples of data or systems that 

require integrity include planting population maps, fertilizer input prescriptions, heating 

ventilation and air conditioning (HVAC) systems to cool livestock, or livestock feeding 

rations (Baker and Green, 2020).  Integrity in agriculture could also pertain to equipment 

operation commands or irrigation schedules (Chamarajnagar and Ashok, 2019).  The loss 
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of integrity of these time-critical datasets or systems could lead to significant profit losses 

or damages extending beyond the farming operation (Boghossian et al., 2018).   

Availability within cybersecurity means that a system or dataset is useable or 

accessible when expected or needed (Pfleeger et al., 2015).  Availability of many time-

critical systems such as agricultural equipment, logistics, or operation management 

datasets are crucial for optimal efficiency and profitability.  A loss of availability could 

require farmers to use legacy systems, if available, or pay a ransom to make systems 

available, in the case of ransomware (Baker and Green, 2020; Sontowski et al., 2020). 

2.3. Cybersecurity Concerns in the Agriculture Community 

Cyberattacks targeting agriculture have become more prevalent over the past few 

years.  Two recent Federal Bureau of Investigation (FBI) reports (Federal Bureau of 

Investigation, 2021; Federal Bureau of Investigation, 2022) have outlined numerous 

cyberattacks that have targeted entities in the agricultural sector.  The first report (Federal 

Bureau of Investigation, 2021) published in September 2021, brought awareness to the 

fact that ransomware attacks could cause financial loss and ultimately impact the food 

supply chain.  An important attack highlighted in the report was the JBS meatpacking 

cyberattack in May 2021, that caused major disruptions to meat prices and resulted in 

JBS paying a $11 million ransom (“Meat giant JBS pays $11m in ransom to resolve 

cyber-attack,” 2021).  Another attack targeted a US farm in January 2021, which 

ultimately resulted in $9 million in losses.  The second FBI report (Federal Bureau of 

Investigation, 2022) in April 2022 warned that ransomware cyberattacks could 

strategically target agricultural producers during critical seasons such as planting and 
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harvesting.  The report noted that there were six known cyberattacks targeting grain 

cooperatives in the fall of 2021 and two attacks in early spring 2022.   

There have also been numerous studies that have investigated cybersecurity solutions 

to the general agricultural community.  For example, a study conducted in Finland 

focused on cybersecurity practices and requirements for communication networks within 

six dairy farms (Nikander et al., 2020).  In a study conducted by (West, 2018), a 

prediction model framework was created to assess and quantify cybersecurity 

vulnerabilities in technology and the precision agricultural environment it is adapted to.  

Smart farming is another name for the data-driven, precision farming techniques of 

modern agriculture.  Multiple studies discuss cybersecurity to smart farming systems 

such as (Barreto and Amaral, 2018) which highlights some important cybersecurity 

challenges to smart farming such as preventing denial of service (DoS) attacks to 

important IoT sensors.  A thorough literature survey conducted by Demestichas et al. 

(2020), compiles a large amount of studies that discuss threats to smart farming and 

internet of things (IoT) devices in agriculture.  The survey by Demestichas et al. 

highlights the fact that technologies, such as IoT devices, are being rapidly adopted and 

stakeholders need to exercise caution with how they adopt the new technologies to avoid 

costly cyberattacks.  Gupta et al. (2020), presents more challenges to smart farming 

including a discussion on the multi-layer layout of the modern farming communication 

architecture and some examples of possible cyberattacks (Gupta et al., 2020).  The Jahn 

Research Group discusses smart farming cybersecurity challenges related to food 

processing and the lack of cyber insurance coverage (Jahn et al., 2019).  Yazdinejad et al. 
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(2021), conducted another thorough study of smart farming vulnerabilities and presented 

a case study on the process of a cyberattack (Yazdinejad et al., 2021).  The study also 

presented a classification framework of attacks that target precision agriculture.  

IoT devices will be common throughout smart farming and future farming practices.  

Ahanger and Aljumah, (2019), discuss security issues and defense mechanisms to protect 

IoT devices and found that there is need for improvement in the security of these devices 

(Ahanger and Aljumah, 2019).  Ametepe et al. (2019), discusses a secure encryption 

method for IoT devices since the devices contain limited computational resources, as 

compared to larger computing devices that employ more robust data encryption methods 

(Ametepe et al., 2019).   Angyalos et al. (2021), discusses the challenges with securing 

the modern agricultural system and that currently the benefits outweigh the risks of 

implementing modern technologies (Angyalos et al., 2021).  The integrity of the data 

produced by IoT devices in agricultural settings is discussed in a paper by Chamarajnagar 

and Ashok (2019) and found in their use-case analysis that threats to IoT devices could 

potentially be identified with 80% real-time accuracy and 90% precision.  IoT-based 

agricultural devices and blockchain are investigated in a study by (Ferrag et al., 2020) 

and found that there are many areas, such as the design of practical and compatible 

cryptographic protocols, that need further research.  Cybersecurity of IoT devices for the 

application of water management in agriculture, are also an important challenge to 

address since they could affect much more beyond the farm (Kamienski et al., 2018). 

Some possible solutions to improve cybersecurity include the discussion of intrusion 

detection systems.  A survey by (Ferrag et al., 2022) evaluates current intrusion detection 
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systems used to protect assets of the Agricultural 4.0 era.  Prodanović et al., presents a 

data security model to protect agricultural wireless sensor networks (WSN) and found 

that it is possible to optimize hardware and software resources to protect such networks 

(Prodanović et al., 2020).  

Cyberbiosecurity is discussed in a paper by (Duncan et al., 2019) which is the 

combination between cybersecurity, biosecurity, and cyber-physical security.  The paper 

mentions the need for a coherent effort to address these issues across the United States 

(U.S.) agricultural landscape.  Geil et al. (2018), conducted a survey of farmers in the 

U.S. to assess cybersecurity practices and found that there are large gaps in security 

knowledge in the agricultural community (Geil et al., 2018).  Outside the United States, a 

report by researchers from Australia discussed the need for cybersecurity and if producers 

are properly prepared for cyberattacks (Borohl, 2021). 

2.4. Cybersecurity Concerns to Agricultural Machinery and Vehicles 

Agricultural machines perform many crucial tasks such as spraying, planting, and 

harvesting.  Automation can already be found on many subsystems of current agricultural 

machinery, such as CNH’s OptiSpread (Eckelkamp and Humphreys, 2022) on combine 

harvesters, with more levels of autonomy to come in the near future.  Many of these 

automated features on agricultural machines will be controlled remotely with wireless 

cellular networks through platforms such as JD Operation Center application for John 

Deere Equipment (“Data Management | Operations Center | John Deere US,” n.d.). 

Security of all devices and machines in the farming infrastructure will be important.  

Currently there are no documented cases of cyberattacks that targeted agricultural 
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machinery specifically, although there are some related cyber instances.  A cyberattack in 

May 2022 targeted a major agricultural machinery manufacturer, AGCO, which resulted 

in the shutdown of multiple parts of their IT system (Rattigan, 2022).  Although not a 

cyberattack, John Deere demonstrated the capability to remotely shut down tractors after 

they were stolen from Ukrainian farmers (Holderith, 2022). 

There also has been specific research to investigate solutions to cybersecurity 

vulnerabilities on agricultural machinery.  One study demonstrated a Denial of Service 

(DoS) attack to on-field sensors with applications to agricultural equipment (Sontowski et 

al., 2020).  The limited number of practical solutions presented in literature for 

cybersecurity of agricultural machinery and the warning that cybersecurity of agricultural 

technologies and machinery is not being given enough serious consideration (Boghossian 

et al., 2018), highlights the need to investigate solutions for these critical agricultural 

machines.   

 

Chapter 3: IMPACTS OF CYBERATTACKS TO PRECISION 

AGRICULTURAL OPERATIONS 

This chapter presents a case study that will build a hypothetical scenario of a 

cyberattack targeting a critical farming operation: in-season nitrogen application to corn.  

An investigation of the tangible and intangible effects of the cyberattack to the farmer 

and broader agricultural community will be analyzed to determine how the significance 

of such attacks should inform cybersecurity mitigation decisions for agricultural 
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machinery. The quantity of financial resources that should be invested to secure 

agricultural machinery during the design process will also be discussed.  

3.1. Background 

Commodity corn production makes up about 24% of the United States (U.S.) cash 

crop industry with 15.1 billion bushels being produced in 2021 (Barrett, 2022).  This 

equates to approximately $48 billion in annual revenue (Kassel, 2022).  Water, soil, light, 

and proper nutrients are all important for optimal corn yields, with the average US corn 

yield totaling 177.0 bushels/acre in 2021 (Barrett, 2022).  Nitrogen is one of the key 

nutrients in corn production, as research has shown a high correlation between plant 

available nitrogen and yield (Puntel et al., 2016; Shapiro, n.d.). Nitrogen can be supplied 

to a corn crop from many sources such as synthetic fertilizers, manure, and crop residues.  

Since nitrogen is a mobile nutrient, proper management is needed to prevent nitrogen 

loss, resulting in negative environmental impacts and profit losses.  As of March 2022, 

nitrogen fertilizer prices were at record highs, with costs ranging from $0.93-

$1.10/pounds of nitrogen (Quinn and Reporter, 2022), increasing the urgency for proper 

nitrogen management practices. 

Nitrogen management has been an important topic of research for many years in 

efforts to increase farmer’s profits and decrease the negative environmental impacts 

resulting from poor management practices (Cassman et al., 2002).  Most farmers rely on 

synthetic fertilizers as a main source of nitrogen for their corn crops, with common 

synthetic nitrogen fertilizers being Anhydrous Ammonia (NH3), Urea, and UAN(28-

32%) (Sellars and Nunes, 2021).  Anhydrous Ammonia can be injected into the soil in the 
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fall or early spring before planting and is the source from which many other synthetic 

nitrogen fertilizers are made (Sellars and Nunes, 2021).  Urea can be broadcast as a dry 

fertilizer and incorporated into the soil to prevent nitrogen volatilization (Shaver, 2014).  

Urea Ammonium Nitrate (UAN 28-32%) are liquid fertilizers that can be applied in-

season and are typically safer to handle than other synthetic nitrogen fertilizers (Sellars 

and Nunes, 2021; Shaver, 2014).  Research has shown that corn requires nitrogen at 

various points during the growing season, with the highest uptake occurring around V10 

(Bender et al., 2013; “Nitrogen stabilizers,” 2018; Sellars and Nunes, 2021).  To prevent 

nitrogen losses due to leaching or volatilization after an early season nitrogen application, 

in-season nitrogen applications have been recommended so the corn crop can utilize 

nitrogen soon after it is applied (Shaver, 2014).  Side-dress nitrogen application of liquid 

fertilizer or fertigation have become common methods for in-season nitrogen application 

(Stansell, 2021). 

Since there are multiple forms of nitrogen fertilizer, different types of fertilizer 

application equipment have evolved.  Broadcast spreaders are used to apply granular 

nitrogen fertilizer.  Anhydrous ammonia fertilizer injection equipment is built to handle 

pressurized anhydrous ammonia, where modern equipment is capable of variable rate 

applications.  Liquid side dress equipment is built to inject liquid nitrogen sources close 

to the crop.  Side dress equipment has evolved from ground driven units to hydraulic or 

electrically controlled units that are capable of variable rate applications.  The rest of the 

background section will focus on nitrogen side-dress equipment as applied to this case 

study. 
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Nitrogen side-dress equipment is built around some fundamental technologies.  

Liquid nitrogen fertilizer originates in a tank and is moved through a series of pumps and 

valves to the output nozzles (Figure 1.1).  Side-dress equipment has progressed from 

ground driven pumps with fixed output rates to more modern equipment with variable 

application rate capabilities. Modern, variable-rate nitrogen equipment can be controlled 

over the CAN bus, operating under the ISOBUS or ISO 11783 protocol (“NUTRI-

PLACER® 920 & 2800 FERTILIZER APPLICATORS,” n.d.).  Commands are sent 

from the tractor which control the pressure and flow rate produced from a pump on the 

implement.  Section control valves are utilized downstream from the pump, to control the 

flow to various sections or nozzles across the implement.  Finally, nozzles are sized to 

facilitate the proper flow rates needed for a given operation.  Flow meters and pressure 

gauges are built into the implement which provide feedback on the current state of the 

implement over the CAN bus, which can be displayed on the virtual terminal in the 

tractor.  This allows the operator to get real-time feedback on the state of the operation. 

 

Figure 3.1 Liquid Side-Dress Equipment 
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 This chapter will contribute to this thesis by demonstrating the potential financial 

significance that a cyberattack targeting a precision agricultural operation could have by 

providing charts, financial estimates, of discussions of the attacks. Section 3.2 outlines 

the research methodology used to analyze and calculate the tangible and intangible 

impact of a cyberattack to in-season nitrogen operations.  Section 3.3 describes the results 

and analysis of three hypothetical cyberattack scenarios.  Section 3.4 will also discuss the 

results and broader impacts to the agricultural community and future agricultural 

machinery. 

3.2. Research Methodology 

3.2.1. Case Study Criteria 

Since there is a high degree of variability between farming operations, this case study 

will use a hypothetical 100-acre rainfed corn farming scenario, where a nitrogen side-

dress application is altered by a cyberattack.  The goal of this case study is to demonstrate 

the specific and broader impacts from a cyberattack to an agricultural operation and how 

they can inform mitigation and equipment design decisions. Some criteria and 

assumptions were needed to build this case study which fall under four categories: 

machinery, field location, nitrogen recommendation, and yield calculation.  

First, for these cyberattacks to be feasible, the machinery will need to be modern, 

with variable rate capabilities.  Since a cyberattack would ultimately result in the 

manipulation of the implement applying nitrogen, any implements without variable rate 

capabilities or that are not controlled by messages sent from a tractor operating the 

implement, will have no practical means of undergoing a cyberattack.  Many large farms 



20 

   

 

in the US are equipped with modern, variable-rate application equipment which makes 

this assumption reasonable.  A second criteria of the machinery is that the physical 

constraints of the implement allow for the specific cyberattack to take place. For 

example, the implement would need to have the capability to increase chemical 

application pressure and flow rate to reach the outlined attack application rates.  The 

implement would also need application orifices that allow for a large variation in 

fertilizer application rates. 

The location for this hypothetical case study will be Saunders County, Nebraska.  

Yield goals, soil nitrate levels, and soil organic matter levels will all be generated from 

values relative to Saunders County.  The average yearly precipitation of Saunders County 

is 31 inches (“PRISM Climate Group at Oregon State University,” 2021) with a Hot 

Summer Continental Climate according to the Koppen Climate Classification (“Omaha, 

Nebraska Koppen Climate Classification (Weatherbase),” n.d.).  The average yield for 

rainfed cornfields in Saunders County, Nebraska is around 155 bushels/acre for rainfed 

corn fields from 2008-2018 (“USDA - National Agricultural Statistics Service - Quick 

Stats Lite,” 2018), therefore yield target values will be set between 150-190 bushels per 

acre for the hypothetical scenario. 

   

𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 =  [35 + (1.2 × 𝐸𝐸𝐸𝐸) − (8 × 𝑁𝑁𝑂𝑂3 − 𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝) − (0.14 × 𝐸𝐸𝐸𝐸 ×
𝑂𝑂𝑂𝑂) − 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑁𝑁 𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐] × 𝑃𝑃𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑇𝑇𝑐𝑐𝑝𝑝𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎   (Eq. 1) 

where 
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 = recommended nitrogen input for corn grain (lb/ac) 
𝐸𝐸𝐸𝐸 = expected yield (bu/ac) 
𝑁𝑁𝑂𝑂3 − 𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝 = average nitrate-N concentration in the root  

zone (2–4 foot depth) in parts per million 
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𝑂𝑂𝑂𝑂 = percent soil organic matter (min 0.5%, max 3%) 
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑁𝑁 𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐 = include N from previous legume crop,  

manure and other organic material applied, and irrigation 
water N. 

𝑃𝑃𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎  
= price adjustment coefficient 

𝑇𝑇𝑐𝑐𝑝𝑝𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  
= adjustment factor for fall, spring, and split  

applications = 0.95 for split application 
 

 

This case study will use the UNL nitrogen formula since it was developed using fields 

across Nebraska (Shapiro et al., 2019). The UNL Nitrogen formula (Eq. 1) considers 

numerous factors when calculating optimal nitrogen fertilizer rates (𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟) for a corn crop.  

Expected yield (𝐸𝐸𝐸𝐸) is the first factor in the equation, where farmers can target specific 

yield goals for the upcoming corn crop based on factors such as historic yield data.  This 

case study will assume that the yield target values are set to the highest average yield 

values that are appropriate for the specific field based on historic yield data.  Soil nitrate 

levels (𝑁𝑁𝑂𝑂3 − 𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝 ) and soil organic matter (𝑂𝑂𝑂𝑂) are the next factors in the equation, 

which can be determined through soil tests.  Other nitrogen contributions (Figure 3.2) 

from previous legumes, manure, crop residues, and irrigation water are also factored into 

the equation. Finally, nitrogen application timing (Figure 3.2) and price adjustment (Eq. 

2) are used to adjust the recommended amount of nitrogen for a given corn crop. 
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Figure 3.2: UNL Nitrogen Formula Nitrogen Credits and Timing Adjustments 

 

𝑃𝑃𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎 = 0.263 + �0.1256 ∗ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑃𝑃𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐

� − �0.00421 ∗ � 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑃𝑃𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐

�
2
�        (Eq. 2) 

where 
𝑃𝑃𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎  

  = price adjustment coefficient 
𝑃𝑃𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 = price of corn ($/bu) 
𝑃𝑃𝑐𝑐𝑛𝑛𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛𝑟𝑟𝑐𝑐 = price of nitrogen ($/lb) 

 

  

𝐸𝐸𝐸𝐸 =  max [𝐸𝐸𝐸𝐸𝑚𝑚𝑛𝑛𝑐𝑐,   min �𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 ,   
� 𝑁𝑁𝑐𝑐𝑟𝑟𝑛𝑛𝑛𝑛
𝑃𝑃𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑟𝑟𝑎𝑎𝑎𝑎×𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛𝑐𝑐𝑛𝑛𝑟𝑟𝑎𝑎𝑎𝑎

+(8∗𝑁𝑁𝑂𝑂3−𝑁𝑁 𝑝𝑝𝑝𝑝𝑚𝑚)−35+𝑐𝑐𝑛𝑛ℎ𝑟𝑟𝑟𝑟 𝑁𝑁 𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑛𝑛𝑛𝑛𝑐𝑐�

1.2−(0.14∗𝑂𝑂𝑂𝑂)
�]   (Eq. 3) 

where: 
𝐸𝐸𝐸𝐸 = expected yield (bu/ac) 
𝐸𝐸𝐸𝐸𝑚𝑚𝑛𝑛𝑐𝑐 = minimum expected yield (bu/ac) 
𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 = maximum expected yield (bu/ac) 
𝑁𝑁𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟 = recommended nitrogen input for corn grain (lb/ac) 
𝑁𝑁𝑂𝑂3 − 𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝 = average nitrate-N concentration in the root  

zone (2–4 foot depth) in parts per million 
𝑂𝑂𝑂𝑂 = percent soil organic matter (min 0.5%, max 3%) 
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑁𝑁 𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐 = include N from previous legume crop,  

manure and other organic material applied, and irrigation 
water N. 

𝑃𝑃𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎  
= price adjustment coefficient 

𝑇𝑇𝑐𝑐𝑝𝑝𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  
= adjustment factor for fall, spring, and split  
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applications = 0.95 for split application 
 
 

𝐴𝐴𝐸𝐸 =  max [𝐸𝐸𝐸𝐸𝑚𝑚𝑛𝑛𝑐𝑐,   min �𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 ,   
�

𝑁𝑁𝑐𝑐𝑟𝑟𝑛𝑛𝑛𝑛,𝑟𝑟𝑐𝑐𝑛𝑛
𝑃𝑃𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑟𝑟𝑎𝑎𝑎𝑎×𝑇𝑇𝑛𝑛𝑇𝑇𝑛𝑛𝑐𝑐𝑛𝑛𝑟𝑟𝑎𝑎𝑎𝑎

+(8∗𝑁𝑁𝑂𝑂3−𝑁𝑁 𝑝𝑝𝑝𝑝𝑚𝑚)−35+𝑐𝑐𝑛𝑛ℎ𝑟𝑟𝑟𝑟 𝑁𝑁 𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑛𝑛𝑛𝑛𝑐𝑐�

1.2−(0.14∗𝑂𝑂𝑂𝑂)
�]   

(Eq. 4) 

where: 
𝐴𝐴𝐸𝐸 = actual yield (bu/ac) 
𝐸𝐸𝐸𝐸𝑚𝑚𝑛𝑛𝑐𝑐 = minimum expected yield (bu/ac) 
𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚 = maximum expected yield (bu/ac) 
𝑁𝑁𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟,𝑎𝑎𝑟𝑟𝑛𝑛 = actual nitrogen input for corn grain (lb/ac) 
𝑁𝑁𝑂𝑂3 − 𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝 = average nitrate-N concentration in the root  

zone (2–4 foot depth) in parts per million 
𝑂𝑂𝑂𝑂 = percent soil organic matter (min 0.5%, max 3%) 
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑁𝑁 𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐 = include N from previous legume crop,  

manure and other organic material applied, and irrigation 
water N. 

𝑃𝑃𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎  
= price adjustment coefficient 

𝑇𝑇𝑐𝑐𝑝𝑝𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  
= adjustment factor for fall, spring, and split  

applications = 0.95 for split application 
 

 

 

A real case study could try these scenarios on actual corn and measure the resulting 

yield after the cyberattacks.  Since this case study is only building hypothetical scenarios, 

a formula derived from the UNL nitrogen formula will be used to calculate yield.  

Expected (𝐸𝐸𝐸𝐸) and actual yield (𝐴𝐴𝐸𝐸) will be calculated by rearranging the UNL Nitrogen 

formula to solve for yield.  Eq. 3 and Eq. 4 demonstrate how 𝐸𝐸𝐸𝐸 and 𝐴𝐴𝐸𝐸 are calculated 

respectively.  The maximum and minimum attainable yield on this field (𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚  and 

𝐸𝐸𝐸𝐸𝑚𝑚𝑛𝑛𝑐𝑐) will be set as follows. A 30-bushel yield boost above expected yield values will 

be the maximum attainable yield if nitrogen is overapplied above prescribed rates.  The 

30-bushel yield boost is an arbitrary number and is set to limit maximum yield values that 

are unrealistic for the specific conditions and location of this hypothetical scenario.  This 
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assumes that yield target values (EY) are set at the highest, reasonably attainable value 

across the field, therefore gaining more than a 30-bushel yield boost by overapplying 

nitrogen would be unrealistic.  The minimum attainable yield value will be 100-bushels.  

This means that if no nitrogen is applied to the planted corn, the corn would still yield 

100-bushels.  The reality is yield values could be lower than 100-bushels if no nitrogen is 

applied, but this number is set to limit unrealistically low yield values.  Corn prices vary 

depending on market prices and the quality of the corn being sold.  For this study, it will 

be assumed that all corn will be sold at a constant price of $7.53 based on the market 

price as of March 22, 2022 (“Corn PRICE Today | Corn Spot Price Chart | Live Price of 

Corn per Ounce | Markets Insider,” n.d.). Since this case study scenario will be based on 

an application of UAN32, a nitrogen price of $1.10/lb will be used based on prices as of 

March 22, 2022 (Quinn and Reporter, 2022). 

Since nitrogen is a key nutrient in the production of corn, the following scenarios will 

look to demonstrate the potential profit losses incurred from cyberattacks to in-season 

nitrogen applications for corn.  The first section will outline what a typical in-season 

nitrogen application operation would look like, while the following sections will discuss 

three potential attack scenarios and their impacts. 

3.2.2. Control Scenario 

All hypothetical scenarios in this case study will use a 100-acre corn field, divided 

into 100, one-acre management zones (Figure 3.3).  The UNL nitrogen formula (Eq. 1) 

will be used to calculate nitrogen needs for each one-acre section for optimal corn 

production.  Figure 3.4 shows the hypothetical 100-acre corn field, with yield goals for 
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each one-acre section.  Yield goals were selected randomly from a range of 150-190 

bushels/acre based on historic yield values for rainfed corn fields in Saunders County, 

Nebraska (“USDA - National Agricultural Statistics Service - Quick Stats Lite,” 2018).  

Figure 3.5 shows the 100-acre field with various soil nitrate levels, selected randomly 

from a range of 2.0-4.0ppm which are realistic for fields with fine-textured soil in central 

Nebraska (Shapiro et al., 2019).  Similarly, soil organic matter values were randomly 

selected from a range of 1.8-2.2% which are also realistic for fields with fine-textured 

soil in central Nebraska (“Soil Management for Increased Soil Organic Matter (G2283),” 

n.d.).  The timing factor will be set at 0.95 since nitrogen applications will be split 

between at-planting and in-season applications.  All case study scenarios will use a 

nitrogen price of $1.10 per pound (Quinn and Reporter, 2022) and a corn price of $7.53 

per bushel (“Corn PRICE Today | Corn Spot Price Chart | Live Price of Corn per Ounce | 

Markets Insider,” n.d.) which are based on current average prices as of March 22, 2022. 

Using Eq. 2 the price adjustment factor is calculated to be 0.926.  All these same input 

values and methods will be used across all attack scenarios in this case study. 
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Figure 3.3 100-acre field with 1-acre management zones 

 

 

Figure 3.4: Estimated Corn Yield Values 
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Figure 3.5: Soil Nitrate Levels 
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Figure 3.6: Soil Organic Matter Levels 

 

Using Eq. 1, nitrogen needs (𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟) can be calculated for acre A1.  By using input 

values of 𝐸𝐸𝐸𝐸 = 175 𝑏𝑏𝑏𝑏/𝑎𝑎𝑐𝑐, 𝑁𝑁𝑂𝑂3 − 𝑁𝑁 = 3.1𝑝𝑝𝑝𝑝𝑝𝑝, 𝑂𝑂𝑂𝑂 =  2.2%, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑁𝑁 𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐 = 0, 

𝑃𝑃𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎  
= 0.926, and 𝑇𝑇𝑐𝑐𝑝𝑝𝑐𝑐𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  

= 0.95, 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 can be calculated to be 147 lb/ac for 

acre A1.  This same method will be used to calculate total nitrogen recommendations for 

each acre in the 100-acre field (Figure 3.7). 
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Figure 3.7: Total recommended nitrogen input for growing season (lbs/acre) 

For all application scenarios in this paper, the nitrogen applications will be split 

25% at planting and 75% in-season.  This is consistent with many field trials and 

recommendations for in-season nitrogen management (Shapiro et al., 2019).  The in-season 

applications will be applied through liquid side-dress applications using the fertilizer 

source UAN32.  Only the in-season side-dress operation, or 75% of the total nitrogen 

applied to the field will be affected by the cyberattack.  Figure 3.7 shows the total nitrogen 

needs calculated using the UNL nitrogen formula for the 100-acre field in this case study.  

Figure 3.8 demonstrates the pre-plant and in-season nitrogen needs for the 100-acre field.  

These same nitrogen recommendations remain the same across all scenarios in this case-

study. 
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Figure 3.8: Pre-plant recommended nitrogen application rates (lbs/acre) 



31 

   

 

 

Figure 3.9: In-season recommended nitrogen application rates (lbs/acre) 

3.2.3. Calculating Financial Impacts 

Profit potential loss or gain (𝑃𝑃𝐿𝐿𝐿𝐿) will be used to compare cyberattack scenarios.  The 

first step in calculating profit is to calculate the expected and actual yield for the given 

scenario.  Expected yield (𝐸𝐸𝐸𝐸) and actual yield (𝐴𝐴𝐸𝐸) will be calculated using Eq. 3 and 4 

respectively.  For the control case, 𝐴𝐴𝐸𝐸 = 𝐸𝐸𝐸𝐸, since no cyberattack occurs.  For the attack 

scenarios, there will be a difference in expected and actual yield values, which will lead to 

a difference in revenue and profit.  Figure 3.10 shows the expected or actual yield values 

for the control case. 
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Figure 3.10: Actual (calculated) corn yield values (bu/acre) 

 

After calculating yield values, Eq. 5-11 can be used to calculate 𝑃𝑃𝐿𝐿𝐿𝐿.  Eq. 5 is used 

to calculate total expected revenue (𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝) for the field.  Based on an expected yield total 

(𝐸𝐸𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛) of 16,983bu and the price of corn (𝑣𝑣𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐) of $7.53/bu, the total expected revenue 

for the control case comes to $127,882.  Eq. 6 can be used to calculate the expected cost of 

nitrogen fertilizer, 𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝.  Using a value of 14,758lbs of total recommended nitrogen 

(𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑟𝑟𝑚𝑚𝑝𝑝) for the field and a nitrogen cost (𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛𝑟𝑟𝑐𝑐) of $1.10/lb, the total expected cost 

can be calculated at $16,232 for the control scenario.  Eq. 7 can then be used to calculate 

total expected profit (𝑃𝑃𝑟𝑟𝑚𝑚𝑝𝑝) which totals $111,648 for the control case.  Since all case study 

scenarios will use the same nitrogen recommendation starting values, all scenarios will 
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have an expected profit of $111,648.   Similar to Eq. 5, actual revenue (𝑅𝑅𝑎𝑎𝑟𝑟𝑛𝑛) can be 

calculated using Eq. 8.  For the control case, 𝑅𝑅𝑎𝑎𝑟𝑟𝑛𝑛 = 𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝 = $127,882 since expected and 

actual yield values are the same.  𝐶𝐶𝑎𝑎𝑟𝑟𝑛𝑛 can be calculated to $16,232 for the control case, by 

using Eq. 9.  𝑃𝑃𝑎𝑎𝑟𝑟𝑛𝑛 is calculated at $111,648 for the control case using Eq. 10.  Finally, 𝑃𝑃𝐿𝐿𝐿𝐿 

can be calculated to $0 for the control case using Eq. 11, since no cyberattack occurs.  This 

same method will be used to calculate profit loss or gain for all attack scenarios. 

𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝 = 𝐸𝐸𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛 ∗ 𝑣𝑣𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐    (Eq. 5) 

where: 
𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝 = expected revenue ($) 
𝐸𝐸𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛 = expected total yield (bu) 
𝑣𝑣𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 = value of corn grain ($/bu) 

 

 

𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝 = 𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑟𝑟𝑚𝑚𝑝𝑝 ∗ 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛𝑟𝑟𝑐𝑐    (Eq. 6) 

where: 
𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝 = expected total cost ($) 
𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑟𝑟𝑚𝑚𝑝𝑝 = expected total pounds of nitrogen to be applied (lb) 
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛𝑟𝑟𝑐𝑐 = cost of nitrogen per pound ($/lb) 

 

 

𝑃𝑃𝑟𝑟𝑚𝑚𝑝𝑝 = 𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝 − 𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝    (Eq. 7) 

where: 
𝑃𝑃𝑟𝑟𝑚𝑚𝑝𝑝 = total expected profit ($) 
𝑅𝑅𝑟𝑟𝑚𝑚𝑝𝑝 = expected revenue ($) 
𝐶𝐶𝑟𝑟𝑚𝑚𝑝𝑝 = expected total cost ($) 

 

 

𝑅𝑅𝑎𝑎𝑟𝑟𝑛𝑛 = 𝐴𝐴𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛 ∗ 𝑣𝑣𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐    (Eq. 8) 

where: 
𝑅𝑅𝑎𝑎𝑟𝑟𝑛𝑛 = actual revenue ($) 
𝐴𝐴𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛 = actual total yield (bu) 
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𝑣𝑣𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 = value of corn grain ($/bu) 
 

𝐶𝐶𝑎𝑎𝑟𝑟𝑛𝑛 = 𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑎𝑎𝑟𝑟𝑛𝑛 ∗ 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛𝑟𝑟𝑐𝑐    (Eq. 9) 

where: 
𝐶𝐶𝑎𝑎𝑟𝑟𝑛𝑛 = actual total cost ($) 
𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑎𝑎𝑟𝑟𝑛𝑛 = actual total pounds of nitrogen to be applied (lb) 
𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛𝑟𝑟𝑐𝑐 = cost of nitrogen per pound ($/lb) 

 

 

𝑃𝑃𝑎𝑎𝑟𝑟𝑛𝑛 = 𝑅𝑅𝑎𝑎𝑟𝑟𝑛𝑛 − 𝐶𝐶𝑎𝑎𝑟𝑟𝑛𝑛    (Eq. 10) 

where: 
𝑃𝑃𝑎𝑎𝑟𝑟𝑛𝑛 = total actual profit ($) 
𝑅𝑅𝑎𝑎𝑟𝑟𝑛𝑛 = actual revenue ($) 
𝐶𝐶𝑎𝑎𝑟𝑟𝑛𝑛 = actual total cost ($) 

 

 

𝑃𝑃𝐿𝐿𝐿𝐿 = 𝑃𝑃𝑟𝑟𝑚𝑚𝑝𝑝 − 𝑃𝑃𝑎𝑎𝑟𝑟𝑛𝑛    (Eq. 11) 

where: 
𝑃𝑃𝐿𝐿𝐿𝐿 = profit loss or gain ($) 
𝑃𝑃𝑟𝑟𝑚𝑚𝑝𝑝 = total expected profit ($) 
𝑃𝑃𝑎𝑎𝑟𝑟𝑛𝑛 = total actual profit ($) 
 

 

 

3.2.4. Attack Scenarios 

This section outlines the strategy of the attack scenarios.  The cyberattack for this case 

study will target the tractor and implement applying side dress nitrogen. The goal of the 

cyberattack will be to increase or decrease prescribed application rates while applying the 

same cumulative total of prescribed nitrogen across the field.  Many other attack scenarios 

could be assessed such as applying as much nitrogen as possible over the smallest area.  

This case study looks specifically at this strategic attack to assess if a cyberattack strategy 
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could be used that causes significant financial loss while making the operation appear 

normal.  Figure 3.11 shows the attack strategy for attack scenario 1.  Each one-acre 

subsection of the field is adjusted by a factor of 50%, 75%, 100%, 150% or 200% of 

prescribed rates.  For example, acre B5 would apply 50% of the prescribed rate of nitrogen 

while acre H4 would apply 200% of prescribed rates.  The placement of the rate adjustment 

acres is random across the field. 

 

Figure 3.11: Cyberattack Scenario 1 

A B C D E F G H I J

1 100% 150% 50% 100% 50% 150% 100% 50% 50% 200%

2 200% 75% 75% 100% 50% 100% 75% 50% 100% 50%

3 75% 150% 150% 200% 150% 75% 150% 75% 50% 200%

4 50% 100% 50% 75% 75% 100% 100% 200% 50% 100%

5 150% 50% 150% 50% 200% 75% 50% 50% 200% 150%

6 75% 150% 75% 75% 100% 200% 200% 100% 100% 50%

7 100% 75% 100% 50% 100% 50% 150% 100% 150% 100%

8 50% 50% 150% 100% 50% 50% 150% 75% 75% 50%

9 50% 200% 100% 50% 150% 150% 50% 100% 50% 50%

10 50% 75% 100% 150% 75% 200% 50% 50% 100% 150%

Attack 1 - % of Prescribed N Rates
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 Attack scenario 2 takes a more strategic approach to the placement of the attack. The 

attack will result in applications of 45% and 280% of prescribed rates across the field.  

Figure 3.12 demonstrates the layout of attack 2. 

 

Figure 3.12: Cyberattack Scenario 2 

Attack scenario 3 again takes a strategic approach to fertilizer prescription rate 

adjustment throughout the field.  Figure 3.13 demonstrates attack 3, where fertilizer rates 

are applied at 75%, 100%, or 200% of prescribed rates. 
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Figure 3.13: Cyberattack Scenario 3 

3.3. Results 

This section will present how each of the cyberattack scenarios will affect the 

prescribed nitrogen rates across hypothetical field.  The resulting yield values will be 

calculated along with the potential profit loss or gain for each cyberattack scenario. 

3.3.1. Attack Scenario 1 

All attack scenarios result in a deviation from prescribed nitrogen application rates.  

Figure 3.14 shows in-season nitrogen application rates after attack 1.  For attack 1, 

𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑟𝑟𝑚𝑚𝑝𝑝 = 14,758lb and 𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑎𝑎𝑟𝑟𝑛𝑛 = 14,781lb.  Since there is a 23lb or 0.2% increase in 
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actual vs. prescribed rates, the attack satisfies the assumptions that total cumulative pounds 

of prescribed and applied nitrogen to the field remains constant. 

   

Figure 3.14: Prescribed vs. Actual nitrogen application rates (lbs/acre) after attack 1 

UAN32 will be used as the source of nitrogen for in-season nitrogen applications.  

UAN32 is 32% nitrogen by weight (“Technical Data Sheet: Urea Ammonium Nitrate,” 

n.d.).  Figure 3.15 shows the UAN32 application rates in gal/ac required to attain the 

nitrogen application rates shown in Figure 3.14.  The cyberattack resulted in an additional 

7gal above the total prescribed amount of UAN32 applied across the field. 

A B C D E F G H I J

1 110 153 57 105 50 185 117 56 57 208

2 213 76 95 114 51 122 79 54 121 52

3 71 188 188 248 150 84 163 77 59 206

4 49 116 58 86 87 115 103 205 63 122

5 166 48 151 51 247 80 60 60 197 152

6 79 148 71 80 114 224 220 113 112 50

7 110 89 97 52 109 64 160 113 158 121

8 59 57 164 115 57 63 168 79 81 63

9 51 223 117 52 166 155 57 102 54 53

10 53 80 116 179 81 234 64 47 116 179

Second Nitrogen Application Actual Rates [lbs/acre]
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Figure 3.15: Expected vs. Actual application rates of UAN32 (gal/acre) after attack 1 

By using Eq. 4, the actual yield can be calculated for each acre across the 100-acre 

field.  Figure 3.16 shows a comparison between expected and actual yield after attack 1.  

The total expected yield, 𝐸𝐸𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛, for the field remained at 16,983bu while the actual corn 

yield, 𝐴𝐴𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛, totaled 15,243bu for the field.  This resulted in a 1,740bu loss as a result of 

the cyberattack.  On a per-acre basis, this equates to a 17.4bu yield penalty per acre for the 

hypothetical 100-acre field. 

A B C D E F G H I J

1 31 43 16 30 14 53 33 16 16 59

2 60 22 27 32 15 35 22 15 34 15

3 20 53 54 71 43 24 46 22 17 58

4 14 33 16 25 25 33 29 58 18 35

5 47 14 43 15 70 23 17 17 56 43

6 23 42 20 23 32 64 62 32 32 14

7 31 25 28 15 31 18 46 32 45 34

8 17 16 47 33 16 18 48 22 23 18

9 14 63 33 15 47 44 16 29 15 15

10 15 23 33 51 23 67 18 13 33 51

Second UAN32 Liquid Nitrogen Application Actual Rates [gal/acre]
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Figure 3.16: Expected vs. Actual (calculated) yield after attack 1 

Using Eqs. 5-11, total profit loss and profit loss per acre can be calculated.  Figure 

3.17 shows the profit loss or gain for each 1-acre section of the 100-acre field.  The 

farmer would remain profitable but lose $13,129 of potential profit (𝑃𝑃𝐿𝐿𝐿𝐿) across the 100-

acre field because of attack 1.  This averages to about $131/ac of potential profit loss.  

Figure 3.18 shows a financial summary of the financial impacts from attack 1.  An 

adjustment in the (𝐸𝐸𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚  and 𝐸𝐸𝐸𝐸𝑚𝑚𝑛𝑛𝑐𝑐) values, relative to average yield, could affect the 

per-acre profitability. 

 

A B C D E F G H I J

1 175 187 104 168 100 219 181 106 110 188

2 191 131 150 172 103 190 119 100 180 100

3 121 220 214 215 181 147 206 122 102 187

4 100 172 107 146 138 173 155 186 108 178

5 193 100 180 100 216 137 102 108 180 183

6 129 190 122 137 184 208 195 170 172 100

7 169 152 155 100 164 111 192 168 192 186

8 106 102 199 176 117 110 214 128 136 111

9 100 193 187 100 196 192 100 159 100 100

10 107 132 190 201 137 211 112 100 176 205

Total Actual Corn Yield  (AY) [bu/acre, AYmin=100bu/acre, 
AYmax=EY+30bu/acre]
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Figure 3.17: Potential-Profit loss or gain per acre resulting from attack 1 

 

Figure 3.18: Financial impacts from attack 1 

A B C D E F G H I J

1 0 170 -463 0 -337 158 0 -460 -468 112

2 109 -209 -251 0 -427 0 -210 -430 0 -372

3 -194 157 157 89 171 -231 166 -203 -481 113

4 -322 0 -472 -244 -240 0 0 113 -510 0

5 165 -339 171 -403 90 -217 -476 -509 117 170

6 -221 171 -198 -223 0 103 105 0 0 -397

7 0 -243 0 -357 0 -516 167 0 168 0

8 -495 -480 166 0 -481 -519 164 -220 -221 -519

9 -366 103 0 -342 165 169 -449 0 -408 -408

10 -444 -213 0 160 -221 97 -513 -332 0 160

Difference Between Actual and Expected Profit (PLG) [$]
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3.3.2. Attack Scenario 2 

Figure 3.19 demonstrates in-season nitrogen input rates after attack 2 as compared to 

the prescribed rates.  Nitrogen totals of 𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑟𝑟𝑚𝑚𝑝𝑝 = 14,758lbs and 𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑎𝑎𝑟𝑟𝑛𝑛 = 14,733lbs are 

essentially equal with only a 25lb or 0.2% difference.  This again satisfies the assumption 

that the cumulative total of recommended and applied nitrogen remains essentially equal. 

   

Figure 3.19: Prescribed vs. Actual nitrogen application rates (lbs/acre) after attack 2 

Figure 3.20 demonstrates the UAN32 rates for this scenario.  There is a 7gal 

reduction in UAN32 applied over the 100-acre field as a result of attack 2. 
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Figure 3.20: Expected vs. Actual application rates of UAN32 (gal/acre) after attack 2 

Yield values are displayed in Figure 3.21 resulting from attack 2.  The total expected 

yield, 𝐸𝐸𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛, remained at 16,983bu while the actual yield for the field, 𝐴𝐴𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛, came to 

12,692bu which results in a 4,291bu yield penalty as a result of attack 2.  Over the whole 

field, attack 2 results in a 42.9bu/acre yield penalty. 
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Figure 3.21: Expected vs. Actual (calculated) yield after attack 2 

Figure 3.22 demonstrates the potential profit loss or gain per acre.  Over the entire field, 

total potential profit loss, 𝑃𝑃𝐿𝐿𝐿𝐿, came to $32,281 which averages at $323/acre.  Figure 3.23 

provides a summary of the financial impacts from attack 2. 
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Figure 3.22: Potential-Profit loss or gain per acre resulting from attack 2 

 

Figure 3.23: Financial impacts from attack 2 
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3.3.3. Attack Scenario 3 

Actual nitrogen rates were affected by attack 3 as seen in Figure 3.24.  Under attack 3, 

𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑟𝑟𝑚𝑚𝑝𝑝 remained at 14,758lbs while 𝑁𝑁𝑛𝑛𝑐𝑐𝑛𝑛,𝑎𝑎𝑟𝑟𝑛𝑛, was equal to 14,795lbs applied with a 

resulting 37lb or 0.3% discrepancy.   

   

Figure 3.24: Prescribed vs. Actual nitrogen application rates (lbs/acre) after attack 3 

Figure 3.25 shows the UAN32 application rates with an increase of 11gal of total 

UAN32 applied of the 100acre field as a result of attack 3. 
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Figure 3.25: Expected vs. Actual application rates of UAN32 (gal/acre) after attack 3 

The impact on yield from attack 3 can be seen in Figure 3.26.  Attack 3 saw 𝐸𝐸𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛 = 

16,983bu and 𝐴𝐴𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛 = 15,061bu with a 1,922bu yield penalty.  This averages to a 

19.2bu/acre yield penalty as a result of attack 3. 

   

Figure 3.26: Expected vs. Actual (calculated) yield after attack 3 
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Total profit loss for this attack totaled $14,514 with an average $145/acre profit loss.  

Figure 3.27 shows the profit loss or gain per acre, while Figure 3.28 shows the financial 

impacts summary from attack 3. 

 

Figure 3.27: Potential-Profit loss or gain per acre resulting from attack 3 
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Figure 3.28: Financial impacts from attack 3 

3.4. Discussion 

A high yielding corn crop in modern agriculture relies on timely and precise 

application of nitrogen.  Since determining corn yield targets, soil measurements, and 

recommended nitrogen input rates will continue to be more precises and site-specific as 

machinery and research continues to advance, any variation in optimized nitrogen input 

rates has the potential to cause profit loss.  This case study demonstrated three scenarios 

where random and strategic increases and decreases of prescribed nitrogen input rates led 

to significant potential profit loss.  A cyberattack that targets a tractor and implement 

applying nitrogen in-season, with the intent of varying application rates, could have 

major consequences.  Since modern farmers are very reliant on the integrated digital 

technologies in agricultural machinery when applying complex nitrogen prescriptions, 

any change in application rates as demonstrated in these attack scenarios would be hard 

to detect if the digital monitoring technologies appeared normal.  If the cyberattack were 
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also able to alter the display unit in the tractor that provides feedback on the as-applied 

rates, detecting these types of cyberattacks would become even harder.  The future use of 

autonomous tractors for farming applications such as side-dress nitrogen application 

could add an additional level of difficulty in detecting a cyberattack such as this.  On top 

of this, once nitrogen is already applied in a field, it is impossible to determine the exact 

rates that were applied, although the rates can be estimated using imaging technologies 

after the corn has had enough time to respond.  The resulting yield penalties will be seen 

at harvest, although it may be hard to detect if yield variation was due to the cyberattack 

or other unknown issues. 

 The potential profit loss associated with these cyberattack situations could be 

significant, especially when technologies are being integrated into farming machinery to 

optimize fields in decreasingly smaller management zones.  Before the era of precision 

farming, farmers would overapply many fertilizer inputs such as nitrogen, with the aim of 

attaining high yields.  As nitrogen prices have increased, farmers have become more 

aware of the benefits of precision agricultural techniques for maximizing profit.  

Therefore, cyberattacks that target precision agricultural technologies and machinery 

could be very detrimental to the goals of maximizing profitability.  One might argue that 

an overapplication of nitrogen could protect against a cyberattack such as the attacks 

outlined in this case study.  Although that might be true if a farmer knew they would 

experience a cyberattack, the total amount of overapplied nitrogen needed would not only 

be a large financial burden but could also create other impacts to areas such as water 
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quality, hence the push to optimize nitrogen inputs through precision agricultural 

practices. 

The degree of significance of a cyberattack to a precision farming operation is 

dependent on many factors as seen by the attack scenarios in this case study.  Since a 

farmer could experience profit losses on the level of $100/acre or more as demonstrated 

in this study (Figure 3.29), it is important that cybersecurity measures are taken to ensure 

the security of agricultural machinery.  Although security measures could be added to an 

 

Figure 3.29: Profit and Cost Comparison Between Attacks 

agricultural machine after a cyberattack occurs, including security in the design process 

of agricultural machinery will be a much more effective approach to preventing 

cyberattacks in the future.  Agricultural equipment that contains the capabilities to 

improve security measures by methods such as software updates, while also containing 

hardware components that are of a high level of security will be important to include in 



52 

   

 

agricultural machinery for the future.  The next chapters will address some possible 

design solutions for agricultural machinery. 

3.5. Conclusions 

This objective demonstrates multiple contributions.  First, three cyberattack scenarios 

were outlined which targeted in-season nitrogen application.  Numerous charts 

demonstrate what these attacks could look like and the greater financial implications of 

these attacks targeting in-season nitrogen application.  Other precision agricultural 

operations, such as planting, could be targeted with cyberattacks such as the ones 

discussed in this chapter, resulting in major financial implications.  Second, the specific 

financial implications of the cyberattack were discussed.  Cyberattacks intending to target 

in-season nitrogen application could have financial implications that reach far beyond the 

targeted farmer.  A cyberattack like this could open the door for a state-sponsored attack, 

intended to destabilize a country or global market.  Finally, this cyberattack scenario is an 

example where the level of significance should drive the degree of security incorporated 

into agricultural machinery.  The scenario might have relatively minor consequences 

across 100-acres, but across multiple farms or larger areas, the cyberattack could result in 

major impacts.  There is a need for more research to provide practical solutions in 

improving the cybersecurity of agricultural machinery. 
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Chapter 4: CYBERSECURITY MODELING FOR AGRICULTURAL 

MACHINERY 

This chapter will present a modeling methodology CASE (Conceptualize, Assemble, 

Simulate, Evaluate) for its usefulness as a tool for the design of secure agricultural 

machinery while identifying the most security-critical areas of the system under design. 

4.1. Introduction 

The rapid advancement of agricultural machinery in both capability and function over 

the past few decades, can largely be attributed to the integration of digital technologies to 

the machinery.  These integrated digital technologies are critical to the future of 

agriculture but have introduced many cyberattack vectors and security concerns.  For 

example, telematics electrical control units (TCUs) have the capability to be accessed 

remotely via cellular networks and allow for remote monitoring and even tuning of 

electrical control units (ECUs) on tractors (M. Boland et al., 2021).  These telematics 

units have allowed for improved efficiencies on farming operations, but also provide a 

communication vector for cyber-attackers to target.  The recent introduction of 

autonomous technologies and fully autonomous machinery (Tibken, 2022) has only 

increased the urgency for cybersecurity to agricultural machinery, since autonomous 

machines will rely on robust communication to operate safely (Gupta et al., 2020).  

Although it is possible to add security concepts after a machine is manufactured, the 

automotive industry has demonstrated that the inclusion of cybersecurity concepts during 

the design process, is the best use of time and resources in producing the most secure 

product (“Automotive Cybersecurity by Design,” 2021).  Agricultural machinery 
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contains comparable complexity in machine control architecture and could benefit from 

the same design principles.   Therefore, an important question to ask is what tools can be 

used to design robust and secure agricultural machinery?  Current literature lacks 

significant solutions for secure design of agricultural machinery. 

Modern agricultural machinery contains an array of complex control subsystems such 

as steering/navigation, engine and hydraulic control, implement operation, and 

emergency stop systems.  Autonomous agricultural machinery will build on the 

subsystems of current agricultural machinery by adding more subsystems such as 

surrounding awareness and object detection, path planning, and improved communication 

systems.  It is an understatement that modern agricultural machines are complex.  Since 

there is a high degree of complexity of agricultural machinery even at the subsystem 

level, a tool such as modeling could be useful to design, by trialing various system 

configurations before proceeding further in the design process. Since both robust and 

secure agricultural machinery is required for the future of agriculture, this chapter will 

investigate if modeling could be a useful tool in the design and integration of security 

concepts to agricultural machinery. 

4.2. Background 

Modeling is a tool that is used for a wide variety of applications in agriculture such as 

mechanical machine design, crop yield modeling, crop harvesting logistics planning, and 

control system design.  Some examples of modeling for agricultural mechanical machine 

design are discussed in a literature review paper by (Zhao et al., 2021).  Modeling has 

also been used to predict crop yields (Oteng-Darko et al., 2012).  Harvesting logistics for 
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agricultural crops have been modeled, to determine the most time and resource efficient 

path for the harvesting machinery (Evans et al., 2020).  Finally, modeling has be used to 

develop and optimize control systems, such as HVAC systems (Afram and Janabi-

Sharifi, 2015).  Modeling for control system design can be based around automata theory 

concepts.  Automata theory is a theoretical branch of computer science that studies 

abstract models called automatons (“Basics of Automata Theory,” n.d.).  Automatons are 

models of machines that move through various states based on inputs to the model 

(Hopcroft et al., 2007).  Finite state machines are a category of automaton that work 

under a ‘finite’ set of operating states (Rich, 2007).  Stateflow is a powerful tool that 

leverages the principles of automata theory and finite state machines to build complex 

models that can be simulated (“Stateflow - MATLAB & Simulink,” n.d.).   

Cybersecurity has also benefited from modeling techniques.  Cybersecurity risks are 

modeled in a paper by (Peng et al., 2018), that found that modeling multivariant 

cybersecurity risks, resulted in a more accurate prediction of the impacts of the attack.  A 

wholistic and systems approach was taken in the modeling of broader cybersecurity 

concepts in a paper by (Yan, 2020).  A methodology for using modeling for a 

combination of both systems design and cybersecurity analysis will be presented in the 

next sections.  The methodology will be assessed by means of a case study, which will 

leverage Stateflow as a modeling tool, since it provides a user-friendly graphical user 

interface to quickly build and simulate models. 
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4.3. Research Methodology and Materials 

This section will present a methodology where Stateflow, an automata theory based 

modeling software, will be used to design a critical subsystem of an agricultural machine, 

while attempting to provide cybersecurity insight to the design process.  The critical 

subsystem that will be modeled is the emergency stop (E-stop) system of a supervised 

autonomous agricultural machine, Flexible Structured Robotic Platform (Flex-Ro). 

4.3.1. Flex-Ro 

Flex-Ro, is a 57-horsepower supervised autonomous field platform (Figure 4.1) that 

was developed to perform low-draft agricultural operations (Murman, 2019; Werner, 

2016).  The machine is composed of numerous commercial off-the-shelf (COTS) 

components such as electronic control units (ECUs), a Kubota Engine, and electric 

steering motors. Flex-Ro has four independently driven and steered wheels which provide 

optimal flexibility and maneuverability of the platform.  A centralized CAN-bus network 

(Figure 4.2) is a critical part of Flex-Ro as it allows for numerous ECUs to communicate 

and control the various subsystems on the platform.  The CAN-bus network on the 

machine operates under the SAE J1939 protocol, along with the addition of numerous 

proprietary messages.  The platform has been used for field scouting and crop data 

collection but may be used for additional tasks such as planting and spraying in the 

future. 
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Figure 4.1: Flex-Ro performing a field scouting operation 

 

Figure 4.2: CAN bus network of Flex-Ro 

 Flex-Ro, an agricultural machine, contains numerous complex control subsystems.  A 

hydraulics subsystem supplies power to each wheel motor and the wheel speed is 

controlled by an ECU connected to the CAN-bus network on the machine. The steering 

and navigation subsystem incorporates multiple steering motors and gearboxes all 

controlled by a network of ECUs.  The steering commands originate from the Flex-Ro 

remote control ECU or connected computer.  Steering control inputs are then integrated 

with Global Positioning System (GPS) location commands for autonomous navigation. 
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The engine on Flex-Ro contains a proprietary ECU that operates under the SAE J1939 

protocol.  An emergency stop (E-stop) system is another major subsystem that protects 

the machine and surroundings from damage.  Multiple subsystems will be added to Flex-

Ro in the future as it continues through research development. 

The E-stop system is a critical subsystem of Flex-Ro that provides safety to the Flex-

Ro machine and its surroundings.  The current E-stop system was built without 

integrating cybersecurity, therefore this case study will aim to evaluate the current E-stop 

system for areas that are most vulnerable to cyberattacks. 

 

Figure 4.3: E-stop button on a corner of Flex-Ro 

 

4.3.2. Modeling Methodology 

The modeling methodology chosen for this case study is laid out in Table 4.1. The 

major steps in this method include 1) conceptualization, 2) model assembly, 3) 

simulation, and 4) evaluating the results. Each step includes a series of questions that can 

be asked to aid in the development process.   
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Table 4.1: CASE Modeling Methodology for Agricultural Control Systems 

Step 1: 
Conceptualize 

Step 2: Assemble Step 3: Simulate Step 4: Evaluate 

1. What is the 
purpose of the 
subsystem 
being designed? 

 

1. How will the 
inputs/outputs 
be represented 
in the modeling 
software of 
choice? 

1. Where does the 
model fail? 

 

1. Which 
cybersecurity 
vulnerabilities 
need 
redundancies? 

2. What is the 
priority of the 
subsystem? 
Low, Medium, 
High, Critical? 

2. How will the 
states be 
represented in 
the modeling 
software of 
choice? 

 

2. Does the model 
enter any 
unintended 
states? 

 

2. How can the 
subsystem be 
made more 
efficient? 

3. What are the 
inputs/outputs 
to the 
subsystem? 

 

3. What are the 
transition 
conditions and 
how can they be 
represented in 
the modeling 
software of 
choice? 

3. Do any of the 
modeled 
cybersecurity 
vulnerabilities 
cause the model 
to enter an 
unintended 
state? 

 

4. How does the 
subsystem 
specifically 
interact with the 
other 
subsystems of 
the overall 
machine? 

   

5. What are the 
normal 
operating 
states? 

   

6. What are 
potential attack 
states? 

   

 



60 

   

 

Conceptualization is the first step in this security modeling process.  Since 

agricultural machines are complex systems, this method breaks the larger complex 

system into subsystems for cybersecurity analysis, design, and modeling.  The 

conceptualization process considers what role the subsystem plays in the larger machine, 

what the priority of the subsystem is, and what the inputs/outputs are to the subsystem.  

Determining the normal states and potential cyberattack states should be accomplished 

during the conceptualization step. 

 Assembly the model is the second step in the process.  Determining how the inputs 

and outputs will be represented in the software of choice is the first step.  Other questions 

that should be asked include how the states should be represented in the model and how 

the states are related.  Since this methodology is aiming to identify cybersecurity 

vulnerabilities, identifying potential attack states is important.  Attack states can 

continuously be added to the model over time to analyze what risk they pose to the 

overall system.  This modeling methodology is an iterative process, therefore moving 

between the conceptualization and assembly steps is encouraged. 

 The value of a model is that it can be run multiple times to evaluate how the 

subsystem could operate in order to make improvements.  Simulating the model 

frequently can provide insight into what features need to be present when the physical 

subsystem is built.  The third step of simulating the model can help demonstrate where 

the subsystem could fail or enter any unintended states. 
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 The final step of this methodology involves evaluating the subsystem and model to 

understand where improvements can be made.  This includes evaluating if redundancies 

are needed in the subsystem or how the subsystem can be made more efficient. 

4.4. Results and Discussion 

This section demonstrates the Stateflow model that was developed using the proposed 

modeling methodology. 

4.4.1. Conceptualize 

The first step of the proposed modeling methodology is conceptualization.  The six 

questions proposed during the conceptualization step will be addressed in this section as 

it pertains to the Flex-Ro E-stop system.  The first question is, what is the primary 

function of the subsystem, or E-stop system in this case?  As discussed previously, the 

Flex-Ro E-stop system is built to provide safety to the machine and its surroundings by 

preventing catastrophic damage or injury.  The E-stop system will also check to make 

sure that all ECUs of critical systems are functioning properly.  In the ideal case, the E-

stop system will safely shut the machine down and bring it to a controlled stop if a 

malfunctioning ECU or impending damage is detected.  The second question is what is 

the priority of the subsystem?  In the case of the Flex-Ro E-stop system, the subsystem is 

of the highest priority.  In the worst-case scenario, all computational resources on Flex-

Ro should be directed to the E-stop system. 

Questions three through six (Table 4.1) all share a common theme: interactions with 

and within the subsystem.  Question three asks, what are the inputs and outputs to the 

subsystem?  The Flex-Ro E-stop system contains some physical inputs as demonstrated 



62 

   

 

in Figure 4.3.  Four physical E-stop buttons provide input signals to the E-stop system if 

any of the four corners of Flex-Ro physically come into contact with an obstacle.  There 

also are digital E-stop button inputs on the Flex-Ro remote (Figure 4.4) and FlexRoRun 

app (Figure 4.5) that provide input messages to the E-stop system.  Another input to the 

E-stop system is a routine heartbeat message from the ECUs that are connected to the E-

stop system.  If an ECU stops providing a heartbeat message, it is assumed to be 

functioning improperly and triggers the E-stop system to shut down Flex-Ro.  The final 

input to the E-stop system on Flex-Ro is the digital reset button from either the Flex-Ro 

remote (Figure 4.4) or Flex-Ro run app (Figure 4.5).  The reset button is meant to be an 

input from an operator to the E-stop system that it is safe to try to restart Flex-Ro.  The 

reset button is depressed before starting the machine for normal operation or when trying 

to restart Flex-Ro after an E-stop trigger event occurs that shuts down the machine.  The 

primary output from the Flex-Ro E-stop system is a message that negates current 

machine operation commands and instead sends a message to stop and shut down the 

machine. 

  

Figure 4.4: Flex-Ro remote E-stop and reset button inputs 
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Figure 4.5: FlexRoRun app with E-stop and reset buttons highlighted 

The fourth question to be asked during the conceptualization process is how the 

subsystem should specifically interact with other subsystems on the machine.  The three 

main subsystems the E-stop subsystem interacts with are the hydraulics, power and 

engine, and steering subsystems.  Each ECU on Flex-Ro has a section of code that acts as 

the E-stop system as demonstrated in Figure 4.6 and Figure 4.7.  The hydraulics 

subsystem interacts with the E-stop system by sending a routine heartbeat message to 

indicate it is operational.  If at any time the hydraulic subsystem becomes inoperable, the 

E-stop system will attempt to send a message to shut down the hydraulic valves and 

engine on Flex-Ro.  The engine and power ECUs interact with the E-stop subsystem in a 

similar way the hydraulics subsystem does, by sending routine heartbeat messages.  In 
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the case that the engine ECU stops sending routine heartbeat messages, an E-stop state 

will be triggered and messages will be sent to shut down the engine and hydraulic valves 

that control flow to the drive motors.  The steering subsystem specifically interacts with 

the E-stop subsystem by transmitting the state of the E-stop buttons, positioned on the 

four corners of Flex-Ro. 

 

Figure 4.6: Overview of Flex-Ro E-stop system in SAFE state 
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Figure 4.7: Overview of Flex-Ro E-stop system in UNSAFE state 

   The answers to questions five and six relating to the normal and potential attack 

states of the E-stop system can be answered in detail by Figure 4.8, Figure 4.9, and the 

tables that correspond.  To summarize, there are three main states that the E-stop system 

could currently enter with the way the E-stop system is currently configured.  Potential 

cyberattacks could add numerous new states that could be entered by a variety of 

transition conditions as demonstrated in Figure 4.9.  
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Figure 4.8: Emergency Stop (E-stop) Finite State Diagram 

 

Table 4.2: Normal states of the Flex-Ro E-stop subsystem as shown in Figure 4.8 

States Description 
State 1 Currently Checking System – UNSAFE for operation 
State 2 Currently Checking System – SAFE for operation 
State 3 E-stop – UNSAFE for operation 

 

Table 4.3: Normal transition conditions as shown in Figure 4.8 

Transitions Description 
1 All ECUs have been checked at least once without any E-stop conditions 

2 At least one ECU has stopped responding or stop condition triggered by E-
stop button input 

3 E-stop reset input to system 
 

State 2State 1

State 3

1

23

2
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Figure 4.9: Emergency Stop (E-stop) Finite State Diagram with Attack States 

 

Table 4.4: Potential states under a cyberattack as shown in Figure 4.9 

States Description 
State 1 UNSAFE for operation 
State 2 SAFE for operation 
State 3 UNSAFE for operation – E-stop triggered 
State 4 SAFE for operation – E-stop trigger condition targeted by cyberattack 
State 5 UNSAFE for operation – E-stop trigger condition targeted by cyberattack 

 

Table 4.5: Transition conditions under a cyberattack as shown in Figure 4.9 

Transitions Description 
1 All ECUs have been checked at least once without any E-stop conditions 

2 ECU triggered E-stop condition 

3 E-stop reset input to system 

4 At least one ECU is targeted by a cyberattack and returns a false positive 
E-stop trigger 

5 At least one ECU is targeted by a cyberattack and returns a false negative 
E-stop trigger 

State 2

State 1

State 3

State 4

State 5

1

2

3 2
5

2

5

4

3
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4.4.2. Model Assembly 

It is important to determine which components in the modeling software of choice, 

will represent each of the inputs, outputs, states, and transition conditions of the 

subsystem being modeled?  For this case study, Stateflow components will be used in 

modeling the E-stop system of Flex-Ro.  The components include state blocks, transition 

arrows and conditions, input constants, switches, push buttons, and an output graphical 

scope.  Table 4.6 shows a generic version of each of these components with a brief 

explanation of how they can be used. Figure 4.10 shows the Stateflow model while 

Figure 4.11 shows the full Stateflow model including the Matlab interface. Appendix A 

presents more details on each of the specific components of the Stateflow model. 
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Table 4.6: Useful Stateflow Components 

Stateflow Object Image Use 

Stateflow Chart 

 

Provides an area where state 
models can be built to 
interact with inputs and 
outputs 

Stateflow State 

 

Stateflow ‘states’ that can 
model finite states 

Transition 
Condition 

 

Transition condition that 
enables a transition from one 
state to another 

Input Constant 

 

Input values to Stateflow 
chart for use in state and 
transition condition logic 

Slider Switch 
 
  

Slider switch to manually 
control input constants 

Push Button 

 

Push button to manually 
control input constants 

Scope 

 

Scope used to display 
outputs from the Stateflow 
chart 
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Figure 4.10: Fully assembled Stateflow model 
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Figure 4.11: Stateflow model within MATLAB interface 
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4.4.3. Simulation 

After the first build of the Stateflow model, the Matlab debuggers prevented the 

model from running because of undefined variables. After fully defining all the variables 

in the model, the model was simulated and observed to see if it accurately represents the 

E-stop system. Some transitions between the Display states and E-stop state were 

eliminated since they misrepresent how the E-stop system functions and allowed the 

model to enter States 2 or 4 (Figure 4.9) before all ECUs were checked.  The E-stop 

system is currently configured to start back with the first ECU in the sequence after a 

reset, therefore the additional transition conditions needed to be eliminated. Stateflow 

provides a graphical logger that plots the output data values from the state diagram.  

Figure 4.12 shows some basic outputs from the graphical logger, or scope, on some of the 

initial runs of the model.  The ‘state’ output value demonstrated by the yellow line, plots 

which of the five states from Figure 4.9 the model is operating in based on the input 

conditions.  The out_run_cmds variable provides an output of whether the E-stop system 

is allowing for the communication of the input operation commands to the corresponding 

ECUs or if an E-stop condition has constituted the system be shut down.  For example, an 

input command to start the engine would not be allowed to be sent until all ECUs have 

been verified to be operating properly and no E-stop trigger event has occurred.  The blue 

line in Figure 4.12 demonstrates how the out_run_cmds variable is plotted over time and 

its relationship to the overall E-stop state. 
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Figure 4.12: Running model and output scope 

The second step after creating an initial operating model is to evaluate where the most 

vulnerable parts of the model exist that could possibly be targeted by a cyberattack.  As 

conceptualized in Figure 4.9, there could be conditions where a false positive or negative 

E-stop trigger is sent because of a cyberattack.  One way this could happen is if any of 

the ECUs within the E-stop system, experience a cyberattack.  To model this possibility, 

an additional state was added to the Stateflow model to represent a compromised ECU.  

Figure 4.13 demonstrates the attack state that was added to the model to represent a case 

where an ECU stopped providing valid E-stop trigger responses.  
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Figure 4.13: Stateflow model entering attack state 

When in an attack state, the Stateflow model will bypass the normal ECU state 

(Disp_chk_RF) and instead read the inputs to the Disp_chk_RF_attacked state.  Other 

attack conditions could be added to Figure 4.9 and the Stateflow model could include 

attacks such as Denial of Service (DoS), where the CAN bus is overloaded with messages 

which prevent the E-stop system from functioning. 

4.4.4. Evaluate Model 

Evaluating each iteration of the model is important to understanding details that need 

to be included while building a physical prototype of the subsystem.  Details such as what 

specific transition conditions need to exist and what priority each ECU should interact 

with the E-stop system were important details that were learned while building and 

running the Stateflow model.  For example, it is important that each ECU on the E-stop 
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system is checked in some order or timed sequence to confirm that all ECUs are 

responding properly. There would have to be some leeway given to the expected response 

time based on the latency of the CAN bus.   

Since the CAN bus contains little to no know encryption methods, ECUs could be 

attacked over the CAN bus and pretend to be one of the critical system ECUs, creating 

problems as demonstrated in the Stateflow model.  Two attack scenarios were 

demonstrated in this model to show what a cyberattack to the control system could look 

like. The model revealed that some level of security is needed that prevents the CAN bus 

from being accessed, otherwise an attacker could easily control the E-stop system or any 

operation command for that matter. The Stateflow model that was built in this case study 

could easily be built with more complexity, to provide more accurate simulation of the 

actual system.  Stateflow offers CAN bus simulation blocks to further simulate an actual 

CAN bus.  The model also demonstrated the capability of adding other features to the E-

stop system, such as including object detection and avoidance.  Using the methodology 

proposed in this chapter, these new features could be further developed through the 

conceptualization and modeling process. 

4.5. Conclusions 

The case study presented in this chapter demonstrated how modeling could be used as 

a tool during the design of agricultural machinery.  Since agricultural machines are 

complex, this modeling methodology demonstrates how the complexity in designing an 

entire agricultural machine could be reduced by breaking it into subsystems.  The 

modeling methodology presents how each subsystem can be designed, while being 
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mindful of its interaction with the overall machine.  This methodology also provides the 

benefit of running through many design scenarios of a potential subsystem before any 

physical components are assembled.   

The increasing need of cybersecurity for agricultural machinery will require many 

tools to be developed to face this rising challenge.  Modeling is one method to not only 

design subsystems but also think about potential cyberattack scenarios and how they 

could be prevented from the beginning of the design process.  This case study 

demonstrated how Stateflow was used to develop a model of the E-stop system of Flex-

Ro and simulate potential attack scenarios. Although the developed model was unable to 

identify cybersecurity vulnerabilities without specifically building the potential 

vulnerabilities into the model, this methodology along with future work could be used to 

identify and address specific cybersecurity vulnerabilities through more wholistic 

analysis. 

 

Chapter 5: UTILIZING TESTBEDS TO ANALYZE 

CYBERSECURITY VULNERABILITIES TO AGRICULTURAL 

MACHINERY 

There is a need for tools and methodologies to identify secure components and 

software configurations for agricultural machinery.  This chapter will demonstrate how 

the use of testbeds could aid in the identification of cybersecurity vulnerabilities and 

testing of critical attack vector components on agricultural machinery. 
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5.1. Introduction 

New agricultural machinery is constantly being developed to meet the niche needs 

and preferences of farmers while solving the current challenges facing agriculture today.  

Many agricultural machines and implements are compatible with other OEM makes and 

models of machinery, opening the door for a variety of equipment combinations based on 

the farmer’s preference and productivity needs.  This adds challenge to the design process 

of agricultural machinery, as each machine needs to be compatible with a variety of 

machines and implements from multiple manufacturers.  Standards such as ISO 11783 

(ISOBUS) have made this machine compatibility possible (Lenz et al., 2007).  One of the 

most recent innovations to agricultural machinery is autonomous technologies such as 

John Deere’s release of their autonomous 8R tractor in January 2022 (Tibken, 2022).  

This tractor is embedded with numerous technologies and even the capability of being 

controlled via a cell phone (Tibken, 2022).  With the large amounts of integrated digital 

technology, large selection of implement/machine combinations, and the numerous 

aftermarket components that are added to modern agricultural machinery, cybersecurity 

is becoming a concern.  Two FBI reports have highlighted the potential significance of 

cyberattacks that target agriculture (Federal Bureau of Investigation, 2021; “Ransomware 

Attacks on Agricultural Cooperatives Potentially Timed to Critical Seasons - HS Today,” 

2022) while a report by the Department of Homeland Security has discussed threats to 

precision agriculture (Boghossian et al., 2018).   This means that the future of agriculture 

depends on robust, secure, and highly functional machines.  
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Agricultural machines are subject to rigorous testing during the design process to 

confirm they will perform as designed.  Mechanical, hydraulic, electrical, and software 

systems are all typical examples of engineered systems that are tested during the design 

process.  A tool such as a testbed is one such way that these systems can be tested and 

validated for optimal performance.  A testbed is simply a segment of a device or machine 

that is assembled so controlled tests, such as functionality and durability, can be 

performed.  Since cybersecurity principles need to be integrated into agricultural 

machinery, it is important to develop tools that help with this process.  Currently both 

industry and academic research has been focusing on this challenge, although there are no 

well-known solutions in literature.  This chapter will present how testbeds could be a tool 

to identify cybersecurity vulnerabilities in the hardware and software systems of 

agricultural machinery, along with the identification of the most secure hardware 

components.   

5.2. Case Study 

This section will present a case study where STAVE, a Security Testbed for 

Agricultural Vehicles and Environments, developed during this thesis work, will be used 

to demonstrate how security vulnerabilities can be identified and evaluated on 

agricultural machinery using testbed solutions.  

5.2.1. STAVE Testbed 

The STAVE testbed consists of multiple hardware and software components from a 

supervised autonomous agricultural machine, Flex-Ro (Figure 5.1).  Flex-Ro can be 

controlled by a wireless remote (Figure 5.2) or computer when operating in autonomous 
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mode.  Since Flex-Ro is a large machine with many expensive components, it was best to 

build a testbed to perform cybersecurity tests on rather than Flex-Ro itself, to prevent 

potential damage to the machine. 

 

Figure 5.1: Flex-Ro at the Nebraska Tractor Test Lab (NTTL) 

 

Figure 5.2: Flex-Ro Wireless Remote 

There are two main parts to STAVE.  First, Figure 5.3 presents half of the testbed that 

replicates some of the major control components the Flex-Ro machine.  Figure 5.4 

presents the other major half of STAVE that replicates the Flex-Ro wireless remote 

(Figure 5.2).  Finally, Figure 5.5 demonstrates how data was acquired from the testbed. 

All the major components of STAVE can be seen in Table 5.1 along with a description of 

their purpose. 
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Figure 5.3: STAVE (Security Testbed for Agricultural Vehicles and Environments) – Composed of 
components from the Flex-Ro machine 

 

Figure 5.4: STAVE (Security Testbed for Agricultural Vehicles and Environments) – Composed of 
components from Flex-Ro wireless remote 
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Figure 5.5: STAVE (Security Testbed for Agricultural Vehicles and Environments) – Data acquisition and 
monitoring of STAVE 
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Table 5.1: STAVE Components 

Name Part Number Description 
Implement ECU Danfoss MC024-110 ECU that can be programmed to operate 

any implement attachments to Flex-Ro 

Hydraulics ECU Danfoss MC024-110 ECU that controls the hydraulic system 
of Flex-Ro, including the hydraulic 
powered wheel drive motors 

Engine ECU Danfoss MC024-110 ECU that receives engine commands 
from the Flex-Ro remote or computer 
and converts to specific CAN messages 
which are provided to the Kubota Engine 

Power ECU Danfoss MC012-010 ECU that controls the power system on 
Flex-Ro and aids in shutting down the 
machine under emergency stop 
conditions 

Steering ECU Danfoss MC012-010 One of four ECUs on Flex-Ro that 
control the four modes of steering and 
receive E-stop button inputs from the 
four corners of Flex-Ro  

Wireless CAN 
Bridge 

Magnetek WIC-2402 Wireless CAN bridge that allows for 
communication between the Flex-Ro 
remote and machine 

Flex-Ro Remote 
Display ECU 

Danfoss DP600 ECU that enables remote input 
commands to control Flex-Ro when not 
operating autonomously 

Flex-Ro Remote 
Joystick 

Danfoss JS1000 Joystick used to steer Flex-Ro when not 
operating autonomously 

Raspberry Pi 
with CAN shield 

3 Model B+ 
/ PiCAN 2 

Used to monitor CAN messages and 
could be programmed as an additional 
ECU 

 

The majority of STAVE is a replica of the Flex-Ro control structure.  Some 

components were not included from the Flex-Ro machine such as three of the four 

steering ECUs, the GPS unit (Trimble AG-372), telematics control unit (Farmobile 

PUC4), Kubota Engine ECU, and obstacle detection unit (ifm O3M950/O3M151).  A 
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Raspberry Pi (Figure 5.5) was added to be able to monitor the CAN bus or act like an 

additional ECU on Flex-Ro.  The benefit of STAVE is that it can be rearranged 

depending on the components that are under testing.  For the specific arrangement of 

components on STAVE as demonstrated in the previous figures, the goal was to assess 

the wireless CAN bridge (WIC 2402) for cybersecurity vulnerabilities. 

5.2.2. Testing 

Two primary tests were carried out on STAVE with the goals of investigating the 

cybersecurity vulnerabilities that exist on Flex-Ro.  The first test involved using the 

Raspberry Pi to sniff and replay messages on the CAN bus.  One of the ECUs (Model: 

Danfoss MC024) was reprogrammed via the PLUS+1 GUIDE software, while the 

Raspberry pi was used to record the CAN messages on the CAN bus during the 

reprogramming event.  After the ECU was reprogrammed, the Raspberry Pi was used to 

replay the programming messages on the CAN bus.  The ECU that was reprogrammed 

using the proper PLUS+1 GUIDE software was not able to be reprogrammed by the 

replay messages, although the ECU was forced into a boot-loader mode.  This 

demonstrated that if a device was able to record CAN messages and perform a simple 

replay attack, the ECUs on the CAN bus could potentially be forced into an inoperable 

mode.  Further work could be done with this type of attack to see if any of the ECUs on 

STAVE could be reprogrammed with an additional device such as a Raspberry Pi. 

The second test that was performed on STAVE was wireless sniffing of the WIC 

2402 device to see if any cybersecurity vulnerabilities exist such as a lack of encryption.  

A HackRF device (“HackRF One - Great Scott Gadgets,” n.d.) and Universal Radio 
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Hacker (URH) software (Pohl and Noack, 2018) were used to ‘sniff’ the wireless traffic 

produced by the wireless CAN bridge devices.  The wireless CAN bridge (WIC) devices 

were determined to operate in the 2.4 GHz frequency, which proved to be very ‘noisy’ 

(Figure 5.6) or cluttered with other 2.4 GHz signals.   

 

Figure 5.6: Noisy 2.4 GHz frequency range when recording signals from WIC devices in ‘noisy’ 
environment.  Black line signifies current live signals while red line holds the maximum values during the 

current run time. 

It was decided that to isolate the wireless frequency messages between the WIC 2402 

devices, a faraday box or similar device was needed to block out outside interference.  

Figure 5.7 demonstrates the setup used to sniff the messages transmitted between the 

WIC devices.   
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Figure 5.7: Copper radio frequency blocking box used to perform tests on STAVE 

Some important findings were discovered while sniffing the traffic.  First, the WIC 

devices communicated with a frequency hopping pattern, which allows the transmitted 

messages to avoid other 2.4GHz messages.  Figure 5.8 displays the spectrum analyzer 

from inside the copper radio frequency blocking box.   

 

Figure 5.8: Wireless signals between WIC devices captured on URH spectrum analyzer. 
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It can be noted that there is a distinct frequency hopping pattern, as multiple equal-spaced 

peaks exist.  Figure 5.9 demonstrates a sample recording from inside the box with the 

 

Figure 5.9: Sample URH recording with FSK demodulation at 2.419MHz 

HackRF device and URH software.  The URH software was unable to properly decode 

the recorded signals that were transmitted between the WIC devices due to an improper 

frequency demodulator.  The WICs operate with minimum-shift keying (MSK) 

modulation, while the URH software is only able to decode with frequency-shift keying 

(FSK), phase-shift keying (FSK), and amplitude-shift keying (ASK) modulation.  This 

presents an area of future work where a more complete analysis of the WIC device could 

be performed to gain a better understanding of any potential cybersecurity vulnerabilities. 
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The other components on Flex-Ro such as the Farmobile PUC4 could be added to 

STAVE in the future to assess the level of security of such devices. 

5.3. Discussion 

Testbeds are tools with a wide range of applications and can be used while 

developing agricultural machinery.  For developing secure and robust agricultural 

machinery, testbeds can be a useful tool during the software and control systems 

development cycle.  STAVE demonstrates the potential of testbeds for identifying 

cybersecurity vulnerabilities to the control systems of agricultural machinery.  There are 

two main concepts that can be learned from STAVE. 

First, testbeds are a great way to segment off sections of a complex machine for 

specific, targeted testing.  Attempting to perform cybersecurity tests to the full Flex-Ro 

machine could be dangerous and challenging, at least for initial tests.  STAVE also 

demonstrated the flexibility in testing new components that could be added to Flex-Ro.  

All the components on STAVE were hardware-based, meaning they had a physical ECU, 

rather than a computer simulated ECU and code.  Some advantages to this are that the 

components react as they would on the actual machine, rather than an idealized ECU in a 

simulation.  The advantage to virtual ECUs and testbed devices is more flexibility to 

which ‘components’ are added to the testbed, while there is no need for the purchase of 

additional hardware components. 

The second takeaway from building STAVE was that testbeds can be great for testing 

multiple hardware and software configurations for cybersecurity vulnerabilities.  STAVE 

could easily be adapted with new software and hardware components to see if the new 
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configurations could add more security to Flex-Ro.  Professional cybersecurity 

penetration tests could be performed on a testbed like STAVE, by treating it like a ‘black 

box’ or ‘grey box’, to identify cybersecurity vulnerabilities.  Once these vulnerabilities 

are identified, various hardware and software component configurations could be tested 

to see which components provide the optimal level of security.  As new cybersecurity 

vulnerabilities arise or aftermarket components are added, the testbed will be a necessity 

to provide security updates to existing machines.  Other testbeds could be combined with 

a testbed like STAVE, to experiment how agricultural implements that are connected 

over an implement bus could interact with the main machine.  Since there are multiple 

machinery manufacturers with various models and styles of machine control, testing to 

make sure that the system under design does not become insecure with the addition of 

other equipment would be valuable. 

5.4. Conclusions 

Agricultural machinery is getting continuously more complex, with autonomous 

machines being the most recent major advancement.  These data-driven machines will 

depend on more robust communication and control algorithms to reach the highest 

potential in the future.  Cybersecurity has become a topic of discussion as these 

agricultural machines have become more connected, with warnings coming from 

agencies such as the FBI and DHS on the possible effects of cyberattacks.  Therefore, 

there is a need for tools that will help include cybersecurity principles throughout the 

entire lifecycle of agricultural machinery, including the design process. 
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 STAVE was presented as one such solution for including cybersecurity during the 

design process of agricultural machinery.  Testbeds like STAVE can be used to identify 

cybersecurity vulnerabilities to the control systems of agricultural machines and improve 

the security of the design, including the selection of more secure components and 

software.  Testbeds have multiple other advantages to the design process including the 

ability to segment off various sections of the machine for more focused testing. 

 The need for further tools that help improve the cybersecurity of agricultural 

machinery is necessary for a successful future.  Therefore, this chapter can act as a 

starting point for future security solutions and research for agricultural machinery. 

 
Chapter 6: OVERALL CONCLUSIONS AND FUTURE WORK  

6.1. Conclusions 

Agriculture has embraced many major technological advancements over the past few 

centuries, such as genetics, fertilization, and agricultural equipment, with the goal of 

responsibly producing enough food and agricultural products to support a growing 

population.  Some of the more recent advancements include research and technologies 

that support precision agricultural management practices.  Precision agricultural practices 

have demonstrated the potential to be more profitable and sustainable in the production of 

agricultural products. Modern agriculture has been reliant on agricultural machinery and 

tools to produce agricultural products, where recently these machines have become the 

mechanism for implementing precision agricultural practices.  The future is likely to see 

more adoption of these new equipment technologies including the ones that implement 

varying levels of autonomy. 
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As with the adoption of any new technology, it is important to consider the potential 

drawbacks of adopting a new technology as compared to previous alternatives.  Modern 

agricultural machinery is and will continue to be reliant on numerous digital technologies 

to implement modern agricultural practices.  Similar technologies which exist on both 

agricultural equipment and within other critical industries have demonstrated the 

potential to be subjected to cyberattacks.  Quantifying potential cybersecurity risks with 

the intent to make better design decisions is an important step for the smart adoption of 

these new equipment technologies.  Chapter 3 presented a case study that looked at one 

potential scenario and outcome of a cyberattack that targeted in-season nitrogen 

application to corn.  The case study was not attempting to argue against precision 

agricultural practices but rather present a method for assessing potential outcomes of 

cyberattacks when making cybersecurity design decisions for agricultural machinery.  

Overall, thorough cybersecurity risk assessment and a cybersecurity strategy is needed to 

protect current and upcoming agricultural machinery from cybersecurity threats. 

With the awareness of need for cybersecurity of agricultural machinery, there have 

been no well-known publicly available solutions produced by either industry or academic 

research to address the challenge of cybersecurity.  This thesis presented two potential 

solutions: modeling and security testbeds.  The CASE modeling method as discussed in 

chapter 4, is a way to include cybersecurity principles in the initial design process of a 

new machine.  Modeling can be a starting point for finding the most secure setup of an 

agricultural machine control system.  A Stateflow model was built and evaluated to 
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demonstrate how this type of modeling could be useful in the secure design of 

agricultural machinery. 

The second solution that was demonstrated was the use of testbeds for discovering 

cybersecurity vulnerabilities and making smart hardware and software selection 

decisions.  STAVE was presented as an example of how a testbed was used to investigate 

the cybersecurity of Flex-Ro.  Testbeds provide many benefits and ultimately are a great 

way to investigate cybersecurity vulnerabilities without causing damage to the larger 

machine. 

6.2. Future Work 

There is room for further research into the topic of cybersecurity of agricultural 

machinery.  The two broad areas for future research to build on this project include 

general cyberattack risk assessment and specific cybersecurity solutions for agricultural 

machinery.  First, a general cyberattack risk assessment would involve identifying 

potential cybersecurity vulnerabilities to all areas of agriculture and agricultural 

machinery.  This could include the assessment of tractors, IoT devices, and digital ag-

tech apps.  Another part of this assessment would involve determining potential 

cyberattack scenarios and the financial impact they could impose.  Further, the 

probability of such attacks along with the documented instances of attacks could be used 

to determine the financial investment needed to improve cybersecurity within agriculture 

and agricultural machinery.  The results of this risk assessment process could be provided 

to the agricultural community along with education on cybersecurity practices that should 

be implemented to protect each individual or company in the agricultural industry. 
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The second area of future research would include the development of practical 

cybersecurity tools and solutions to improve the cybersecurity of agricultural machinery.  

The two solutions of modeling and testbeds, presented in this project, could be areas of 

future research.  Additional modeling techniques and customized solutions for improving 

the design and cybersecurity of agricultural machinery could be developed.  Further 

development of testbed solutions could provide a practical means for cybersecurity 

assessment of prototypes during the design process of agricultural machinery.  Other 

solutions beyond modeling and testbeds could be developed to improve cybersecurity 

practices.  The future of agriculture will be dependent on the choices made today to 

prepare for the challenges of tomorrow. 
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Appendix A: Stateflow Components Used in the E-stop Model 

Name Image Function State (1-5) 
based on 

Figure 4.9 

Init 

 

Entry into the model. 
Same as turning on 
the power supply to 
the Flex-Ro machine 
and remote. 

 

Initialization to 
Disp_start 
transition  

Transitions from 
initialization state to 
Disp_start state 
when init=1 (init is 
just a placeholder 
variable to force a 
transition from one 
state to another).  
Enters state 1 in 
Figure 4.9.  

 

Disp_start  
 

Initial state of the 
Flex-Ro display 
ECU.  Display ECU 
starts by checking 
itself for an E-stop 
trigger condition. 

1,2,4 

Disp_start to 
E-stop 
transition 

 

Transition to E-stop 
state if the E-stop 
button (disp_button) 
on the Flex-Ro 
display ECU gets 
pressed 

 

Disp_start to 
LF transition  

Transition to LF 
state which signifies 
a heartbeat message 
being sent to the 
left-front steer ECU 
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LF 
 

Represents the left-
front steer ECU as it 
receives a heartbeat 
message from the 
display ECU and 
input signals from 
the attached E-stop 
button 

1,2,4 

LF to 
Disp_chk_LF 
transition  

Transition 
representing 
response heartbeat 
message being sent 
from the left-front 
ECU back to the 
Display ECU 

 

Disp_chk_LF 
 

State where the 
display ECU 
receives heartbeat 
message from LF 
and either transitions 
to an E-stop state or 
continues checking 
ECUs 

1,2,4 

Disp_chk_LF 
to E-stop 
transition 

 

Transition to E-stop 
state if the LF E-stop 
button gets pressed 
and enter state 3 
from Figure 4.9 

 

 
Disp_chk_LF 
to RF 
transition 

 

Transition to RF 
state which signifies 
a heartbeat message 
being sent to the 
right-front steer 
ECU 

 

RF 
 

Represents the right-
front steer ECU as it 
receives a heartbeat 
message from the 
display ECU and 
input signals from 
the attached E-stop 
button 

1,2,4 
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RF to 
Disp_chk_RF_
attacked 
transition 

 

Transition 
representing 
response heartbeat 
message being sent 
from the left-front 
ECU back to the 
Display ECU under 
a cyberattack 

 

Disp_chk_RF_
attacked state  

Represents the 
display ECU under a 
cyberattack state as 
it receives a 
heartbeat message 
from the right-front 
ECU.  The display 
ECU is still able to 
receive and transmit 
messages, although 
the messages could 
be altered. 

4 

Disp_chk_RF_
attacked to E-
stop transition 

 

Transition to E-stop 
state if the 
Disp_chk_RF_attack
ed interprets that the 
RF E-stop button is 
pressed.  The actual 
state of the E-stop 
button could be 
either pressed or 
unpressed.  
Transition to state 5 
as seen in Figure 4.9 

 

Disp_chk_RF_
attacked to LR 
transition  

Transition to LR 
state which signifies 
a heartbeat message 
being sent to the 
left-rear steer ECU 
from the attacked 
display ECU 
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RF to 
Disp_chk_RF 
transition  

Transition 
representing 
response heartbeat 
message being sent 
from the right-front 
ECU back to the 
Display ECU 

 

Disp_chk_RF 
 

State where the 
display ECU 
receives heartbeat 
message from the 
right-front steer 
ECU and either 
transitions to an E-
stop state or 
continues checking 
ECUs 

1,2,4 

Disp_chk_RF 
to E-stop  

Transition to E-stop 
state if the RF E-
stop button gets 
pressed and enter 
state 3 from Figure 
4.9 

 

Disp_chk_RF 
to LR 
transition 

 

Transition to LR 
state which signifies 
a heartbeat message 
being sent to the 
left-rear steer ECU 

 

LR 
 

Represents the left-
rear steer ECU as it 
receives a heartbeat 
message from the 
display ECU and 
input signals from 
the attached E-stop 
button 

1,2,4 

LR to 
Disp_chk_LR 

 

Transition 
representing 
response heartbeat 
message being sent 
from the left-rear 
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ECU back to the 
Display ECU 

Disp_chk_LR 
 

State where the 
display ECU 
receives heartbeat 
message from the 
left-rear steer ECU 
and either transitions 
to an E-stop state or 
continues checking 
ECUs 

1,2,4 

Disp_chk_LR 
to E-stop 
transition 

 

Transition to E-stop 
state if the LR E-
stop button gets 
pressed and enter 
state 3 from Figure 
4.9 

 

Disp_chk_LR 
to RR 
transition 

 

Transition to RR 
state which signifies 
a heartbeat message 
being sent to the 
right-rear steer ECU 

 

RR 
 

Represents the right-
rear steer ECU as it 
receives a heartbeat 
message from the 
display ECU and 
input signals from 
the attached E-stop 
button 

1,2,4 

RR to 
Disp_chk_RR 
transition  

Transition 
representing 
response heartbeat 
message being sent 
from the right-rear 
ECU back to the 
Display ECU 
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Disp_chk_RR 
 

State where the 
display ECU 
receives heartbeat 
message from the 
right-rear steer ECU 
and either transitions 
to an E-stop state or 
continues checking 
ECUs 

1,2,4 

Disp_chk_RR 
to E-stop 
transition 

 

Transition to E-stop 
state if the RR E-
stop button gets 
pressed and enter 
state 3 from Figure 
4.9 

 

Disp_chk_RR 
to Pwr 
transition 

 

Transition to Pwr 
state which signifies 
a heartbeat message 
being sent to the 
power ECU 

 

Pwr 
 

Represents the 
power control ECU 
as it receives a 
heartbeat message 
from the display 
ECU 

1,2,4 

Pwr to 
Disp_chk_Pwr 
transition  

Transition 
representing 
response heartbeat 
message being sent 
from the Pwr ECU 
back to the Display 
ECU 

 

Disp_chk_Pwr 
 

State where the 
display ECU 
receives heartbeat 
message from the 
Pwr ECU and 
continues checking 
ECUs.  Diagram not 
currently set up to 
represent Pwr, 

1,2,4 
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Hydro, and Eng 
response time 
requirements. 

Disp_chk_Pwr 
to Hydro 
transition 

 

Transition to Hydro 
state which signifies 
a heartbeat message 
being sent to the 
hydraulics control 
ECU 

 

Hydro 
 

Represents the 
hydraulics control 
ECU as it receives a 
heartbeat message 
from the display 
ECU 

1,2,4 

Hydro to 
Disp_chk_Hyd
ro transition  

Transition 
representing 
response heartbeat 
message being sent 
from the Hydro ECU 
back to the Display 
ECU 

 

Disp_chk_Hyd
ro 

 

State where the 
display ECU 
receives heartbeat 
message from the 
hydraulics control 
ECU and continues 
checking ECUs.   

1,2,4 

Disp_chk_Hyd
ro to Eng 
transition 

 

Transition to Eng 
state which signifies 
a heartbeat message 
being sent to the 
engine control ECU 
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Eng 
 

Represents the 
engine control ECU 
as it receives a 
heartbeat message 
from the display 
ECU 

1,2,4 

Eng to 
Disp_chk_Eng 
transition 

 

Transition 
representing 
response heartbeat 
message being sent 
from the Eng ECU 
back to the Display 
ECU 

 

Disp_chk_Eng 

 

State where the 
display ECU 
receives heartbeat 
message from the 
engine control ECU 
and continues 
checking ECUs.  
This is the final state 
of the ECU check 
sequence.   

2,4 

Disp_chk_Eng 
to Disp_start 
transition  

Represents a 
transition back to the 
start of the ECU 
check sequence.  
Enters state 2 if all 
ECUs were checked 
without an E-stop 
trigger condition and 
no cyberattack is 
occurring.  Enter 
state 4 if no E-stop 
trigger conditions 
occurred although at 
least one ECU is 
under cyberattack. 
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E-stop 

 

Represents E-stop 
state where at least 
one ECU has 
determined an E-
stop trigger 
condition.  Normal 
control commands 
are stopped under 
this state and 
stop/shutdown 
commands are sent 
instead. 

3,5 

E-stop to 
Disp_start 
transition 

 

Transition from E-
stop state back to 
state 1 where all 
ECUs are being 
checked for E-stop 
trigger conditions.  
Only happens after a 
reset button input is 
sent 

 

disp_button 
 

 

 

Represents the 
display ECU E-stop 
button on the Flex-
Ro remote 
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LF_button 
 

 

 

Represents the left-
front E-stop button 
on Flex-Ro 

 

LR_button 
 

 

 

Represents the left-
rear E-stop button on 
Flex-Ro 

 

RF_button  
 

 

Represents the right-
front E-stop button 
on Flex-Ro 

 

RR_button  
 

 

Represents the right-
rear E-stop button on 
Flex-Ro 

 

in_run_cmds  
 

 

Represents any other 
commands sent from 
Flex-Ro remote to 
run or control Flex-
Ro 

 

attack_RF 
 

 

 

Represents right-
front E-stop button 
input under a 
cyberattack scenario.  
Could be different 
from actual right-
front button input 
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attack  
 

 

Input that represents 
whether a 
cyberattack is/has 
occurred or not 

 

reset 
 

 

 

Represents reset 
button input from 
Flex-Ro remote or 
FlexRoRun app 

 

state 
 

Output from 
Stateflow model that 
can be used to plot 
which ‘state’ from 
Figure 4.9 the model 
is in over time.   

 

out_run_cmds 
 

Output that 
represents whether 
the E-stop system is 
allowing normal 
operation commands 
or is sending E-stop 
commands to 
stop/shutdown 
machine. 
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