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Identification of genes that show similarity between different organisms, a.k.a 

orthologous genes, is an open problem in computational biology. The purpose of this 

thesis is to create an algorithm to group orthologous genes using machine learning. 

Following an optimization step to find the best characterization based on training data, 

we represented sequences of genes or proteins with kmer vectors. These kmer vectors 

were then clustered into orthologous groups using hierarchical clustering. We optimized 

the clustering phase with the same training data for the method and parameter selection. 

Our results indicated that use of protein sequences with k=2 and scaling the data for each 

kmer provided the best results. We employed Pearson’s correlation as the distance metric 

and used complete linkage in the agglomeration step. The number of clusters are 

calculated based on four different approaches that evaluates optimum number of clusters. 

This algorithm was pitted against OrthoDB which is an orthologous gene grouping 

algorithm that has been proven to work well. The results show that when small datasets 

were used, our algorithm performed better than OrthoDB. When larger genome-level 

datasets were used, OrthoDB outperformed our algorithm as long as the input data to 

OrthoDB was divided based on organism count. Our algorithm has an advantage over 

OrthoDB in that the data doesn’t have to be divided by organism; it can be given as one 

file. The proposed algorithm runs much faster than OrthoDB and is the first approach, to 

the best of our knowledge, that uses unsupervised machine learning techniques that does 



 

 

not rely on sequence alignment or phylogeny to identify orthologues genes. Overall, our 

algorithm provides a novel solution that is fast, practical, and unlike existing approaches 

can be applied to data sets such as metagenomics where the underlying number of 

organisms is unknown. 

  



 

 

iv 

Acknowledgements 

I would like to thank Dr. Hasan Otu for all of his guidance throughout this whole process 

as well as Karla, Brad, and Keaton Burgess for all of their unconditional support 

throughout this thesis writing process. I would also like to thank the committee, Dr. 

Khalid Sayood and Dr. Andrew Harms for their input and for taking the time to read and 

listen to my thesis presentation. 

  



 

 

v 

Table of Contents 

1 CHAPTER 1: Introduction ......................................................................................... 1 

1.1 Orthology................................................................................................................... 2 

1.2 Organization of Thesis ............................................................................................... 4 

2 Chapter 2: Background ............................................................................................ 6 

2.1 OrthoDB ..................................................................................................................... 6 

2.2 KEGG Orthology (KO) Database ................................................................................. 7 

2.3 Cluster of Orthologous Groups (COG) ........................................................................ 8 

2.4 eggNOG Database ...................................................................................................... 8 

2.5 Broccoli ...................................................................................................................... 8 

2.6 Proposed Approach ................................................................................................. 10 

3 CHAPTER 3: Sequence Characterization ................................................................ 12 

3.1 Artificial Neural Networks ....................................................................................... 14 

3.2 Sequence Characterization Using kmer Vectors ....................................................... 15 

3.3 Sequence Characterization Using AMI Profiles ........................................................ 18 

4 CHAPTER 4: Delineation of Orthologous Groups ................................................... 21 

4.1 Hierarchical Clustering ............................................................................................. 21 

4.2 K-Means Clustering .................................................................................................. 22 

4.3 Gaussian Mixture Model.......................................................................................... 22 

4.4 Testing and Choosing Clustering Algorithm ............................................................. 23 

4.5 Calinski-Harabasz ..................................................................................................... 28 

4.6 Davies-Bouldin ......................................................................................................... 28 

4.7 Gap .......................................................................................................................... 29 

4.8 Silhouette ................................................................................................................ 29 

4.9 Picking Best Evaluation Method for Number of Clusters ......................................... 30 

5 CHAPTER 5: Comparative Application on HomoloGene and Whole Genome Data 
Sets ………………………………………………………………………………………………………………………….32 

5.1 HomoloGene Test .................................................................................................... 32 

5.2 COG Test .................................................................................................................. 34 

6 CHAPTER 6: Conclusions and Future Directions ..................................................... 41 

References .................................................................................................................... 43 
 



 

 

vi 

 

List of Tables 

Table 1: An example of a kmer vector that would be inputted into the algorithm. In the 

example, an mRNA sequence is used with k=2. ............................................................. 17 

Table 2: Accuracy of groups using kmer, AMI, and kmer + AMI methods. ................... 19 

Table 3: ARI for each dataset with different clustering algorithms. Protein data sets are 

highlighted in yellow. .................................................................................................... 25 

Table 4: ARI for each dataset with different clustering algorithms. Datasets have been 

row normalized. The data set order follows that of Table 3. Protein data sets are 

highlighted in yellow. .................................................................................................... 26 

Table 5: ARI for each dataset with different clustering algorithms. Datasets have been 

column normalized. The data set order follows that of Table 3. Protein data sets are 

highlighted in yellow. .................................................................................................... 27 

Table 6: Table showing actual number of clusters required versus how many each 

evaluation type returned................................................................................................. 30 

Table 7: Table showing squared error of the number of clusters returned by each 

evaluation type as well as the average of all of them. ..................................................... 30 

Table 8: Results of OrthoDB when data is randomly divided into 2 sets or N sets. NumC: 

number of identified orthologous gene clusters. NumNA: Number of proteins that are not 

assigned to any clusters. ................................................................................................ 33 

Table 9: Number of clusters and ARI for each data set using the proposed method ....... 34 

Table 10: Assembly IDs and organism names for the 8 organisms used for the COG test.

 ...................................................................................................................................... 35 



 

 

vii 

Table 11: Detailed statistics for the COG data sets.. ...................................................... 36 

Table 12: Results of the proposed algorithm on different organism combinations. 

Numbers 1-8 refer to the order of the organisms listed in Table 11. Best ARI results when 

all 8 organisms were used is highlighted. ....................................................................... 38 

Table 13: OrthoDB's results for the COG data set involving 8 bacterial genomes.OG: 

Orthologous Groups. ..................................................................................................... 38 

Table 14: Criterion values for each cluster evaluation method for different number of 

clusters. The optimum criterion value is highlighted. ..................................................... 39 

 List of Figures 

Figure 1: Example of homologs, orthologs, and paralogs. ............................................... 3 

Figure 2: Distribution of the number of genes across the HomoloGene database. .......... 13 

Figure 3: The track of the algorithm to test sequence characterizations. ........................ 15 

 

List of Equations 

Equation 1: Ratio between the number of times two proteins A and B have been found as 

orthologs and paralogs ..................................................................................................... 9 

Equation 2: Average Mutual Information equation ....................................................... 18 

Equation 3: Calinski-Harabasz Index where k is the number of clusters, n is number of 

records in data, BCSM calculates separation between clusters and WCSM calculates 

compactness within clusters ........................................................................................... 28 



 

 

viii 

Equation 4: Davies-Bouldin Index where n is the number of clusters and 𝜎𝑖	is the 

average distance of all points in cluster i from the cluster center 𝑐𝑖 ................................ 28 

Equation 5: Gap statistic where Wk is the measure of compactness of the clustering 

based on the Within-Cluster-Sum of Squared Errors in Equation 5. ............................... 29 

Equation 6: Within-Cluster-Sum of Squared Errors (WSS) ........................................... 29 

Equation 7: The Silhouette Coefficient where b(i) is the smallest average distance of a 

point i to all points in any other cluster and a(i) is the average distance of i from all other 

points in its cluster. ........................................................................................................ 29 

 



 

 

1 

1 CHAPTER 1: Introduction 

Life is all around us here on Earth. And what better way to gain a better understanding of 

life than to dive deep into the building blocks of life. This would primarily mean the 

deoxyribonucleic acid (DNA) molecule that contains the hereditary information for living 

organisms. DNA helps code for everything that goes on inside of an organism. It does 

this by having four distinct bases that make it up that serve as the pieces of the code. 

These four bases are adenine (A), guanine (G), cytosine (C), and thiamine (T). DNA is a 

double helix structure containing these four bases used to code for different processes and 

characteristics of the organism it is within. Functional parts of DNA, referred to as 

“genes,” are copied onto the molecule called “messenger ribonucleic acid” (mRNA) 

through a process called “transcription.” This single-stranded mRNA molecule is then 

processed to code for amino acids which are linked together to create proteins that carry 

out specific functions within an organism. Genes serve many functions from determining 

one’s susceptibility to diseases to something as simple as how tall someone will grow or 

the color of their eyes. Studying genes and their regions that code for these traits in 

organisms can be vital to understanding life.  

 

Through sequencing technologies, we have been able to identify the DNA content of 

different organisms and study them in detail. Such studies entail a wide range of topics 

that include gene identification, mutation detection, and motif discovery among others. 

One important question is identifying sequence similarity between different gene 

sequences [1]. These genes may come from the same organism, or they may belong to 

different organisms. The main motivation behind this has been the biological premise that 
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“forms fit function” [2]. The manifestation of this principle in DNA sequence analysis is 

that genes with similar sequences may have similar functions in the cell. Discovering 

such similarities may help us reconstruct evolutionary histories or understand biological 

function and mechanisms. 

 

1.1 Orthology 

Similarity in biological context is defined by the term ”homology,” which is the idea that 

similarity of genes can be linked to the fact that they are from a common ancestor. 

Orthologous genes are homologous genes that are inherited in different species but still 

have a common ancestor, while paralogous genes are homologous genes that are 

inherited in the same species and have a common ancestor. Studying homology may help 

us learn about unknown genes. If one knows about the make-up and function of a gene, 

and an unknown gene is known to be orthologous to the known gene, one can assume 

that the make-up and function of the unknown gene is similar to that of the known gene. 

This can help one learn about genes that they are unfamiliar with and their function.  

 

In Figure 1, we show an example of ortholog and paralog genes. The early globin gene 

goes through a gene duplication and gives rise to alpha- and beta-chain globin genes. 

There are slight compositional and length differences between the two chains, which 

along with two other subunits, come together to form the hemoglobin protein [2]. As 

shown in the figure, the two alpha-globin genes in different organisms, e.g., frog and 

mouse, make an orthologous gene pair. Together with the alpha-globin gene in the 

chicken, we can consider these three genes forming an orthologous gene group. 
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Similarly, the three beta-globin genes in the three organisms form another orthologous 

gene group. Conversely, the alpha-globin and beta-globin genes in the same organism 

form a paralogous gene pair. For example, the alpha-globin and beta-globin genes in 

mice are paralogous. 

 

 

 

Figure 1: Example of homologs, orthologs, and paralogs. 

 
With the advent of sequencing techniques, we have a plethora of molecular sequences 

that can be used to develop computational tools to identify orthologous gene groups. This 

problem can be tackled in two ways. First, one can start building a database of 

orthologous genes, and update this as new genome or gene sequences become available. 

Although such an approach provides a big-picture view and often attracts non-

computational scientists for its ease-of-use, it runs into the problems of being bulky, hard 

to navigate, and either miss or make it difficult to infer orthologous pairs inherited by 

distant species, e.g., thorough horizontal gene transfer [1]. 
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Another way is to obtain the orthologous groups given a set of gene sequences “on the 

fly.” Methods that follow this approach has the advantage of creating dynamic results for 

different sets of genes but suffer from huge computational time and space requirements 

when tried for large sets of sequences. As we describe in the following chapter, most 

existing approaches to define orthology follow the former approach with options to sift 

subgroups of interest. In this thesis, we develop a method in the latter class of approaches 

differing from existing ones by not relying on sequence alignment to find sequence 

similarity, which uses evolutionary assumptions and often produces ambiguous results 

[1]. 

 
1.2 Organization of Thesis 
 
In this thesis we used alignment-free machine learning approaches to identify the 

orthologous gene groups given a set of molecular sequences. We first characterize the 

gene (or protein) sequences using mathematical modeling so that they can be used as the 

input to the employed algorithms. In Chapter 2, we provide a background by 

summarizing existing approaches for orthologous gene identification and describe the 

steps of the proposed approach. In Chapter 3, we will describe the tested sequence 

characterizations and run our models on known orthologous groups. This training phase 

enabled us to find the optimum model for the final workflow. In Chapter 4, we further 

tested the characterizations with various clustering approaches, similarity metrics, and 

data pre-processing methods. This resulted in separating a given set of gene (or protein) 

sequences into their respective orthologous groups and finding the optimum number of 

such groups. In Chapter 5, our proposed method is compared to other orthologous gene 

finding approaches using known orthologous gene group sets. Finally, Chapter 6 includes 
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discussion on obtained results, conclusive remarks, and points to future research 

directions. 
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2 Chapter 2: Background 
 
Initial approaches to identify orthologous genes used the evolutionary tree represented by 

the species that the genes come from [3]. However, since phylogenetic trees rely on 

models that are often disputed and may not always be readily available for species under 

investigation, recent approaches use direct whole genome comparisons. These 

approaches often rely on best reciprocal hits (BRHs). Assume we are comparing gene or 

protein sequences between two genomes. Let S1,1, S1,2, ... , S1,N1 denote the sequences in 

the first genome and S2,1, S2,2, ... , S2,N2 denote the sequences in the second genome. 

Assume the sequence S1,i of the first genome is compared to all of the sequences in the 

second genome for similarity and the most similar sequence in the second genome is 

found to be S2,j. Now, the procedure is reversed and the sequence S2,j in the second 

genome is compared to all of the sequences in the first genome for similarity. If S1,i 

makes the top of the list in the latter comparison, then S1,i and S2,j are called BRHs [4]. 

Following such all-against-all comparisons between two genomes, BRHs or “near BRHs” 

are identified to define orthologous gene groups. 

 

2.1 OrthoDB 
 
OrthoDB [5] performs an all-against-all comparison between the protein sequences in the 

two genomes using local alignment tools such as ParAlign [6] or BLAST [7]. Then, 

BRHs are clustered based on an e-value cut-off of 10-6. The e-value is a parameter that 

tells the number of hits to expect to see by change when searching a database of a 

particular size. An e-value of 1 means that one might expect to see 1 match with a similar 

score simply by chance. The lower the e-value, the more significant the match [8]. If a 
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protein sequence did not have any BRHs but showed a similarity to a clustered BRH 

group with an e-value less than 10-10, then this sequence is included in the cluster. An 

overlap of 30 amino acids is also required among the members of a cluster. If two 

proteins in a genome show similarity to each other that is more than their similarity to 

any sequence from other species and that shows over 97% identity, then they are included 

in the same cluster. Triangulation is applied to expand the clusters to other species and 

final orthologous groups are thus defined. 

 

2.2 KEGG Orthology (KO) Database 
 
Kyoto Encyclopedia of Genes and Genomes (KEGG) is a suite of bioinformatics tools 

and databases that is most popular for its pathway repository [9]. An important feature of 

the KEGG database is the so-called “K numbers” that define orthologous gene groups. 

First, a sequence similarity database (SSDB) is constructed, which is obtained by 

pairwise genome comparisons for gene and protein sequences and is stored as a graph. 

The edges represent best-hits and are weighted by the similarity scores between 

sequences. The KEGG Orthology And Links Annotation (KOALA) algorithm clusters 

this graph to identify “cliques” that are based on the weighted sum of Smith-Waterman 

(local alignment) scores, length of the overlap, ratio of sequence lengths, and common 

domains across the sequences. New genomes are added to the KO database using the 

BlastKOALA and GhostKOALA tools [10]. 
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2.3 Cluster of Orthologous Groups (COG) 
 
The COG approach relies on analysis of three genomes at a time with triangulation using 

BRHs [11]. If triangulated groups have overlapping gene or protein sequences, then the 

groups are converged. The main difference introduced in COG was the use of flexible 

similarity cut-offs that changed for different protein families [12]. If the final COGs are 

too large, a manual splitting is applied based on identification of conserved domains 

among the members of the COGs. 

 

2.4 eggNOG Database 
 
The eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) 

database [13] treats a collection of protein sequences concurrently, without focusing on 

pairs of genomes. The sequence similarity is guided by known species similarity where 

the seed orthologous groups are initially formed in clades of similar organisms. This is 

extended in a hierarchical fashion where new subsets of organisms are either introduced 

or combined with more relaxed cut-off criteria.  

 

2.5 Broccoli 

The Broccoli algorithm is the most similar to what we are going to produce [14]. Broccoli 

performs orthologous gene grouping in four steps: kmer preclustering, similarity searches 

and phylogenetic analyses, identification of orthologous groups, and identification of 

orthologous pairs. For the first step of kmer preclustering, Broccoli converts the protein 

names into unique identifiers. The proteome of each species is clustered using kmers of 

amino acids. In each cluster, the longest is kept for further analysis. This is done to try to 
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reduce the number of proteins to be analyzed by removing allelic variants and dupicates. 

Kmer size is set to 100. This prevents paralogs being grouped between closely related 

species. Kmer size can be reduced when more distantly related species are analyzed. In 

step two, a phylogenetic tree is then constructed for each species by comparing its 

proteins against other proteomes and performing phylogenetic analyses in possible cases 

of gene duplications. Searches for similarity are individually performed using 

DIAMOND and the N best hits per species are given. DIAMOND is a high-throughput 

alignment program that compares a file of DNA sequencing reads against a file of protein 

reference sequences, such as NCBI or KEGG [15]. All hits are considered orthologs if no 

species have multiple hits. In step three, an orthology network is built from which 

orthologous groups are isolated using a machine learning algorithm. Orthologous groups 

are delineated using a relaxed species overlap approach. Two sets of leaves are 

orthologous if there is no common species between the two sets or there is only one 

common species an at least two unique species in both sets. For step four, a new set of 

orthologous relationships is built that considers gene duplication events within each 

orthologous group. The method is the same as step three but with a couple of differences: 

proteins not belonging to the orthologous group are removed, and orthologous and 

paralogous pairs are built at each tested node from the rooted trees. Then for each pair of 

proteins A and B belonging to the orthologous group, a ratio R(AB) is calculated by the 

following formula: 

 

𝑅(𝐴𝐵) = 	
𝑜𝑟𝑡ℎ𝑜(𝐴𝐵)

𝑜𝑟𝑡ℎ𝑜(𝐴𝐵) + 𝑝𝑎𝑟𝑎(𝐴𝐵) 

Equation 1: Ratio between the number of times two proteins A and B have been found as orthologs and paralogs 
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Where ortho(AB) and para(AB) indicate the number of times A and B are found as 

orthologs and paralogs, respectively. They will be considered orthologs if their ratio is 

higher than a predetermined threshold usually set to 0.5 [14]. 

 

2.6 Proposed Approach  

In this thesis we introduce a new approach to find orthologous gene groups that utilizes 

methods rooted in machine learning. Unlike the method detailed for Broccoli or other 

similar algorithms that produce de novo orthology assignments, we do not use best-

reciprocal-hits, sequence alignment, or phylogenetic approaches, which not only rely on 

evolutionary assumptions and produce ambiguous results, but also have huge time and 

space requirements that are not suitable for large data sets. We begin with 

characterizations of the sequences using mathematical models, which frees us from 

alignment or phylogeny-based similarity assessments that may be biased by the 

underlying evolutionary model assumptions. Unlike existing methods, our approach does 

not require whole genome representations but can identify orthologous gene groups for 

any given set of sequences.  

 

Using classification accuracy as a metric, we found the best sequence characterization 

method based on training groups of orthologous genes. Then, clustering algorithms were 

employed to find the optimum method and measure that can separate the training 

orthologues gene groups. We employed approaches that can identify the optimum 

number of clusters automatically. Given a set of molecular sequences we utilized a two- 
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pronged approach. If the estimated number of clusters were small, we used each possible 

cluster number for evaluation. If the estimated number of clusters were too big, we used a 

step-size to evaluate different number of clusters. We used NCBI’s HomoloGene 

database for small orthologous gene groups in our training and test phases. For large data 

sets, we used COG’s organism-level orthologous gene groups in our test phase. Our 

results were compared with OrthoDB, the only database that provided a standalone tool 

to identify orthologous gene groups. 
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3 CHAPTER 3: Sequence Characterization 

The first step in creating an algorithm to do orthologous gene grouping was to find a 

program to handle the task. MATLAB was decided on as it has a variety of toolbox 

features that could be used in building the algorithm. For the first phase, where we 

needed a classifier for evaluation, we opted for a neural-net approach. MATLAB’s Deep 

Learning Toolbox ended up being perfect for this phase as it had the ability to choose a 

type of neural network, set the number of neurons in the hidden layer, take inputs and 

expected outputs, and train and test the neural network. The algorithm for this was done 

by reading in FASTA files either in the form of mRNA or proteins. These FASTA files 

were obtained from NCBI’s HomoloGene database. This is an online database that 

contains homologous gene groups across numerous species. It has gene groups with 

varying numbers of genes in them.  
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Figure 2: Distribution of the number of genes across the HomoloGene database. 

 

The distribution of the number of genes in the HomoloGene database gene groups is 

given in Figure 2. Out of the 44,233 gene groups that were queried, only 21 had more 

than 100 genes in them. The majority of the HomoloGene gene groups had four or fewer 

genes where 55 groups had more than 50 genes and there were 128 groups with more 

than 30 genes in them. Our first goal was to sample different sets of groups from the 

HomoloGene database and perform k-fold cross validation on the members of the gene 

groups using an artificial neural network (ANN) model. We used different 

characterizations of the sequences to see which one gave the best accuracy. We applied 

our test workflow on both the mRNA and protein sequences for the genes in the 

HomoloGene groups. For mRNA sequences, the HomoloGene database provided the 

coding DNA segment for the gene on the genome. 
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3.1 Artificial Neural Networks 

Artificial neural networks (ANNs) are networks that can be used to predict the output of a 

function given a certain input. ANNs work by first taking an input and running it through 

a predetermined function controlled by weights and offsets. This function is in the hidden 

layer which contains a predetermined number of neurons. The inputs run through the 

function in the hidden layer controlled by the weights and offsets. This then gives an 

output which can be compared to the desired output. The difference between the output 

and the desired output can then be used to adjust the weights and offsets in the hidden 

layer function, and the inputs can be run through again. This continues until the weights 

and offsets are set in such a way that the desired output and the real output are as close as 

possible. This process of finding the correct weights and offsets is called training. Once 

training is complete, the weights and offsets are set to their optimal value, and the ANN 

is ready to be used to predict the output when certain input is put into the ANN. This can 

be used to find orthologous genes. The gene sequences can be used as the input, and the 

group they should be in can be used as the output. The ANN can then be trained to figure 

out what orthologous gene group certain genes should be in. The overall workflow used 

in this phase is summarized in Figure 3. 
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Figure 3: The track of the algorithm to test sequence characterizations. 

 

3.2 Sequence Characterization Using kmer Vectors 

Random HomoloGene groups with either the same or different numbers of genes in them 

were selected to test our approach. This was done to test the robustness of the sequence 

characterization methods. The test data sets were named based on the number of groups 

and the number of genes in each group. Our first characterization model was the kmer 

approach. Each gene in each group would be read in and analyzed to turn it into a vector 

of numbers that represented the numbers of different kmers in the gene. A kmer is a short 

string of nucleotides or amino acids (AA, ACG, CTGAT, etc.). The “k” in kmer is the 

number of nucleotides or amino acids in the string. The amount of each kmer found in 

each gene is represented as a vector and entered into the neural network as the main 

input. In Table 1, we show a sample kmer vector used as input in our test workflow. This 

example was obtained for an mRNA entry in the HomoloGene database. Since the 

database provides the corresponding coding DNA segment, we have the base ‘T’ instead 
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of ‘U’ that is found in RNA as the substitute for ‘T’. This example represents the case for 

k=2, and as there are 4 nucleotides, the vector has 4k=42=16 entries. The other input of 

the neural network is the expected output which is the original group number the gene 

belongs to. This group number is given in the form of a 1 in position of the group number 

and 0s in the other positions. For example, if there are five groups and the gene is 

expected to be in group two, it would be inputted into the neural network as a 01000.  
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GC 162 

GG 150 

CC 141 

TG 120 

CT 111 

CA 108 

AG 101 

CG 81 

GA 73 

TC 71 

GT 67 

AC 66 

AT 33 

AA 29 

TT 27 

TA 20 

 

Table 1: An example of a kmer vector that would be inputted into the algorithm. In the example, an mRNA sequence is 
used with k=2. 

 

After all the inputs were created they were passed to the neural network for 10-fold cross 

validation. This would then give a percentage accuracy which would give the user an idea 

of how successful the program was. 
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A test was run with different numbers of k and different numbers of neurons in the 

hidden layer. It was found that the optimal number of neurons in the hidden layer was 50 

and the optimal values for k were 2 for protein kmers and 4 for mRNA kmers. A test was 

run with these parameters to find out the accuracy with 16 different datasets. The 

accuracy was described as the percentage of genes that were put in the correct groups. To 

get more accurate results, the algorithm was run 10 times and the average accuracy 

percentage was taken as the final accuracy. The results of the program are given in Table 

2 below. The next step is to do all of this again but with Average Mutual Information 

(AMI) profiles instead of kmers. 

 

3.3 Sequence Characterization Using AMI Profiles 

The average mutual information between two bases that are ‘r’ positions apart in a 

molecular sequence is defined as: 

𝐼(𝑟) = 	3𝑝45(𝑟)𝑙𝑜𝑔8(
𝑝45(𝑟)
𝑝4𝑝5

)
4,5

 

Equation 2: Average Mutual Information equation 

where pi is the probability of occurrence of symbol i and pij(r) is the joint probability of 

observing symbol i and j separated by a distance r. I(r) is the amount of information 

symbol i carries about symbol j at a distance r. For an independent identically distributed 

sequence, I(r) = 0 for all r > 0. AMI has been used on DNA sequences to find coding 

regions of these sequences and to investigate statistical correlation of nucleotides [16]. 

AMI profiles have also been used to analyze evolutionary history of DNA sequences 

[17]. AMI vectors were in the form [I(1), I(2), … , I(R)]; we used R=16 to generate the 
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AMI vectors for the mRNA and protein sequences, which were subsequently run in the 

ANN classifier to produce 10-fold cross-validation accuracies for the 16 different 

HomoloGene test groups. 

 

We also combined the two characterizations where we appended the kmer and AMI 

vectors for each sequence and applied the 10-fold cross validation approach using ANNs. 

The result for all three cases (kmer, AMI, kmer+AMI) are shown in Table 2. 

 

Number of 
Groups 

Number of 
Genes 

mRNA/Protein kmer AMI kmer + 
AMI 

5 12-20 mRNA 86.67% 44.29% 61.90% 
5 12-20 Protein 99.52% 77.14% 100.00% 
10 5 mRNA 85.33% 69.33% 73.33% 
10 5 Protein 99.33% 89.33% 98.00% 
10 10 mRNA 86.67% 59.00% 73.67% 
10 10 Protein 100.00% 87.33% 100.00% 
10 12-20 mRNA 82.92% 39.38% 49.17% 
10 12-20 Protein 99.38% 71.88% 99.38% 
10 15 mRNA 81.11% 41.33% 59.33% 
10 15 Protein 99.33% 84.44% 98.44% 
10 20 mRNA 78.17% 32.50% 51.50% 
10 20 Protein 99.33% 65.17% 98.67% 
15 12-20 mRNA 80.14% 33.75% 46.11% 
15 12-20 Protein 99.17% 72.50% 99.03% 
20 12-20 mRNA 72.40% 34.48% 57.40% 
20 12-20 Protein 98.65% 67.19% 61.31% 

 

Table 2: Accuracy of groups using kmer, AMI, and kmer + AMI methods. 

 

As can be seen in Table 2 above, the use of kmer vectors produces the best accuracy in 

the algorithm in all but three cases, two of which it tied with kmer and AMI together. 



 

 

20 

AMI by itself never produces the best accuracy. This shows that kmer vectors should be 

used moving forward for the input to the algorithm in order to obtain the best accuracy. 
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4 CHAPTER 4: Delineation of Orthologous Groups 
 
The next step was to try to create an algorithm that would group the orthologous genes by 

using a clustering algorithm. Three different clustering algorithms were tested to see 

which one would work the best for the application: hierarchical clustering, k-means 

clustering, and Gaussian mixture model clustering.  

 

4.1 Hierarchical Clustering 

Hierarchical clustering works by making every data point its own cluster, then constantly 

repeating two steps over and over. It identifies the two most similar clusters and then 

merges them into the same cluster. Similarity between clusters is found by computing a 

distance between clusters and the two with the smallest distance between each other are 

considered to be the most similar. These distances are often put into a distance matrix 

where each data point is placed along the first row and first column of a matrix and the 

distance between two points is placed in the intersection point in the matrix. Distance can 

be defined in many different ways depending on the application. It could be defined as 

city block distance, Euclidean distance, etc. The other aspect to consider in hierarchical 

clustering is linkage. This helps determine from where distance is computed. It could be 

single-linkage where distance is computed between the two most similar parts of the 

clusters. Another linkage option is complete linkage where the two least similar parts of 

the clusters are used to compute the distance. One could also do average linkage where 

the distance is computed based on the center of each cluster. A good default linkage when 

one cannot be determined is Ward’s linkage. Ward’s linkage works by reducing the sum 
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of squared distances of each observation from the average observation of each cluster and 

hence unfortunately only works with the Euclidean distance. All of these things put 

together make hierarchical clustering a viable option for this application [18]. 

 

4.2 K-Means Clustering 

K-means clustering is another option for clustering in the algorithm. K-means clustering 

works by setting a number “k” which will act as the number of centroids. A centroid 

defines the center of a cluster. Often centroids will be randomly generated to start with. 

Each data point is placed in a cluster based on which centroid it is closest to. Then the 

average of each cluster is taken to find a new centroid for each cluster. Points are placed 

into clusters again based on which centroid it is closest to now, then the average is taken 

again and the centroids are moved again. This continues until some threshold is met or 

until the data points no longer change clusters after the average is taken. Once this is 

done, there will be k distinct clusters [19]. 

 

4.3 Gaussian Mixture Model 

Gaussian mixture model (GMM) clustering is similar to k-means clustering in that it 

chooses k starting points for clusters and assigns points to them. Then it updates them 

until clusters converge. The difference is that the clusters are not defined by a sphere but 

by a Gaussian model [20]. The premise in GMMs is that the data is generated using a 

mixture of k different Gaussian distributions, k being the number of clusters. First, a 

model is fit to the observed data points such that the weight, mean, and variance of each 

Gaussian distribution as well as the covariance between different Gaussian distributions 
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are estimated. Then, each data point is considered to be generated by the mixture of the 

Gaussian distributions with different weights. The data point is assigned to the cluster 

represented by the Gaussian distribution that gets the largest posterior probability (weight 

or coefficient) for that observation. 

 

4.4 Testing and Choosing Clustering Algorithm 

All of these clustering algorithms were tested in order to see which one would work best 

for the application at hand. They were tested in MATLAB on the same data sets that were 

used in the previous chapter. For each dataset, the correct clusters were entered as a 

variable and an adjusted Rand index (ARI) was used to compare them to the clusters the 

algorithm put them in. The ARI outputs a score on a scale of 0 to 1 where 1 is perfect 

clustering. Each algorithm was tested with various different settings to find the one with 

the best ARI. Here, we describe the settings, which also appear in the column headers of 

the results that are shown in Table 3, Table 4, and Table 5 below.  

 

kmeansE: kmeans clustering with Euclidean distance 

kmeansC: kmeans clustering with correlation distance 

HCEW: hierarchical clustering with Euclidean distance and Ward linkage 

HCCC: hierarchical clustering with correlation distance and complete linkage 

HCCA: hierarchical clustering with correlation distance and average linkage 

HCCS: hierarchical clustering with correlation distance and single linkage 

GMM_PCA: Gaussian mixture model clustering with principal components (PCA). 

 



 

 

24 

The input to the clustering algorithms was a matrix where the kmer sequence 

characterizations (k=4 for mRNA and k=2 for protein) were the rows. For example, when 

we used 10 Homologene groups with 10 protein sequences in each, we used a kmer of 

size 2 so that each sequence was represented by a vector of length 400. Putting this in a 

matrix form implied that the input to the clustering algorithm was a 100x400 matrix 

where the rows were to be clustered into ten groups. 

 

One problem we had was with the GMM clustering as this method cannot accept data 

that has more features (400 in the above example) than the data points (100 in the above 

example). Therefore, in the case of GMM, we used PCA dimension reduction with 2 PCs 

so the data matrix that was used as input was (number of sequences)x2 (100x2 in the 

above example). 

 

We also applied row or column normalization to the data matrix used as input to the 

clustering algorithm. This is denoted as (RN) and (CN), respectively. In each case the 

data matrix is scaled either along its rows or columns such that the vectors (rows or 

columns) are transformed to have zero mean and unit variance. 
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Data Set kmeansE kmeansC HCEW HCCC HCCA HCCS GMM
_PCA 

10GroupsOf10Protein 0.447 0.867 0.691 0.698 0.698 0.259 0.259 
10GroupsOf10mRNA 0.309 0.332 0.315 0.231 0.187 0.003 0.356 
10GroupsOf12-20Protein 0.486 0.839 0.824 0.678 0.661 0.182 0.338 
10GroupsOf12-20mRNA 0.127 0.126 0.089 0.093 0.048 -0.001 0.075 
10GroupsOf15Protein 0.689 0.814 0.777 0.838 0.678 0.220 0.422 
10GroupsOf15mRNA 0.280 0.172 0.261 0.126 0.050 0.000 0.180 
10GroupsOf20Protein 0.353 0.638 0.480 0.539 0.288 0.030 0.222 
10GroupsOf20mRNA 0.156 0.093 0.182 0.063 0.026 0.000 0.119 
10GroupsOf5Protein 0.454 0.538 0.360 0.712 0.641 0.454 0.286 
10GroupsOf5mRNA 0.324 0.515 0.409 0.626 0.471 0.175 0.376 
15GroupsOf12-20Protein 0.643 0.585 0.723 0.454 0.369 0.111 0.316 
15GroupsOf12-20mRNA 0.129 0.099 0.130 0.062 -0.005 0.000 0.057 
20GroupsOf12-20Protein 0.501 0.691 0.584 0.530 0.249 0.056 0.354 
20GroupsOf12-20mRNA 0.139 0.084 0.151 0.067 0.020 0.000 0.103 
5GroupsOf12-20Protein 0.791 0.683 1.000 0.737 0.737 0.187 0.675 
5GroupsOf12-20mRNA 0.208 0.249 0.239 0.164 -0.005 -0.002 0.170 

 

Table 3: ARI for each dataset with different clustering algorithms. Protein data sets are highlighted in yellow. 
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kmeansE 
(RN) 

kmeansC 
(RN) 

HCEW 
(RN) 

HCCC 
(RN) 

HCCA 
(RN) 

HCCS 
(RN) 

GMM_PCA 
(RN) 

0.818 0.845 1.000 0.698 0.698 0.259 0.511 
0.373 0.400 0.486 0.231 0.187 0.003 0.222 
0.620 0.665 0.854 0.678 0.661 0.182 0.360 
0.113 0.101 0.152 0.093 0.048 -0.001 0.060 
0.859 0.764 0.778 0.838 0.678 0.220 0.486 
0.137 0.186 0.231 0.126 0.050 0.000 0.089 
0.627 0.736 0.942 0.539 0.288 0.030 0.280 
0.055 0.087 0.102 0.063 0.026 0.000 0.037 
0.655 0.792 1.000 0.712 0.641 0.454 0.484 
0.511 0.450 0.768 0.626 0.471 0.175 0.484 
0.633 0.611 0.739 0.454 0.369 0.111 0.311 
0.077 0.093 0.149 0.062 -0.005 0.000 0.043 
0.328 0.694 0.591 0.530 0.249 0.056 0.241 
0.109 0.063 0.142 0.067 0.020 0.000 0.033 
1.000 0.709 1.000 0.737 0.737 0.187 0.715 
0.213 0.232 0.221 0.164 -0.005 -0.002 0.089 

 

Table 4: ARI for each dataset with different clustering algorithms. Datasets have been row normalized. The data set 
order follows that of Table 3. Protein data sets are highlighted in yellow. 
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kmeansE 
(CN) 

kmeansC 
(CN) 

HCEW 
(CN) 

HCCC 
(CN) 

HCCA 
(CN) 

HCCS 
(CN) 

GMM_PCA 
(CN) 

0.760 0.878 0.691 1.000 1.000 0.878 0.670 
0.342 0.434 0.292 0.441 0.327 0.091 0.320 
0.665 0.953 0.761 0.903 0.903 0.764 0.187 
0.092 0.094 0.097 0.130 0.086 0.000 0.085 
0.531 0.751 0.777 1.000 1.000 0.839 0.405 
0.176 0.110 0.277 0.232 0.153 0.000 0.220 
0.315 0.978 0.706 0.978 1.000 0.722 0.311 
0.167 0.074 0.162 0.098 0.025 0.000 0.133 
0.630 0.711 0.845 1.000 0.914 0.914 0.483 
0.405 0.355 0.377 0.646 0.548 0.403 0.357 
0.596 0.870 0.713 0.917 0.981 0.768 0.308 
0.122 0.108 0.125 0.138 0.070 0.000 0.062 
0.536 0.730 0.455 0.994 0.911 0.795 0.267 
0.180 0.156 0.161 0.128 0.067 0.000 0.085 
0.746 1.000 1.000 1.000 1.000 1.000 0.680 
0.140 0.185 0.266 0.210 0.192 0.004 0.050 

 

Table 5: ARI for each dataset with different clustering algorithms. Datasets have been column normalized. The data set 
order follows that of Table 3. Protein data sets are highlighted in yellow. 

 
As can be seen in the tables above, the clustering algorithm that does the best is 

hierarchical clustering with correlation distance and complete linkage. Notice however 

that this only does noticeably well for protein sequences and not so much for mRNA 

sequences. This means moving forward the algorithm being built will use hierarchical 

clustering with correlation distance and complete linkage on protein sequences with 2-

mer characterization of the sequences. The only challenge left is that the way the 

algorithm is currently, one must enter the number of clusters that the algorithm must put 

the data points into. This is not ideal as in the real world one may not know how many 

orthologous gene groups a set of genes needs to be divided into. We used four different 

evaluation metrics that are used to identify the appropriateness of the number of clusters. 

Each metric returns the optimal number of clusters for the application based on its 
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criterion. The different kinds of evaluation approaches used were Calinski-Harabasz, 

Davies-Bouldin, Gap, and Silhouette. 

 

4.5 Calinski-Harabasz 

	

𝐶𝐻< = (
𝐵𝐶𝑆𝑀
𝑘 − 1 )	(

𝑛 − 𝑘
𝑊𝐶𝑆𝑀) 

 
 

Equation 3: Calinski-Harabasz Index where k is the number of clusters, n is number of records in data, BCSM 
calculates separation between clusters and WCSM calculates compactness within clusters 

 
The Calinski-Harabasz index is a measure of how good clusters are. There will be a 

number of clusters that maximizes this value. The index is calculated by dividing the 

variance of the sums of squares of the distances of individual objects to their cluster 

center by the sum of squares of the distance between cluster centers. As the index 

increases, the clustering model gets better. As stated before, there is an optimal number 

of clusters that will maximize this value, which is what is being searched for [21]. 

 

4.6 Davies-Bouldin 
 

𝐷𝐵 = 	
1
𝑛3𝑚𝑎𝑥5G4(

𝜎4 + 𝜎5
𝑑I𝑐4, 𝑐5J

)
K

4LM

 

 
Equation 4: Davies-Bouldin Index where n is the number of clusters and 	𝜎4 	is the average distance of all points in 

cluster i from the cluster center 𝑐4 

 
Davies-Bouldin is similar to Calinski-Harabasz, but the main difference is that the 

clustering algorithm gets better as the Davies-Bouldin index decreases. There will also be 
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an optimal number of clusters that will minimize this index value which is what is being 

searched for [21]. 

 

4.7 Gap 

𝐺𝑎𝑝K(𝑘) = 	𝐸K∗{𝑙𝑜𝑔𝑊<} − 𝑙𝑜𝑔𝑊<  
 

Equation 5: Gap statistic where Wk is the measure of compactness of the clustering based on the Within-Cluster-Sum 
of Squared Errors in Equation 5. 

𝑊< =	 3 3 ||𝑥4 − 𝑥5||8
TUVWX

= 	2𝑛< 3 ||𝑥4 − 𝜇<||8
T[VWXT[VWX

 

 
Equation 6: Within-Cluster-Sum of Squared Errors (WSS) 

 
Calculating the gap statistic involves the following: Cluster the observed data on various 

number of clusters and compute compactness of clustering. Generate reference data sets 

and cluster each of them with varying number of clusters. Calculate average of 

compactness of clustering on reference datasets. Calculate gap statistic as difference in 

compactness between clustering on reference data and original data. Again, there will be 

an optimal number of clusters based on this data [21]. 

 

4.8 Silhouette 

𝑆(𝑖) = 	
𝑏(𝑖) − 𝑎(𝑖)

max	{𝑎(𝑖), 𝑏(𝑖)} 

 
Equation 7: The Silhouette Coefficient where b(i) is the smallest average distance of a point i to all points in any other 

cluster and a(i) is the average distance of i from all other points in its cluster. 

 
The silhouette coefficient tells if points are assigned to the correct clusters. Using 

Equation 7 above, the following rules can be used when using silhouette coefficient: S(i) 
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close to 0 means the point is between two clusters. If it is closer to -1, it would be better 

to assign it to other clusters. If it is close to 1, it is assigned to the correct cluster [21]. 

 

4.9 Picking Best Evaluation Method for Number of Clusters 
 
Tests were run to see which method would deliver the best results for how many clusters 

the algorithm should cluster the data into. The results from these tests can be seen in  

Table 6 and Table 7 below. 

Data Set TRUE CalinskiHarabasz DaviesBouldin Gap Silhouette Average 
10GroupsOf10Protein 10 9 12 14 10 11.25 
10GroupsOf12-20Protein 10 9 12 14 15 12.5 
10GroupsOf15Protein 10 9 11 14 15 12.25 
10GroupsOf20Protein 10 5 15 15 11 11.5 
10GroupsOf5Protein 10 5 15 15 15 12.5 
15GroupsOf12-20Protein 15 10 20 20 20 17.5 
20GroupsOf12-20Protein 20 19 25 23 25 23 
5GroupsOf12-20Protein 5 5 9 10 9 8.25 

 

Table 6: Table showing actual number of clusters required versus how many each evaluation type returned. 

 
Data Set CalinskiHarabasz DaviesBouldin Gap Silhouette Average 
10GroupsOf10Protein 1 4 16 0 1.5625 
10GroupsOf12-20Protein 1 4 16 25 6.25 
10GroupsOf15Protein 1 1 16 25 5.0625 
10GroupsOf20Protein 25 25 25 1 2.25 
10GroupsOf5Protein 25 25 25 25 6.25 
15GroupsOf12-20Protein 25 25 25 25 6.25 
20GroupsOf12-20Protein 1 25 9 25 9 
5GroupsOf12-20Protein 0 16 25 16 10.5625 
      
TOTAL 79 125 157 142 47.1875 

 
 

Table 7: Table showing squared error of the number of clusters returned by each evaluation type as well as the 
average of all of them. 
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As can be seen above in Table 7, the evaluation type with the lowest squared error is the 

average of all of the evaluation types, so that is what will be used. To recap, the new 

algorithm will use 2mer characterization of protein sequences with hierarchical clustering 

with correlation distance and complete linkage, and in order to determine the number of 

clusters, the average of Calinski-Harabasz, Davies-Bouldin, Gap, and Silhouette methods 

will be taken. 
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5 CHAPTER 5: Comparative Application on HomoloGene and 

Whole Genome Data Sets 

The next step was to compare the results from our algorithm to that of an already 

established algorithm out in a real world-like application. The selected algorithm to test 

against was OrthoDB (described in Chapter 2). OrthoDB is a little more specific about its 

data input than our algorithm. OrthoDB requires all data that is inputted into it to be 

separated into groups by organism. This is not the case for our algorithm. For ours, any 

data can be inputted in one big file and results will still be obtained.  

 

5.1 HomoloGene Test 

We first focused on the 8 HomoloGene protein data sets described and used in Chapters 3 

and 4, which comprised of 1,290 total protein sequences. When the data was rearranged 

into groups based on organism and fed into OrthoDB, it grouped the data almost 

perfectly. The only issues it had were that certain proteins were not placed into a group at 

all. This happened on 7 different proteins out of 1290. Other than that, the groupings by 

OrthoDB were perfect. In order to be comparable to our results, we then applied 

OrthoDB to each HomoloGene data set separately. Since we observed that dividing the 

protein sequences by organism provides an unfair advantage to OrthoDB, we put all of 

the sequences in a HomoloGene data set into a file and input it to the software. For 

example, for the “10GroupsOf10Protein” data set, this meant combining all 100 proteins 

in one file, just like the input used for our algorithm. However, OrthoDB resulted in an 

error message reporting it needed multiple FASTA files as input. 
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At this point, for each HomoloGene data set, we tested OrthoDB using two different 

input files. One, where all of the sequences in the data set were divided into two FASTA 

files, another where all of the sequences in the data set were divided into N FASTA files. 

N represented the number of HomoloGene groups in the data set. In Table 8 we show the 

number of clusters, number of unassigned proteins, and the adjusted Rand index results 

when OrthoDB was applied to two and N randomly generated FASTA files for each data 

set.  

 

Data Set OrthoDB (2) OrthoDB (N) 
 ARI NumC NumNA ARI NumC NumNA 
10GroupsOf10Protein 0.0966 17 61 0.8489 11 9 

10GroupsOf12-
20Protein 0.0851 31 86 0.6108 24 12 

10GroupsOf15Protein 0.091 30 77 0.7434 21 11 
10GroupsOf20Protein 0.1241 35 95 0.6014 28 11 
10GroupsOf5Protein 0.2448 10 26 0.8533 9 7 

15GroupsOf12-
20Protein 0.0832 44 131 0.7114 31 7 

20GroupsOf12-
20Protein 0.1008 60 170 0.8049 37 10 

5GroupsOf12-
20Protein 0.1304 12 36 0.7611 10 5 

 

Table 8: Results of OrthoDB when data is randomly divided into 2 sets or N sets. NumC: number of identified 
orthologous gene clusters. NumNA: Number of proteins that are not assigned to any clusters. 

 

For our algorithm, the ARI results are shown below in Table 9. The number of clusters 

used in our algorithm was decided as described in Chapter 4. Briefly, all four approaches 

to find the best number of clusters were applied to the dataset and their average was used 

as the final number of clusters. As can be seen in the table, our algorithm performed 
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better than OrthoDB, having ARI values mostly in the 90% range for accuracy. OrthoDB, 

while completely failing in the case of 2 FASTA files, provided reasonable ARI values in 

the case of N FASTA files. However, both the number of clusters and the number of 

unassigned proteins showed the inferior performance of OrthoDB on the HomoloGene 

data sets. 

 

Data Set Number of Clusters ARI 

10GroupsOf10Protein 11 0.9889 
10GroupsOf12-20Protein 12 0.9572 

10GroupsOf15Protein 12 0.9531 
10GroupsOf20Protein 11 0.9534 
10GroupsOf5Protein 12 0.9309 

15GroupsOf12-20Protein 17 0.9527 
20GroupsOf12-20Protein 23 0.956 
5GroupsOf12-20Protein 8 0.852 

 

Table 9: Number of clusters and ARI for each data set using the proposed method 

 
5.2 COG Test 

We also wanted to test the two approaches on whole genome datasets. For this purpose, 

we used the COG database described in Chapter 2 as the ground truth. The 8 organisms 

picked from the COG database picked are shown in Table 10. These are whole genome 

sets for different types of bacteria that show evolutionary similarity. 
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Assembly ID Organism name 
GCF_000010825.1 Acetobacter pasteurianus IFO 3283 

GCF_000020425.1 Bifidobacterium longum sub infantis 
ATCC 15697 

GCF_000020225.1 Akkermansia muciniphila ATCC BAA-835 
GCF_000338115.2 Lactobacillus plantarum ZJ316 
GCF_000016825.1 Lactobacillus reuteri DSM 20016 
GCF_000011045.1 Lactobacillus rhamnosus GG ATCC 53103 
GCF_000092505.1 Leuconostoc kimchii IMSNU 11154 
GCF_000253395.1 Streptococcus thermophilus JIM 8232 

 

Table 10: Assembly IDs and organism names for the 8 organisms used for the COG test. 

 
The COG database identifies the COG ID the proteins in these bacterial genomes belong 

to. In order to obtain their sequences, we matched the protein accession numbers used in 

COG to their NCBI RefSeq assemblies, which are represented by GCF files. These GCF 

files were obtained from the NCBI whole genome database.  
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Organism 
name 

#of 
Proteins 
with a 
COG ID 

# of 
COGs 

Total 
size 
of 

COGs 

#of 
Proteins 

in the 
Assembly 

Overlapping 
Proteins 

# of 
Overlapping 

COGs 

Size of 
Overlapping 

COGs 

# of 
Represented 

COGs 

Acetobacter 
pasteurianus 

IFO 3283 
2096 1443 2234 2813 1912 1360 2044 1322 

Bifidobacterium 
longum sub 

infantis ATCC 
15697 

1624 1053 1708 2446 1329 910 1402 878 

Akkermansia 
muciniphila 

ATCC BAA-835 
1514 1128 1606 2124 1116 893 1179 860 

Lactobacillus 
plantarum 

ZJ316 
2253 1269 2354 2981 2107 1226 2200 1205 

Lactobacillus 
reuteri DSM 

20016 
1515 1061 1591 1868 1397 1017 1468 1001 

Lactobacillus 
rhamnosus GG 

ATCC 53103 
2023 1251 2114 2656 1962 1232 2045 1211 

Leuconostoc 
kimchii IMSNU 

11154 
1575 1092 1635 2023 1522 1070 1579 1047 

Streptococcus 
thermophilus 

JIM 8232 
1368 1069 1425 1690 1262 1028 1315 1006 

 

Table 11: Detailed statistics for the COG data sets.. 

 
Table 11 shows information about each bacteria’s genome. The second column shows 

the number of proteins in the bacteria’s genome with a COG ID. The next column shows 

the number of groups the proteins are divided into. The total size of the COGs is in the 

next column. Note that this number is larger than the number of proteins with a COG ID 

because the proteins can be in more than one group. Number of proteins in the assembly 

is the number of proteins in the GCF file. Overlapping proteins are the proteins that 
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overlap between the proteins with a COD ID and the proteins in the GCF file. Number of 

overlapping COGs is the number of COGs the overlapping proteins will be divided into. 

When the number of proteins in each group is added, the size of overlapping COGs 

column is achieved. Since some proteins are in more than one COG, when running the 

algorithm, one COG had to be chosen. With this in mind, the number of represented 

COGs is the number of COGs after only one COG is chosen per protein. 

 

  

Table 12 shows the results after our algorithm was run on different numbers of 

organisms. As can be seen based on the ARI, our algorithm did not perform as well as we 

had hoped it to. The ARI was mainly in the 10-25% range which is not very good. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

38 

Organisms #of Proteins # of COGs # of Clusters ARI 
1_2 3241 1621 1000 0.1217 
1_2 3241 1621 1500 0.1359 

1_2_3 4357 1819 1500 0.1372 
1_2_3_4 6464 2137 1500 0.1112 
1_2_3_4 6464 2137 2000 0.1225 

1_2_3_4_5 7861 2199 2000 0.155 
1_2_3_4_5_6 9823 2276 2000 0.1752 

1_2_3_4_5_6_7 11345 2309 2000 0.1919 
1_2_3_4_5_6_7_8 12607 2353 2000 0.1992 
1_2_3_4_5_6_7_8 12607 2353 2250 0.2081 
1_2_3_4_5_6_7_8 12607 2353 2500 0.2149 
1_2_3_4_5_6_7_8 12607 2353 2750 0.2208 
1_2_3_4_5_6_7_8 12607 2353 3000 0.2265 
1_2_3_4_5_6_7_8 12607 2353 3250 0.2285 
1_2_3_4_5_6_7_8 12607 2353 3500 0.2353 
1_2_3_4_5_6_7_8 12607 2353 3750 0.2282 
1_2_3_4_5_6_7_8 12607 2353 4000 0.2219 
1_2_3_4_5_6_7_8 12607 2353 4250 0.221 
1_2_3_4_5_6_7_8 12607 2353 4500 0.2194 

 

Table 12: Results of the proposed algorithm on different organism combinations. Numbers 1-8 refer to the order of the 
organisms listed in Table 11. Best ARI results when all 8 organisms were used is highlighted. 

 
Table 13 shows OrthoDB’s results for the 8 bacterial genomes. It can be seen that it does 

a better job than our algorithm when the data is divided up by organism and when it is 

divided up into 8 random files. It does worse than ours when it is divided up into 2 

random files.  

 
 
 

Individual Organism Files 2 Randomly Divided Files 8 Randomly Divided Files 
2078 OGs 2121 OGs 2265 OGs 
2367 Unassigned Proteins 7465 Unassigned 2464 Unassigned 
ARI: 0.5129 ARI: 0.1010 ARI: 0.4288 

 

Table 13: OrthoDB's results for the COG data set involving 8 bacterial genomes.OG: Orthologous Groups. 
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Our results from Table 12 show that the optimum number of clusters using our algorithm 

was achieved at 3,500. We then tried to see if the approaches that estimate the optimum 

number of clusters can be used to attain this value. Table 14 shows the criterion for each 

clustering method at each number of clusters. This was used to try to find the proper 

number of clusters for the COG test. For Calinski Harabasz, Gap, and Silhouette, the 

larger the criterion value the more optimal the number of clusters. For Davies Bouldin, 

the smaller criterion value implies the more optimal number of clusters. It would not be 

reasonable to try to find the optimal number of clusters like it was done for the 

HomoloGene test. For the HomoloGene test, the number of clusters was small, and it was 

easy to check a small number of potential number of clusters to see which one was the 

best. However, for the COG test, a very large number of clusters would have to be tested, 

and this is not practical. Instead, a few values were tested for each clustering method, and 

the results are shown in Table 14. 

 
# of Clusters CalinskiHarabasz DaviesBouldin gap silhouette 

2000 3.6284 2.5694 2.8013 -0.1469 
2250 3.4823 2.4376 2.8099 -0.1342 
2500 3.3282 2.3276 2.8131 -0.1257 
2750 3.2425 2.2249 2.8233 -0.1106 
3000 3.1305 2.1357 2.8280 -0.0988 
3250 3.0599 2.0604 2.8362 -0.0865 
3500 2.9966 1.9677 2.8450 -0.0761 
3750 2.9222 1.8970 2.8501 -0.0620 
4000 2.8683 1.8265 2.8575 -0.0455 
4250 2.8289 1.7523 2.8665 -0.0279 
4500 2.7841 1.6888 2.8731 -0.0031 

 

Table 14: Criterion values for each cluster evaluation method for different number of clusters. The optimum criterion 
value is highlighted. 
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Our results indicated that unfortunately the Silhouette method failed to produce 

reasonable results (as it was not supposed to generate negative values) and the other three 

methods showed a monotonic behavior. Nevertheless, the average optimum number of 

clusters indicated by the three methods turned out to be 3,667. When the COG data set 

(all 12,607 proteins coming from 8 organisms) were clustered into 3,667 orthologous 

groups using our approach, we attained an ARI value of 0.2298. 

 

Although we did not perform as well as OrthoDB on the whole genome datasets, it 

should also be noted the time that each algorithm took to run ends up being a major 

advantage for our algorithm. Our algorithm runs in a matter of a couple of minutes while 

OrthoDB takes hours to run and return results for the tested data sets. For example, on a 

Linux server with four Intel Xeon E7-8870 processors per node and 32 GB allocated 

RAM, our approach took 85.23 seconds while OrthoDBtook 5.62 hours to complete the 8 

organism COG data set with 12,607 proteins on a single node. 
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6 CHAPTER 6: Conclusions and Future Directions 

In this thesis, we developed an algorithm that identifies groups of orthologous genes 

using techniques rooted in machine learning. It was compared to a popular orthologous 

gene identification algorithm, OrthoDB, and as long as the datasets were small, the 

proposed algorithm was able to keep up with and even outperform OrthoDB. The 

proposed algorithm ran faster than OrthoDB on the tested data sets by over 200 folds.  

 

There are many directions we could pursue in the future. First of all, we could turn the 

proposed algorithm into a web application, which would open it up to be used by the 

public. We could also look into different clustering techniques, in addition to the three 

methods tested in this thesis, to cluster the genes into groups. The algorithm could also be 

used in the field of metagenomics and metatranscriptomics. Our algorithm would work 

great for such applications because it accepts a single file of molecular sequences as input 

and it does not matter what organism the sequences come from. This is important because 

in metagenomics and metatranscriptomics, it is often not known how many different 

organisms are being analyzed and it is often not known how big the genomes of these 

organisms are. Our algorithm would be perfect to group this kind of data into orthologous 

groups. It would be a much better hit than OrthoDB as OrthoDB needs the data split up 

by organism, and as previously stated, this is often not known for this kind of data. We 

could also try different sequence characterizations instead of kmers or AMI. Other ways 

to represent the molecular sequences could be tried with the proposed algorithm to see if 

they yields better results. Despite the room for improvement, we believe the workflow 
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proposed in this thesis provides a robust framework to find orthologous genes given a 

collection of molecular sequences. 
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