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 The LCM-SR can provide an inferential basis for understanding reciprocal relations while 

controlling for individual differences in the trajectories of young children’s psychological 

development. Yet, a hierarchical structure in the data has not been often adequately addressed even 

though that is common in social and educational research. The purpose of this study is to explore 

the impact of dependency among observations on the results when using the LCM-SR, and how 

to appropriately analyze the clustered longitudinal data for more accurate inference. To do this, 

the MLCM-SR (disaggregated approach; the “two-level” model) was introduced and compared 

with the single level LCM-SR considering nesting effects (aggregated approach; the “complex” 

model), and the single level LCM-SR ignoring nesting effects (conventional approach; the “default” 

model). This study used both simulated data and actual data to compare the performances of the 

models. 

 The simulation study results showed that all the models showed high rates of non-

convergence or improper solutions in certain conditions, especially in low sample size conditions. 

The total number of proper solutions was higher for the complex/default model than for the two-

level model in general. Also, bad model fit, severe bias, low coverage rate, and low power were 

found in conditions with a large percentage of variance as well as a large residual variance at the 

between-group level. The severity of bias increased as the sample size decreased. The two-level 

model showed little or no bias in general, thus showing a decent level of power and a nominal 



 

 

level of type 1 error rate. The actual data analysis results showed that even though there was a 

difference in the standard errors found between the models, using different modeling strategies did 

not lead to different conclusions. 
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CHAPTER 1. INTRODUCTION 

In developmental and educational science, understanding children’s psychological 

development – how it occurs, what the outcomes are, whether children differ in terms of process 

and outcome, and what makes those differences – is one of the major goals of researchers. In the 

absence of experimental evidence, researchers often rely on longitudinal data analysis using 

publicly available datasets. In the last several decades, there has been a national emphasis on 

gathering longitudinal data on child development and early learning experience in response to 

growing awareness of the importance of early childhood experiences and their relationship(s) 

with future social and academic success (West, 2017). Many states across the U.S. have 

developed their own early childhood integrated data system (ECIDS) to connect information 

from multiple early care and education programs and agencies within the state and provide 

policymakers, early childhood practitioners, and parents and caregivers with the information to 

improve education policy and practice (Early Childhood Data Collaborative, 2010; U.S. 

Department of Education, 2019). At the national level, longitudinal studies collecting nationally 

representative samples of children in their early years have been developed and conducted. Some 

examples are the National Longitudinal Survey of Children and Youth (NLSCY; Bureau of 

Labor Statistics, 2019), the Early Childhood Longitudinal Study-Kindergarten Cohort, 2011 

(ECLS-K:2011; Tourangeau et al., 2015), and Head Start Family and Child Experiences Survey 

(FACES; U.S. Department of Health and Human Services, 2020).  

When analyzing these longitudinal data in accordance with developmental theories, 

researchers must consider that because cluster sampling is often used in data collection 

procedures, many longitudinal data systems have a hierarchical structure with different levels of 

clustering or nesting (Bovaird, 2007). For instance, when studying children in a school context, a 
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group of students in the same classroom (i.e., thus in the same school) may be selected as a 

sampling unit. In that case, students (Level 1) are described as nested within classrooms (Level 

2), and classrooms can be further nested within schools (Level 3). Then, repeated measures 

(Level 1) are also inherently nested within each individual (Level 2). These data are often 

considered multilevel, hierarchically structured, or clustered.  

One distinctive characteristic of these types of data is that observations within the same 

cluster tend to show a more homogenous pattern than those from different clusters. Hence, this 

violates the assumption of independence of observations. When this happens, conventional 

statistical methods that assume independent observations should not be used since incorrect 

parameter estimates, standard errors, and inappropriate fit statistics may be obtained, which 

might result in incorrect inferences regarding the proposed hypotheses (Kish, 1965; Maas & 

Hox, 2005; McNeish & Stapleton, 2016; Ryu, 2014; Stapleton & Kang, 2018). In such cases, the 

recommended procedure to analyze data is called multilevel modeling (MLM). MLM permits the 

explicit modeling of the relationships between variables that might be measured at different 

levels and allows researchers to make simultaneous inferences at all levels of the hierarchy 

(Bovaird, 2007).  

On the other hand, when multivariate analysis with longitudinal data should take place, as 

when developmental researchers investigate the relationships between two or more constructs 

that may be intertwined in their change over time, structural equation modeling (SEM) has been 

adopted as a general analytic framework. SEM can be applied to a wide range of applications 

where, for example, latent variables or more than one dependent variable (multiple constructs 

and/or multiple measures of multiple constructs) are involved. Traditional SEM can be combined 

with MLM when the data system reflects a clustered or hierarchical nature, resulting in 
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multilevel structural equation modeling (MSEM). In MSEM, a single-level model with repeated 

measures is extended to consider variance attributable to a higher level of nesting by dividing the 

total variance-covariance matrix into separate within-groups (repeated measures) and between-

groups (persons) covariance matrices. 

Unfortunately, applied researchers working with clustered longitudinal data often do not 

adequately explore the multilevel nature of the data. The purpose of this study is to investigate 

the consequences of ignoring the effect(s) of clustered data when analyzing longitudinally 

clustered data and on the merits of incorporating hierarchically clustered data through MSEM 

with a specific focus on the multivariate examination of the relationship between two constructs 

over time.   

Longitudinal modeling questions 

In studies to understand child development, typical model-related research questions 

would include but are not limited to: 1) how a developmental construct changes over time, 2) 

whether there is a difference in that change among individuals and, if there is, which factor(s) 

predict those differences, and 3) whether any relationship between the changes in different 

domains exists (Scott, 2017). The first question relates to intra-individual variability – when 

repeated observations are made on the same individual over time, there could be a difference in 

the level of an individual’s characteristics or performance as time passes. This change could 

show some systematic pattern (e.g., linear or curvilinear trajectory) or non-systematic pattern 

(e.g., short-term fluctuations in behavior that do not represent durable or systematic change). 

Young children’s pattern of cognitive development could follow a linear growth trajectory, non-

linear (accumulative) growth, or a non-continuous growth at all (Fischer & Bullock, 1984). Intra-
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individual variability cannot be examined with cross-sectional data where observations about 

individuals are only made once.  

The second question relates to inter-individual variability – individuals can show 

variability in their overall levels of characteristics (the intercepts) or their rates of change over 

time (the slopes). These between-person differences (i.e., how this change varies between 

individuals) over time are often of major interest to researchers exploring what factors make or 

predict such differences between individuals. For example, gender, ethnicity, school, or 

classroom membership could be utilized as predictors of systematic differences in the growth 

trajectories among children. 

The third question involves both intra-individual and inter-individual variability. First, 

the relationship between developmental processes can be described inter-individually or at a 

between-person level – by comparing individual differences in developmental processes in terms 

of overall levels of developmental processes across time and their rates of change over time. For 

example, on average, children experiencing higher levels of emotional support from a parent or 

teacher tend to show higher levels of social skills (Roy & Giraldo-García, 2018). Similarly, 

children reporting systematic increases in parental involvement in education over time are also 

more likely to report systematic increases in academic achievement at school (Wilder, 2014). In 

addition, the relationship between developmental processes can be described intra-individually 

or at a within-person level – by relating time-specific change in a developmental process to the 

one in another process. For instance, if a child experiences higher levels of negative parenting 

relative to a previous time point, s/he is more likely to exhibit higher levels of externalizing 

behaviors at later time points than s/he did before (McKee et al., 2008). The time-specific 

relations among developmental processes are distinctly different from the between-person level 
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relationship among processes in that the latter cannot serve as a basis of causal inference 

(Zyphur, Allison, et al., 2020). 

Modeling approaches to address the questions 

To answer the first and second questions, latent curve modeling (LCM) is widely 

employed. The LCM is a flexible and powerful analytic process that can model any systematic 

change in a variable over time, often called a trajectory, where the variable could be linearly 

increasing across time, linearly decreasing, or changing in some other way (e.g., quadratic, 

exponential, etc.). The LCM draws on the strengths of structural equation modeling (SEM), 

where repeated measures of the same variable are incorporated as multiple indicators of one or 

more latent factors which jointly describe the shape of person-specific growth trajectories. The 

mean values of growth factors describe an average linear (or non-linear) form of change over 

time, and the variances of growth factors then capture individual differences in the trajectories. 

The growth factors could then be regressed on the covariates which may be attributable to such 

differential growth between individuals.  

Yet, the LCM is not without its limitations. The LCM gives limited information about the 

third question since the covariance between latent factors can provide information about the 

between-person relationship only, which omits information on the within-person effect such as 

the directionality of the effect. For example, the LCM results can say that children whose parents 

show negative parenting behaviors tend to exhibit more antisocial behaviors, but it does not say 

whether negative parenting behaviors of parents affect antisocial behaviors or vice versa, or 

whether there is a reciprocal relationship between them as Patterson’s Coercion Model suggested 

(Patterson & Yoerger, 2002). Also, there is no temporal order among the latent variables, which 

makes causal inference not feasible (Zyphur et al., 2020). 
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To answer the other part of the third question, the cross-lagged panel model (CLPM) is 

widely used. The CLPM originated from autoregressive (AR) models in time-series analysis and 

was later incorporated into the SEM framework. The key feature of AR models that distinguishes 

them from simple univariate regression models is that the prior values of a variable are used as 

predictors of current or future values of the same variable. For example, a researcher can 

examine how children’s academic achievement scores at time t – 1 carry over in the prediction of 

the score at time t.  

The CLPM is an extension of autoregressive models where two or more variables are 

involved. In addition to autoregressive parameters, repeated measures of a variable at previous 

time points are used in the CLPM to predict the measures on the other variable(s) at later time 

points through cross-lagged parameters. 

The CLPM allows researchers to model temporal dependence among developmental 

processes and their directionality - if one’s influence is dominating another, or if the relationship 

is reciprocal (Usami et al., 2019; Zyphur et al., 2020). For example, Ross and Broh (2000) found 

that earlier academic achievement is associated with locus of control and academic achievement 

at later time points, they also found that the previous locus of control predicts academic 

achievement at later time points. However, the CLPM does not assume trait-like individual 

differences in the relationship among the variables. Here, trait-like differences refer to overall 

differences in developmental trajectories between individuals that persist over time. 

As a result, in the presence of some extent of a trait-like between-person difference in the 

variables, which are likely due to individual differences in the underlying developmental 

trajectory, the CLPM may fail to adequately account for it. Then, cross-lagged parameters may 

not represent the actual within-person relationship over time which in turn leads to false 
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interpretations of the results (Hamaker et al., 2015). Thus, the CLPM is not an ideal approach 

when such between-person differences in the trajectory are assumed. 

Alternative model and the study purpose 

There have been several extensions of the CLPM which account for both between-person 

differences in relationships among the variables across time and within-person level relationships 

over time (Mund & Nestler, 2019; Orth et al., 2020; Usami et al., 2019). In 2014, Curran and his 

colleagues proposed the latent curve model with structured residuals (LCM-SR; originally 

termed latent curve model with structural residuals) which combines both the LCM and the 

CLPM (Curran et al., 2014). The LCM-SR is the multivariate LCM where the CLPM is 

simultaneously modeled using time-specific residuals from the LCM. In the LCM-SR, the LCM 

part describes person-specific developmental trajectories over time and also individual 

differences in these trajectories, whereas the CLPM part describes whether there are 

autoregressive and cross-lagged effects within- and across the variables above and beyond the 

influence of the underlying trajectories. The LCM-SR can provide unbiased estimates and an 

inferential basis for reciprocal relations while estimating individual differences in developmental 

trajectories, which is deemed essential in the developmental context of young children. 

Consequently, the LCM-SR can adequately answer all of the questions given above. 

The LCM-SR has been utilized in various fields including education (Clark et al., 2020; 

Berry & Willoughby, 2017; Willoughby et al., 2019). Still, a hierarchical structure in the data has 

not been often adequately addressed even though that is common in social and educational 

research due to complex sampling design (Berry & Willoughby, 2017; Feldon & Litson, 2021; 

Scott, 2017). Although it is straightforward to extend the LCM-SR models to allow for some 

forms of nesting effects, the identification status of such models, their related performance in 
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comparison with alternative models, and the interpretation of parameters have not been 

systematically assessed.  

Thus, the main purpose of this study is to explore the impact of dependency among 

observations on the results when using the LCM-SR, and how to appropriately analyze the 

clustered longitudinal data for more accurate inference. To do this, the multilevel LCM-SR 

(MLCM-SR), a parametrization of the LCM-SR in an MSEM framework, was introduced and 

compared with the single level LCM-SR considering nesting effects (aggregated approach), and 

the single level LCM-SR ignoring nesting effects (conventional approach). The concepts of 

LCM-SR and methods needed to conduct MLCM-SR are briefly reviewed, followed by the 

design and analysis for the Monte Carlo simulation in Study 1 and an empirical data illustration 

in Study 2. Lastly, the implication of the findings with suggestions for applications is discussed. 
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CHAPTER 2. LITERATURE REVIEW 

Since the proposed model (the MLCM-SR) is an application of structural equation 

modeling (SEM), it is recommended that the reader have a basic knowledge of SEM. The 

proposed model is also based on an extension of the LCM and the CLPM. Finally, our proposed 

model incorporates the principles of MSEM to account for dependency between observations in 

the clustered data. Therefore, information on SEM, the LCM, the CLPM, the LCM-SR, and 

approaches to analyze clustered data in the SEM framework are briefly reviewed before 

introducing the MLCM-SR. 

SEM 

Structural equation modeling (SEM) refers to a modeling framework that incorporates 

many types of statistical models as well as accommodates a variety of estimation and testing 

methods. These statistical models include but are not limited to, models of analysis of variance 

(ANOVA), multiple regression analysis, and factor analysis. In fact, all statistical procedures 

based on general linear modeling, whether univariate or multivariate, are special cases of 

structural equation models (Bovaird, 2007; Graham, 2008). The primary data for use in SEM are 

covariances of observed variables, not actual scores themselves as done in ordinary least squares 

regression models, which explains why SEM has also been referred to as covariance structure 

modeling. 

SEM has several distinctive analytic features. One of them is that it enables a set of 

statistical procedures to be run and evaluated simultaneously. For example, a series of factor 

analyses and multiple regression analyses can be run in a single model. This allows created 

factors to be directly used as variables for analysis in the same model. In this regard, factors are 

referred to as latent variables in SEM. In addition, since a variable in SEM can serve both as an 
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independent and dependent variable in a single model, the terms endogenous and exogenous are 

introduced accordingly (Joreskog & Sorbom, 1993). Exogenous variables serve exclusively as 

predictors in the model, whereas endogenous variables serve as outcome variables as well as 

predictors of some other endogenous variables in the same model. 

Another analytic feature of SEM is that researchers can build their research model and 

further determine which parameters are to be freely estimated, fixed, or constrained to be equal 

to another parameter. This process is called model specification. Then, the specified model’s 

performance is evaluated in terms of the degree of discrepancy between the observed covariance 

matrix and covariance matrix estimated or reproduced by the model (i.e., model-implied 

covariance matrix). This process is called model evaluation and the degree of discrepancy 

between the observed and reproduced covariance matrices is gauged by measures of model fit. 

There are various model fit indices with different features and penalties (Hu & Bentler, 1999; 

Fan & Wang, 1998; Yuan, 2005). These fit indices serve as evidence, along with theoretical 

justification, for direct statistical comparison among alternative models with different complexity 

to select the best model. For such reasons, SEM is often used in confirmatory research that aims 

to determine whether a hypothetical model is valid, and test theories of causal relationships 

accordingly (Bollen, 1989). All these analytic features make SEM useful for testing complex 

relationships among variables. Readers interested in a more thorough overview are referred to 

SEM texts including Bollen (1989), Hoyle (2012), Kline (2015), and Raykov and Marcoulides 

(2000). 

Full structural equation models (FSEM) consist of a  system of linear equations which 

could be then divided into two parts: the portion related to factor analysis and the portion related 

to regression analysis. The first part of the equations relates to factor analysis, which describes 
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how factors are extracted or measured by observed variables. This part is referred to as the 

measurement model. The second part of the equations is related to a series of multiple regression 

equations, which describe the relationship between the latent variables and other covariates. This 

part is referred to as the structural model.  

Consider a simple example of full structural equation models with three latent variables - 

one exogenous and two endogenous where each latent variable is measured by three observed 

variables (i.e., 9 item responses are gathered from N participants). This model is depicted in 

Figure 1.  

Figure 1.. A full structural equation model with three latent variables each measured by three 
observed variables 

 

Following LISREL notation (Bollen, 1989), the measurement model can be represented 

as: 
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𝑥𝑥1 = 𝜈𝜈𝑥𝑥1 + 𝜆𝜆𝑥𝑥1𝜉𝜉1 + 𝛿𝛿1 
 

𝑥𝑥2 = 𝜈𝜈𝑥𝑥2 + 𝜆𝜆𝑥𝑥2𝜉𝜉1 + 𝛿𝛿2 
 

𝑥𝑥3 = 𝜈𝜈𝑥𝑥3 + 𝜆𝜆𝑥𝑥3𝜉𝜉1 + 𝛿𝛿3 
 

(1) 

 

𝑦𝑦1 = 𝜈𝜈𝑦𝑦1 + 𝜆𝜆𝑦𝑦1𝜂𝜂1 + 𝜖𝜖1 

𝑦𝑦2 = 𝜈𝜈𝑦𝑦2 + 𝜆𝜆𝑦𝑦2𝜂𝜂1 + 𝜖𝜖2 

𝑦𝑦3 = 𝜈𝜈𝑦𝑦3 + 𝜆𝜆𝑦𝑦3𝜂𝜂1 + 𝜖𝜖3 

𝑦𝑦4 = 𝜈𝜈𝑦𝑦4 + 𝜆𝜆𝑦𝑦4𝜂𝜂2 + 𝜖𝜖4 

𝑦𝑦5 = 𝜈𝜈𝑦𝑦5 + 𝜆𝜆𝑦𝑦5𝜂𝜂2 + 𝜖𝜖5 

𝑦𝑦6 = 𝜈𝜈𝑦𝑦6 + 𝜆𝜆𝑦𝑦6𝜂𝜂2 + 𝜖𝜖6 

(2) 

 

Here, 𝑥𝑥𝑖𝑖 (i = 1, 2, 3) represents the three indicators of an exogenous latent variable 𝜉𝜉1 

(each of 𝑥𝑥𝑖𝑖 is an N*1 vector of observations from N participant), 𝑦𝑦𝑗𝑗 (j = 1, 2, 3, 4, 5, 6) 

represents the indicators of endogenous variables 𝜂𝜂1 and 𝜂𝜂2, 𝜆𝜆𝑥𝑥𝑖𝑖 and 𝜆𝜆𝑦𝑦𝑗𝑗 represent factor 

loadings corresponding to each latent variable, respectively, 𝜈𝜈𝑥𝑥𝑖𝑖 and 𝜈𝜈𝑦𝑦𝑗𝑗 are measurement 

intercepts for each item, respectively – these are often fixed to zero since mean-centered scores 

are often used or the mean structure is given to latent variables -, and 𝛿𝛿𝑖𝑖 and 𝜖𝜖𝑗𝑗 represent the 

residuals corresponding to each observed variable, respectively - in factor analysis 𝛿𝛿𝑖𝑖 and 𝜖𝜖𝑗𝑗 are 

called unique factors but in SEM they are referred to as measurement errors. They have an 

expected value of zero and variance-covariance matrix 𝜣𝜣𝜹𝜹 and 𝜣𝜣𝝐𝝐 (i.e., 𝛿𝛿𝑖𝑖~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜣𝜣𝜹𝜹); 
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 𝜖𝜖𝑗𝑗~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜣𝜣𝝐𝝐)). In general, 𝛿𝛿𝑖𝑖 and 𝜖𝜖𝑗𝑗 are assumed to be uncorrelated with all 𝜉𝜉s, and 𝜂𝜂s, and 

that 𝛿𝛿𝑖𝑖 and 𝜖𝜖𝑗𝑗are uncorrelated with each other for all i and j (i.e., 𝛿𝛿𝑖𝑖~𝑀𝑀(0,𝜎𝜎𝑥𝑥𝑖𝑖;  𝜖𝜖𝑗𝑗~𝑀𝑀(0,𝜎𝜎𝑦𝑦𝑗𝑗). We 

also assume that 𝛿𝛿𝑖𝑖 and 𝜖𝜖𝑗𝑗 are homoscedastic and non-autocorrelated across observations (i.e., for 

different individual k and l, 𝜎𝜎𝑥𝑥𝑖𝑖𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑖𝑖𝑥𝑥 = 𝜎𝜎𝑥𝑥𝑖𝑖 & 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿𝑖𝑖𝑥𝑥,𝛿𝛿𝑖𝑖𝑥𝑥) = 0; see Bollen, 1989). This 

assumption parallels that of 𝜁𝜁s, the latent disturbances in the structural model. 

Equations (1) and (2) can be re-written in matrix form as: 

𝒙𝒙 = 𝛎𝛎𝐱𝐱 + 𝚲𝚲𝐱𝐱𝝃𝝃 + 𝜹𝜹 
 

𝒚𝒚 = 𝛎𝛎𝐲𝐲 + 𝚲𝚲𝐲𝐲𝜼𝜼 + 𝝐𝝐 
(3) 

 

where 

𝒙𝒙 = �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� , 𝛎𝛎𝐱𝐱 = �

𝜈𝜈𝑥𝑥1
𝜈𝜈𝑥𝑥2
𝜈𝜈𝑥𝑥3

� , 𝚲𝚲𝐱𝐱 = �
𝜆𝜆𝑥𝑥1
𝜆𝜆𝑥𝑥2
𝜆𝜆𝑥𝑥3

� , 𝝃𝝃 = [𝜉𝜉1], 𝜹𝜹 = �
𝛿𝛿1
𝛿𝛿2
𝛿𝛿3
� 

 

(3a) 

 

𝒚𝒚 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑦𝑦1
𝑦𝑦2
𝑦𝑦3
𝑦𝑦4
𝑦𝑦5
𝑦𝑦6⎦
⎥
⎥
⎥
⎥
⎤

, 𝛎𝛎𝐲𝐲 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜈𝜈𝑦𝑦1
𝜈𝜈𝑦𝑦2
𝜈𝜈𝑦𝑦3
𝜈𝜈𝑦𝑦4
𝜈𝜈𝑦𝑦5
𝜈𝜈𝑦𝑦6⎦

⎥
⎥
⎥
⎥
⎤

, 𝚲𝚲𝐲𝐲 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝜆𝜆𝑦𝑦1
𝜆𝜆𝑦𝑦2
𝜆𝜆𝑦𝑦3
0
0
0

  

0
0
0
𝜆𝜆𝑦𝑦1
𝜆𝜆𝑦𝑦1
𝜆𝜆𝑦𝑦1⎦

⎥
⎥
⎥
⎥
⎥
⎤

, 𝜼𝜼 = �
𝜂𝜂1
𝜂𝜂2� , 𝝐𝝐 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜖𝜖1
𝜖𝜖2
𝜖𝜖3
𝜖𝜖4
𝜖𝜖5
𝜖𝜖6⎦
⎥
⎥
⎥
⎥
⎤

 (3b) 
 

 

Here, 𝒙𝒙  is a p * 1 vector of indicators of the latent exogenous variable 𝜉𝜉s (where p is the 

number of indicators of 𝜉𝜉s), is a q * 1 vector of indicators of the latent endogenous variable 𝜂𝜂s 

(where q is the number of indicators of 𝜂𝜂s), 𝛎𝛎𝐱𝐱 is a p * 1 matrix of measurement intercepts for 𝒚𝒚, 

𝛎𝛎𝐲𝐲 is a q * 1 matrix of measurement intercepts for 𝒙𝒙. 𝚲𝚲𝐱𝐱 and 𝚲𝚲𝐲𝐲 are the factor loading matrices 
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containing the 𝜆𝜆𝑥𝑥𝑖𝑖 and 𝜆𝜆𝑦𝑦𝑗𝑗 parameters. 𝚲𝚲𝐱𝐱 is a q * n matrix (where n is the length of 𝝃𝝃) and 𝚲𝚲𝐲𝐲 is 

a p * m matrix (where m is the length of 𝜼𝜼).  

Then the structural model can be represented as: 

𝜂𝜂1 = 𝛼𝛼1 + 𝛾𝛾11𝜉𝜉1 + 𝜁𝜁1 
 

𝜂𝜂2 = 𝛼𝛼2 + 𝛽𝛽21𝜂𝜂1 + 𝛾𝛾21𝜉𝜉1 + 𝜁𝜁2 
(4) 

 

Where 𝜂𝜂𝑥𝑥 (k=1,2) is a latent endogenous variable, 𝜉𝜉𝑥𝑥 (l=1) is a latent exogenous variable 

with an expected value of 𝜅𝜅𝑥𝑥 and variance-covariance matrix 𝜱𝜱 (i. e. , 𝜉𝜉𝑥𝑥~ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜱𝜱)). 𝛼𝛼𝑥𝑥 is a 

latent variable intercept. 𝛽𝛽𝑥𝑥𝑥𝑥 is a regression coefficient interrelating endogenous variables where 

k refers to row and column positions and 𝛾𝛾𝑥𝑥𝑥𝑥 is a regression coefficient relating exogenous 

variables to endogenous variables where k and l refer to row and column positions. 𝜁𝜁𝑥𝑥 is a 

residual term or latent disturbance with an expected value of zero and variance-covariance 

matrix psi (i.e., 𝜁𝜁𝑥𝑥~ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜳𝜳)). 𝜁𝜁s are assumed to be homoscedastic and non-autocorrelated. 

Equations (4) can be re-written in matrix form as: 

𝜼𝜼 = 𝜶𝜶 + 𝚩𝚩𝜼𝜼 + 𝚪𝚪𝝃𝝃 + 𝜻𝜻 (5) 
 

Where 

𝜼𝜼 = �
𝜂𝜂1
𝜂𝜂2� , 𝜶𝜶 = �

𝛼𝛼1
𝛼𝛼2� , 𝚩𝚩 = � 0 0

𝛽𝛽21 0� , 𝜼𝜼 = �
𝜂𝜂1
𝜂𝜂2�, 

𝚪𝚪 = �
𝛾𝛾11
𝛾𝛾21� , 𝝃𝝃 = [𝜉𝜉1], 𝜻𝜻 = �𝜁𝜁1𝜁𝜁2

� 

 

(5a) 
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Here, 𝜼𝜼 is m * 1 vector of the latent endogenous variables (where m is the number of 

endogenous latent variables). 𝝃𝝃 is n * 1 vector of the latent exogenous variables (where n is the 

number of exogenous latent variables). 𝜶𝜶 is an m * 1 vector of latent variable intercepts. The 𝚩𝚩 

matrix is an m * m coefficient matrix for the latent endogenous variables with its elements 𝛽𝛽𝑥𝑥𝑥𝑥. 

The 𝚪𝚪 matrix is an m * n matrix for the latent exogenous variables with its elements 𝛾𝛾𝑥𝑥𝑥𝑥. 𝜻𝜻 is an n 

* 1 vector disturbances of latent endogenous variables with its element 𝜁𝜁𝑥𝑥 corresponding to each 

𝜂𝜂𝑥𝑥. 

FSEM can be reduced to simpler models (Bauer, 2003). For example, if there are no 

latent variables involved in the model (i.e., only observed variables involved), then the 

measurement equation part can be omitted, and both x and y can be substituted for η and xi in the 

structural model. This model reduces to a path analysis model. Alternatively, if there is no 

specific causal structure for the latent variables assumed in the model (i.e, correlations between 

latent variables are assumed), the structural equation part can be omitted. This model reduces to 

confirmatory factor analysis (CFA). These models are depicted in Figure 2.  



16 

 

Figure 1. A path analysis model (top) and a confirmatory factor analysis model (bottom) 

 

 

 

Given the models and data, optimal estimates of the parameters are derived using one of 

the estimation methods in SEM - this process is called model estimation. Among the multiple 

estimation method options available - maximum likelihood estimation (ML), unweighted least-

squares estimation (ULS), generalized least squares estimation (GLS), weighted least squares 

estimation (WLS), asymptotically distribution-free estimation (ADF), and Bayesian estimation. 

The most commonly used estimation method is the ML method (Hoyle, 2012). The ML method 

tends to produce relatively unbiased parameter estimates. However, the ML method tends to 
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overestimate model fit statistics and underestimate the standard errors of the parameter estimates 

when data are not normally distributed or dependency among observations exists. In such cases, 

several variants of ML methods providing robust model fit statistics and standard errors are 

available (Asparouhov & Muthén, 2005; Asparouhov & Muthén, 2010; Satorra & Bentler, 1994). 

With model estimation, model-implied variance-covariance matrices of observed variables can 

be computed based on the obtained parameter estimates and the given formula (Bollen, 1989):   

𝜮𝜮�𝒚𝒚𝒚𝒚 = 𝑪𝑪𝑪𝑪𝑪𝑪(𝒚𝒚,𝒚𝒚) = 𝑪𝑪𝑽𝑽𝑽𝑽(𝒚𝒚) = 𝜦𝜦𝒚𝒚(𝑰𝑰 − 𝜝𝜝)−𝟏𝟏(𝜞𝜞𝜱𝜱𝜞𝜞′ + 𝜳𝜳)(𝑰𝑰 − 𝜝𝜝′)−𝟏𝟏𝜦𝜦𝒚𝒚′ + 𝜣𝜣𝝐𝝐 
𝜮𝜮�𝒚𝒚𝒙𝒙 = 𝑪𝑪𝑪𝑪𝑪𝑪(𝒚𝒚,𝒙𝒙) = 𝜦𝜦𝒚𝒚(𝑰𝑰 − 𝜝𝜝)−𝟏𝟏𝜞𝜞𝜱𝜱𝜦𝜦𝒙𝒙′  
𝜮𝜮�𝒙𝒙𝒚𝒚 = 𝑪𝑪𝑪𝑪𝑪𝑪(𝒙𝒙,𝒚𝒚) = 𝜦𝜦𝒙𝒙𝜱𝜱𝜞𝜞′(𝑰𝑰 − 𝜝𝜝)−𝟏𝟏𝜦𝜦𝒚𝒚′  

𝜮𝜮�𝒙𝒙𝒙𝒙 =  𝑪𝑪𝑪𝑪𝑪𝑪(𝒙𝒙,𝒙𝒙) = 𝑪𝑪𝑽𝑽𝑽𝑽(𝒙𝒙) = 𝜦𝜦𝒙𝒙𝜱𝜱𝜦𝜦𝒙𝒙′ + 𝜣𝜣𝜹𝜹 

(6) 

 

With  

𝜱𝜱 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝒄𝒄𝒙𝒙 𝒄𝒄𝒐𝒐 𝝃𝝃 

𝚿𝚿 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝒄𝒄𝒙𝒙 𝒄𝒄𝒐𝒐 𝛇𝛇 

𝜣𝜣𝝐𝝐 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝒄𝒄𝒙𝒙 𝒄𝒄𝒐𝒐 𝝐𝝐 

𝜣𝜣𝜹𝜹 = 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒎𝒎𝒄𝒄𝒎𝒎𝒄𝒄𝒄𝒄𝒙𝒙 𝒄𝒄𝒐𝒐 𝜹𝜹 

Here 𝜮𝜮� represents model-implied covariance matrix of observed variables where 

subscripts indicate which variable the covariance relates to. For example, 𝜮𝜮�𝒚𝒚𝒚𝒚 indicates the 

model-implied covariance matrix of 𝒚𝒚 and 𝒚𝒚; thus the model-implied variance-covariance matrix 

of 𝒚𝒚, 𝜮𝜮�𝒚𝒚𝒙𝒙 and 𝜮𝜮�𝒙𝒙𝒚𝒚 both indicate the model-implied covariance matrix of 𝒚𝒚 and 𝒙𝒙 but with 

different location arrangements. 𝜮𝜮�𝒙𝒙𝒙𝒙 indicates the model-implied covariance matrix of 𝒚𝒚 and 𝒚𝒚; 

thus the model-implied variance-covariance matrix of 𝒙𝒙.  
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𝜱𝜱 is an n * n variance-covariance matrix for latent exogenous variables, where the main 

diagonals of 𝜱𝜱 contain the variances associated with each latent exogenous variable. The off-

diagonal elements of 𝜱𝜱 are the covariances of disturbances for the different latent exogenous 

variables. 𝚿𝚿 is an m * m variance-covariance matrix of disturbances. The main diagonals of 𝚿𝚿 

contain the disturbance variances associated with each latent endogenous variable. The off-

diagonal elements are the covariances of disturbances for the different latent endogenous 

variables. The last two matrices, 𝜣𝜣𝝐𝝐 and 𝜣𝜣𝜹𝜹 are the variance-covariance matrices of the 

measurement errors. The main diagonals contain the error variances associated with each 

observed variable. The off-diagonal elements are the covariances of the measurement errors for 

the different observed variables. The 𝜣𝜣𝝐𝝐 is a p * p matrix that contains the error variances and 

their covariances with regards to 𝒚𝒚, and 𝜣𝜣𝜹𝜹 is a q * q matrix and has the error variances and their 

covariances for 𝒙𝒙. 

After assembling the aforementioned sub-matrices, the total model-implied variance-

covariance matrix of 𝒚𝒚 and 𝒙𝒙 is expressed as follows: 

𝜮𝜮� = �
𝜮𝜮�𝒚𝒚𝒚𝒚 𝜮𝜮�𝒚𝒚𝒙𝒙
𝜮𝜮�𝒙𝒙𝒚𝒚 𝜮𝜮�𝒙𝒙𝒙𝒙

� = �
𝜦𝜦𝒚𝒚(𝑰𝑰 − 𝜝𝜝)−𝟏𝟏(𝜞𝜞𝜱𝜱𝜞𝜞′ +𝜳𝜳)(𝑰𝑰 − 𝜝𝜝′)−𝟏𝟏𝜦𝜦𝒚𝒚′ + 𝜣𝜣𝝐𝝐 𝜦𝜦𝒚𝒚(𝑰𝑰 − 𝜝𝜝)−𝟏𝟏𝜞𝜞𝜱𝜱𝜦𝜦𝒙𝒙′

𝜦𝜦𝒙𝒙𝜱𝜱𝜞𝜞′(𝑰𝑰 − 𝜝𝜝)−𝟏𝟏𝜦𝜦𝒚𝒚′ 𝜦𝜦𝒙𝒙𝜱𝜱𝜦𝜦𝒙𝒙′ +𝜣𝜣𝜹𝜹
� (7) 

 

LCM 

The latent curve modeling (LCM), also termed latent growth curve modeling (LGCM) or 

latent growth modeling (LGM), is a special case of SEM for modeling changes in a variable over 

time. More specifically, the LCM not only describes a group-level systematic trajectory of 

change but also captures individual differences in the trajectories over time. The current 

approach of the LCM was first suggested by Meredith and Tisak (1990) as a variant of 
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confirmatory factor analysis (CFA). Unlike typical CFA where a set of items measured at a 

single occasion is used to construct latent variables, the LCM uses a set of repeated measures of 

a single item (often a summary score) as indicators of latent variables. In the LCM, repeated 

observations of a variable (or variables) are assumed to be the result of a systematic underlying 

trajectory of change over time and a random time-specific error. The shape of the trajectory or 

growth curve varies by individual and can be summarized by a few parameters. These 

parameters are then modeled as latent variables. Researchers can specify loadings of these latent 

variables so that they reflect specific hypothesized trends in repeated-measures data. The 

univariate LCM requires three or more waves of data to identify the model. 

Consider a univariate, unconditional -that is, without time-invariant or time-varying 

covariates- the LCM with T equally spaced repeated measurements on the variable y (i.e., T 

waves of repeated measures y are gathered from each of N participants). This model is depicted 

in Figure 3.  
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Figure 2. A linear latent curve model with T repeated measures 

 

Following LISREL notation (Preacher, Wichman, Maccallum, Briggs, 2011), the 

measurement and structural models can be expressed as: 

𝑦𝑦𝑡𝑡𝑖𝑖 = 𝜈𝜈𝑡𝑡 + 𝜆𝜆1𝑡𝑡𝜂𝜂1𝑖𝑖 + 𝜆𝜆2𝑡𝑡𝜂𝜂2𝑖𝑖 + 𝜖𝜖𝑡𝑡𝑖𝑖 
 

𝜂𝜂1𝑖𝑖 = 𝛼𝛼1 + 𝜁𝜁1𝑖𝑖 
 

𝜂𝜂2𝑖𝑖 = 𝛼𝛼2 + 𝜁𝜁2𝑖𝑖  

(8) 

 

Where 𝑦𝑦𝑡𝑡𝑖𝑖 (t=1, 2, 3, …T; i= 1, 2, 3, …N) represents the individual- and time-specific 

outcome score for individual i measured at the occasion t, 𝜈𝜈𝑡𝑡 is measurement intercepts which 

are in general fixed to zero for model identification reasons (𝜈𝜈1 =  0; they will not be retained in 

further equations), 𝜆𝜆𝑗𝑗𝑡𝑡 (j=1, 2) represents the factor loading defining the functional form of the 

latent trajectories over time, 𝜂𝜂𝑗𝑗𝑖𝑖 represents latent variables for a person i, 𝜖𝜖𝑡𝑡𝑖𝑖 is individual- and 

time-specific residual which follows a normal distribution with mean 0 and variance σ𝑡𝑡2 (i.e., 

𝜖𝜖𝑡𝑡𝑖𝑖~𝑀𝑀(0,σ𝑡𝑡2)) where the subscript t indicates that the residuals are given a unique variance at 
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each time point t, 𝛼𝛼𝑥𝑥 is a latent variable mean across all individuals, and 𝜁𝜁𝑗𝑗𝑖𝑖 is individual 

deviations around these mean values with an expected value of zero and a 2 * 2 variance-

covariance matrix 𝜳𝜳 (i.e., 𝜁𝜁𝑗𝑗𝑖𝑖~ 𝑀𝑀𝑀𝑀𝑀𝑀(0,𝜳𝜳)). In general, 𝜖𝜖s are assumed to be uncorrelated with 

all 𝜂𝜂s, and that 𝜖𝜖s are uncorrelated with each other for all t and i. Yet, this assumption can be 

relaxed if a correlation between time-adjacent residuals is considered (Curran et al., 2014). For 

example, when assuming T=3 (i.e., 3 waves of repeated measures), residuals can follow a 

multivariate normal distribution with a mean of zero and a variance-covariance matrix 𝜣𝜣𝝐𝝐 as 

follows: 

𝜣𝜣𝝐𝝐 = 𝑐𝑐𝑣𝑣𝑣𝑣 �
𝜖𝜖𝑡𝑡1
𝜖𝜖𝑡𝑡2
𝜖𝜖𝑡𝑡3
� = �

𝜎𝜎12

𝜎𝜎12 𝜎𝜎22

0 𝜎𝜎23 𝜎𝜎32
� (9) 

 

Where 𝜎𝜎𝑡𝑡2 represents the time-specific variance over time and 𝜎𝜎(𝑡𝑡−1)𝑡𝑡 represents the time-

adjacent covariance. On the other hand, time-specific variance can be constrained to be equal 

over time (i.e., 𝜎𝜎𝑡𝑡2 = 𝜎𝜎2) for simplicity of the model (Curran et al., 2014). 

Latent variables in the LCM have a different meaning from that in standard SEM. Instead 

of being defined as some hypothetical constructs, latent variables in the LCM are called growth 

factors and serve as parameters that define the shape of individual growth curves. Assuming 

linear growth in this example, 𝜂𝜂1𝑖𝑖 is often called the random intercept and serves as the intercept 

of the underlying trajectory for individual i – that is, the initial level of outcome scores at 

baseline - and 𝜂𝜂2𝑖𝑖 is called the random slope as the slope of the underlying trajectory for 

individual i – that is, the rate of change in outcome scores over time.  
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The growth factors are then modeled as a function of mean values and individual-specific 

deviation from the mean whose variances reflect the variability of these factors across 

individuals. The means and variances are also called the fixed effects and the random effects, 

respectively (Curran et al., 2014). 

This parameterization is possible by constraining the factor loadings to a certain set of 

values. For example, when assuming T=4 (i.e., 4 waves of repeated measures), factor loadings 

can be constrained to: 

𝚲𝚲 = �
1 0
1 1
1
1

2
3

� (10) 

 

Where values at the first column are fixed to 1 in order to represent multipliers for the 

intercept – since intercepts are time-invariant values uniformly given to repeated measures across 

time– while the remaining columns – here only column 2 exists – are constrained to certain 

values related to time intervals to represent functions of time.  

As for the latter, when assuming repeated measurements are equally spaced in time, a 

sequence of linearly increasing values such as 𝜆𝜆2𝑡𝑡 = 0, 1, 2, 3 would represent the linear function 

of time in the model. The corresponding factor would represent the slope of linear trajectory - for 

every one unit increase in time, the predicted value of y will increase by the value of the slope. In 

addition, the location of the zero-point in the 𝜆𝜆2𝑡𝑡 represents the baseline or the occasion at which 

the intercept is interpreted. Here, 𝜆𝜆2𝑡𝑡 starts with 0 to show that the baseline is at t=1. When 

repeated measurements are not equally spaced in time, factor loadings should be adjusted 

accordingly. For example, when repeated measures are observed at baseline, 1 month post-
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baseline, 2 months post-baseline, and 5 months post-baseline, the proper specification for 𝜂𝜂2 to 

represent the linear effect of time would be 𝜆𝜆2𝑡𝑡 = 0, 1, 2, 5.  

There are multiple equivalent ways to model the linear effect of time with different zero-

point locations, which serve as the origin or the intercept along with different units of time 

(Preacher, 2010). Furthermore, the linear LCM can be extended to incorporate non-linear growth 

and unequally spaced measurement occasions. Researchers should choose their options in a way 

in which the hypothesized trajectory of change would be most consistent with theory and 

research context. 

Several alternative notations for the LCM are available. Following one alternative 

notation (Curran et al., 2014), with a few adjustments, the measurement and structural models for 

the linear LCM can be expressed as: 

𝑦𝑦𝑡𝑡𝑖𝑖 = 𝐼𝐼𝑦𝑦𝑖𝑖 + (𝑡𝑡 − 1)𝑆𝑆𝑦𝑦𝑖𝑖 + 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖 
 

𝐼𝐼𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑦𝑦𝑦𝑦 + 𝜁𝜁𝑦𝑦𝑦𝑦𝑖𝑖 
 

𝑆𝑆𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑦𝑦𝑦𝑦 + 𝜁𝜁𝑦𝑦𝑦𝑦𝑖𝑖  

(11) 

 

Where 𝑦𝑦𝑡𝑡𝑖𝑖 is defined previously, 𝐼𝐼𝑦𝑦𝑖𝑖 and 𝑆𝑆𝑦𝑦𝑖𝑖 are a combination of factor loadings, the 

random intercept, and slope parameters (i.e., 𝜆𝜆1𝑡𝑡𝜂𝜂1𝑖𝑖 = 𝐼𝐼𝑦𝑦𝑖𝑖;  𝜆𝜆2𝑡𝑡𝜂𝜂2𝑖𝑖 = (𝑡𝑡 − 1)𝑆𝑆𝑦𝑦𝑖𝑖) for individual i, 

respectively. The (t-1) is a factor loading 𝜆𝜆2𝑡𝑡 attached to 𝑆𝑆𝑦𝑦𝑖𝑖, which represent the value of the 

time trend variable at time t (𝜆𝜆1𝑡𝑡 is omitted since it is fixed to 1), 𝜖𝜖𝑡𝑡𝑖𝑖 is also defined previously, 

𝜇𝜇𝑦𝑦𝑦𝑦 and 𝜇𝜇𝑦𝑦𝑦𝑦 are the mean intercept and slope, respectively, and 𝜁𝜁𝑦𝑦𝑦𝑦𝑖𝑖 and 𝜁𝜁𝑦𝑦𝑦𝑦𝑖𝑖 are individual 

deviations around these mean values. For modeling convenience in the later sections, we will use 

this notation. 
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Figure 4 presents a path diagram of an unconditional linear latent curve model with T 

waves of repeated measures (e.g., T=4). Here, the intercept alpha gives the value of y implied by 

the model at the first time point; beta is the linear growth component (giving the growth rate over 

time). 

Figure 3. A linear latent curve model (T=4) 

 

CLPM 

The cross-lagged panel model is another SEM extension to analyze longitudinal data 

which consists of a relatively small number of repeated measurements (at least 2, typically less 

than 6; Usami, Murayama, & Hamaker, 2019). Yet, unlike the LCM, the focus of the CLPM is 

not on modeling the underlying trajectories of change in variables. Rather, the CLPM and its 

extensions attempt to remove such systemic patterns of change from the cross-lagged relations, 

whether implicitly or explicitly to prevent spurious associations (Grimm, Helm, Rodgers, & 

O’Rourke, 2021). The primary goal of the CLPM is to examine the predictive or causal 

relationships between variables. For example, when considering two variables x and y measured 
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at two different occasions, the CLPM compares the relationship between variable x at Time 1 

and variable y at Time 2 with the relationship between variable y at Time 1 and X at Time 2. 

This in turn would determine if the variables x and y have reciprocal, one-directional, or no 

relationship at all, controlling for any other confounding variables (Granger, 1969; Hamaker, 

Kuiper, & Grasman, 2015). Here, the confounding variables include but are not limited to, 

systematic change in the variable over time, the influence of the past values, correlations 

between variables within the same time point - contemporaneous effects -, and autoregressive 

effects or influence of the variable at previous time points (Kearney, 2017). The CLPM only 

requires two waves of data to identify the model. 

Consider the CLPM with 4 equally spaced repeated measurements on the observed 

variables x and y (i.e., 4 waves of repeated measures x and y are gathered from each of N 

participants). Here x and y do not indicate exogenous or endogenous variables, respectively. This 

model is depicted in Figure 5.  
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Figure 4. A cross-lagged panel model (T=4).  

 

Note. Covariances between 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 and 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖 are omitted. 

Following Usami, Murayama, & Hamaker’s notation (2019), with a few adjustments, the 

measurement model for the observed variables can be expressed as: 

𝑥𝑥𝑡𝑡𝑖𝑖 = 𝜇𝜇𝑥𝑥𝑡𝑡 + 𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗  
 

𝑦𝑦𝑡𝑡𝑖𝑖 = 𝜇𝜇𝑦𝑦𝑡𝑡 + 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗  
(12) 

 

Where 𝑥𝑥𝑡𝑡𝑖𝑖 and 𝑦𝑦𝑡𝑡𝑖𝑖 (t=1, 2, 3, …T; i= 1, 2, 3, …N) are the values of the repeated measures 

at time t for individual i, 𝜇𝜇𝑥𝑥𝑡𝑡 and 𝜇𝜇𝑦𝑦𝑡𝑡 are the temporal group means of the entire sample at time t 

(i.e., E(𝑥𝑥𝑡𝑡𝑖𝑖) = 𝜇𝜇𝑥𝑥𝑡𝑡, E(𝑦𝑦𝑡𝑡𝑖𝑖) = 𝜇𝜇𝑦𝑦𝑡𝑡), and 𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗  and 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗  are temporal deviation terms of individuals 
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from these group means. Note that these means are allowed to change over time. Also, deviation 

terms 𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗  and 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗  are modeled as mean-centered, single-indicator latent variables with no 

measurement errors (Hamaker, Kuiper, Grasman, 2015; Hoyle, 2012). Given that, the structural 

model for deviation terms can be expressed as: 

𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗ = 𝛽𝛽𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖
∗ + 𝛾𝛾𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖

∗ + 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 
 

𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗ = 𝛽𝛽𝑦𝑦𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖
∗ + 𝛾𝛾𝑦𝑦𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖

∗ + 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖 
(13) 

 

Where 𝜖𝜖𝑥𝑥1𝑖𝑖∗  and 𝜖𝜖𝑦𝑦1𝑖𝑖∗  (t = 1) are latent exogenous variables with a mean of 0, variance 𝜎𝜎𝑥𝑥12  

and 𝜎𝜎𝑦𝑦12 , and covariance 𝜎𝜎𝑥𝑥𝑦𝑦1, 𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗  and 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗  for t ≥ 2 are latent endogenous variables with a mean 

of 0, 𝛽𝛽𝑥𝑥𝑡𝑡 and 𝛽𝛽𝑦𝑦𝑡𝑡are autoregressive parameters, 𝛾𝛾𝑥𝑥𝑡𝑡 and 𝛾𝛾𝑦𝑦𝑡𝑡 are cross-lagged parameters, and 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 

and 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖 for t ≥ 2 are latent disturbances which are termed as innovations or dynamic errors in 

the literature (Usami, Murayama, Hamaker, 2019). 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 and 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖 are typically assumed to be 

normally distributed and correlated with each other only when they are measured at the same 

time point (e.g., cov(𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖,  𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖) = 𝜎𝜎𝑑𝑑𝑥𝑥𝑦𝑦𝑡𝑡, cov(𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖,  𝑑𝑑𝑦𝑦(𝑡𝑡−1)𝑖𝑖) = 0). For example, when assuming 

T=4 (i.e., 4 waves of repeated measures), innovations 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 and 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖can follow a multivariate 

normal distribution with a mean of zero and a variance-covariance matrix 𝜣𝜣𝒅𝒅 as follows: 

𝜣𝜣𝒅𝒅 = 𝑐𝑐𝑣𝑣𝑣𝑣

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑑𝑥𝑥2𝑖𝑖
𝑑𝑑𝑥𝑥3𝑖𝑖
𝑑𝑑𝑥𝑥4𝑖𝑖
𝑑𝑑𝑦𝑦2𝑖𝑖
𝑑𝑑𝑦𝑦3𝑖𝑖
𝑑𝑑𝑦𝑦4𝑖𝑖⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡ 𝜎𝜎𝑑𝑑𝑥𝑥2

2

𝜎𝜎𝑑𝑑𝑥𝑥𝑦𝑦2
 

𝜎𝜎𝑑𝑑𝑥𝑥32

𝜎𝜎𝑑𝑑𝑥𝑥𝑦𝑦3

 
𝜎𝜎𝑑𝑑𝑥𝑥42

𝜎𝜎𝑑𝑑𝑥𝑥𝑦𝑦4

 𝜎𝜎𝑑𝑑𝑦𝑦22  

𝜎𝜎𝑑𝑑𝑦𝑦32

 

𝜎𝜎𝑑𝑑𝑦𝑦42 ⎦
⎥
⎥
⎥
⎥
⎤

 (14) 
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Where 𝜎𝜎𝑑𝑑𝑥𝑥𝑡𝑡2  and 𝜎𝜎𝑑𝑑𝑦𝑦𝑡𝑡2  are variances of time-specific innovations and 𝜎𝜎𝑑𝑑𝑥𝑥𝑦𝑦𝑡𝑡 is the 

covariance between them. 

𝛼𝛼s or latent variable intercepts are omitted since 𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗  and 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗  are mean-centered 

variables. Note that autoregressive, cross-lagged parameters, residual variances, and covariances 

can vary over time but these parameters are often set equal across time points (e.g., 𝛽𝛽𝑥𝑥2= 𝛽𝛽𝑥𝑥3= 

𝛽𝛽𝑥𝑥4= 𝛽𝛽𝑥𝑥). This relates to the stationarity assumption where the mean, variance, and lagged 

covariance structure of the data are independent of time so that causal effects can be inferred 

under the Rubin Causal Model (Usami, Murayama, Hamaker, 2019; Grimm, Helm, Rodgers, 

O’Rourke, 2021; Rubin, 1974). The equal constraints can only hold or make sense when 

repeated measurements are equally spaced in time (Hoyle, 2012). Thus, if one wants to make an 

inference about the causal relationship, longitudinal data with equally distant time points would 

be needed. 

Here, autoregressive parameters account for the influence of the past values of a variable 

on its future values. In the CLPM, it represents the rank-order stability of a variable - the degree 

to which one’s relative standing amongst individuals concerning their scores on x or y is 

unchanging over time (Bornstein, Putnick, Esposito, 2017). Since the effects dissipate over time, 

these are more likely to be called temporal stability rather than trait-like stability (Hamaker, 

Kuiper, Grasman, 2015). 

The cross-lagged parameters are the key parameters for inferring the causal relationship 

between the variables. The cross-lagged parameters represent a simple partial regression 

coefficient from the predictor (e.g., 𝑥𝑥(𝑡𝑡−1)𝑖𝑖) on the outcome variable (e.g., 𝑦𝑦𝑡𝑡𝑖𝑖), while controlling 

for influence from the past values (e.g., 𝑦𝑦(𝑡𝑡−1)𝑖𝑖)). This can be interpreted as the extent to which 
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the change in y (i.e., 𝑦𝑦𝑡𝑡𝑖𝑖 − 𝑦𝑦(𝑡𝑡−1)𝑖𝑖) can be predicted from an individual’s prior deviation from the 

group mean on x (i.e., 𝑥𝑥(𝑡𝑡−1)𝑖𝑖 – 𝜇𝜇𝑥𝑥(𝑡𝑡−1)) while controlling for change in temporal group means 

(i.e., 𝜇𝜇𝑦𝑦𝑡𝑡 − 𝜇𝜇𝑦𝑦(𝑡𝑡−1)) and one’s prior deviation from the group mean on y (i.e., 𝑦𝑦(𝑡𝑡−1)𝑖𝑖 − 𝜇𝜇𝑦𝑦(𝑡𝑡−1)) 

(Hamaker, Kuiper, Grasman, 2015).  For a detailed discussion about how cross-lagged 

parameters in the CLPM can have a causal interpretation, interested readers are referred to 

Usami, Murayama, Hamaker (2019). 

In the CLPM, additional lagged relations with different lag orders can be modeled 

(Zyphur et al., 2021). In the current example, we only modeled the autoregressive (AR) and 

cross-lagged (CL) effects or processes between time-adjacent repeated measures which are 1 

timepoint apart (i.e., from t-1 to t). These are the AR process with a lag order of 1 (AR(1)) and 

the CL process with a lag order of 1 (CL(1)). In other cases, multiple AR terms and CL terms 

with different lags can be added to the model. For example, the AR process with a lag order of 2 

(AR(2)) and CL process with a lag order of 2 (CL(2)) (i.e., involving repeated measures which 

are 2 timepoints apart; from t-2 to t) can be added. The number of lags in the model is typically 

determined by theory and empirical necessity. In this study, we will only model AR(1) and 

CL(1) processes for simplicity reasons. 

Again, there are several alternative available notations for the CLPM. Following one 

alternative notation (Curran et al., 2014), with a few modifications, the models for deviation 

terms can be expressed as: 

𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗ = 𝜌𝜌𝑥𝑥𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖
∗ + 𝜌𝜌𝑥𝑥𝑦𝑦𝑡𝑡𝜖𝜖𝑦𝑦(𝑡𝑡−1)𝑖𝑖

∗ + 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 
 

𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗ = 𝜌𝜌𝑦𝑦𝑦𝑦𝑡𝑡𝜖𝜖𝑦𝑦(𝑡𝑡−1)𝑖𝑖
∗ + 𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖

∗ + 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖 
(15) 
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Where 𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗  and 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗  are defined previously, 𝜌𝜌𝑥𝑥𝑥𝑥𝑡𝑡 and 𝜌𝜌𝑦𝑦𝑦𝑦𝑡𝑡 are time-specific 

autoregressive parameters, 𝜌𝜌𝑥𝑥𝑦𝑦𝑡𝑡 and 𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡 are time-specific cross-lagged parameters, and 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 and 

𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 are time-specific latent disturbances or innovations. For modeling convenience in later 

chapters, this notation was utilized. 

LCM-SR 

Along with other assumptions for inferring causal effects, the traditional CLPM 

implicitly assumes that there are no trait-like individual differences, and only accounts for 

temporal stability through the inclusion of autoregressive parameters. This implies that if the 

stability of the variables has a time-invariant nature, the inclusion of autoregressive parameters 

will not adequately control for it, hence yielding biased estimates (Usami, Murayama, Hamaker, 

2019).  

Many alternative models to the traditional CLPM have been proposed, providing more 

valuable insights about inferring the predictive or causal relationship between constructs (Usami, 

Murayama, Hamaker, 2019; Mund & Nestler, 2019; Orth et al., 2020). All these models control 

for or de-trend to some extent trait-like individual differences in the relationship between 

variables. The latent curve model with structured residuals (LCM-SR) is one such approach 

(Curran et al., 2014). The LCM-SR simultaneously considers individual differences in the 

underlying trajectory of changes in variables - the LCM part - as well as temporal stability and 

cross-lagged relationship between variables within each individual - the CLPM part - in the 

model. At the same time, the LCM-SR separates the LCM part from the CLPM part. This is 

possible because the LCM part decomposes the observed score into expected scores for each 

individual predicted by the growth factors and time-specific residuals, while the CLPM part 
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models the cross-lagged relations only on the residuals which are uncorrelated with expected 

scores. From the LCM tradition, residuals are not considered of substantive interest beyond 

finding the optimal covariance structure for a given set of data (Grimm & Widaman, 2010; 

Curran et al., 2014). On the contrary, from the CLPM tradition, the underlying trajectory of the 

repeated measures would be considered a nuisance influence that should be controlled so that 

only random fluctuation around the temporal group means remains (Usami, Murayama, 

Hamaker, 2019). In LCM-SR, both parts have substantial meaning in that the LCGM part 

provides information about the developmental trajectories of individuals, while the CLPM part 

provides inferential bases for predictive or causal relationships between variables. In fact, when 

assuming the linear trend among repeated measures, the LCM-SR provides more valid estimates 

about cross-lagged parameters than other alternatives (Berry & Willoughby, 2017; Usami, 

Murayama, Hamaker, 2019). The univariate LCM-SR requires three waves of data to identify the 

model when stationarity of parameters can be assumed, four waves if not. The bivariate LCM-SR 

also requires three waves of data when stationarity of parameters can be assumed, four waves if 

not. The model identification is examined by looking at whether the SEM program can compute 

a proper solution or not (Kenny & Milan, 2012). 

Consider LCM-SR with T equally spaced repeated measurements on the observed 

variables x and y (e.g., T=4). This model is depicted in Figure 6.  
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Figure 5. A cross-lagged panel model (T=4).  

 

Note. Covariances between dxti and dyti are omitted. 
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Figure 6. A linear latent curve model with structured residuals (T=4). 

 

Note. Growth factor covarinace structure and covariances between 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 and 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖 are omitted. 

Following Curran et al.’s notation (2014), with a few adjustments, the measurement 

model for the observed variables can be expressed as: 

𝑥𝑥𝑡𝑡𝑖𝑖 = 𝐼𝐼𝑥𝑥𝑖𝑖 + (𝑡𝑡 − 1)𝑆𝑆𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗  
 

𝑦𝑦𝑡𝑡𝑖𝑖 = 𝐼𝐼𝑦𝑦𝑖𝑖 + (𝑡𝑡 − 1)𝑆𝑆𝑦𝑦𝑖𝑖 + 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗  
 

𝐼𝐼𝑥𝑥𝑖𝑖 = 𝜇𝜇𝑥𝑥𝑦𝑦 + 𝜁𝜁𝑥𝑥𝑦𝑦𝑖𝑖 
 

𝑆𝑆𝑥𝑥𝑖𝑖 = 𝜇𝜇𝑥𝑥𝑦𝑦 + 𝜁𝜁𝑥𝑥𝑦𝑦𝑖𝑖 
 

𝐼𝐼𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑦𝑦𝑦𝑦 + 𝜁𝜁𝑦𝑦𝑦𝑦𝑖𝑖 
 

𝑆𝑆𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑦𝑦𝑦𝑦 + 𝜁𝜁𝑦𝑦𝑦𝑦𝑖𝑖  

(16) 
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𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗ = 𝜌𝜌𝑥𝑥𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖

∗ + 𝜌𝜌𝑥𝑥𝑦𝑦𝑡𝑡𝜖𝜖𝑦𝑦(𝑡𝑡−1)𝑖𝑖
∗ + 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 

 
𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗ = 𝜌𝜌𝑦𝑦𝑦𝑦𝑡𝑡𝜖𝜖𝑦𝑦(𝑡𝑡−1)𝑖𝑖

∗ + 𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖
∗ + 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖 

 

𝑥𝑥𝑡𝑡𝑖𝑖 = 𝐼𝐼𝑥𝑥𝑖𝑖 + (𝑡𝑡 − 1)𝑆𝑆𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗  
 

𝑦𝑦𝑡𝑡𝑖𝑖 = 𝐼𝐼𝑦𝑦𝑖𝑖 + (𝑡𝑡 − 1)𝑆𝑆𝑦𝑦𝑖𝑖 + 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗  
 

𝐼𝐼𝑥𝑥𝑖𝑖 = 𝜇𝜇𝑥𝑥𝑦𝑦 + 𝜁𝜁𝑥𝑥𝑦𝑦𝑖𝑖 
 

𝑆𝑆𝑥𝑥𝑖𝑖 = 𝜇𝜇𝑥𝑥𝑦𝑦 + 𝜁𝜁𝑥𝑥𝑦𝑦𝑖𝑖 
 

𝐼𝐼𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑦𝑦𝑦𝑦 + 𝜁𝜁𝑦𝑦𝑦𝑦𝑖𝑖 
 

𝑆𝑆𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑦𝑦𝑦𝑦 + 𝜁𝜁𝑦𝑦𝑦𝑦𝑖𝑖  
 

𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗ = 𝜌𝜌𝑥𝑥𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖
∗ + 𝜌𝜌𝑥𝑥𝑦𝑦𝑡𝑡𝜖𝜖𝑦𝑦(𝑡𝑡−1)𝑖𝑖

∗ + 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖 
 

𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗ = 𝜌𝜌𝑦𝑦𝑦𝑦𝑡𝑡𝜖𝜖𝑦𝑦(𝑡𝑡−1)𝑖𝑖
∗ + 𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖

∗ + 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖 

(16) 

 

Where 𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖∗  and 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖∗  are individual- and time-specific deviation terms from individual-

specific expected scores (i.e., 𝐼𝐼𝑥𝑥𝑖𝑖 + (𝑡𝑡 − 1)𝑆𝑆𝑥𝑥𝑖𝑖 or 𝐼𝐼𝑦𝑦𝑖𝑖 + (𝑡𝑡 − 1)𝑆𝑆𝑦𝑦𝑖𝑖), rather than from the group 

means (i.e., 𝜇𝜇𝑥𝑥𝑡𝑡 or 𝜇𝜇𝑦𝑦𝑡𝑡). All other parameters are defined previously from the LCM and the 

CLPM.  

However, there are differences in how to interpret autoregressive and cross-lagged 

parameters between the traditional CLPM and LCM-SR (Usami, Murayama, Hamaker, 2019). 

For example, autoregressive parameters still account for the influence of past values of a variable 

on its future values. However, the values being used are not deviations from the overall group 

means for the entire sample as in the traditional CLPM. Rather, they are deviations from 

individual-specific expected scores which do not provide information of actual rank order 
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between individuals. Thus, they represent the carry-over effect from one occasion to the later 

ones (Hamaker, Kuiper, Grasman, 2015). More specifically, in the LCM-SR, autoregressive 

parameter 𝜌𝜌𝑥𝑥𝑥𝑥𝑡𝑡 indicates the degree by which deviations from an individual’s expected score on 

x (i.e., 𝑥𝑥𝑡𝑡𝑖𝑖 − 𝐼𝐼𝑥𝑥𝑖𝑖 − (𝑡𝑡 − 1)𝑆𝑆𝑥𝑥𝑖𝑖) can be predicted from preceding deviations from one’s expected 

score on x (i.e., 𝑥𝑥(𝑡𝑡−1)𝑖𝑖 − 𝐼𝐼𝑥𝑥𝑖𝑖 − (𝑡𝑡 − 2)𝑆𝑆𝑥𝑥𝑖𝑖), while controlling for the individual’s deviation from 

the preceding expected score on y (i.e., 𝜖𝜖𝑦𝑦(𝑡𝑡−1)𝑖𝑖
∗ ).  

Similarly, cross-lagged parameters account for the influence of past values of a variable 

on future values of another variable but do not provide information about one’s rank-order 

anymore. In the LCM-SR, cross-lagged parameter 𝜌𝜌𝑥𝑥𝑦𝑦𝑡𝑡 indicates the extent to which deviations 

from an individual’s expected score on x (i.e., 𝑥𝑥𝑡𝑡𝑖𝑖 − 𝐼𝐼𝑥𝑥𝑖𝑖 − (𝑡𝑡 − 1)𝑆𝑆𝑥𝑥𝑖𝑖) can be predicted from the 

individual’s prior deviation from one’s expected score on y (i.e., 𝑦𝑦(𝑡𝑡−1)𝑖𝑖 − 𝐼𝐼𝑦𝑦𝑖𝑖 − (𝑡𝑡 − 2)𝑆𝑆𝑦𝑦𝑖𝑖), 

after controlling for the prior deviation from one’s expected score on x (i.e., 𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖
∗ ). In other 

words, the LCM-SR provides information about predictive or causal relationships between 

variables above and beyond the influence of the underlying trajectory. This is favorable when 

compared to the traditional CLPM because the CLPM does not adequately control for individual 

differences in the underlying trajectories, and therefore might provide inaccurate estimates for 

the reciprocal effect (Hamaker, Kuiper, Grasman, 2015; Kearney, 2017). 

The LCM-SR is a direct extension of the LCM (i.e., the LCM is nested within the LCM-

SR; Curran et al., 2014). This allows for model comparison using likelihood ratio tests to 

evaluate relative improvement in model fit given increasing model complexity. In addition, the 

LCM-SR could be transformed into other alternative models, which include the CLPM, 

according to the unified framework given by Usami, Murayama, & Hamaker (2019). Those can 
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be compared directly using information criteria. For more recent advancements in fit assessment 

and model selection, see Merkle, You, & Preacher (2016) and Lai (2020). Finally, the LCM-SR 

can be specified as equivalent to RI-CLPM, which is another alternative to the CLPM (Grimm, 

Helm, Rodgers, O’Rourke, 2021). 

Clustered Longitudinal Data in SEM 

Many educational data, including large-scale surveys with nationally representative 

samples, are collected using cluster sampling to minimize costs from data collection (Muthén & 

Satorra, 1995; Stapleton, 2006; Hsu, Lin, & Skidmore, 2018). For a simple example, consider a 

sampling strategy for a survey on school-aged children where schools are randomly selected and 

students within the selected school were then randomly sampled. Then, collected data would be 

two-level data where students (Level 1) are nested within schools (Level 2). Here, schools would 

be called primary sampling units (PSU), and the students nested within the school are the 

secondary sampling units (SSU). When repeated measures are observed over time on these 

sampling units, then these data would be called clustered longitudinal data at three levels where 

repeated measures (Level 1) are nested within students (Level 2) and the students are then nested 

within schools (level 3). 

Dependency between repeated measures within individuals can be effectively dealt with 

the single-level LCM where random effects in Level 2 are modeled as latent variables (Preacher, 

Zhang, Zyphur, 2011; Bovaird, 2007). In fact, SEM and multilevel modeling (MLM) are 

analytically equivalent methods when accounting for the two-level nesting effect due to repeated 

observations over time (Bauer, 2003; Curran, 2003). Yet, in a 3 (or more) level nesting structure 

where individuals are nested within higher-level clusters, there remains similarity or dependency 
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among individuals within the same clusters that should be controlled to prevent biased parameter 

estimates and standard errors (Hsu, Lin, & Skidmore, 2018). 

Within the SEM framework, there are two ways of accounting for individual dependency 

in clustered longitudinal data - aggregated approach and disaggregated approach (Muthén & 

Satorra, 1995; Muthén, 1997). The aggregated approach uses the same models utilized in 

traditional single-level SEM analysis, but takes the dependency of clustered data into account by 

adjusting the standard errors of parameter estimates and Chi-square goodness of fit test to be 

robust against violations of data assumption including complex sampling situations. This has 

been achieved by using the Huber-White sandwich ML estimator in Mplus (Asparukh & 

Muthén, 2005; Asparouhov & Muthén, 2010; Satorra & Bentler, 1994). 

On the other hand, disaggregated approach adopts new, distinctive design features such 

as specifying separate, level-specific models– a within-group level model and a between-group 

level model – with corresponding level-specific parameters and variance components (Muthén & 

Satorra, 1995; Muthén, 1997). This strand of the modeling approach is also referred to as 

multilevel SEM (Bovaird, 2007; Wu & Kwok, 2012; Hsu, Lin, & Skidmore, 2018). Although the 

aggregated approach is simpler regarding model specification, it allows for greater modeling 

flexibility in that different model structures can be specified at each level. Yet, Muthén and 

Satorra (1995) showed that these two approaches performed equally well when analyzing 

complex survey data with the same model structure at all data levels.  

Consider a simple example of a two-level CFA (that is, no structural relationship between 

latent variables exists except correlation) with a two-level dataset, where P item responses were 
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gathered from each of ng participants nested within G groups (e.g., P=3). Then we have a total of 

N (i.e., ∑ 𝑛𝑛𝑔𝑔𝐺𝐺
𝑔𝑔=1 = 𝑀𝑀) participants. This model is depicted in Figure 7.   

Figure 7. A two-level CFA with one latent variable in each level (P=3) 

 

 

Following Wu et al.’s notation (2017), with a few adjustments, let 𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔 be the p-th 

response variable (p=1, 2, 3, …, P) for the i-th participant (i.e., a within-group level unit; i= 1, 2, 

3, …, 𝑛𝑛𝑔𝑔) within the g-th group (i.e., a between-group level unit; g= 1, 2, 3, …, G). 

Here 𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔 can be decomposed into its between-group component and within-group 

component, that is, 

𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔 = 𝑦𝑦𝑝𝑝.𝑔𝑔
(𝐵𝐵) + 𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔

(𝑊𝑊) 
 

𝑝𝑝 = 1, 2, 3, … ,𝑃𝑃; 𝑖𝑖 = 1, 2, 3, … , 𝑛𝑛𝑔𝑔;𝑔𝑔 = 1, 2, 3, … ,𝐺𝐺 
(17) 
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Where the notation with superscript (B) indicates the elements in the between-group 

level, and the one with superscript (W) indicates the elements in the within-group level. 

 Following the analysis of variance (ANOVA) tradition, the dot-notation in the subscripts 

indicates over which index the mean is taken (Searle, 1971). 𝑦𝑦𝑝𝑝.𝑔𝑔
(𝐵𝐵) is the between-group 

component which represents the aggregated mean over group g and 𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔
(𝑊𝑊) is the within-group 

component which represents an individual-specific deviation from the group mean. Here, 𝑦𝑦𝑝𝑝.𝑔𝑔
(𝐵𝐵) 

and 𝑦𝑦𝑝𝑝.𝑔𝑔′
(𝐵𝐵)  (i.e., between-group components in different groups), 𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔

(𝑊𝑊) and 𝑦𝑦𝑝𝑝𝑖𝑖′𝑔𝑔′
(𝑊𝑊)  (i.e., within-

group components in different groups), and 𝑦𝑦𝑝𝑝.𝑔𝑔
(𝐵𝐵) and 𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔

(𝑊𝑊) (i.e., any cross-level correlation) are 

set to be uncorrelated, respectively (yet, 𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔
(𝑊𝑊) and 𝑦𝑦𝑝𝑝𝑖𝑖′𝑔𝑔

(𝑊𝑊)  are allowed to be correlated). Then, the 

variance-covariance matrix of 𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔 can be decomposed into between-group and within-group 

components: 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔� = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑦𝑦𝑝𝑝.𝑔𝑔
(𝐵𝐵)� + 𝑐𝑐𝑐𝑐𝑐𝑐�𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔

(𝑊𝑊)� (18) 
 

𝑦𝑦𝐵𝐵,𝑝𝑝.𝑔𝑔 and 𝑦𝑦𝑊𝑊,𝑝𝑝𝑖𝑖𝑔𝑔 can be further decomposed as follows: 

𝑦𝑦𝑝𝑝.𝑔𝑔
(𝐵𝐵) = 𝜇𝜇 + 𝚲𝚲(𝐵𝐵)𝜼𝜼..𝑔𝑔

(𝐵𝐵) + 𝜖𝜖𝑝𝑝.𝑔𝑔
(𝐵𝐵) 

 
𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔

(𝑊𝑊) = 𝜇𝜇𝑔𝑔 + 𝚲𝚲(𝑊𝑊)𝜼𝜼.𝑖𝑖𝑔𝑔
(𝑊𝑊) + 𝜖𝜖𝑝𝑝𝑖𝑖𝑔𝑔

(𝑊𝑊) 
(19) 

 

Where 𝜇𝜇 is the grand mean over all groups, 𝜇𝜇𝑔𝑔 is a group-specific intercept which is 

typically set to 0 for model identification (they will not be retained in further equations), 𝜼𝜼𝐵𝐵,..𝑔𝑔 is 

a vector of between-group level latent variables which follow a multivariate-normal distribution 

with a mean of 0 and a variance-covariance matrix 𝚿𝚿(𝐵𝐵)  (i.e., 𝜼𝜼𝐵𝐵,..𝑔𝑔~ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝚿𝚿(𝐵𝐵)); yet, for 
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some cases the grand mean is set to 0 and 𝜼𝜼𝐵𝐵,..𝑔𝑔 gets the group-varying mean structure), 𝜼𝜼𝑊𝑊,.𝑖𝑖𝑔𝑔 is 

a vector of within-group level latent variables which follow a multivariate-normal distribution 

with a mean of 0 and a variance-covariance matrix 𝚿𝚿(𝑊𝑊) (i.e., 𝜼𝜼𝑊𝑊,.𝑖𝑖𝑔𝑔~ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝚿𝚿(𝑊𝑊))), 𝚲𝚲(𝐵𝐵) and 

𝚲𝚲(𝑊𝑊) are corresponding factor loadings matrices, respectively, 𝜖𝜖𝑝𝑝.𝑔𝑔
(𝐵𝐵) is a between-group level 

measurement error that follows a multivariate-normal distribution with a mean of 0 and a 

variance-covariance matrix 𝚯𝚯(𝐵𝐵) (i.e., 𝜖𝜖𝑝𝑝.𝑔𝑔
(𝐵𝐵)~ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝚯𝚯(𝐵𝐵))), and 𝜖𝜖𝑝𝑝𝑖𝑖𝑔𝑔

(𝑊𝑊) is a within-group level 

measurement error that follows a multivariate-normal distribution with a mean of 0 and a 

variance-covariance matrix 𝚯𝚯(𝑊𝑊) (i.e., 𝜖𝜖𝑝𝑝𝑖𝑖𝑔𝑔
(𝑊𝑊)~ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝚯𝚯(𝑊𝑊))). Here 𝜼𝜼..𝑔𝑔

(𝐵𝐵), 𝜼𝜼.𝑖𝑖𝑔𝑔
(𝑊𝑊), 𝜖𝜖𝑝𝑝.𝑔𝑔

(𝐵𝐵), 𝜖𝜖𝑝𝑝𝑖𝑖𝑔𝑔
(𝑊𝑊) are set 

to be uncorrelated with each other (i.e., 𝜼𝜼..𝑔𝑔
(𝐵𝐵)⊥𝜼𝜼.𝑖𝑖𝑔𝑔

(𝑊𝑊)⊥𝜖𝜖𝑝𝑝.𝑔𝑔
(𝐵𝐵)⊥𝜖𝜖𝑝𝑝𝑖𝑖𝑔𝑔

(𝑊𝑊)). 

The variance-covariance matrix of 𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔 also can be further decomposed as follows: 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔� = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑦𝑦𝑝𝑝.𝑔𝑔
(𝐵𝐵)�+ 𝑐𝑐𝑐𝑐𝑐𝑐�𝑦𝑦𝑝𝑝𝑖𝑖𝑔𝑔

(𝑊𝑊)� 
 

= 𝑐𝑐𝑐𝑐𝑐𝑐�𝜇𝜇 + 𝚲𝚲(𝐵𝐵)𝜼𝜼..𝑔𝑔
(𝐵𝐵) + 𝜖𝜖𝑝𝑝.𝑔𝑔

(𝐵𝐵)� + 𝑐𝑐𝑐𝑐𝑐𝑐�𝜇𝜇𝑔𝑔 + 𝚲𝚲(𝑊𝑊)𝜼𝜼.𝑖𝑖𝑔𝑔
(𝑊𝑊) + 𝜖𝜖𝑝𝑝𝑖𝑖𝑔𝑔

(𝑊𝑊)� 
 

= 𝚲𝚲(𝐵𝐵)𝚿𝚿(𝐵𝐵)𝚲𝚲(𝐵𝐵)′ + 𝚯𝚯(𝐵𝐵) + 𝚲𝚲(𝑊𝑊)𝚿𝚿(𝑊𝑊)𝚲𝚲(𝑊𝑊)′ + 𝚯𝚯(𝑊𝑊) 

(20) 

 

Traditionally, the degree of similarity within the same cluster is indexed by the intraclass 

correlation (ICC) for each observed variable. ICC is defined as the ratio between-group level 

variance and the total variance of a variable (Muthén & Satorra, 1995; Mehta & Neale, 2005). 

ICC represents the expected correlation between two randomly chosen subjects within the same 

group. The larger the intraclass correlation, the larger the deviation from the assumption of 

independence between observations and the larger the distortion of conventional statistical 

methods that assume independent observations. In the MSEM context, Muthén (1991, 1994) 
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provided an error-free version of ICC which is defined as the ratio between the between-level 

latent factor variance and total latent factor variance. For example, for a single-factor two-level 

CFA with latent variable 𝜂𝜂1, ICC is given as:  

 

𝐼𝐼𝐼𝐼𝐼𝐼 =
𝚿𝚿(𝐵𝐵)

𝚿𝚿(𝐵𝐵) + 𝚿𝚿(𝑊𝑊) =
𝑐𝑐𝑣𝑣𝑣𝑣�𝜂𝜂1

(𝐵𝐵)�

𝑐𝑐𝑣𝑣𝑣𝑣�𝜂𝜂1
(𝐵𝐵)�+ 𝑐𝑐𝑣𝑣𝑣𝑣�𝜂𝜂1

(𝑊𝑊)�
 (21) 

 

However, when more than one latent variable is involved in the model and latent 

variables are allowed to covary, the aforementioned ICC cannot be used since total variance is no 

longer the sum of the variances of the different components (Anumendem, 2011). As an 

alternative approach, Raudenbush and Bryk (2002), in the context of studying school effect on 

academic achievement using the two-level LCM, suggested a way to look at the variance ratio 

for each latent variable separately. For example, in a 2-factor two-level CFA with latent variables 

𝜂𝜂1 and 𝜂𝜂2,  the percentage of the variance between clusters on latent variables can be given as: 

% 𝑐𝑐𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑛𝑛𝑐𝑐𝑣𝑣 𝑏𝑏𝑣𝑣𝑡𝑡𝑏𝑏𝑣𝑣𝑣𝑣𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑣𝑣𝑣𝑣𝑐𝑐 𝑐𝑐𝑛𝑛  𝜂𝜂1 =
𝑐𝑐𝑣𝑣𝑣𝑣�𝜂𝜂1

(𝐵𝐵)�

𝑐𝑐𝑣𝑣𝑣𝑣�𝜂𝜂1
(𝐵𝐵)�+ 𝑐𝑐𝑣𝑣𝑣𝑣�𝜂𝜂1

(𝑊𝑊)�
 

 

% 𝑐𝑐𝑣𝑣𝑣𝑣𝑖𝑖𝑣𝑣𝑛𝑛𝑐𝑐𝑣𝑣 𝑏𝑏𝑣𝑣𝑡𝑡𝑏𝑏𝑣𝑣𝑣𝑣𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑣𝑣𝑣𝑣𝑐𝑐 𝑐𝑐𝑛𝑛 𝜂𝜂2 =
𝑐𝑐𝑣𝑣𝑣𝑣�𝜂𝜂2

(𝐵𝐵)�

𝑐𝑐𝑣𝑣𝑣𝑣�𝜂𝜂2
(𝐵𝐵)�+ 𝑐𝑐𝑣𝑣𝑣𝑣�𝜂𝜂2

(𝑊𝑊)�
 

(22) 

 

In the context of the two-level LCM with academic achievement data for children nested 

in schools, the percentage of the variance between clusters represent the school effects or “the 

percentage of variation that lies between schools for both the initial status and learning rate” 
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regarding children’s academic achievement (Raudenbush & Bryk, 2002). In this study, we will 

use the index to measure individual dependency within the same cluster in clustered longitudinal 

data.  

Multilevel LCM-SR 

 

Now I will introduce multilevel LCM-SR (MLCM-SR), a parameterization of LCM-SR 

within the MSEM framework to address individual dependency in clustered longitudinal data.  

Consider a simple example of a two-level LCM-SR with clustered longitudinal dataset where T 

waves of repeated measures x and y are observed for each of ng participants nested within G 

groups. Then we have a total of N (i.e., ∑ 𝑛𝑛𝑔𝑔𝐺𝐺
𝑔𝑔=1 = 𝑀𝑀) participants. This model is depicted in 

Figure 8 (e.g., T=4).  
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Figure 8. A two-level latent curve model with structured residuals (T=4). 

 

Note. Growth factor covarinace structure and covariances between 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖
(𝐵𝐵) and 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖

(𝐵𝐵)  and 
covariances between between 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖

(𝑊𝑊) and 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖
(𝑊𝑊) are omitted. 

Let 𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔 and 𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔 be the t-th element of T repeated measures (t = 1, 2, 3, ..., T) for the i-th 

participant (i.e., a within-group level unit; i= 1, 2, 3, …, 𝑛𝑛𝑔𝑔) within the g-th group (i.e., a 

between-group level unit; g= 1,2,3,…G). Here, 𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔 and 𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔 can be decomposed into its 

between-group component and within-group component as follows: 

 

𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔 = 𝑦𝑦𝑡𝑡.𝑔𝑔
(𝐵𝐵) + 𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔

(𝑊𝑊) 
 

𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔 = 𝑥𝑥𝑡𝑡.𝑔𝑔
(𝐵𝐵) + 𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔

(𝑊𝑊) 
 

(23) 
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𝑡𝑡 = 1, 2, 3, … ,𝑇𝑇; 𝑖𝑖 = 1, 2, 3, … , 𝑛𝑛𝑔𝑔;𝑔𝑔 = 1, 2, 3, … ,𝐺𝐺 
 

The between-group component can be further decomposed as follows: 

𝑦𝑦𝑡𝑡.𝑔𝑔
(𝐵𝐵) = 𝐼𝐼𝑦𝑦..𝑔𝑔

(𝐵𝐵) + (𝑡𝑡 − 1)𝑆𝑆𝑦𝑦..𝑔𝑔
(𝐵𝐵) + 𝜖𝜖𝑦𝑦𝑡𝑡.𝑔𝑔

(𝐵𝐵)∗ 
 

𝑥𝑥𝑡𝑡.𝑔𝑔
(𝐵𝐵) = 𝐼𝐼𝑥𝑥..𝑔𝑔

(𝐵𝐵) + (𝑡𝑡 − 1)𝑆𝑆𝑥𝑥..𝑔𝑔
(𝐵𝐵) + 𝜖𝜖𝑥𝑥𝑡𝑡.𝑔𝑔

(𝐵𝐵)∗ 
 

𝐼𝐼𝑦𝑦..𝑔𝑔
(𝐵𝐵) = 𝜇𝜇𝑦𝑦𝑦𝑦…

(𝐵𝐵) + 𝜁𝜁𝑦𝑦𝑦𝑦..𝑔𝑔
(𝐵𝐵)  

 
𝑆𝑆𝑦𝑦..𝑔𝑔

(𝐵𝐵) = 𝜇𝜇𝑦𝑦𝑦𝑦…
(𝐵𝐵) + 𝜁𝜁𝑦𝑦𝑦𝑦..𝑔𝑔

(𝐵𝐵)  
 

𝐼𝐼𝑥𝑥..𝑔𝑔
(𝐵𝐵) = 𝜇𝜇𝑦𝑦𝑥𝑥…

(𝐵𝐵) + 𝜁𝜁𝑦𝑦𝑥𝑥..𝑔𝑔
(𝐵𝐵)  

 
𝑆𝑆𝑥𝑥..𝑔𝑔

(𝐵𝐵) = 𝜇𝜇𝑦𝑦𝑥𝑥…
(𝐵𝐵) + 𝜁𝜁𝑦𝑦𝑥𝑥..𝑔𝑔

(𝐵𝐵)  
 

𝜖𝜖𝑦𝑦𝑡𝑡.𝑔𝑔
(𝐵𝐵)∗ = 𝜌𝜌𝑦𝑦𝑦𝑦𝑡𝑡𝜖𝜖𝑦𝑦(𝑡𝑡−1).𝑔𝑔

(𝐵𝐵)∗ + 𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1).𝑔𝑔
(𝐵𝐵)∗ + 𝑑𝑑𝑥𝑥𝑡𝑡.𝑔𝑔

(𝐵𝐵)  
 

𝜖𝜖𝑥𝑥𝑡𝑡.𝑔𝑔
(𝐵𝐵)∗ = 𝜌𝜌𝑥𝑥𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1).𝑔𝑔

(𝐵𝐵)∗ + 𝜌𝜌𝑥𝑥𝑦𝑦𝑡𝑡𝜖𝜖𝑦𝑦(𝑡𝑡−1).𝑔𝑔
(𝐵𝐵)∗ + 𝑑𝑑𝑦𝑦𝑡𝑡.𝑔𝑔

(𝐵𝐵)  

(24) 

 

Where the notation with subscript y indicates the elements for the repeated measures y, 

and the one with subscript x indicates the elements for the repeated measures x. Here, the 

between-group component 𝑦𝑦𝑡𝑡.𝑔𝑔
(𝐵𝐵) is modeled as the LCM-SR where the unit of analysis is G 

groups – it is expressed as a combination of the random intercept 𝐼𝐼𝑦𝑦..𝑔𝑔
(𝐵𝐵) , the random slope 𝑆𝑆𝑦𝑦..𝑔𝑔

(𝐵𝐵) , 

and a time-specific residual unique to group g, 𝜖𝜖𝑦𝑦𝑡𝑡.𝑔𝑔
(𝐵𝐵)∗. The grand mean 𝜇𝜇 is fixed to zero so that 

the growth factors can have the mean structure. Then, the random intercept 𝐼𝐼𝑦𝑦..𝑔𝑔
(𝐵𝐵)  is composed of 

the overall mean of the random intercept across groups 𝜇𝜇𝑦𝑦𝑦𝑦…
(𝐵𝐵)  and a group-specific deviation from 

the mean 𝜁𝜁𝑦𝑦𝑦𝑦..𝑔𝑔
(𝐵𝐵) . Then the random slope 𝑆𝑆𝑦𝑦..𝑔𝑔

(𝐵𝐵)  is composed of the overall mean of the random 
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slope across groups 𝜇𝜇𝑦𝑦𝑦𝑦…
(𝐵𝐵)  and a group-specific deviation from the mean 𝜁𝜁𝑦𝑦𝑦𝑦..𝑔𝑔

(𝐵𝐵) . The between-

group level growth factors represent cluster-level growth – aggregated growth across groups and 

between-group variability in the growth. Finally, a group- and time-specific residual 𝜖𝜖𝑦𝑦𝑡𝑡.𝑔𝑔
(𝐵𝐵)∗ is used 

to model cross-lagged relations in the CLPM part. Note that the autoregressive parameter (𝜌𝜌𝑦𝑦𝑦𝑦𝑡𝑡) 

and the cross-lagged parameter (𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡) do not have superscripts on them. This indicates that the 

relationship between components is the same across between-group and within-group levels. The 

parametrization is done this way based on the practical purpose of making two-level models that 

are directly comparable to single-level models when collapsing the two-level model structure. 

This is done so that representation of cross-lagged parameters as the causal effect would still 

hold (Usami, Murayama, Hamaker, 2019). The actual expression of a two-model as a single-

level model is shown below. Imposing equal constraints on these parameters can be empirically 

tested to evaluate whether cross-level invariance exists (Muthén & Muthén, 1998-2017). The 

between-group component 𝑥𝑥𝑡𝑡.𝑔𝑔
(𝐵𝐵) is also defined in the same way. 

The within-group component can also be further decomposed as follows: 

𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔
(𝑊𝑊) = 𝐼𝐼𝑦𝑦.𝑖𝑖𝑔𝑔

(𝑊𝑊) + (𝑡𝑡 − 1)𝑆𝑆𝑦𝑦.𝑖𝑖𝑔𝑔
(𝑊𝑊) + 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔

(𝑊𝑊)∗ 
 

𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔
(𝑊𝑊) = 𝐼𝐼𝑥𝑥.𝑖𝑖𝑔𝑔

(𝑊𝑊) + (𝑡𝑡 − 1)𝑆𝑆𝑥𝑥.𝑖𝑖𝑔𝑔
(𝑊𝑊) + 𝜖𝜖𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔

(𝑊𝑊)∗ 
 

𝐼𝐼𝑦𝑦.𝑖𝑖𝑔𝑔
(𝑊𝑊) = 𝜁𝜁𝑦𝑦𝑦𝑦.𝑖𝑖𝑔𝑔

(𝑊𝑊)  
 

𝑆𝑆𝑦𝑦.𝑖𝑖𝑔𝑔
(𝑊𝑊) = 𝜁𝜁𝑦𝑦𝑦𝑦.𝑖𝑖𝑔𝑔

(𝑊𝑊)  
 

𝐼𝐼𝑥𝑥.𝑖𝑖𝑔𝑔
(𝑊𝑊) = 𝜁𝜁𝑦𝑦𝑥𝑥.𝑖𝑖𝑔𝑔

(𝑊𝑊)  
 

𝑆𝑆𝑥𝑥.𝑖𝑖𝑔𝑔
(𝑊𝑊) = 𝜁𝜁𝑦𝑦𝑥𝑥.𝑖𝑖𝑔𝑔

(𝑊𝑊)  
 

(25) 
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𝜖𝜖𝑦𝑦𝑡𝑡.𝑔𝑔
(𝑊𝑊)∗ = 𝜌𝜌𝑦𝑦𝑦𝑦𝑡𝑡𝜖𝜖𝑦𝑦(𝑡𝑡−1)𝑖𝑖𝑔𝑔

(𝑊𝑊)∗ + 𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖𝑔𝑔
(𝑊𝑊)∗ + 𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔

(𝑊𝑊)  
 

𝜖𝜖𝑥𝑥𝑡𝑡.𝑔𝑔
(𝑊𝑊)∗ = 𝜌𝜌𝑥𝑥𝑥𝑥𝑡𝑡𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖𝑔𝑔

(𝑊𝑊)∗ + 𝜌𝜌𝑥𝑥𝑦𝑦𝑡𝑡𝜖𝜖𝑦𝑦(𝑡𝑡−1)𝑖𝑖𝑔𝑔
(𝑊𝑊)∗ + 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔

(𝑊𝑊)  
 

Where the within-group component 𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔
(𝑊𝑊) is modeled as the LCM-SR where the unit of 

analysis is N participants. The only difference in modeling between the within-group level and 

between-group level is that the mean of within-group level grow factors is fixed to zero for 

model identification reasons. The within-group level growth factors represent individual level 

growth – intra-individual growth and inter-individual variability in the growth above and beyond 

the influence of cluster-level growth. Again, the autoregressive parameter (𝜌𝜌𝑦𝑦𝑦𝑦𝑡𝑡) and the cross-

lagged parameter (𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡) do not have superscripts on them. The within-group component 𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔
(𝑊𝑊) is 

also defined in the same way. 

The model can be rearranged as follows: 

𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔 = �𝐼𝐼𝑦𝑦.𝑖𝑖𝑔𝑔
(𝐵𝐵) + 𝐼𝐼𝑦𝑦.𝑖𝑖𝑔𝑔

(𝑊𝑊)�+ (𝑡𝑡 − 1) �𝑆𝑆𝑦𝑦..𝑔𝑔
(𝐵𝐵) + 𝑆𝑆𝑦𝑦.𝑖𝑖𝑔𝑔

(𝑊𝑊)�+ �𝜖𝜖𝑦𝑦𝑡𝑡.𝑔𝑔
(𝐵𝐵)∗ + 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔

(𝑊𝑊)∗� 
 

𝜖𝜖𝑦𝑦𝑡𝑡.𝑔𝑔
(𝐵𝐵)∗ + 𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔

(𝑊𝑊)∗ = 𝜌𝜌𝑦𝑦𝑦𝑦𝑡𝑡 �𝜖𝜖𝑦𝑦(𝑡𝑡−1).𝑔𝑔
(𝐵𝐵)∗ + 𝜖𝜖𝑦𝑦(𝑡𝑡−1)𝑖𝑖𝑔𝑔

(𝑊𝑊)∗ � + 𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡 �𝜖𝜖𝑥𝑥(𝑡𝑡−1).𝑔𝑔
(𝐵𝐵)∗ + 𝜖𝜖𝑥𝑥(𝑡𝑡−1)𝑖𝑖𝑔𝑔

(𝑊𝑊)∗ � + �𝑑𝑑𝑥𝑥𝑡𝑡.𝑔𝑔
(𝐵𝐵) + 𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔

(𝑊𝑊) � 
(26) 

 

The rearrangement shows that the same model structure is specified at both the within-

group and between-group levels. Other parameterizations of the model are possible, but, the 

difference in model structures at each level can affect estimation results (Wu, Kwok, 2012), 

which is not the focus of this study. Thus, in this study, we will use the same model structure 

across levels since the focus is on comparing the aggregated and disaggregated approaches to 

controlling the dependency between individuals within the same cluster. The univariate MLCM-

SR requires three waves of data to identify the model when stationarity of parameters can be 
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assumed, four waves if not. The bivariate MLCM-SR also requires three waves of data when 

stationarity of parameters can be assumed, four waves if not. The model identification is 

examined by looking at whether the SEM program can compute a proper solution or not (Kenny 

& Milan, 2012). 

The Current Study 

The purpose of this study is to explore the impact of dependency among observations on 

the results when using the LCM-SR, and how to appropriately analyze the clustered longitudinal 

data for more accurate inference. To do this, the MLCM-SR (disaggregated approach) was 

introduced and compared with the single level LCM-SR considering nesting effects (aggregated 

approach), and the single level LCM-SR ignoring nesting effects (conventional approach). This 

study serves an exploratory purpose in that a new modeling approach was introduced and tested. 

In this study, two different mini studies were conducted: one using the simulated data 

example and the other using the actual data example. In the simulated data example (Study 1), 

the model performance was evaluated in terms of differences in convergence rate, likelihood 

ratio test statistic values, practical model fit indexes, bias in parameter estimates as well as the 

95% coverage rate. Finally, empirical power or Type I error rate associated with the cross-lagged 

parameter estimates between residuals was assessed. In the actual data example (Study 2), 

models were compared in terms of model fits, the statistical significance of individual parameter 

estimates under given alpha=0.05, and interpretation of the results.  

The primary questions to be addressed in this study are as follows: 
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1. Study 1: How does the performance of the MLCM-SR and the alternative 

modeling strategies differ across varying conditions of… 

a. Number of clusters? 

b. Percentage of variance between clusters? 

c. R-square of T1 repeated measure at between-group level? 

d. Magnitude of the one-way CL parameter? 

2. Study 2: Do different modeling strategies lead to different conclusions when 

dependency among observations is present in the dataset? 
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CHAPTER 3. STUDY 1 

In Study 1, a Monte Carlo simulation was conducted to evaluate the relative performance 

of the selected models under various conditions pertaining to individual dependency in the 

multilevel longitudinal data and the nature of the reciprocated relationship. The method used in 

Study 1 is introduced first, followed by the results. 

Method 

Data generation 

For the simulation study, a random sample of T= 4 equally spaced repeated measures on 

the observed variables x and y with balanced cluster design (i.e., Cluster size is the same for all 

clusters) and no missing data were generated. All data were generated based on a two-level 

LCM-SR with autoregressive (AR) (1) & cross-lagged (CL) (1) process. In this study, both 

within- and between-models were specified as having the same model structure since the 

difference in the model structure itself can affect estimation results (Wu & Kwok, 2012), which 

is not the focus of this study. The LCM-SR requires the stationarity assumption and control for 

any confounder for the CL effects to represent causal effect (Usami, Murayama, & Hamaker, 

2019). Thus, in this model, the AR and CL effects are constrained to be equal over time, as are 

the residual variances and the residual covariance to achieve stationarity assumption (e.g., 

𝜌𝜌𝑥𝑥𝑥𝑥2 = 𝜌𝜌𝑥𝑥𝑥𝑥3 = 𝜌𝜌𝑥𝑥𝑥𝑥4 = 𝜌𝜌𝑥𝑥𝑥𝑥). Also, in this model, no additional confounders were assumed. 

Finally, all covariances between innovations within the same time point are constrained to be 0 

for convenience of model estimation (i.e., 𝑐𝑐𝑐𝑐𝑐𝑐�𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔
(𝑊𝑊) ,𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔

(𝑊𝑊) � = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔
(𝐵𝐵) ,𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔

(𝐵𝐵) � = 0). 

The central interests of this study pertain to the impact of ignoring/considering variability 

in the between-group level on the model fits, parameter estimates, and corresponding 
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conclusions we make about the relationship between growth processes over time.  Consequently, 

four relevant design factors were considered in this study: a number of clusters, percentage of the 

variance between clusters on latent variables, R-square of repeated measures at between-group 

level, and the magnitude of a one-way CL effect. 

Number of clusters (NC)  

The number of clusters or between-level sample size (or the highest-level sample size 

when there are more than two levels) is an important factor that determines the accuracy of the 

parameter estimates and their standard errors for the between model (Hox & Maas, 2001; Maas 

& Hox, 2005; Hox, Maas, & Brinkhuis, 2010; Hox, 2013). Maas and Hox (2005) found that, if 

the model is simple and the interest of the study is primarily focusing on fixed effects (i.e., 

regression coefficients) and their standard errors, the highest-level sample size of 20 may be 

sufficient for accurate estimation. However, if the interest is on random effects (i.e., variance 

estimates), the sample size must be much larger. Maas and Hox (2005) recommended the sample 

size to be of at least 50 groups even for the simplest random-effects models. At the same time, 

for large-scale surveys with nationally representative samples, the highest-level sample size of 

more than 1000 is not uncommon (Crosby & Mendez, 2016). Thus, in this study, we will use 

three different numbers of clusters (i.e., 50, 200, and 500) to evaluate whether different sample 

sizes will affect the parameter estimation of the models. On the other hand, cluster size did not 

affect the estimation results very much (Hox, Maas, & Brinkhuis, 2010). Thus, in this study, the 

cluster size is fixed to 5 for all conditions.  

Percentage of variance between clusters on each latent variable (PVB)  
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In multilevel modeling, the ICC for each observed variable is used as one of the design 

factors in simulation studies because it is known to affect the accuracy of parameter estimates 

and their standard errors in the between model (Hox & Maas, 2001; Lai & Kwok, 2015; Lüdtke 

et al., 2008; Preacher, Zhang, & Zyphur, 2011) and convergence rates (yet there is controversy 

over the effect of ICC on convergence rate; see Maas & Hox, 2005). However, since there is 

more than one latent variable involved in the two-level LCM-SR, using the ICC for testing biases 

in this model would not be appropriate. Thus, the percentage of the variance between clusters on 

each latent variable (PVB) was used instead (Raudenbush & Bryk, 2002; Anumendem, 2011). 

Typically, in educational studies, ICC values from 10% to 30% were observed using cross-

sectional multilevel models (see Raudenbush & Bryk, 2002). When fitting the growth curve 

model to the multilevel longitudinal data, a relatively lower percentage of the variance between 

clusters on the intercept or initial status and a relatively higher percentage of the variance 

between clusters on the slope or learning rates per academic year were observed (8% and 58.3%, 

respectively; see Raudenbush & Bryk, 2002). In this study, the percentage of the variance 

between clusters on each latent variable was set to .2 (low) and .5 (high). 

R-square of T1 repeated measure at between-group level (R2B) 

R-square of repeated measures in the LCM represents proportions of variance explained 

by the growth factors at the given time point. It is also referred to as growth curve reliability or 

reliability of the observed variable given the growth curve (Meredith & Tisak, 1990; Grimm & 

Widaman, 2010; Diallo, Morin, & Parker; 2014; Diallo & Morin, 2015; Diallo & Lu, 2017). 

Growth curve reliability is usually based on the first measurement occasion since this is where 

the baseline or zero-point is often located. R-square then represents the ratio of variance 

attributable to the intercept (i.e., true variance) to the total variance (i.e., variance attributable to 
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the intercept plus residual variance). R-square values in the LCM are a function of the time 

score, the variances and covariance of the growth factors, and the variances of the time-specific 

residuals. For example, in the linear LCM, R-square can be computed as follows: 

𝑅𝑅2(𝑦𝑦𝑡𝑡𝑖𝑖) =
𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑦𝑦𝑖𝑖� + (𝑡𝑡 − 1)2𝑐𝑐𝑣𝑣𝑣𝑣�𝑆𝑆𝑦𝑦𝑖𝑖�

𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑦𝑦𝑖𝑖� + (𝑡𝑡 − 1)2𝑐𝑐𝑣𝑣𝑣𝑣�𝑆𝑆𝑦𝑦𝑖𝑖� + 𝑐𝑐𝑣𝑣𝑣𝑣�𝜖𝜖𝑦𝑦𝑡𝑡𝑖𝑖�
 (27) 

 

R-square of repeated measures at between-group level (R2B) is known to affect the 

accuracy of parameter estimates, their standard errors, and convergence rate (Diallo, Morin, & 

Parker; 2014; Diallo & Lu, 2017). In this study, two different values of R2B of T1 repeated 

measures were used in order to reflect medium and large proportions of variance explained by 

the growth factors: .5 (medium) and .75 (high). On the other hand, in this study, the R-square of 

T1 repeated measure at the within-group level (R2W) is set to .75 for all conditions. 

The magnitude of one-way CL or dominance condition (CL2) 

In the CLPM and its extensions, cross-lagged (CL) parameters or CL effects determine 

the relationship between two or more variables – firstly, they determine whether the variables 

influence each other (i.e., significant CL effects on each other are estimated). Secondly, they also 

determine which variable is causally dominant (i.e., CL effects from one variable are greater than 

CL effects from the other). Third, they determine whether a variable has a positive or negative 

influence on the other variable (Hamaker, Kuiper, & Grasman, 2015). Capturing the actual cross-

lagged relationship underlying the variables is a major objective of the CLPM and its extensions. 

Failing to do so and thus making incorrect inferences about the causal relationship is problematic 

– especially when researchers wish to use the results from the models as a basis for future 

interventions. Therefore, in this study, the magnitude of the x to y cross-lagged parameter was 
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manipulated while constraining the y to x cross-lagged parameter to reflect dominance and non-

dominance conditions. Specifically, two levels of x-to-y cross-lagged parameter 𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡 was 

considered along the null condition: .1 (y dominance), .3 (non-dominance), and 0 (the null 

condition). The x-to-y cross-lagged parameter 𝜌𝜌𝑥𝑥𝑦𝑦𝑡𝑡 was constrained to .3, following Cohen’s 

criteria on correlation effect sizes (Cohen, 1988). 

All other parameters in the model are fixed for all conditions. Correlations among latent 

variables at the within-group and between-group levels are fixed as follows: 

𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣

⎣
⎢
⎢
⎢
⎢
⎡𝐼𝐼𝑦𝑦..𝑔𝑔

(𝐵𝐵)

𝑆𝑆𝑦𝑦..𝑔𝑔
(𝐵𝐵)

𝐼𝐼𝑥𝑥..𝑔𝑔
(𝐵𝐵)

𝑆𝑆𝑥𝑥..𝑔𝑔
(𝐵𝐵)
⎦
⎥
⎥
⎥
⎥
⎤

= 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣

⎣
⎢
⎢
⎢
⎢
⎡𝐼𝐼𝑦𝑦..𝑔𝑔

(𝑊𝑊)

𝑆𝑆𝑦𝑦..𝑔𝑔
(𝑊𝑊)

𝐼𝐼𝑥𝑥..𝑔𝑔
(𝑊𝑊)

𝑆𝑆𝑥𝑥..𝑔𝑔
(𝑊𝑊)

⎦
⎥
⎥
⎥
⎥
⎤

= �
1
. 3 1

. 15 . 15 1

. 15 . 15 . 3 1

� 

Following Cohen’s criteria on correlation effect sizes (Cohen, 1988), a correlation value 

of 0.3 was set to reflect a moderate relationship between growth factors within each construct, 

whereas a correlation value of 0.15 was set to reflect a weaker relationship between growth 

factors across constructs. In addition, following an example given in Bovaird (2007), a variance 

of the random intercept and variance of random slope for both constructs at the within-group 

level are fixed to 10 and 4, respectively, in all conditions. Finally, the variance of time-specific 

innovations for x and y at within-group and between-group levels are set to ½ times the variance 

of within-group level T1 residuals for x and y, respectively, in all conditions.  

Given the above information, the population covariance structure of growth factors and 

residuals at within-group and between-group levels (which serves as a basis for data generation) 

can now be computed based on these values and the values from the design factors. For example, 
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when a PVB value of .5 (high) is given, the covariance structure of growth factors at within-

group and between-group levels can be computed using the following equations: 

 

𝑫𝑫(𝑊𝑊) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑐𝑐𝑣𝑣𝑣𝑣

1
2�𝐼𝐼𝑦𝑦..𝑔𝑔

(𝑊𝑊)�

𝑐𝑐𝑣𝑣𝑣𝑣
1
2�𝑆𝑆𝑦𝑦..𝑔𝑔

(𝑊𝑊)�

𝑐𝑐𝑣𝑣𝑣𝑣
1
2�𝐼𝐼𝑥𝑥..𝑔𝑔

(𝑊𝑊)�

𝑐𝑐𝑣𝑣𝑣𝑣
1
2�𝑆𝑆𝑥𝑥..𝑔𝑔

(𝑊𝑊)�⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

=

⎣
⎢
⎢
⎢
⎡√10

√4
√10

√4⎦
⎥
⎥
⎥
⎤

= �
3.16

2
3.16

2

� 

𝚿𝚿(𝑊𝑊) =  𝑫𝑫(𝑊𝑊) ∗ 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣
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⎢
⎢
⎢
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⎡𝐼𝐼𝑦𝑦..𝑔𝑔

(𝑊𝑊)

𝑆𝑆𝑦𝑦..𝑔𝑔
(𝑊𝑊)

𝐼𝐼𝑥𝑥..𝑔𝑔
(𝑊𝑊)

𝑆𝑆𝑥𝑥..𝑔𝑔
(𝑊𝑊)

⎦
⎥
⎥
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⎤

∗ 𝑫𝑫(𝑊𝑊)  
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2
3.16

2
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1
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. 15 . 15 1

. 15 . 15 . 3 1

� ∗ �
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2
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2

� 

=� �

10 1.9 1.5 . 95
1.9 4 . 95 . 6
1.5 . 95 10 1.9
. 95 . 6 1.9 4

� 
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𝑫𝑫(𝐵𝐵) =  𝑫𝑫(𝑊𝑊) ∗ √𝑃𝑃𝑀𝑀𝑃𝑃 = �
3.16

2
3.16

2

� ∗ 1 

= �
3.16

2
3.16

2

� 

𝚿𝚿(𝐵𝐵) =  𝑫𝑫(𝐵𝐵) ∗ 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣

⎣
⎢
⎢
⎢
⎢
⎡𝐼𝐼𝑦𝑦..𝑔𝑔

(𝐵𝐵)

𝑆𝑆𝑦𝑦..𝑔𝑔
(𝐵𝐵)

𝐼𝐼𝑥𝑥..𝑔𝑔
(𝐵𝐵)

𝑆𝑆𝑥𝑥..𝑔𝑔
(𝐵𝐵)
⎦
⎥
⎥
⎥
⎥
⎤

∗ 𝑫𝑫(𝐵𝐵) 

= �
3.16

2
3.16

2

� ∗ �
1
. 3 1

. 15 . 15 1

. 15 . 15 . 3 1

� ∗ �
3.16

2
3.16

2

� 

=� �

10 1.9 1.5 . 95
1.9 4 . 95 . 6
1.5 . 95 10 1.9
. 95 . 6 1.9 4

� 

Where 𝑫𝑫(𝑊𝑊) and 𝑫𝑫(𝐵𝐵) are 4*4 diagonal matrices with standard deviations or the square 

root of latent variable variance at within-group and between-group levels, respectively, in the 

diagonal and zeros in the other cells, and 𝚿𝚿(𝑊𝑊) and 𝚿𝚿(𝐵𝐵) are population variance-covariance 

matrices of growth factors at within-group and between-group levels, respectively. 

Also, when 𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡 value of .3 (non-dominance), R2B value of .75 (high) are given, the 

variance of T1 residual for y at within-group and between-group levels can be computed using 

the following equations: 
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𝑅𝑅2�𝑦𝑦1𝑖𝑖𝑔𝑔
(𝑊𝑊)� =

𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑦𝑦.𝑖𝑖𝑔𝑔
(𝑊𝑊)�

𝑐𝑐𝑣𝑣𝑣𝑣 �𝐼𝐼𝑦𝑦.𝑖𝑖𝑔𝑔
(𝑊𝑊)�+ 𝑐𝑐𝑣𝑣𝑣𝑣 �𝜖𝜖𝑦𝑦1𝑖𝑖𝑔𝑔

(𝑊𝑊)∗�
= .75 

𝑐𝑐𝑣𝑣𝑣𝑣�𝜖𝜖𝑦𝑦1𝑖𝑖𝑔𝑔
(𝑊𝑊)∗� =

1 − .75
. 75

∗ 𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑦𝑦.𝑖𝑖𝑔𝑔
(𝑊𝑊)� =

1
3
∗ 10 =

10
3

 

Similarly, 

𝑅𝑅2�𝑦𝑦1.𝑔𝑔
(𝐵𝐵)� =

𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑦𝑦..𝑔𝑔
(𝐵𝐵)�

𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑦𝑦..𝑔𝑔
(𝐵𝐵)� + 𝑐𝑐𝑣𝑣𝑣𝑣�𝜖𝜖𝑦𝑦1.𝑔𝑔

(𝐵𝐵)∗�
= .75 

𝑐𝑐𝑣𝑣𝑣𝑣�𝜖𝜖𝑦𝑦1.𝑔𝑔
(𝐵𝐵)∗� =

1 − .75
. 75

∗ 𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑦𝑦..𝑔𝑔
(𝐵𝐵)� =

1
3
∗ 10 =

10
3

 

We can also compute the variance of T1 residuals for x at within- and between-group 

levels in the same way: 

𝑅𝑅2�𝑥𝑥1𝑖𝑖𝑔𝑔
(𝑊𝑊)� =

𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑥𝑥.𝑖𝑖𝑔𝑔
(𝑊𝑊)�

𝑐𝑐𝑣𝑣𝑣𝑣 �𝐼𝐼𝑥𝑥.𝑖𝑖𝑔𝑔
(𝑊𝑊)� + 𝑐𝑐𝑣𝑣𝑣𝑣 �𝜖𝜖𝑥𝑥1𝑖𝑖𝑔𝑔

(𝑊𝑊)∗�
= .75 

𝑐𝑐𝑣𝑣𝑣𝑣�𝜖𝜖𝑥𝑥1𝑖𝑖𝑔𝑔
(𝑊𝑊)∗� =

1 − .75
. 75

∗ 𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑥𝑥.𝑖𝑖𝑔𝑔
(𝑊𝑊)� =

1
3
∗ 10 =

10
3

 

𝑅𝑅2�𝑥𝑥1.𝑔𝑔
(𝐵𝐵)� =

𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑥𝑥..𝑔𝑔
(𝐵𝐵)�

𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑥𝑥..𝑔𝑔
(𝐵𝐵)�+ 𝑐𝑐𝑣𝑣𝑣𝑣�𝜖𝜖𝑥𝑥1.𝑔𝑔

(𝐵𝐵)∗�
= .75 

𝑐𝑐𝑣𝑣𝑣𝑣�𝜖𝜖𝑥𝑥1.𝑔𝑔
(𝐵𝐵)∗� =

1 − .75
. 75

∗ 𝑐𝑐𝑣𝑣𝑣𝑣�𝐼𝐼𝑥𝑥..𝑔𝑔
(𝐵𝐵)� =

1
3
∗ 10 =

10
3

 

We can now compute the variance of time-specific innovations for x and y at within- and 

between-group levels using the information above: 
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𝑐𝑐𝑣𝑣𝑣𝑣�𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔
(𝑊𝑊)∗�

𝑡𝑡≥2
=

10
3
∗

1
2

=� 1.67 

𝑐𝑐𝑣𝑣𝑣𝑣�𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔
(𝑊𝑊)∗�

𝑡𝑡≥2
=

10
3
∗

1
2

=� 1.67 

𝑐𝑐𝑣𝑣𝑣𝑣�𝑑𝑑𝑥𝑥𝑡𝑡𝑖𝑖𝑔𝑔
(𝐵𝐵)∗�

𝑡𝑡≥2
=

10
3
∗

1
2

=� 1.67 

𝑐𝑐𝑣𝑣𝑣𝑣�𝑑𝑑𝑦𝑦𝑡𝑡𝑖𝑖𝑔𝑔
(𝐵𝐵)∗�

𝑡𝑡≥2
=

10
3
∗

1
2

=� 1.67 

Here, innovation variance at time 2 (T2) is set equal to innovation variance at each time 

point since innovation variances are set equal across time by design.  

Consequently, the variance-covariance structure for residual at the first timepoint and 

innovation at later time points in the current condition (𝜌𝜌𝑦𝑦𝑥𝑥𝑡𝑡 = .3, PVB = .5, & R2B = .75) is 

expressed as follows:  
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In the very same condition, the mean structure of growth factors at the between-group 

level is given as follows:  
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Where the overall mean of the random intercept across groups 𝜇𝜇𝑦𝑦𝑦𝑦…
(𝐵𝐵)  and 𝜇𝜇𝑦𝑦𝑥𝑥…

(𝐵𝐵)  are fixed at 

25 and 4, respectively, for all conditions, following the example from Bovaird (2007). Using the 

given mean structure and covariance structures, we can generate the multivariate normal data and 

then assemble them into multilevel longitudinal data using equations (25) and (26).  

In this study, a 2 (50 or 500 number of clusters) * 2 (.1 or .3 percentage of variance 

between clusters on latent variables) * 2 (.5 or .75 R-square of repeated measures at between-

group level) * 2 (dominance or non-dominance CL) factorial design was employed to generate 

data. For each cell condition, 10000 replications were generated using R based on the data-

generating model (i.e., two-level LCM-SR) with varying conditions. 

For data analysis, Mplus 8.5 (Muthén & Muthén, 1998-2017) was used to investigate the 

adequacy and robustness of three modeling approaches to address individual dependency in 

multilevel longitudinal data under varying conditions. More specifically, Mplus has two built-in 

routines for analyzing multilevel data (i.e., TYPE=TWO-LEVEL and TYPE=COMPLEX). First, 

the TYPE=TWO-LEVEL routine was used for the disaggregated approach where the full two-

level LCM-SR was analyzed. Then, the TYPE=COMPLEX routine was used for the aggregated 

approach in which the single-level LCM-SR was analyzed with consideration for 

nonindependence of observations. The maximum likelihood estimation method with robustness 

to non-normality and non-independence of observations (MLR estimation method in the Mplus 

framework) was employed for both models. As for the third approach where the single-level 
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LCM-SR ignoring the nesting effects was analyzed, a regular ML estimation method was used. 

In the overall data analysis process, the R package MplusAutomation (Hallquist & Wiley, 2018) 

was used to run batches of simulations, extract results from the output files, and summarize the 

results. 

The results were discussed as follows: First, models are evaluated in terms of differences 

in convergence rate and model fit indices. Then, the models are compared based on relative 

parameter bias, relative standard error (SE) bias, and 95% coverage rate for each parameter. In 

addition, empirical power or Type 1 error rate associated with the CL2 parameter was compared 

between the models.  

Regarding model fit indices, the Chi-square test of exact fit and alternative model fit 

indices were used to compare the models. These alternative model fit indices include information 

criteria, absolute fit criteria, and incremental fit criteria. Information criteria are only 

interpretable when comparing two different models and are often used for comparing non-nested 

models. In this study, Akaike Information Criteria (AIC; Akaike, 1973) and Bayesian 

Information Criteria (BIC; Schwarz, 1978) were used. Note that in this study, AIC and BIC are 

not defined as a function of the Chi-square but as a function of the log maximum likelihood 

under the null hypothesis only (Hoyle., 2012; Muthén, 1998-2004).  Incremental fit criteria (also 

called relative fit criteria) are analogous to R-square and so a value of zero indicates the worst 

possible model, while a value of one indicates the best possible model. They are based on the fit 

of a model relative to the worst possible model or the null model (e.g., constrain all the variables 

in the model to have no correlation and to have free means and variances). In addition, in this 

study, Comparative Fit Index (CFI; Bentler, 1990) and Tucker Lewis Index (TLI; Tucker & 

Lewis, 1973) were used. Finally, the absolute model fit criteria make a comparison directly to a 
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saturated or just-identified model with a value of zero indicating a perfectly fitting model. In this 

study, Root Mean Square Error of Approximation (RMSEA; Steiger & Lind, 1980) and 

Standardized Root Mean Square Residual (SRMR; Hu & Bentler, 1999) were used for model 

comparison. The latter is especially useful in multilevel modeling context in that it is computed 

separately for each level so that it can be used to locate the sources of misfit when the model is 

not fitting well (Asparouhov & Muthén, 2018). When considering model fit indices, it was 

assumed that the models favored by fit indices are deemed more valid, and if a model index 

doesn’t indicate a preference, a more parsimonious model would be preferred. 

In this study, relative point estimate bias, relative standard error (SE) bias, empirical 

power or type 1 error rate, and coverage were measured by using the following equations: 

• Relative point estimate bias = Average parameter estimate−Population parameter value
Population parameter value

 

• Relative SE bias = Average SE of parameter estimate−empirical SD of parameter estimates
Empirical sd of parameter estimates

 

• Empirical power or Type 1 error rate = Number of cases with 95% CI not covering zero
Number of replications

 

• 95% coverage rate = Number of cases with 95% CI covering population parameter value
Number of replications

 

Where average parameter estimate refers to the mean of parameter estimates over all 

replications within each cell condition. Average SE of a parameter estimate is the average of 

estimated SEs across replications within each cell condition. Empirical standard deviation (SD) 

of parameter estimates refers to the standard deviation of parameter estimates across replications 

within each cell condition, parameter estimatei refers to individual parameter estimate for one 

replication, and #rep refers to number of replications within each cell condition.  
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In this study, the relative bias gives two important pieces of information: the first is the 

magnitude of estimation bias, and the second is the direction of this bias (i.e., whether the certain 

parameter was overestimated or underestimated). The point estimate bias indicates how well the 

estimate represents the true nature of the relationship among variables. The SE bias indicates the 

adequacy with which our estimates are reliable.  

When computing the SE bias, the empirical standard deviation of parameter estimates 

across replications was taken as the true sampling variance for the estimate. Indeed, with a 

sufficiently large number of replications, the empirical standard deviation can be seen as the true 

value for the variability across replications of the parameter estimates (Muthén, 2002). As for 

interpreting bias values, Hoogland and Boomsma (1998) suggested a guideline for where an 

absolute value of the bias less than .05 could be considered to represent a lack of bias. On the 

other hand, Muthén, Kaplan, and Hollis (1987) suggested the more lenient criterion that absolute 

values of the bias less than .10 to .15 might be considered negligible. In this study, Hoogland and 

Boomsma’s criterion was used. 

Finally, in this study, the empirical Type 1 error rate was defined as the proportion of 

replications for which 95% confidence interval (CI) that did not cover zero when the population 

value is indeed equal to zero, power defined as the proportion of cases 95% CI not covering zero 

when the population value is indeed different from zero. 95% coverage rate is defined as the 

proportion of replications for which the 95% CI covered the population value. 

In Monte Carlo experiments, when the null hypothesis is true, that is, a population 

parameter is set equal to zero, each test should reject the null at about the nominal rate of 5%. If 

the type 1 error rates do not hold at α = .05, the following empirical power for alternative 
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hypothesis tests would be biased. If type 1 error rates are not known, then discussing power 

would be meaningless since bias in power cannot be addressed. In this study, the null hypothesis 

is only set for the CL2 parameter (CL2 =0). Therefore, the empirical type 1 error and the 

empirical power were only discussed regarding the CL2 parameter. 

Results 

Model convergence 

First, the frequency of cases where the models showed convergence issues were 

examined. SEM estimation methods are based on iterative techniques in which parameter 

estimates successively change until the model reaches a pre-specified, minimum convergence 

criterion (Bandalos & Gagné, 2012). However, there are cases where the model does not 

converge, converges but gives parameter estimates that are unobtainable (improper solutions; 

Chen, Bollen, Paxton, Curran, & Kirby, 2001), or they occur together. In this study, for a given 

replication the model was considered to have successfully converged if it did not produce any 

warnings or error messages.  

Table 1 shows the frequency of non-convergence, improper solutions, and proper 

solutions across all the replications for each model and each condition, and then the overall 

number of proper solutions across the models and for each condition. Results for complex and 

default models are put together since they showed the same number of non-convergence and 

improper solutions. In fact, the complex model is the extension of the default model with 

corrections to the standard errors and Chi-square test of model fit that take into account 

stratification, non-independence of observations, and unequal probability of selection (Muthén & 

Muthén, 1998-2017). 
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The results showed that in general, all the models showed high rates of non-convergent 

solutions or improper solutions for conditions with low sample size (nc=50; N=250). Note that 

these results are from the models with zero constraints on innovation covariances in addition to 

the equality constraints imposed on the residual structure. As the sample size increases the 

number of non-convergent solutions or improper solutions decreased (around 1%).  

There was a difference between the two-level model and the complex/default model in 

terms of non-convergence and improper solution rates. In general, the complex and default 

models showed more non-convergent solutions than the 2level model. Yet in most cases, the 

differences were small since only a small fraction of replications showed non-convergent 

solutions (up to 5% of all replications in each condition). On the other hand, when comparing the 

numbers of improper solutions, the 2level model showed more improper solutions than the 

complex/default model, and the difference was huge in most cases. In small sample size 

conditions, the two-level model showed improper solutions for more than half of the total 

replications, whereas complex and default models showed a lot less, even though the numbers 

were still substantial (more than 10%). In some of the middle sample size conditions, the two-

level model still showed a substantial number of improper solutions. In the large sample size 

conditions, all the models showed low numbers of non-convergent or improper solutions. 

Convergence issues can be caused by sampling variability, a poorly specified model, poor 

starting values, a lack of identification, or many other factors. In this example, we can see that 

the number of non-convergent or improper solutions is greatly impacted by sample size (the 

number was the highest in conditions with nc=50 and then significantly dropped as NC 

increased). In addition to sample size, other design factors had their impact as well. For example, 

between-level variance had varying effects depending on the utilized model. For the two-level 
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model, the number of improper solutions was larger on average in conditions with PVB=0.2 than 

PVB=0.5. For the other models, it was the opposite - the number of improper solutions was 

smaller on average in conditions with PVB=0.2 than PVB=0.5. This is understandable in that the 

two-level models are meant to have the two-level model structure. If the model is fit to the data 

which are likely to have a single-level model structure, the model would not perform well. In the 

follow-up analysis to find the source of improper solutions, it was found that most improper 

solutions are caused by between-group level components (e.g., the non-positive definite 

covariance matrix for between-group level latent variables). On the contrary, other models 

assume a single-level structure and if there is much variance going on in the between-level, the 

models would not be a good fit for the data. R2B and CL also had their impact on the number of 

non-convergent or improper solutions in that the numbers were bigger on average in conditions 

with R2B=0.5 than R2B=0.75, and that the numbers were bigger on average in conditions with 

cl=0.1 or 0 than cl=0.3. Yet, R2B made a substantial difference while CL conditions did not. 

This is also understandable in that low R2B itself means that the growth portion of the model did 

not explain much variance in the data, which implies that the results would be more unstable. 

Researchers must decide if they will generate other samples to replace those that did not 

converge or perhaps base results only on the samples that do converge. Replacing the non-

converged samples with new ones has the advantage of maintaining a balanced design. However, 

in studies of extreme conditions, non-convergence may be so pervasive that replacement of 

nonconvergent samples would be unrealistic. Most researchers agree, however, that non-

convergent solutions should be screened out before analyzing data from simulation studies 

(Bandalos & Gagné, 2012). 



65 

 

In this study, the first 5000 successfully converged solutions across the models in each 

condition were included for further analysis. However, in most of the small sample size 

conditions, the two-level model did not converge in more than half of all replications, hence 

lowering the overall number of convergent solutions in each condition. Therefore, in small 

sample size conditions, only results for the complex model and the default model were included 

for further comparison. Assessment of individual outcomes was performed using only these 

successfully converged replications.
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Table 1. A frequency of non-convergence, improper solutions, and proper solutions 

Non-convergence PVB=0.2 PVB=0.5 
R2B=0.5 R2B=0.75 R2B=0.5 R2B=0.75 

NC Model cl=0 cl=0.1 cl=0.3 cl=0 cl=0.1 cl=0.3 cl=0 cl=0.1 cl=0.3 cl=0 cl=0.1 cl=0.3 

50 
2level 211 196 2 194 187 5 188 160 3 188 198 8 
complex/default 284 288 28 180 187 3 552 525 147 460 425 71 

200 
2level 1 1 1 1 2 1 1 1 1 1 1 1 
complex/default 5 1 1 1 3 1 43 30 1 15 19 1 

500 
2level 1 1 1 1 1 1 1 1 1 1 1 1 
complex/default 1 1 1 1 1 1 1 1 1 1 1 1 

Improper solutions PVB=0.2 PVB=0.5 
R2B=0.5 R2B=0.75 R2B=0.5 R2B=0.75 

NC Model cl=0 cl=0.1 cl=0.3 cl=0 cl=0.1 cl=0.3 cl=0 cl=0.1 cl=0.3 cl=0 cl=0.1 cl=0.3 

50 
2level 7064 7076 6736 6582 6664 6198 5083 5079 4599 2909 3029 2118 
complex/default 1921 2022 1073 1080 1078 277 4092 4337 3783 2314 2446 1263 

200 
2level 1608 1540 1176 384 390 252 838 771 477 27 44 4 
complex/default 124 103 5 16 22 1 893 836 293 160 164 6 

500 
2level 136 143 57 9 4 6 50 51 7 1 1 1 
complex/default 1 2 1 1 1 1 114 83 5 8 3 1 

Proper solutions PVB=0.2 PVB=0.5 
R2B=0.5 R2B=0.75 R2B=0.5 R2B=0.75 

NC cl2 cl=0 cl=0.1 cl=0.3 cl=0 cl=0.1 cl=0.3 cl=0 cl=0.1 cl=0.3 cl=0 cl=0.1 cl=0.3 

50 

2level 3147 3120 3266 3612 3523 3807 5105 5081 5404 7279 7169 7890 
complex/default 8363 8266 8955 9100 9109 9726 6460 6188 6364 8146 7979 8808 
total 2981 2930 3160 3539 3459 3780 4038 3890 4247 6462 6219 7244 

200 

2level 8393 8461 8825 9617 9612 9749 9163 9230 9524 9974 9957 9997 
complex/default 9881 9898 9996 9985 9981 10000 9150 9194 9708 9855 9855 9995 
total 8352 8431 8825 9612 9605 9749 8579 8680 9335 9842 9832 9993 

500 

2level 9865 9858 9944 9992 9997 9995 9951 9950 9994 10000 10000 10000 
complex/default 10000 9999 10000 10000 10000 10000 9887 9918 9996 9993 9998 10000 
total 9865 9858 9944 9992 9997 9995 9850 9878 9990 9993 9998 10000 
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Model fit 

Next, model fit values are compared between the models. When comparing models in 

terms of the fit we looked at the average value and the standard deviation of fit values. All the 

results are presented in figures with lines where lines represent the model result with a ±1 

standard deviation bar around them. Note that lines for the two-level are broken in some figures, 

which indicates the results for the two-level model are not given in those specific conditions. 

This is because the results for the two-level model in small sample size conditions are excluded 

from the current analysis. 

Figure 9 and  Figure 10 show the AIC and BIC values for each of the models separately 

across different conditions. When looking at AIC mean values and standard deviations, it is seen 

that AIC values are largely influenced by sample size. The results in the small sample size 

conditions showed lower values on average than other results, and the results in the middle 

sample size conditions showed lower values than the rest of the results. This is because, by 

definition, AIC values are proportional to sample size (Muthén, 1998-2004). Among conditions 

with the same sample size, AIC mean values were higher when PVB=0.5 or R2B =0.5 than when 

PVB=0.2 or R2B =0.75, but the magnitude of change was minimal. As for CL2 values, there was 

no noticeable difference between conditions with different CL2 values. Finally, AIC values 

showed that two-level models are slightly better fitting than other models in general, while the 

complex and default model showed the same results since AIC values for the complex model are 

not adjusted from those for the default model. There was no systematic difference found in 

AIC’s standard deviations. A similar pattern of results was found when interpreting BIC values. 

This is because they are both direct functions of -2 times loglikelihood (Akaike, 1987; Schwartz, 

1978).  
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Figure 9. AIC values for each of the models across study conditions 

 

Figure 10. BIC values for each of the models across study conditions 
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However, when looking at Chi-square values, which are given in Figure 11, the results showed an 

interesting pattern of difference. When the hypothesized model is correctly specified to be the 

true model, the likelihood ratio test statistic approaches a central Chi-square distribution where 

the mean values are the degrees of freedom of the model (Alavi et al., 2020). Here, Chi-square 

mean values of the two-level model are near the degrees of freedom (i.e., 44) across all 

conditions since they are all deemed to be correctly specifying the true model. Note the line is 

cut off on the left side of the plot because the results are not given for small sample conditions 

due to high rate of improper solutions. In addition, those for the complex model are also close to 

their degrees of freedom because they are adjusted for non-normality and non-independence of 
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observations. As for the default model, however, the influence of non-normality (due to sampling 

variability) and non-independence (due to design factors) is reflected in unadjusted Chi-square 

mean values and standard deviations in that they were almost twice as much on average as to 

those in the complex model. On average, they were bigger when PVB=0.5 or R2B=0.5 than 

when PVB=0.2 or R2B=0.75 (there was no noticeable difference found between conditions with 

different CL values). As for Chi-square standard deviation values, those for the default model 

were the biggest, followed by the ones for the two-level models and then the ones from the 

complex model. As a result, there was a clear tendency that Chi-square values favored the 

complex model.  For the complex model, there was no discernible difference found in Chi-square 
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values between replications across conditions except in one where a large Chi-square standard 

deviation was observed. 

Figure 11. Chi-square values for each of the models across all other study conditions 

 

Figure 12 depicts the RMSEA values for each of the models separately across different 

conditions. As for RMSEA, it favored the two-level and complex models over the default model 

while there was no difference in the mean values and standard deviations between the two-level 

and the sq complex models. This is because RMSEA is a direct function of chi-square. For the 

middle and large sample size conditions, the magnitude in their difference was small. All the 

RMSEA mean values were also below the conventional cutoff scores (RMSEA <.05; Hu & 
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Bentler, 1999), which indicated a good fit of the model to the sample along with standard 

deviations that are close to 0. However, in small sample size conditions, there was a discernible 

difference found between the complex and default models. Also, the RMSEA mean values for 

the default model were also above the conventional cutoff scores. This implies that the 

magnitude of the difference is inversely proportional to sample size, which is different from Chi-

square results. In addition, other results were similar to those of Chi-square in that RMSEA were 

also larger when PVB=0.5 or R2B=0.5 than when PVB=0.2 or R2B=0.75, on average.  
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Figure 12. RMSEA values for each of the models across all other study conditions 

 

Figure 13 and Figure 14 depicts the CFI and TLI values for each of the models separately 

across different conditions. CFI and TLI favored the two-level and complex models over the 

default model and there was also a difference in mean values and standard deviations between 

the two-level and complex models. However, the differences were just minor fluctuations, and 

all average values and standard deviations are equal to or close to 1 and 0, respectively.  
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Figure 13. CFI values for each of the models across all other study conditions 

 

Figure 14. TLI values for each of the models across all other study conditions 
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Finally, SRMR values for the complex model and default models were the same since SRMR is 

not a function of chi-squares. The results are depicted in Figure 15. The results showed that SRMR values 

increase as the sample size gets smaller, and SRMR values were also larger when PVB=0.5 and 

R2B=0.5 than when PVB=0.2 or R2B=0.75, on average. Yet, they were all below the conventional 

cutoff score (SRMR <.05; Hu & Bentler, 1999). When looking at SRMR values for the two-level 

model, there were two lines plotted. Here, the line on the top is the SRMR-Between values and 

the one on the bottom is the SRMR-Within values, which indicates that between-level 

components showed more degree of misfit than within-level components. Nevertheless, all the 

mean values were again below the conventional cutoff values. 
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Figure 15. SRMR values for each of the models across all other study conditions 

 

Overall, the results showed that information criteria, in general, are largely influenced by 

sample size and gave little information about that two-level model is better fitting than others. 

Absolute fit criteria showed that the two-level model and the complex model are well-controlling 

for non-normality and non-independence. Finally, relative fit criteria give no useful information 

at all. Note that in the study, all the models fitted to the data have no systematic model 

misspecification. 
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Bias, Coverage, Power, and Type 1 error 

Bias, 95% coverage, empirical power, and empirical Type 1 error rates for the default & 

complex model were checked and compared to the two-level model. As for the two-level model 

results, fixed effect parameters from the two-level model were directly comparable to those from 

the default and complex model, while random effect parameters were not since they were 

estimated separately for each level. Therefore, the Mplus model constraints command was used 

to combine separate parameter estimates at within- and between-level and compute total 

expected variance estimates across levels. Covariance parameters were excluded from 

comparison since they cannot be combined. 

Results for parameter bias are presented in Figure 16 through Figure 19. The arrangement 

of design factors for each graph is the same as the ones from model fit results. Note that the 

results for the complex and default models are the same since the point estimates are not related 

to Chi-square correction. Also note that lines in the CL2 parameter graph are broken because, 

when computing the relative point estimate bias, the population parameter is used as a 

denominator. In some conditions, the population parameter for CL2 is 0, which results in 

positive or negative infinities. Yet, the remaining graph showed that there is not much bias 

except in one condition where bias was over 0.1. Other results showed that in general, there was 

no or little bias in point estimates for every parameter in middle and large sample size 

conditions. However, there was a noticeable fluctuation among parameters for the complex and 

default models in small sample size conditions. Specifically, there was a larger negative bias 

when PVB=0.5 and R2B=0.5 than when PVB=0.2 or R2B=0.75, on average. For the latent 

variable variance structure, the results showed upward bias in the same conditions. Only the 



78 

 

latent variable mean structure showed no bias at all and across all conditions. There was no 

discernible difference found between the models. 

Figure 16. Parameter bias on autoregressive (AR) and cross-lagged (CL) processes of the model 

 

Figure 17. Parameter bias on the mean structure of the model 
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Figure 18. Parameter bias on variance structure of the model 
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Figure 19. Parameter bias on residual variances of the model 
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Results for SE bias are presented in Figure 20 through Figure 23. The results showed that 

there were discernible differences found for every parameter between the models. For the AR/CL 

parameters, there was a large negative bias found on the result for the default model, whereas the 

results for the complex and two-level models did not show much bias except for AR parameters 

in small sample size conditions. The complex model showed an upward bias in the conditions 

with PVB=0.5, R2B=0.5, and CL2=0.1 or 0.3 than other conditions. The negative bias for the 
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default model was larger when PVB=0.5 and R2B=0.5 and smaller when PVB=0.2 and 

R2B=0.75. 

Figure 20. SE bias on autoregressive (AR) and cross-lagged (CL) processes of the model 

 

As for the mean structure of growth factors, results from the two-level and complex 

models were almost identical and showed no bias. On the other hand, the default model showed a 

large negative SE bias and the downward bias become larger in the conditions with R2B=0.5 

than in other conditions. 
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Figure 21. SE bias on the mean structure of the model 

 

As for the latent variable variance structure, the results from the two-level model showed 

no bias. The complex model also showed almost no SE bias except that a positive SE bias was 

observed for the x-intercept and y-intercept variances in small sample size conditions with 

PVB=0.5 and R2B=0.5. The results from the default model also showed a negative SE bias in 

general, especially in conditions with PVB=0.5 and R2B=0.5. The default model also showed 
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large negative SE biases for the latent variable covariance components, which is especially larger 

in conditions with PVB=0.5 and R2B=0.5. 

Figure 22. SE bias on variance structure of the model 

 

Regarding the residual variance structure, results showed a similar pattern as in the latent 

variable variance structure. The complex model results showed no SE bias except for small 

sample size conditions with PVB=0.5, where upward bias was observed in general. The default 
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model results showed large negative SE biases for all variance components, especially in 

conditions with PVB=0.5 and R2B=0.5. 

Figure 23. SE bias on residual variances of the model 

 

Results for the 95% coverage are presented in Figure 24 through Figure 27. The results 

showed that for the AR/CL2 parameters, the two-level and complex models showed a decent 

coverage rate of over 90% except for the small sample size condition with PVB=0.5, R2B=0.5, 

and L2=0.3 where the complex mode showed the coverage rate below 90%. On the other hand, 
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the default model showed a low coverage rate in conditions with PVB=0.5 and R2B=0.5, in 

general.  
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Figure 24. 95% coverage on autoregressive (AR) and cross-lagged (CL) processes of the model 

 

As for the latent variable mean structure, the pattern of difference was more solid than the 

AR/CL parameters. The two-level and complex models showed a decent coverage rate across all 

conditions. On the other hand, the default model showed a low coverage rate in conditions with 

PVB=0.5, in general. 
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Figure 25. 95% coverage on the mean structure of the model 

 

As for the latent variable variance structure, a similar pattern of difference was observed 

as for the mean structure. The two-level and complex models showed a decent coverage rate 

across all conditions. On the other hand, the default model showed a low coverage rate in 

conditions with PVB=0.5 yet the coverage rate was higher than that of the mean structure. 

Figure 26 

95% coverage on variance structure of the model 
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For the residual variance structure, the results showed that the two-level and complex 

models showed a decent coverage rate of over 90% except for the small sample size condition 

with PVB=0 and R2B=0.5, where the complex mode showed the coverage rate to be below 90%. 

The default model showed a low coverage rate and especially lower in conditions with PVB=0 

and R2B=0.5. 
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 Figure 27. 95% coverage on residual variances of the model 

 

Finally, results for empirical power and type 1 error for the CL2 parameter are presented 

in Figure 28. Note that the line is broken again for the two-level model but a different reason. 

Here, the arrangement of design factors for each graph is different than before. This is done to 

make the results easier to understand. Recall that when the parameter is set at 0 (the null 

condition), the model gives a type 1 error rate since there is no effect to detect. In other 

conditions, the results show power to detect the effects. The results showed that in the conditions 
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with CL2=0, the two-level model and the complex model gave a nominal type 1 error rate 

(around 0.05), whereas the default model gave an upwardly biased type 1 error rate with 

noticeable spikes in small sample size conditions with PVB=0 and R2B=0.5. This indicates that 

power is biased for the default model since it is based on an inflated type 1 error rate. The results 

also showed that the sample size did not affect variability in type 1 error rates. Then, in the 

conditions with CL2=0.1, the sample size had its influence on the results in that as the sample 

size increases the power also showed increasing patterns with varying degrees depending on the 

other conditions. The default model was overpowered in detecting the effects when compared to 

the complex model. The two-level model showed a decent level of power for detecting the 

effects in general although the results were not given in small sample size conditions. In the 

conditions with CL2=0.3, the default model was overpowered in detecting the effects when 

compared to the complex model in small sample size conditions. In middle and large sample size 

conditions, all the models showed as high power as 1 across all other conditions. 
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Figure 28. Empirical power/ type 1 error rate of CL2 parameter 
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Overall, there was a difference found in results between the models in certain conditions. 

Specifically, standard errors were overestimated for the complex model and underestimated for 

the default model when compared to the two-level model, which might lead to different 

conclusions in statistical inference between the models. The size of SE bias for the complex 

model was small whereas that for the default model was large. SE bias for the complex model 

was less severe whereas SE bias for the default model was more severe when there is a larger 

percentage of variance at the between-group level. Finally, in terms of power and type 1 error 

rates for the cross-lagged parameter, it was found that if the effect size is zero or close to zero the 

sample size did not affect the results and only variance conditions affect the results. It was found 

to be the conditions with the small effect size when the sample size matters. If the effect size is 

large enough, then the sample size again had no impact on the results and all the models showed 

a high level of power whether they were overpowered or underpowered.  
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CHAPTER 4. STUDY 2 

In Study 2, an actual data example was analyzed to demonstrate and compare the 

performance of selected models. The models were then compared in terms of model fits, the 

statistical significance of individual parameter estimates under given alpha=0.05, and consequent 

interpretation of the results. A description of the data and analysis method is introduced first, 

followed by the results. 

The focus of Study 2 is on the bivariate processes of executive function and elementary 

school children’s progress in academic achievement. The relationship between executive 

function and academic achievement has been widely studied across various populations. Several 

meta-analyses synthesizing individual studies indicated that although in varying degrees 

depending on gender, race, ethnicity, and age groups, there is a positive relationship between 

children’s executive functioning and their academic achievement in terms of overall association 

(Allan, Hume, Allan, Farrington, & Lonigan, 2014; Jacob & Parkinson, 2015). In addition, when 

looking at the within-person bidirectional associations between children’s executive functioning 

and learning outcomes directly, there was consistent evidence for bidirectional associations 

between executive functioning and learning outcomes (Bohlmann, Maier, & Palacios, 2015; 

Connor et al., 2016; Daneri & Blair, 2017; Fuhs, Nesbitt, Farran, & Dong, 2014; Weiland, 

Barata, & Yoshikawa, 2014; Welsh, Nix, Blair, Bierman, & Nel- son, 2010). In 2019, 

Willoughby, Wylie, and Little looked at the between and within-person associations between 2 

types of executive functions (working memory, cognitive flexibility) and 2 types of academic 

achievement (math, reading) by applying the LCM-SR on ECLS-K:2011 data (Willoughby, 

Wylie, and Little, 2019). In their research, they have found a strong between-person association 

between executive functioning and achievement and a weak to a nil within-person, time-varying 
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association. In their study, the multilevel aspect of the data has been addressed using the single-

level LCM-SR with the robust maximum likelihood estimation method. In Study 2, the data were 

re-analyzed using the MLCM-SR, along with the alternative modeling strategies for comparison. 

According to the results of Study 1, when the size of cross-lagged effects is small (less than 0.1), 

the default model would show overpower to detect the effects under certain conditions. Since in 

the original study the default model could not detect the effect most of the time, there are 

chances that the two-level and complex models would not show the difference as well. However, 

even though a sample was drawn from the same dataset and the same variables were analyzed 

using the same model, Willoughby, Wylie, and Little (2019) and Study 2 will differ in terms of 

the target population, sample sizes, years of assessment, and analytic focus and procedure. 

Therefore, in Study 2, it is hypothesized that depending on the level of design factors in Study 1, 

the selected models will show a difference in terms of model fits, the statistical significance of 

individual parameter estimates under given alpha=0.05, and consequent interpretation of the 

results. 

Method 

Illustrative Data  

Data for Study 2 were derived from the Early Childhood Longitudinal Study, 

Kindergarten Class of 2010–11 (ECLS-K:2011; Tourangeau et al., 2019). The ECLS-K:2011 is 

the third and latest study in the Early Childhood Longitudinal Study (ECLS) program, which 

provides descriptive information on children’s development and early learning experience, and 

their school progress. The longitudinal design of the study, multiple sources of information, and 

the comprehensive set of data collection instruments enable researchers to study a wide variety 
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of research questions about how child, home, school, and neighborhood factors relate to 

children’s cognitive, social, emotional, and physical development.  

In the ECLS-K:2011, a nationally representative sample of 18,170 children was selected 

from about 1310 (public and private) schools attending both full-day and part-day kindergarten 

in 2010-11 and then followed through the 2015–16 school year, where most of the children are 

expected to be in fifth grade. Currently, the data file from the beginning of kindergarten through 

the end of fifth grade are publicly available online 

(https://nces.ed.gov/ecls/kindergarten2011.asp). 

In the ECLS-K:2011, a clustered, multi-stage sampling design and procedure, which 

involves sampling primary sampling units (PSUs; which is counties) and schools with 

probabilities proportional to the number of children, and selecting a fixed number of children per 

school, was employed (For a detailed description of the sampling design, see Tourangeau et al. 

2015). The sample design is highly related to the dispersion of the children in the sample, and the 

user’s manual directly warns that if statistical analyses are conducted with the assumption of 

simple random sampling for collected data, then the calculated standard errors will be incorrect. 

Study 2 evaluated children’s executive functioning and their reading achievement each 

year from 1st through 5th grade. A measure of reading achievement was collected for each grade 

through a direct cognitive assessment of children’s reading skills. The reading test scores were 

then calculated using item response theory (IRT) scoring procedures, where scores at different 

assessments (different in time and assessment tools) are computed on the same scale (“vertically 

scaled” or “linked”) so they can be used in longitudinal analysis. Interested readers in IRT and 

equating methods of assessment scales are referred to De Ayala (2009) and Kolen and Brennan 
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(2014), respectively. The reliability of reading achievement IRT scores was 0.86 – 0.95 across 

the data collection period (Spring 2013 – Spring 2016). In addition, A measure of executive 

function was also collected for each grade through a direct child assessment battery, in which 

three subtests measured cognitive flexibility, working memory, and inhibitory control, 

respectively. In this study, the Numbers Reversed subtest of the Woodcock-Johnson III (WJ III) 

Tests of Cognitive Abilities, which measures children’s working memory, was used (Woodcock, 

McGrew, and Mather 2001). This is because it is the only subtest that was administered 

uniformly across all rounds of collection, kindergarten through fifth grade. In addition, for the 

working memory scores, W-ability score, a special transformation of the Rasch ability scale 

which provides a common scale of equal intervals and represents both a child’s ability and the 

task difficulty, is available. W score is particularly useful for the measurement of growth and can 

be considered as a growth scale. Its mean is reflective of the average performance for 10-year-

old children (Tourangeau et al., 2015). Higher scores for both variables reflect higher ability in 

reading skills or working memory, respectively. 

The bivariate correlations of repeated measures for both variables are given in Table 2. It 

is shown that there was a stronger relationship found among repeated measures within each 

variable rather than across variables. In addition, longitudinal trends are plotted for a random 

sample of n=200 participants in Figure 29 and Figure 30. A large variance was observed for both 

scores across measurement occasions. There was a smooth increasing trend on average across 

occasions for reading achievement and working memory scores.  

In this study, schools were chosen as a cluster variable. In educational research, schools 

are usually considered as the third level in the hierarchical data structure where children are 

nested within teachers, and teachers are then nested within schools (Raudenbush and Bryk 2002). 
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However, since only two levels are considered in this study and teachers usually change every 

year while children tend to stay in the same school across years, schools were included for 

analysis. All other sampling units and sampling weights which make the sample nationally 

representative were ignored. This is because analyses done in this study were for illustrative 

purposes and not for actual dissemination of generalizable findings of the population. 

In this study, since data missingness is not of interest, only complete cases were included 

for analysis. For the same reason, cases with cross-classified cluster structures (e.g., children 

who attended more than one school during the given period due to transfer) were also excluded. 

Finally, only cases with a cluster size greater than 5 for estimation accuracy were selected (Maas 

& Hox, 2005; McNeish & Stapleton, 2016). The resulting sample size is 6614 clustered within 

652 schools.  

Table 2. Correlation table for total eligible children (N=6414) on reading achievement and 
working memory scores 

  1 2 3 4 5 6 7 8 9 10 
T1 WM 1                   

T2 WM .497** 1                 

T3 WM .456** .554** 1               

T4 WM .427** .517** .599** 1             

T5 WM .425** .501** .582** .642** 1           

T1 reading .501** .431** .446** .441** .465** 1         

T2 reading .483** .449** .448** .439** .463** .848** 1       

T3 reading .481** .434** .442** .428** .433** .764** .834** 1     

T4 reading .471** .445** .446** .455** .473** .773** .833** .834** 1   

T5 reading .464** .424** .427** .432** .462** .727** .792** .812** .848** 1 

*** Correlation is significant at the 0.01 level (2-tailed). 
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Figure 29. Longitudinal plots for a random sample of n=200 children on working memory 
scores 

 

Figure 30. Longitudinal plots for a random sample of n=200 children on reading achievement 
scores 



100 

 

 

Analytic procedure  

Curran et al (2014) gave a general model-building strategy for LCM-SR, which consists 

of two big steps and several smaller steps. First, the optimally fitting models for each construct 

were established separately. More specifically, two univariate latent curve models were 

estimated for each outcome to find the optimal function of time for each construct. Next, 

autoregressive effects among the structured residuals are introduced to the models without 

constraints. Then, the equality constraints on the autoregressive effects are imposed. Second, 

bivariate latent curve models were estimated for both constructs simultaneously. Next, latent 
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curve factors and time-specific residuals at the same time points are allowed to covary with one 

another, and those covariances are set to be equal across time except for the first time points. 

Finally, autoregressive components among the time-residuals are introduced followed by cross-

lagged components. At each step, adding components and imposing equality constraints on each 

component are tested via LRT to decide whether or not to proceed further with those added 

components or constraints. 

Yet, in this study, the model-building strategy differed from the suggested one for the 

following reasons. First, this study was done for illustrative purposes. Since the focus of the 

study was in comparing models in terms of SE bias resulting from ignoring the dependency 

among observations, retaining the same growth factor structure and residual structure across the 

models was desired. Therefore, all the parameters in the LCM-SR were introduced and retained, 

whether the model fit significantly improved or not, as long as the result gave a proper solution. 

In fact, Curran et al. (2014) also made similar decisions when building a model for illustration in 

their study. 

Second, in line with Study 1, one of the main features of the LCM-SR is its ability in 

making causal claims, and the LCM-SR demands of stationarity assumption are met for all the 

components. The focus of this study is comparing a difference among the models in making 

causal inference. Therefore, equality constraints on the parameter were imposed whether the 

model fit gets significantly degraded or not, as long as the result gave a proper solution. In 

addition, the given strategy itself did not consider the multilevel context. Thus, the percentage of 

variance was checked first to make sure that applying a two-level model to the data is 

appropriate. 
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After the model building process, estimation results of final models are then compared 

between models in terms of fit indices, parameter estimates, SE, and p-values. More specifically, 

model fit indices were evaluated to gauge which model appears to be doing the best at fitting the 

data. In addition, the cross-lag parameters were also examined to see (1) which process is 

indicated as being causally dominant and (2) what is the size of these effects concerning one 

another. The between-person growth factor components (LCM part), especially the size of the 

variance which implies the extent to which individuals are different from one another in trait-like 

stability or inter-individual differences in change, were also examined. Finally, the covariance in 

the between-person growth factor components was also examined. All models were fit using 

Mplus 8.5 (Muthén & Muthén, 1998-2017). 

Results  

First, the percentage of variance in initial status (intercept) and rate of change (slope) that 

lies between schools and R-square of repeated measures were checked for both variables by 

fitting univariate two-level LCM to the data. This was done to measure data dependency within 

the same cluster in the data and determine whether using a multilevel model is appropriate. For 

the reading achievement variable, a linear slope model was found to be the optimally fitting 

model. For this variable, since the result gave an improper solution and the slope factor variance 

was not significant at the between-group level, it was fixed to 0 to proceed with a proper 

solution. Therefore, the proportion of variance in the intercept that lies between schools was 

25.94/242.08 ≅ 11% whereas the slope’s corresponding proportion of variance was 0/9.26 = 0. 

For the working memory variable, a linear slope model was found to be the optimally fitting 

model. For this variable, the result gave an improper solution, and the slope factor variance was 

not significant at the between-group level. Thus, the slope variance was fixed to 0. The 
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proportion of variance in the intercept that lies between schools was 44.17/194.42 ≅ 19% 

whereas the slope’s corresponding proportion of variance was 0/3.37 = 0. R-square for each of 

the repeated measures at the between-group level was 0.54-0.93 for T1-T5 repeated measures of 

working memory and 0.25-0.98 for T1-T5 repeated measures of reading achievement. Note that 

R-square was low for T1 repeated measures only and high as 0.8 for all other time points. R-

square for each of the repeated measures at the within-group level were 0.45-0.67 for working 

memory and 0.81-0.89 for reading achievement. Overall, there is some level of variability in the 

initial status that lies between schools, while there was no slope variance nested for both 

variables. Therefore, the two-level model structure was retained for further analysis. Note that 

the level of variability is lower than Study 1 conditions. 

For the next step, two univariate LCMs were combined into a two-level bivariate LCM. 

Then, residual structure components were added to the model to form the full two-level LCM-

SR. The model fit information at each step is given below in Table 3. 

Table 3. Model fit information of the two-level model at each step of the model building process 

 Bivariate 
LCM 

T1-T5 
residual 

covariance 
added 

AR/CL 
added 

Residual/ 
innovation 
covariance 

equality 

Residual/ 
innovation 
variance 
equality 

# Parameters 37 47 51 45 33 
H0 LL -260494 -260353 -260286 -260290 -260503 
H1 LL -259323 -259323 -259323 -259323 -259323 
AIC 521062.5 520800.7 520673.2 520670.5 521072.9 
Δ AIC  -261.825 -127.459 -2.676 402.326 
BIC 521314 521120.1 521019.9 520976.3 521297.2 
Δ BIC  -193.856 -100.271 -43.51 320.815 
ChiSqM_DF 83 73 69 75 80 
Δ ChiSqM_DF  -10 -4 6 5 
ChiSqM 2322.464 2054.529 1936.484 1932.456 2275.954 
Δ ChiSqM  -267.935 -118.045 -4.028 343.498 
RMSEA 0.064 0.064 0.064 0.061 0.062 
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Δ RMSEA  0 0 -0.003 0.001 
CFI 0.954 0.959 0.961 0.962 0.955 
Δ CFI  0.005 0.002 0.001 -0.007 
TLI 0.95 0.95 0.95 0.954 0.953 
Δ TLI  0 0 0.004 -0.001 
SRMRW 0.027 0.025 0.024 0.025 0.035 
SRMRB 0.26 0.255 0.285 0.287 0.337 

 
Note that the LCM in the first column refers to the LCM whose residuals are modeled as 

single-indicator latent variables when using the ML estimation method in the Mplus framework 

(Asparouhov & Muthén, 2021). Also, note that T2- T5 residual covariances turned into innovation 

covariances when the AR/CL components are added at the third step. The results showed that 

model fits improved slightly as residual structure components are added and even constrained to 

be equal. However, at the fifth step where equality constraints are imposed on the innovation 

variances, the model fits got degraded, which is a sign of misfit in the model. The level-specific 

SRMR indicated that the source of misfit came from the between-group level. As discussed 

previously, the residual equality constraints were to be retained. Even though the final model was 

not the best fitting model, it was retained as-is for model comparison. The Chi-square goodness of 

fit tests was significant across all steps since they are a direct function of sample size, in which 

even a small misfit can be detected (Jöreskog, 1969). Other model fit indices indicated that the 

final model is a good fit for the data.   

The parameter estimates for the final model are also given below in Table 4. The results 

showed significant autoregressive processes within each variable (AR1 estimate = 0.087, p < .05; 

AR2 estimate = 0.086, p < .05) but no significant cross-lagged processes across the variables (CL1 

estimate = 0.028, p > .05; CL2 estimate = 0.006, p > .05). As for the rest of the parameters, most 

variance components were significant, which leaves room for exploration. For example, there was 
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a large amount of variance found in the intercept at both the within and between-group levels for 

both variables. This could be explained by time-invariant, child-level covariates, and time-

invariant, school-level covariates. At the same time, there was a large amount of variance found 

in the residuals and innovations. which could be explained by time-variant, child-level covariates 

and time-variant, school-level covariates. 

Table 4. Model estimation results for the two-level model 

 Estimate S.E. Est./S.E. P-Value Estimate S.E. Est./S.E. P-Value 

AR/CL         
AR1 (XE_t <- XE_t-1) 0.087 0.015 5.908 0     
CL1 (XE_t <- YE_t-1) 0.028 0.019 1.46 0.144     
AR2 (YE_t <- YE_t-1) 0.086 0.01 8.751 0     
CL2 (YE_t <- XE_t-1) 0.006 0.004 1.446 0.148     
 WITHIN BETWEEN 
Growth Factor Structure Estimate S.E. Est./S.E. P-Value Estimate S.E. Est./S.E. P-Value 

Mean      
    

X Intercept   
 

  476.279 0.434 1096.794 0 
X Slope  

 
  7.204 0.111 64.753 0 

Y Intercept   
 

  106.001 0.336 315.225 0 
Y Slope      7.92 0.059 134.661 0 
Variance         
X Intercept  220.807 10.796 20.452 0 24.797 2.963 8.37 0 
X Slope 4.51 1.016 4.439 0 0 0 999 999 
Y Intercept  189.019 4.271 44.253 0 33.053 2.789 11.849 0 
Y Slope  2.624 0.175 14.956 0 0 0 999 999 
Covariance         
X Intercept with X Slope  -6.7 2.634 -2.543 0.011 0 0 999 999 
X Intercept with Y Intercept 136.964 5.153 26.578 0 25.74 2.526 10.191 0 
X Intercept with Y Slope  -5.279 0.869 -6.078 0 0 0 999 999 
X Slope with Y Intercept -2.741 1.226 -2.237 0.025 0 0 999 999 
X Slope with Y Slope -0.236 0.273 -0.865 0.387 0 0 999 999 
Y Intercept with Y Slope -11.485 0.718 -15.998 0 0 0 999 999 
Residual structure          
Variance         
T1 Residual for X  335.573 11.065 30.327 0 39.662 5.536 7.164 0 
T1 Residual for Y 53.294 1.801 29.589 0 111.52 4.828 23.1 0 
T2-T5 Innovation for X 193.366 4.611 41.934 0 3.448 0.798 4.322 0 
T2-T5 Innovation for Y 35.295 0.583 60.542 0 1.404 0.184 7.649 0 



106 

 

Covariance         
T1 Residual Covariance 15.951 2.541 6.276 0 58.736 4.982 11.79 0 
T2-T5 Innovation Cov. 3.514 0.886 3.968 0 0.335 0.281 1.193 0.233 

 
The model fit information for the complex and default models is given in Table 5. Since 

some of the model fits which are not a function of Chi-square are the same for both models, they 

are shown only once at the top of the table.  

Table 5. Model fit information of the complex and default models at each step of the model 
building process 

 Bivariate 
LCM 

T1-T5 
residual 

covariance 
added 

AR/CL 
added 

T2-T5 
innovation 
covariance 

equality 

T2-T5 
innovation 
variance 
equality 

# Parameters 24 29 32* 29 23 
H0 LL -262592 -262444 -262377 -262388 -262640 
H1 LL -259828 -259828 -259828 -259828 -259828 
AIC 525232.8 524945.4 524817.3 524833.9 525326.9 
Δ AIC  -287.35 -128.116 16.557 493.015 
BIC 525395.9 525142.5 525034.8 525031 525483.2 
Δ BIC  -253.366 -107.724 -3.835 452.234 
SRMR 0.084 0.077 0.092 0.097 0.181 
COMPLEX      
ChiSqM_DF 41 36 33 36 42 
ChiSqM 5011.897 4724.956 4626.742 4646.011 4901.241 
Δ ChiSqM  -286.941 - 19.269 255.23 
RMSEA 0.135 0.14 0.145 0.139 0.132 
Δ RMSEA  0.005 - -0.006 -0.007 
CFI 0.909 0.914 0.916 0.916 0.911 
Δ CFI  0.005 - 0 -0.005 
TLI 0.9 0.893 0.885 0.895 0.905 
Δ TLI  -0.007 - 0.01 0.01 
DEFAULT      
ChiSqM_DF 41 36 33 36 42 
ChiSqM 5528.176 5230.826 5096.711 5119.267 5624.282 
Δ ChiSqM  -297.35 - 22.556 505.015 
RMSEA 0.142 0.148 0.152 0.146 0.142 
Δ RMSEA  0.006 - -0.006 -0.004 
CFI 0.894 0.9 0.902 0.902 0.892 
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Δ CFI  0.006 - 0 -0.01 
TLI 0.884 0.875 0.867 0.878 0.885 
Δ TLI  -0.009 - 0.011 0.007 

Note. When only equality constraints are imposed the number of free parameters should be 
29+4=33. Yet since the constraint was imposed on the slope variance of Y, the number of free 
parameters is now 33-1 = 32. 

The results showed that model fits improved slightly as the residual structure components 

are added at the 2nd step. Yet at the third step where the AR/CL components are added to the 

model, the model gave an improper solution.  As discussed previously, the residual structure 

components and the constraints were to be retained. Since information about the slope variance 

is given in the prior steps, it was fixed to the given value, which is 2.1. Then the model gave a 

proper solution. Since additional constraints are added on the third step, the models at the second 

and third steps are not nested. Even further, the two-level model as well as the other models are 

not nested either. Yet, the difference in AIC and BIC showed that there was an improvement in 

the model results. At the fourth and the fifth step, AIC and Chi-square values were degraded.  

However, at the fifth step where equality constraints are imposed on the innovation 

variances, the model fits got degraded, which is a sign of misfit in the model. Even though the 

final models were not the best fitting models, they were retained as-is for model comparisons. In 

terms of model fits, when compared between the complex and default models, the complex 

model is better fitting than its default counterpart. Yet in absolute terms, both models did not fit 

the data well (for the complex model, χ2(42) = 4901.24, p<.05; RMSEA = .13, CFI=.91, 

TLI=.91; for the default model, χ2(42) = 5624.28, p<.05; RMSEA = .14, CFI=.89, TLI=.89). 

When both models are compared to the two-level model, the two-level model was found to be 

better fitting in terms of AIC and BIC (for the two-level model, AIC= 521072.9, BIC= 

521297.2; for the complex and default model, AIC= 525326.9, BIC= 525483.2; for AIC and 
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BIC, lower values indicate better fitting). However, considering the difference in the number of 

free parameters, the difference in the fit values observed here are not so meaningful. 

The parameter estimates for the complex and default models are given below in Table 6. 

For comparison purposes, the aggregated parameter estimates for the two-level model are 

provided as well. Covariance parameters were not included in the table because they are not 

comparable to each other. The results showed that in terms of the AR/CL parameter estimates, 

the three models were not very different. The implicit assumption of the model parameterization 

was that the nature of the AR/CL process is the same across the levels of nesting. However, as 

shown in the result, the amount of R-square for repeated measures at the within-group and 

between-group levels is not necessarily the same, which could give different AR/CL parameter 

estimates at both levels. This could have introduced a difference in the AR/CL parameter 

estimates between the models but there was only a small difference in this example. The 

estimates for the CL terms were small across the models and they were all not significant (i.e., 

the data did not show evidence for any causal effects). There was a difference in other parameter 

estimates among the models, which may be due to the constraint on the slope variance for the 

complex and default models. There were differences in the estimated standard errors between the 

models in that the standard errors were overestimated for the complex model and underestimated 

for the default model when compared to the two-level model. However, the size of the 

differences was small. Therefore, it is deemed that the conclusions drawn from the models would 

not differ between the models.   
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Table 6. Model estimation results for the two-level, complex, and default models 

 Two-level    Complex    Default    

 Estimate S.E. Est./S.E. P-Value Estimate S.E. Est./S.E. P-Value Estimate S.E. Est./S.E. P-Value 

AR/CL         
    

AR1 (XE_t <- XE_t-1) 0.087 0.015 5.908 0 0.082 0.015 5.556 0 0.082 0.013 6.401 0 
CL1 (XE_t <- YE_t-1) 0.028 0.019 1.46 0.144 0.015 0.019 0.77 0.442 0.015 0.019 0.8 0.424 
AR2 (YE_t <- YE_t-1) 0.086 0.01 8.751 0 0.063 0.008 7.466 0 0.063 0.008 8.34 0 
CL2 (YE_t <- XE_t-1) 0.006 0.004 1.446 0.148 -0.001 0.005 -0.106 0.915 -0.001 0.005 -0.117 0.907 
Growth Factor Structure             

Mean              

X Intercept  476.279 0.434 1096.794 0 475.048 0.38 1251.721 0 475.048 0.286 1659.309 0 

X Slope 7.204 0.111 64.753 0 7.664 0.092 82.862 0 7.664 0.081 94.685 0 

Y Intercept  106.001 0.336 315.225 0 103.042 0.355 290.345 0 103.042 0.213 484.665 0 

Y Slope  7.92 0.059 134.661 0 8.968 0.054 167.307 0 8.968 0.042 215.379 0 

Variance             

X Intercept  245.604 11.28 21.773 0 253.741 12.007 21.132 0 253.741 9.76 25.999 0 

X Slope 4.51 1.016 4.439 0 4.965 1.036 4.793 0 4.965 0.925 5.365 0 

Y Intercept  222.072 4.915 45.181 0 224.769 5.44 41.314 0 224.769 4.505 49.893 0 

Y Slope  2.624 0.175 14.956 0 2.1 0 999 999 2.1 0 999 999 

Residual structure              

Variance             

T1 Residual for X  375.235 13.83 27.132 0 360.014 12.342 29.169 0 360.014 9.296 38.728 0 

T1 Residual for Y 164.814 5.558 29.654 0 123.349 3.824 32.257 0 123.349 2.946 41.87 0 

T2-T5 Innovation for X 196.814 4.663 42.209 0 196.276 4.704 41.723 0 196.276 3.219 60.976 0 

T2-T5 Innovation for Y 36.699 0.58 63.302 0 38.76 0.601 64.543 0 38.76 0.488 79.429 0 
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CHAPTER 5. DISCUSSION 

The purpose of this study is to explore the impact of dependency among observations on 

the results when using the LCM-SR, and how to appropriately analyze the clustered longitudinal 

data for more accurate inference. To do this, the MLCM-SR (disaggregated approach) was 

introduced and compared with the single level LCM-SR considering nesting effects (aggregated 

approach), and the single level LCM-SR ignoring nesting effects (conventional approach). The 

discussion follows the original research questions. Then, limitations, future directions, and 

implications are presented. 

RQ1: How would the MLCM-SR model performance fare when compared to alternative 

modeling strategies?  

All the models showed high rates of non-convergence or improper solutions in certain 

conditions, especially in low sample size conditions, even though covariance constraints are 

added after the equality constraints on residual components across time. The low number of 

proper solutions from the models is somewhat expected as reported by Orth et al. (2021) who 

analyzed 10 samples of actual data (sample size varied from 404 to 8259) from longitudinal 

studies and found that in most datasets, even the single level LCM-SR did not converge at all or 

did not converge properly. 

There was a difference between the two-level and complex/default models in terms of 

non-convergence rates and improper solution rates. Specifically, a higher rate of non-

convergence was observed from the complex/default model results whereas a higher rate of 

improper solutions was observed from the two-level model. Yet, the total number of proper 

solutions was higher for the complex/default model than for the two-level model in general. This 
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is also expected in that the two-level model has a more complex model structure than the 

complex/default model (Bates et al., 2015). 

Asparouhov and Muthén (2021) pointed out that the high rate of non-

convergence/improper solutions of the model is due to empirical under-identification (Newsom, 

2012; Kenny & Milan, 2012). Therefore, a series of additional analyses using a large scale 

(nc=1000; N=5000) simulated data were run to check if there was any specific issue with pre-

specified population parameters in data generation models with varying conditions (e.g, size of 

CL parameters and variance parameters). The results showed that, when all the constraints were 

removed, a high rate of improper solutions were observed even with large datasets when CL 

parameters were high and innovation variance parameters were below 1. However, when the 

equality constraints were imposed, all the solutions converged properly. Therefore, a high rate of 

improper solutions was more likely due to sampling variability (i.e., the data do not support the 

complex model structure). 

In another experiment, additional waves of data were added to the model following 

Asparouhov’s and Muthén’s suggestion (for example, T=8). The results using the large-scale 

datasets showed improvement in that most replications converged properly. However, in small 

sample size conditions, the problem got worse in that the model structure got more complex with 

additional latent variables to address (recall that residual components were modeled as latent 

variables when using ML estimation method in the Mplus framework; Asparouhov and Muthén, 

2021). In the following experiment, the models were also run without residual structure at the 

between-group level, following the multilevel modeling tradition. The results showed similar 

improvement in the large sample conditions (N=5000) as well as in the small sample condition 

(N=250). The difference in the total number of proper solutions between the models was not held 
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constant but varied across conditions. A low number of proper solutions in the small sample 

condition (nc=50) for the two-level model resulted in its exclusion from further analysis.  

There was also a difference between the two-level and complex/default models in terms 

of model fit, bias, coverage, power, and type 1 error rates. In general, bad model fit, severe bias, 

low coverage rate, and low power were found in conditions with a large percentage of variance 

as well as a large residual variance at the between-group level (Diallo & Lu, 2017). The severity 

of bias increased as the sample size decreased. The default model showed the highest level of 

bias followed by the complex model. The direction of bias was also different between the two 

models in that the complex model showed a small upward bias whereas the default model 

showed a large downward bias. This difference resulted in the inflated power and type 1 error 

rate for the default model and the deflated power and nominal level type 1 error rate for the 

complex model. The two-level model showed little or no bias in general, thus showing a decent 

level of power and a nominal level of type 1 error rate. The results imply that the two-level 

model should be used in presence of dependency between observations in the clustered data. 

This suggestion should be considered with caveats regarding the sample size since the results for 

the two-level model were not discussed in small sample size conditions. In any case, the complex 

model should be considered over the default model for its more accurate results when compared 

to the latter. 

RQ2: Do different modeling strategies lead to different conclusions when dependency 

among observations is present in the dataset?  

In Study 1, it was shown that there would be a difference in the results between the 

models in that standard errors were overestimated for the complex model and underestimated for 

the default model when compared to the two-level model, which leads to different conclusions 
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between the models. Yet in Study 2, even though there was a difference in the standard errors 

found between the models, using different modeling strategies did not lead to different 

conclusions. This is somewhat similar to the results from Bailey et al. (2020) where the 

researchers tested for the nesting effects at the school level in the reciprocal relationship between 

reading and math achievement in the ECLS:K 2011 dataset and found no effect. The results 

could be explained as follows under the conjecture that the design factors and the outcomes in 

Study 1 have a linear relationship. 

First, the sample size was large (N= 6614) to offer enough power for all the models to 

detect any effects, as long as they exist. Study 1 only discussed that relative bias is maintained 

across different sample size conditions and overlooked that the actual magnitude of bias 

decreases as the sample size increases. Therefore, even though there were differences in the 

standard errors between the models, since the size of the differences was small, it did not lead to 

different conclusions. Second, there was a small percentage of variance at the between-level that 

lies between schools. Study 1 tested extreme conditions where the percentage of variance at the 

between-level is high as 0.5 and most variability in the results came from the conditions with the 

largest percentage of variance at between-group level conditions. The sample size was again 

large enough to ignore the difference in the standard errors. Third, with specific regards to the 

AR/CL parameters, the effect size was small to show a difference between the models in 

standard errors as well as point estimates.  

Limitation and future directions 

The present study has several limitations and opportunities for future research. First, the 

dataset in Study 2 was chosen because the purpose of the study was in part to revisit the former 

study results with the proposed modeling approach (Willoughby, Wylie, and Little, 2019) and 
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because the data meet the implicit inclusion criteria (e.g., the dataset should provide information 

about early child development with more than 4 waves of data with an equal time interval 

between repeated measures. It should be appropriately scaled for longitudinal modeling). Yet, 

the results showed that the data characteristics, including the sample size, were not within the 

range of values that were tested in Study 1. This in turn made the results from Study 1 less 

informative in which the interpretation was largely based on conjectures. In Study 1, the 

relatively high values in design factor conditions and relatively small sample sizes were chosen 

to obtain a clear insight into the effect of variation in design factors. Therefore, further 

exploration with adjusted conditions in a simulation study is needed. 

Second, in this study, only the simplest form of the model was considered, which is the 

linear growth model with AR(1) & CL(1) processes. One can extend the model to allow for 

different growth forms (e.g., quadratic growth) or higher-order AR/CL processes to best fit the 

data in future research. Third, in this study, no time-varying or time-invariant predictors were 

considered at both levels of the model. According to the Rubin Causal Model, to draw accurate 

estimates of causal effects, all the potential confounders must be accounted for (Usami, 

Murayama, Hamaker, 2019; Rubin, 1974). Yet in this study, it was assumed that there are neither 

observed nor unobserved confounders in the process. Therefore, in future studies, researchers 

might want to consider the impact of omitting confounders at the between-group level on the 

AR/CL parameter estimates. Fourth, in this study, only one clustering variable (i.e., school) was 

considered in the model. However, in reality, there are multiple sources of clustering (e.g., 

family, teacher, or community). Therefore, future studies might consider integrating higher-level 

or cross-classification model structures into the model. Fifth, all the variables analyzed in this 

study were considered to be continuous variables with multivariate normal distributions. In 
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future research, the behavior of the model under the non-optimal conditions for the data (e.g., 

non-normality, data missingness) should also be considered. Sixth, in this study, only 4 waves 

were considered for data simulation based on the fact that many panel datasets have at most 4 

waves of data (Orth et al., 2021). Yet, this posits a large limitation in the generalizability of the 

results. In future research, incorporating more than one length of waves and more than 4 repeated 

measures in the simulation design would be desired. Finally, discrete-time variable and equal 

spacing of observed data were assumed based on the fact that the effect size of the AR/CL 

parameters are influenced by the interval between the observations (“the lag-problem”; Usami, 

Murayama, Hamaker, 2019; Gollob and Reichardt, 1987). Also, equality constraints are imposed 

on all residual structure components for causal inference. However, at cost of claiming causal 

inference, researchers can relax these assumptions and turn to a continuous time modeling 

approach and use unequally spaced repeated measures data (Deboeck & Preacher, 2016; 

Voelkle; Oud, Davidov, & Schmidt, 2012). 

Implications for practitioners 

If a researcher has large-scale longitudinal data with more than 4 waves, then the any 

model would work fine depending on the study purposes. For individual researchers, however, it 

is hard to collect a large-scale longitudinal data like the one used in this study. Based on the 

study results and discussion, the following implications on modeling approaches to addressing 

observation dependency when using the LCM-SR are outlined. When the clustered data have a 

small number of clusters such as 50 or when clustering effects are only considered as a nuisance, 

the complex model should be used to account for data dependency. Yet, if one is interested in 

between-group level time-invariant predictors (e.g., school district), then one can opt for the two-

level LCM-SR without residual structure at the between-group level, following the multilevel 
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modeling convention. One can simply fix the residual variance and covariance at zero, which 

should allow the model estimation results to be more reliable and accurate unless there is a large 

between-level residual variance (Diallo & Lu, 2017). If one is interested in between-group level 

time-varying predictors (e.g., school-level policy change), then one might want to fix the latent 

variable variance structure to the numbers from the LCM, as shown in Study 2.  
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CHAPTER 6. CONCLUSION 

The present study explored the impact of dependency among observations on the results 

when using the LCM-SR and options to appropriately analyze the clustered longitudinal data for 

more accurate inference. The LCM-SR and its multilevel extensions have the potential for 

discovering valuable information in developmental and educational research. One example is the 

relationship between children’s psychological development and their interaction with the 

environment. 

Children’s psychological development has been understood based on contextual/ 

ecological system theories, which posit that development is shaped by environmental factors 

within multiple layers of ecological systems (Bronfenbrenner, 1977; Pianta & Walsh, 1996; 

Rimm-Kaufman & Pianta, 2000; Bronfenbrenner & Morris, 2006). For example, during early 

childhood, parents help children build and refine their knowledge and skills, serving as a 

foundation for children’s well-being and healthy development. After entering school, teachers 

and peers play a critical role as learning environments in promoting children's cognitive, 

language, social, and emotional development. 

Yet, the relationship between children and their environment is not just a unidirectional 

flow from an environment to a child – it is more like a reciprocal or bidirectional interaction. In 

their bioecological theory, Bronfenbrenner & Morris said, “(e)specially in its early phases, … 

human development takes place through processes of progressively more complex reciprocal 

interaction between an active, evolving biopsychological human organism and the persons, 

objects, and symbols in its immediate external environment” (Bronfenbrenner & Morris, 2006, 

p.797). As for interpersonal interaction, this means that initiatives do not come from one side 

only but have some degree of reciprocity in the exchange. For instance, in parent-child 
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interaction, children can make parents feel happy, sad, fulfilled, or angry, and then parents can 

give adequate feedback to their children as well. 

In sum, children’s psychological development occurs through a variety of interaction 

processes in their immediate environment such as interaction with their parents, caregivers, 

relatives, siblings, peers, and so on. Their influence in the development, which yet might change 

in nature or strength, is not limited to the formative years but continue to be effective as children 

grow older (Bronfenbrenner & Morris, 2006). As a result, both characteristics of children 

themselves and characteristics of their environment are of substantive interest by researchers. To 

study and capture such interaction dynamics over time that are consistent with developmental 

theories, and to study the predictive or causal relationship between them, the LCM-SR can be 

implemented as one of the options. And whenever clustering structure is involved in child data, 

the use of the modeling approaches discussed here is recommended.  
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