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An accurate transcriptome is essential to understanding biological systems enabling

omics analyses such as gene expression, gene discovery, and gene-regulatory network

construction. However, assembling an accurate transcriptome is challenging, espe-

cially for organisms without adequate reference genomes or transcriptomes. While

several methods for transcriptome assembly with different approaches exist, it is still

difficult to establish the most accurate methods. This thesis explores the different

transcriptome assembly methods and compares their performances using simulated

benchmark transcriptomes with varying complexity. We also introduce ConSemblEX

to improve a consensus-based ensemble transcriptome assembler, ConSemble, in three

main areas: we provide the ability to use any number of assemblers, provide a vari-

ety of consensus assembly outputs, and provide information about the effect of each

assembler in the final assembly. Using five assembly methods both in the de novo

and genome-guided approaches, we showed how ConSemblEX can be used to explore

various strategies for consensus assembly, such as ConSemblEX-4+, to find the op-

timum assembly. Compared to the original ConSemble, ConSemblEX improved the

de novo assembly performance, increasing the precision by 14% and F1 by 5%, and

significantly reducing the FP by 49%. In the genome-guided assembly, ConSemblEX

had an identical performance to the original ConSemble. We showed that ConSem-

blEX provides tools to explore how different methods perform and behave depending



on the datasets. With the ConSemblEX-select assembly, we further demonstrated

that we can improve consensus-based assembly more by choosing optimum overlap

sets among different methods. Such information provides the foundation to develop

machine learning algorithms in the future to further improve transcriptome assembly

performance.
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Chapter 1

Introduction

1.1 Overview

It has long been the quest of science to understand living things, the relations that

exist between them, and how they coexist. This is not limited to a higher level

of understanding, but also accounts for the molecular level, which is their genetic

makeup located in the cells. Many unique characteristics of organisms retain a trace

to a set of genes responsible for their development. Therefore, studying those genes

would help scientists have a deeper understanding of an organism as a whole. One

of the critical elements to this probe is the deoxyribonucleic acid (DNA), which is

the molecule that contains hereditary information in all living things. Variations in

DNA can affect the physical appearance of an organism, how it develops, functions, or

responds to its environment. DNA stores information as a code comprising chemical

bases, adenine (A), cytosine (C), thymine (T), and guanine (G) [3]. The order of

these bases (a nucleotide sequence) determines the unique information available to

develop and maintain an organism. Specific sequences form genes whose complete set

in an organism is the genome [3].

Cells utilize the genetic information to produce proteins needed in a multistep

process called gene expression. The process involves two primary steps, transcrip-
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tion and translation (Fig. 1.1). In transcription, the information in DNA is copied

into a new ribonucleic acid (RNA) molecule, messenger RNA (mRNA, also called a

transcript), making it available for protein synthesis. A collection of all the available

transcripts resulting from transcription is called a transcriptome [3]. Translation de-

codes the information contained in the transcript into a particular sequence of amino

acids to synthesize a protein [3].

Depending on gene expression patterns, transcriptomes vary in the composition

of transcripts among different cell types and stages of development within an or-

ganism. An accurate picture of gene expression can be gathered by sequencing all

the transcripts from target cells using high-throughput next-generation sequencing

(NGS) platforms such as Illumina. NGS technologies produce hundreds to millions

of short reads. These short reads need to be assembled into a transcriptome using

various assembly methods. Achieving an accurate transcriptome across all transcripts

is a hard task. In this regard, different transcriptome assembly methods have been

developed to address the challenges.

1.2 Motivation

Transcriptome assembly is central to understanding organisms at the molecular level,

enabling the discovery of the expression levels and their relationships. However, the

computational assembly of accurate transcriptomes remains a considerable challenge,

especially for non-model organisms. Variances such as the quality of RNA-sequencing

reads, presence of isoforms (alternatively spliced transcripts generated from the same

gene), polyploidy, and other biological properties could lead to incorrect and incom-

plete assemblies [2]. Availability of a good reference transcriptome or genome can

also affect the quality of the assembly in the case of genome-guided methods.
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Figure 1.1: Gene expression overview. Genes have exons - the transcribed regions
that mainly include protein coding regions, and introns - the non-transcribed, non-
coding regions. A complete set of all genes in target cells, tissue or an entire organism
forms the genome. During expression, the genetic information in DNA is transcribed
into precursor mRNAs (pre-mRNA). The splicing process removes introns (blue re-
gions between exons) from the pre-mRNA producing a mature mRNA. The set of all
available mature mRNA molecules from a genome in a cell is referred to as a tran-
scriptome. The mRNA molecules code the particular amino acid sequences and are
translated into proteins. A proteome of a cell is a repertoire of proteins coded on the
genome of the organism and translated from a transcriptome of a cell.

Consensus-based ensemble assemblers such as ConSemble [46] have been devel-

oped to address many of the shortfalls of individual assemblers. ConSemble merges

results from four specific assemblers and finds consensus contigs as representative

contigs. Although it has been reported to perform better than individual assemblers,

further improvement of the assembly performance is possible. Three areas have been

identified for further improvement.

Firstly, individual assemblers used can be expanded from those initially provided.
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In ConSemble, SOAPDenovo-Trans [49], rnaSPAdes [4], Trinity [18], and IDBA-tran

[37] are used for de novo assembly while Cufflinks [45], Bayesembler [33], Scallop [40],

and StringTie2 [27] are used in genome-guided assembly. With the various existing

assemblers and ever-evolving approaches, it would be ideal to allow for inclusion of

more assemblers.

Secondly, the main output of ConSemble is a 3+ consensus (comprising all three-

way overlaps and the four-way overlap). The four-way and a 2+ consensus (composed

of all two-way overlaps and 3+) were also explored. Inasmuch as these available

consensus assemblies are the most compelling in the study, there is a possibility of

other combinations producing as good as or even better results. Further, the quality

of the 3+ is likely to be affected as the number of assemblers increases.

Lastly, generating only the final ConSemble result (ConSemble3+), does not pro-

vide the information regarding the effect of each assembler on the result. For example,

among the assemblies produced by three methods, one method could only provide 5%

correctly assembled contigs, significantly affecting the final result. In such a case, an

overlap with other methods would be a better option.

1.3 Main Contributions

The thesis addresses the three points described in Section 1.2 and establishes a foun-

dation for a more generalized and improved ConSemble approach. We introduce

ConSemblEX, which expands on the current ConSemble approach by enabling the

use of more than four assemblers. To demonstrate this capability, a recently pub-

lished de novo method, BayesDenovo [41], is incorporated. This expansion provides

flexibility in choosing assemblers and an opportunity to integrate newer assemblers

in the future. As the number of assemblers increases, possible combinations also
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increase, prompting the need to analyze many more combinations. ConSemblEX al-

lows all combinations to be easily analyzed facilitating the examination of the effect

of increasing the number of assemblers on the transcriptome assembly accuracy and

selection of the optimum strategy for the consensus assembly. Lastly, the effect of

each assembler used on the final consensus assembly is assessed to ensure the best

assemblers are picked.

Collectively, ConSemblEX provides a tool to produce more accurate and complete

transcriptome assemblies.

1.4 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides the background

on transcriptome assembly and related works using different approaches. Chapter

3 overviews the methods used in the original ConSemble and introduces the mod-

ifications, ConSemblEX, along with the approach used to evaluate the assembled

transcriptomes. Chapter 4 presents and discusses results from two separate exper-

iments on three simulated benchmark datasets, and compares the performance of

ConSemblEX to the existing state of the art transcriptome assembly methods. Fi-

nally, Chapter 5 presents the conclusion of this thesis and the future work.
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Chapter 2

Background and Related Work

In multicellular organisms, every cell contains the same set of genes (genome). How-

ever, different cells show different patterns of gene expression. Thus, by collecting

and comparing transcriptomes (the entire set of mRNA transcripts) of different types

of cells or tissues, researchers can understand what constitutes a specific cell type and

how changes in transcriptional activity may reflect on the functions and development

of the cells and organisms [34]. To collect a transcriptome, we need to gain access to

ideally all the transcripts of specific cells or tissues at a specific time. This is accom-

plished mainly by employing RNA-sequencing (RNA-seq) [47], using NGS methods.

RNA-seq experiments typically comprise isolating mRNAs from cell or tissue samples,

fragmenting them into shorter segments, converting them to cDNAs, preparing the

sequencing library, and sequencing it to obtain millions of short fragments called reads

(Fig. 2.1)]. The reads are generally 30-500 bp (base pairs) based on the sequencing

technology applied. Illumina HiSeq 25001, one of the most used NGS platforms, for

example, produces reads up to 250 bp long. Following sequencing, the obtained reads

are either aligned to a reference genome in genome-guided assemblers or assembled de

novo to produce a genome-scale transcription map consisting of the transcriptional

structure and expression level for each gene [28]. This is the basis for transcriptome

1https://www.illumina.com/systems/sequencing-platforms/hiseq-2500.html

https://www.illumina.com/systems/sequencing-platforms/hiseq-2500.html
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assembly.

2.1 Transcriptome Assembly Approaches

Transcriptome assembly enables the study of genetic variations in organisms at the

transcript level. Genome-guided assemblers utilize information from the reference

genome to produce transcriptome assemblies [34, 32]. The quality of genome-guided

assembly can be primarily affected by the quality of the reference genome and its close-

ness to the target transcriptome. In de novo assembly, assemblers overlap the millions

of reads into contiguous sequences (contigs) representing transcripts. Although this

is often a challenging process and often less accurate compared to genome-guided

assemblers, de novo transcritpome assemblers are important especially for non-model

organisms that lack a fully sequenced genome. When a suitable reference genome is

unavailable, only de novo assemblers can be used.

Despite the difference in the underlying algorithms, many individual assemblers

can correctly assemble the majority of the core set of transcripts [46, 2]. Ensemble

assemblers leverage this by combining multiple assemblies to retain contigs that are

likely to be correctly assembled. While many transcriptome assemblers have been

developed, transcriptome assembly remains a non-trivial task, attracting many studies

to make it more efficient and improve assembly correctness and overall assembly

completeness.

2.1.1 Genome-guided assembly

As illustrated at the bottom of Figure 2.1, genome-guided assemblers build upon an

existing reference genome, as well as RNA-seq reads obtained, to produce a transcrip-

tome assembly for the target organism. Genome-guided assemblers generally perform
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Figure 2.1: RNA-seq overview. mRNAs are first isolated from cell or tissue samples.
Next, fragmentation and cDNA synthesis is performed. Conversion of mRNAs to
cDNAs is a conventional approach as most sequencing technologies require DNA
libraries. Construction of the sequencing library follows, including ligation of sequence
adaptors (brown) to cDNA strands to preserve strand information. Sequencing using
NGS platforms such as Illumina is employed using the prepared library producing
reads 75-100bp long. Finally, the transcriptome is assembled using computational
methods, either de novo or genome-guided assembly approach.
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the assembly in three steps: (i) The RNA-seq reads are aligned to the reference

genome using a splice-aware aligner such as TopHat2 [26], HISAT2 [25], STAR [11],

or SpliceMap [1][2]. Splice-aware aligners identify exons at slice-junctions in the ref-

erence genome and ensure that no reads are aligned to an intron [2]; ii) Aligned reads

from each locus are then clustered to construct a splice graph representing all possible

isoforms for a gene; (iii) Finally, the representative splice graph is traversed resolving

individual isoforms [2]. Graph construction and traversal algorithms and the choice

of aligners differ among assemblers, which is fundamental to the quality of the assem-

bly results. Further, the quality of the reference is also vital for accurate assembly

[2]. In a situation where the reference genome is divergent from the read sequences,

such as the human reference genome against the read sequences from another pri-

mate genome, depending on the level of divergence between the human and primate

genomes, the resulting assembly would comprise highly inaccurate transcripts. Even

in situations where the reference-genome is only slightly different, such as different

strains of the same species or different versions, the accuracy of the assembly would

be affected [46]. We show this in the results in Section 4.2.

One of the genome-guided assemblers is Scallop [40]. Scallop resolves weighted

paths of the splice graph and finds the minimum set of paths to determine the as-

sembled transcripts. With some modification to the general approach, Cufflinks [45]

constructs a directed overlap graph of fragment alignments on each independent gene

locus, which is then transitively reduced to extract a minimum path cover (i.e., a

minimum-size set of paths covering all the nodes) of the graph. The reduced graph is

then used to derive a weighted bipartite graph whose maximum matching represents

the assembly. Bayesembler [33] approaches assembly probabilistically through the

derivation of a Bayesian model of the RNA sequencing process. It establishes candi-

date transcripts from a set of splice graphs and uses Bayesian inference to resolve the
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most likely combination of candidates. The model maintains consistent means of com-

bining prior knowledge about the inadequacy in the number of expressed transcripts

with information from the reads and their abundance. StringTie2 [27] determines the

expression levels of transcripts while assembling isoforms of every gene by finding the

maximum flows in flow networks constructed for each of the heaviest paths in the

splice graph. StringTie2 extends the original StringTie [38] by implementing a novel

control flow algorithm to reconstruct transcripts, and a more refined method to merge

paired reads into fragments from the initial stage of the assembly. It also implements

more efficient data structures to provide the capacity to handle long-read sequences

[27]. Despite StringTie2 focuses on assembly using long-read sequences, reportedly it

mostly generates more accurate transcriptome assemblies than StringTie even when

using short-read sequences.

2.1.2 De novo assembly

De novo assembly is a reference-free-based strategy that leverages motifs of RNA-seq

reads to find overlaps assembled into longer contigs. It can be applied to organisms

that do not have a well-annotated genome and in many cases where no sequence

information exists. De novo assembly is also used to complement genome-guided

assemblers because some contigs may only be assembled in de novo assemblers [46].

Many de novo assemblers construct de Bruijn graphs from RNA-seq reads and identify

contigs as optimal paths (longest paths or paths greater than selected threshold)

within the graphs (see Figure 2.2) [39, 24, 8, 37, 18]. In de Bruijn graphs, a node is

defined by a substring of a read sequence of fixed length k (k-mer), with k substantially

shorter than the read length. The nodes are then adjacent if they overlap by a k−1

nucleotide substring and the read dataset supports this link. The choice of the k-

mer has a significant impact on the assembly result. Small k-mer values produce
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large amounts of short contigs, consequently covering the less abundant transcripts

and producing highly fragmented contigs [23, 9, 12]. They also cannot deal with

repetitive sequences. While large k-mer values tend to produce a more contiguous

assembly consisting of high coverage contigs and more splice variants, the assembly

contains longer but fewer contigs leading to lower transcript representation [9, 12]. For

this reason, using a single k-mer in de novo assembly can often result in incomplete

assembly of transcriptomes leading to loss of relevant information. Choosing whether

to use a single k-mer or multiple k-mers is among the nuances in several de novo

assemblers.

Trinity [18] uses a single k-mer to fully reconstruct a large fraction of transcripts

with low base error rates [20] while applying de Bruijn graphs. It performs an ex-

haustive enumeration to find paths in the graph and is regarded as one of the best

single k-mer assemblers currently available [23, 31]. SOAPdenovo-trans [49] also uses

a single k-mer with a slightly modified de Bruijn graph algorithm, which lowers re-

dundancy, and has a lower computation time than Trinity. IDBA-tran [37] adopts

the idea of multiple k-mers to capture information from transcripts with both high

and low expression using a slightly modified de Bruijn graph. Instead of building a

de Bruijn graph and finding contigs for each k-mer value, an accumulated graph is

built iteratively where the output from one iteration is treated as input in the next

iteration until it reaches the maximum size of k-mer. The result of these intermediate

graphs is a compound de Bruijn graph that spans all the k-mer values. rnaSPades

[4] is another single k-mer method with a slightly modified de Bruijn graph where

chimeric and erroneous edges are removed from the graph during assembly. Bridger [7]

employs a new de novo approach that uses a rigorous mathematical model, called the

minimum path cover, to construct splice graphs used to build compatibility graphs for

transcriptome reconstruction. Splice graphs are directed acyclic graphs, whose nodes
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Figure 2.2: Example of de Bruijn graph. Substrings of length k (k-mers, here 5-mers)
are found from the three reads shown at the top. The nodes (rectangles) of the de
Bruijn graph are defined by k-mers. Adjacent nodes have overlapping prefix and/or
suffix of k − 1 nucleotides and are also supported by the read dataset. The longest
paths or those longer than a specified threshold in the graph are extracted and contigs
are obtained from those paths. In this example, two paths of length ≥ 10 (assuming
a threshold of 10) are extracted leading to two final contigs. They are most likely
isoforms derived from the same gene.

correspond to exons and edges represent splicing junctions, where splicing events oc-

cur [21]. Bridger typically uses a single k-mer but has a counterpart, Bridger-M,

utilizing multiple k-mer values and merging assemblies from the different k-mers. A

more recent assembler, BayesDenovo [41], integrates the Bayesian framework and a

read-guided strategy to construct splice graphs from de Bruijn graphs. Unlike many

other assemblers, BayesDenovo uses a non-deterministic approach that identifies con-

tigs probabilistically.
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2.1.3 Ensemble approach

Individual assemblers encounter often challenges covering the lowly expressed tran-

scripts, which leads to less accurate and incomplete assemblies. As much as de novo

and genome-guided assemblers face these challenges and produce varying assembly

results, they often assemble the majority of core transcripts correctly [46]. There-

fore, it is reasonable to consider that merging results from multiple assemblers would

deliver a more complete and accurate assembly. Ensemble assemblers attempt to

address the limitations of individual assemblers while preserving the correctly assem-

bled transcripts [2, 46]. Typically, ensemble assemblers cluster contigs from multiple

assemblers and choose a representative contig from each cluster to form the final

[2, 46]. However, there is no guarantee that the representative contig retained from

each cluster is the correct assembly of the transcript. While different ensemble assem-

blers have distinct approaches for clustering and selection of representative contigs,

their final assemblies are in general of relatively higher quality compared to individual

assemblers.

EvidentialGene [16, 17] and the “Concatenation” method [6] merge multiple de

novo assemblies, use CD-HIT [14] to cluster the contigs, and select representative

contigs for the final assembly set. TransBorrow [50], on the other hand, uses genome-

guided assemblies. It combines results from different assemblers, builds splice graphs

from mapped reads, and extracts paired subpaths from the splice graphs. Reliable

subsequences from the assemblers and the paired subpaths are then mapped to the

splice graphs to form subpaths that guide the final assembly. Recently, Voshall et al.

developed ConSemble [46], an ensemble transcriptome assembly approach that com-

bines results from four transcriptome assemblers (either de novo or genome-guided

methods). ConSemble performs de novo transcriptome assembly using four assem-
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blers (Trinity, SOAPdenovo-trans, IDBA-tran, and rnaSPAdes) with multiple k-mers

for each method. For each assembler, contig sets are merged and clustered based on

the coded protein sequences. It then proceeds to find contig sequences overlapped

among three or more assemblers at the protein level producing the final contig sets.

The procedure is the same for genome-guided assembly, apart from the different set

of four assemblers (Cufflinks, Bayesembler, Scallop, and StringTie2).

Compared to the other essemble approaches, ConSemble has a superior perfor-

mance in the de novo assembly and performs considerably better than TransBorrow

in the genome-guided assembly [2, 46]. It recovers more correctly assembled tran-

scripts with a high precision, hence reducing the number of misassembled transcripts.

EvidentialGene over-assembles, and therefore recovers significantly large numbers of

false positive contigs resulting in less accurate overall assemblies. In datasets where

isoforms are present, all the ensemble methods performed well identifying isoforms for

genes with five or less isoforms while ConSemble and Concantenation perform better

for genes with five or more isoforms [2, 46]. It is also important to note that ensemble

methods are limited by the individual assembly methods they use.

2.2 Transcriptome Assembly Performance Evaluation

Given the complexity of transcriptome assembly, it is imperative that the assembly

performance and accuracy are quantitatively evaluated to fully understand the quality

of the assembled transcriptomes. Different evaluation methods have been proposed.

There are two approaches: reference-free and reference-based. Reference-free methods

are useful in the absence of a benchmark reference dataset. They employ statistical

metrics calculated solely on the assembled transcriptome. Some incorporate also the

mapping efficiency of RNA-seq reads. Reference-based methods utilize benchmark
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datasets to provide different metrics based on the comparison between the assembled

transcriptome to the benchmark.

2.2.1 Reference-free metrics

The most commonly applied reference-free metrics are various descriptive statistics

of the assembly output. These include:

1. The number of assembled contigs: This is the simplest metric. While fewer

numbers of contigs do not necessarily indicate a better assembly, too large a

number of assembled contigs can be indicative of the presence of either or both

of fragmented contigs or false positives.

2. Median contig length: This is another simple metric. Although it alone cannot

be used for peformance analysis, it can provide useful descriptive information

regarding the assembled contigs.

3. N50 (Nx): It describes the longest contig such that all contigs of at least that

length compose at least 50% (x%) of the bases in the assembly [30, 35]. It

was originally developed to evaluate genome assembly where longer contigs are

generally considered to be better. It is motivated by the idea that a more

significant number of identified overlaps among input reads will have more reads

assembled into contigs resulting in a better assembly. However, it is apparent

that the trivial concatenation of all input reads would maximize the N50 metric,

leading to low-quality assemblies.

Despite the above metrics being informative regarding the nature of assemblies,

they are often misleading especially for transcriptome assessment. For example, the

number and the length of contigs are not always good indicators of transcriptome
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assembly accuracy and quality since the length and abundance of transcripts vary

depending on the genes and the level of their expression [22, 36].

Alternative methods such as RSEM-EVAL provided by DETONATE (DE novo

TranscriptOme rNa-seq Assembly with or without the Truth Evaluation) [30] and

TransRate scores [43] leverage the biological properties of transcriptomes to address

the inadequacies of the aforementioned descriptive metrics. They combine multiple

factors, including the compactness of an assembly and how the RNA-seq data support

the assembly.

RSEM-EVAL is a probabilistic model-based score that depends solely on the as-

sembly and the corresponding RNA-seq reads [30]. The RSEM-EVAL score of an

assembly (A) is defined as the log joint probability of the A and the reads D used to

construct A:

scoreRSEM -EV AL(A) = logP (A,D) (2.1)

Therefore, a better and more complete assembly maximizes the RSEM-EVAL score.

TransRate [43] provides a detailed assessment of the assembly by scoring the

quality of each contig (TransRate contig score) and establishes an overall TransRate

assembly score that is a statistical summary of the contig scores. The TransRate

contig score is the product of the following scores:

1. s(Cnuc): It measures the extent to which the nucleotides in the mapped reads

are the same as those in the assembled contig. A better assembly is one whose

nucleotides accurately represent the nucleotides of the true transcript, therefore,

maximizing this score.

2. s(Ccov): It measures the proportion of nucleotides in the contig with no sup-
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porting read data. It penalizes contigs with no coverage and negatively affects

the overall contig score.

3. s(Cord): It measures the extent to which the order of the nucleotides in the contig

matches the order in the mapped reads. Incorrectly mapped reads negatively

affect the contig score and inform about partially assembled transcripts.

4. s(Cseg): This score measures the probability that the coverage depth of the

transcript represents a single transcript and not a chimeric assembly.

The TransRate assembly score aims to provide insight into the accuracy and com-

pleteness of any given assembly. It is evaluated as the geometric mean of the mean

TransRate contig score and the proportion of reads that map to the assembly.

2.2.2 Reference-based metrics

If a gold standard reference dataset is available, reference-based metrics can be calcu-

lated using either actual biological data, simulated data, or both, depending on the

availability of such datasets. In the case of biological data, the metrics are determined

through the alignment of RNA-seq reads or contigs to the reference assembly.

DETONATE implements REF-EVAL. It estimates the true assembly of contigs

or scaffolds based on alignments of RNA-seq reads to reference transcripts [30]. Using

these true contigs or scaffolds, REF-EVAL provides assembly precision, recall, and

F1 scores at contig (scaffold) or nucleotide level. Precision is the fraction of contigs

(scaffolds) or nucleotides that correctly map to the reference sequences (true contigs

or scaffolds). Recall is the fraction of the reference sequences (at either contig or

nucleotide level) that are correctly recovered by the assembly. F1 score is the harmonic

mean of precision and recall (see Equations 2.3 - 2.5). REF-EVAL further provides

the k-mer compression (KC ) score, which is a combination of the weighted k-mer
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recall (WKR) and inverse compression rate (ICR):

scoreKC = WKR− ICR (2.2)

The KC score measures the degree to which the assembly compresses the RNA-seq

data.

The quality and completeness of the assembly can also be evaluated based on the

number of genes or proteins found in the assembly relative to a reference dataset.

rnaQuast [5] achieves this by aligning an assembly to an annotated reference genome,

calculating various alignment and gene-database metrics such as the total number

of genes and isoforms, isoform and exon length distribution, average number of ex-

ons per gene, numbers of aligned, unaligned, or misassembled transcripts. BUSCO

(Benchmarking Universal Single-Copy Orthologs) [42] also assesses assembly com-

pleteness against lineage-specific protein sets. The BUSCO sets are searched in the

assembly at protein level and the results are summarized into the number of genes in

four categories: complete (C), duplicated (D), fragmented (F), and missing (M) [42].

If simulated datasets are available, as we have applied in this study, there is an

advantage of knowing the ground truth in benchmark datasets. A set of known

transcripts (benchmark) is used to simulate RNA-seq reads. The read sets are used

to assemble contigs by using an assembly method to be evaluated. Finally, the as-

sembled contig sets are compared with the benchmark transcripts. The comparison

usually seeks to find contigs that are perfectly identical (100%) to sequences in the

benchmark. Alternatively, a less stringent comparison can be performed using a lower

threshold (< 100%) to identify not completely but nearly identical contigs [46]. Re-

sults of the comparison are categorized as (i) true postives (TP) – correctly assembled



19

contigs with matches in the benchmark, (ii) false positives (FP) – misassembled con-

tigs with no matches in the benchmark, or (iii) false negatives (FN) – benchmark

transcripts without corresponding assembled contigs. While true negatives (TN) can

be determined if the benchmark datasets include negative sequences, from which read

sequences are not generated, as in the case of this study, often TN is not available.

The numbers of contigs in each categories are denoted as TP, FP, and FN, respec-

tively. The comparisons can be performed either at nucleotide or protein level. In

either case, the following three performance metrics can be calculated:

Precision =
TP

TP + FP
(2.3)

Recall =
TP

TP + FN
(2.4)

F1 =
2TP

2TP + FP + FN
(2.5)

Precision provides information about the proportion of correctly assembled contigs

relative to the assembly. A higher value of precision, therefore, indicates that there

are more correctly assembled contigs than incorrect ones in the assembly set. Recall,

on the other hand, informs about correctly assembled contigs relative to the actual

transcripts in the benchmark. A higher recall shows that the assembly recovers a

good number of benchmark transcripts correctly achieving a more complete assembly.

Finally, F1 is the harmonic mean of recall and precision. It is a combined metric that
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balances the trade-off between precision and recall.
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Chapter 3

Materials and Methods

3.1 Reference Genomes and Transcriptomes Used

Reference genomes and transcriptomes used in this study were obtained from the

original ConSemble publication [46]. This was done to ensure a direct comparison to

the published results. The data is freely available at http://bioinfolab.unl.edu/

emlab/consemble/. The four reference genomes used are as follows: the Arabidopsis

thaliana accession Nossen (No-0) genome originally assembled by Gan et al. [15],

the A. thaliana accession Columbia (Col-0) genome from TAIR (version 9) [44], the

human HG38 (Human) reference genome (GCF 000001405.39), and the human HX1

reference genome1.

3.2 Simulated Benchmark Transcriptomes and Read Sets

The simulated benchmark transcriptomes and read sets were also obtained from the

ConSemble [46] publication. In summary, for each reference benchmark transcriptome

(Col-0-Ref, No-0-Ref, or Human-Ref), approximately 250 millions of 76bp read pairs

were generated using the Flux Simulator v1.2.1 [19]. The varied numbers of isoforms

among the datasets accounted for the different levels of complexity often found in

1http://hx1.wglab.org

http://bioinfolab.unl.edu/emlab/consemble/
http://bioinfolab.unl.edu/emlab/consemble/
http://hx1.wglab.org
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real biological data. The No-0-Ref dataset is the simplest and does not include any

isoforms per gene. The Col-0-Ref and Human-Ref datasets contain up to nine and

forteen isoforms, respectively [46].

3.3 Read Processing

After the simulation, generated reads were quality filtered using Erne-filter 2.0 [13]

to remove low-quality bases and filter out contaminated bases at an average quality

of q20 with the “ultra-sensitive” flag. This resulted in 494 million, 493 million, and

491 million reads for No-0, Col-0, and Human datasets, respectively, discarding about

3 million reads from each dataset. The filtered reads were subsequently normalized

using the “normalization-by-median” method of the Khmer software package [10],

with a k-mer length of 32 bp, memory size of 32GB, and 50× expected coverage to

remove redundant reads and low quality reads prior to the assembly process. Both

the quality filter and normalization were performed in the paired-end mode.

3.4 De Novo Assembly

For four assemblers Trinity, SOAPdenovo-trans, IDBA-tran, and rnaSPAdes, the as-

semblies were obtained from ConSemble [46]. Each assembly was performed using

the default k-mer length as well as multiple lengths as follows;

• Trinity: 19 - 31 kmer lengths with increments of 4,

• rnaSPAdes: 17 - 71 k-mer lengths with increments of 4,

• SOAPdenovo-trans: 15 - 75 k-mer lengths with increments of 4, and

• IDBA-tran: 20 - 60 k-mer lengths with increments of 10.
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In addition, a new de novo assembly was performed using BayesDenovo v1.0 with a

single default k-mer length (25) as well as multiple k-mer lengths ranging from 21 to

31 with increments of 2, to best cover the allowable range of values (20 to 32).

3.5 Genome-guided Assembly

The four genome-guided methods, Cufflinks, Bayesembler, Scallop, and StringTie2,

were obtained from ConSemble [46].The reads were mapped to the reference genomes

using Tophat2 v2.0.14 [26]. An additional assembly was performed using StringTie

v1.3 and included in the analysis to determine the performance including five assem-

blers. This also allowed us to evaluate the effect of using multiple versions of the

same assembler on the assembly quality. Following the experimental design used in

Voshall et al. [46], each read set was assembled using two different reference genomes

as shown in Table 3.1. This was done to evaluate the effect of the similarity of the

reference genome to the read set mapped against.

Table 3.1: Experimental design of the genome-guided assembly using two types of
references

Read set Assembly type Reference genome
No-0 same No-0
No-0 different Col-0
Col-0 same Col-0
Col-0 different No-0
Human same Human (HG38)
Human different HX1

3.6 Ensemble Assembly

The ConSemble assemblies were obtained from the ConSemble publication [46]. For de

novo assembly, Trinity, SOAPdenovo-trans, IDBA-tran, and rnaSPAdes were used.
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The assemblies were pooled from different k−mer lengths as described in Section

3.4. For genome-guided assembly, Bayesembler, Cufflinks, Scallop, and StringTie2

assemblies from the same and different references were used.

3.7 ConSemblEX Implementation

ConSemblEX is implemented in Python 3 using an object-oriented programming ap-

proach (Figure 3.1). It has three main classes, Assembly, Analysis, and Read Process-

ing, which house its modular functionality and are abstracted from the user. Con-

SemblEX is accessed using the command shell interface through specific commands

detailed in the documentation. The code and documentation is available freely at the

ConSemblEX GitHub repository2.

Figure 3.1: ConSemblEX architecture.

In principle, ConSemblEX is an extended version of ConSemble originally de-

veloped by Vorshall et al. [46]. In ConSemblEX, any number of methods in any

combination, as opposed to using only previously chosen four of either de novo or

genome-guided methods, can be used. To demonstrate this, five of both de novo

and genome-guided assemblers were used in this study. Trinity, SOAPdenovo-trans,

2https://github.com/bioinfo-emlab-unl/consemblex

https://github.com/bioinfo-emlab-unl/consemblex
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Figure 3.2: The ConSemblEX pipeline for de novo default assembly.

IDBA-tran, rnaSPAdes, and BayesDenovo were used in the de novo assembly, while

Cufflinks, Bayesembler, Scallop, StringTie, and StringTie2 were used in the genome-

guided assembly.

For the de novo assembly, two approaches were explored. In the first pipeline

shown in Figure 3.2, all five assemblers were run with the default k-mer lengths.

In the second pipeline shown in Figure 3.3, each of the five de novo assembly was

performed using varying k-mer lengths as described in Section 3.4, and the contigs

produced using the different k-mer were pooled into one contig set for each method.

As shown in Figure 3.4, the genome-guided assembly was perform in two ways, using

the reference genome same as or different from the read dataset source (see Table

3.1).

Each of the five contig sets is passed to ORFfinder [48] to search for open read-

ing frames (ORFs). The longest ORF found from each contig is translated into the

protein sequence. This converts each contig set (nucleotide sequences) to a “pro-
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Figure 3.3: The ConSemblEX pipeline for de novo pooled assembly.

Figure 3.4: The ConSemblEX pipeline for genome-guided assembly.
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tein contig library” (including only unique protein sequences), from which the final

consensus assembly is performed. The basis of the consensus assembly is to identify

contigs that share protein sequences among the contig libraries generated from dif-

ferent assemblers. Hence, from the five protein contig libraries, contigs are clustered

if their protein sequences are identical (100%). As shown in Tables 3.2 and 3.3, us-

ing these clusters, contigs are grouped into 31 discrete sets based on the overlapping

assembly methods. The 31 distinct sets are further sub-grouped according to their

cardinality (overlap size), forming the intermediate output of ConSemblEX assembly.

Higher levels of ConSemblEX assembly can be obtained based on the cardinality

of the overlapping assembly set. Following the notation used in ConSemble, when

exactly N (1 ≤ N ≤ 5) overlaps are required, all sets with the cardinality equal to N

are selected and the assembly is referred to as ConSemblEX-N (i.e., ConSemblEX-2,

ConSemblEX-3, ...). Depending on the assembly approach in question, de novo or

genome-guided, the assembly is referred to as ConSemblEX-Nd (i.e., ConSemblEX-

2d, ConSemblEX-3d, ...) or ConSemblEX-Ng (i.e., ConSemblEX-2g, ConSemblEX-

3g, ...), respectively. When N or more overlaps are required, assembly is called

ConSemblEX-N+d (i.e., ConSemblEX-2+d, ConSemblEX-3+d, ...) for de novo as-

sembly and ConSemblEX-N+g (i.e., ConSemblEX-2+g, ConSemblEX-3+g,...) for

genome-guided assembly. Instead of trying to provide possibly the single best assem-

bly output, ConSemblEX provides a collection of outputs that includes all possible

exclusive sets of overlaps (intersections) among the assembly methods, as well as the

union sets of the exclusive overlaps. All these contig sets are available at both nu-

cleotide and protein levels. This provides the maximum flexibility to choose the best

assembly for particular needs.

As mentioned earlier, ConSemblEX is modularized, which means actual assembly

is independent of the analysis. Therefore, a new assembly method can be included
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Table 3.2: Discrete sets of de novo assembly contigs

Overlaps Distinct assembly sets

1-way

BayesDenovo
IDBA-tran
SOAPdenovo-trans
rnaSPAdes
Trinity

2-way

BayesDenovo ∩ IDBA-tran
BayesDenovo ∩ SOAPdenovo-trans
BayesDenovo ∩ rnaSPAdes
BayesDenovo ∩ Trinity
IDBA-tran ∩ SOAPdenovo-trans
IDBA-tran ∩ rnaSPAdes
IDBA-tran ∩ Trinity
SOAPdenovo-trans ∩ rnaSPAdes
SOAPdenovo-trans ∩ Trinity
rnaSPAdes ∩ Trinity

3-way

BayesDenovo ∩ IDBA-tran ∩ SOAPdenovo-trans
BayesDenovo ∩ IDBA-tran ∩ rnaSPAdes
BayesDenovo ∩ IDBA-tran ∩ Trinity
BayesDenovo ∩ SOAPdenovo-trans ∩ rnaSPAdes
BayesDenovo ∩ SOAPdenovo-trans ∩ Trinity
BayesDenovo ∩ rnaSPAdes ∩ Trinity
IDBA-tran ∩ SOAPdenovo-trans ∩ rnaSPAdes
IDBA-tran ∩ SOAPdenovo-trans ∩ Trinity
IDBA-tran ∩ rnaSPAdes ∩ Trinity
SOAP ∩ rnaSPAdes ∩ Trinity

4-way

BayesDenovo ∩ IDBA-tran ∩ SOAPdenovo-trans ∩ rnaSPAdes
BayesDenovo ∩ IDBA-tran ∩ SOAPdenovo-trans ∩ Trinity
BayesDenovo ∩ IDBA-tran ∩ rnaSPAdes ∩ Trinity
BayesDenovo ∩ SOAPdenovo-trans ∩ rnaSPAdes ∩ Trinity
IDBA-tran ∩ SOAPdenovo-trans ∩ rnaSPAdes ∩ Trinity

5-way BayesDenovo ∩ IDBA-tran ∩ SOAPdenovo-trans ∩ rnaSPAdes ∩ Trinity

directly in the analysis by simply including the assembly output, regardless of the

method and where it was performed. ConSemblEX will perform the analysis based

on the new number of methods and will output the necessary results without need

for any modification.
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Table 3.3: Discrete sets of genome-guided assembly contigs

Overlap Distinct assembly sets

1-way

Bayesembler
Cufflinks
Scallop
StringTie
StringTie2

2-way

Bayesembler ∩ Cufflinks
Bayesembler ∩ Scallop
Bayesembler ∩ StringTie
Bayesembler ∩ StringTie2
Cufflinks ∩ Scallop
Cufflinks ∩ StringTie
Cufflinks ∩ StringTie2
Scallop ∩ StringTie
Scallop ∩ StringTie2
StringTie ∩ StringTie2

3-way

Bayesembler ∩ Cufflinks ∩ Scallop
Bayesembler ∩ Cufflinks ∩ StringTie
Bayesembler ∩ Cufflinks ∩ StringTie2
Bayesembler ∩ Scallop ∩ StringTie
Bayesembler ∩ Scallop ∩ StringTie2
Bayesembler ∩ StringTie ∩ StringTie2
Cufflinks ∩ Scallop ∩ StringTie
Cufflinks ∩ Scallop ∩ StringTie2
Cufflinks ∩ StringTie ∩ StringTie2

4-way

Scallop ∩ StringTie ∩ StringTie2
Bayesembler ∩ Cufflinks ∩ Scallop ∩ StringTie
Bayesembler ∩ Cufflinks ∩ Scallop ∩ StringTie2
Bayesembler ∩ Cufflinks ∩ StringTie ∩ StringTie2
Bayesembler ∩ Scallop ∩ StringTie ∩ StringTie2
Cufflinks ∩ Scallop ∩ StringTie ∩ StringTie2

5-way Bayesembler ∩ Cufflinks ∩ Scallop ∩ StringTie ∩ StringTie2

3.8 Benchmarking and Assembly Performance Analysis

All the final assemblies were compared to the corresponding benchmark dataset (Col-

0, No-0, or Human) to determine the number of correctly and incorrectly assembled

contigs in each assembly. Contigs were evaluated at the protein level and at the 100%
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identity to the translated transcripts in the benchmark dataset. Contigs identical

to the benchmark transcripts were considered true positives (TP). Contigs that were

not fully identical to any transcripts in the benchmark were considered false positives

(FP). Finally, transcripts in the benchmark that were not identical to any contigs in

the assembly sets were considered false negatives (FN). As described in Section 2.2.2,

in this study, true negative was not determined.

The overall performance was measured using precision, recall, and F1 score as

shown in Equations 2.3, 2.4, and 2.5.

3.9 Figures and Plotting

The intersection graphs were generated using the UpSetPlot Python3 API (version

0.6.0) [29]. The performance plots were generated using Matplotlib Python3 API3

and Microsoft Excel Software. The biological figures were created using BioRender4.

The pipeline diagrams and ConSemblEX architecture were created using draw.io5.

3https://matplotlib.org/stable/index.html
4https://app.biorender.com/
5https://app.diagrams.net/

https://matplotlib.org/stable/index.html
https://app.biorender.com/
https://app.diagrams.net/
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Chapter 4

Results and Discussion

4.1 Performance of De Novo Assembly Methods

4.1.1 Individual assembly methods

We began by comparing the performance of individual de novo assembly methods

on the three datasets, No-0, Col-0, and Human, against the corresponding bench-

mark datasets No-0-Ref, Col-0-Ref, and Human-Ref. As shown in Table 4.1, when

the default k-mers were used, all methods but BayesDenovo assembled a significantly

larger number of contigs (shown as “Total”) than the expected number (shown as

“Actual”) in all the datasets. BayesDenovo assembled fewer numbers of contigs than

expected by values ranging from 1.24% to 20% for all the datasets, while the rest of

the methods assembled much more contigs than expected, ranging from 25% (Trin-

ity) to 113% (rnaSPAdes) more. Despite mostly large numbers of assembled contigs,

the numbers of correctly assembled contigs (TP) were low in all assembly methods.

BayesDenovo was the most precise method with the average precision of 0.54 (0.61,

0.51, and 0.49, for No-0, Col-0, and Human, respectively). Trinity had the best recall

(0.64, 0.60, and 0.50, for No-0, Col-0, and Human, respectively) and F1 (0.57, 0.53,

and 0.45, for No-0, Col-0 and Human, respectively) for all datasets. All assembly

methods performed relatively worse in the Col-0 and Human datasets as expected,
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due to the presence of isoforms in these datasets. An interesting observation among

the individual assemblers was how close the performance between Trinity and Bayes-

denovo was in all the datasets in terms of F1 score. However, Bayesdenovo had better

precision but lower recall than Trinity in all the datasets. This disparity resulted

from Bayesdenovo generally recovering fewer incorrect contigs than Trinity, which

always recovered more correct contigs than Bayesdenovo. Therefore, Trinity recov-

ered the most complete assemblies relative to the benchmark (even with higher FP),

while Bayesdenovo generated the most accurate assemblies. Overall, Trinity provided

the best assemblies with slightly better F1 scores, closely followed by Bayesdenovo.

However, this was at the cost of an increased number of false positives generated by

Trinity.

Table 4.1: Performance of individual de novo assemblers using default k-mersa

Dataset Assembly Method Actualb Totalc TP FP FN Precision Recall F 1

No-0

BayesDenovo 18875 16332 10022 6310 8853 0.61 0.53 0.57
IDBA-trans 18875 22802 8344 14458 10531 0.37 0.44 0.40
SOAPdenovo-Trans 18875 29876 11119 18757 7756 0.37 0.59 0.46
rnaSPAdes 18875 40333 9206 31127 9669 0.23 0.49 0.31
Trinity 18875 23523 12059 11464 6816 0.51 0.64 0.57

Col-0

BayesDenovo 15508 15316 7876 7440 7632 0.51 0.51 0.51
IDBA-trans 15508 20430 6021 14409 9487 0.29 0.39 0.34
SOAPdenovo-Trans 15508 21371 7281 14090 8227 0.34 0.47 0.39
rnaSPAdes 15508 31494 7556 23938 7952 0.24 0.49 0.32
Trinity 15508 19417 9255 10162 6253 0.48 0.60 0.53

Human

BayesDenovo 17669 14139 6914 7225 10755 0.49 0.39 0.43
IDBA-trans 17669 20960 6154 14806 11515 0.29 0.35 0.32
SOAPdenovo-Trans 17669 22005 5933 16072 11736 0.27 0.34 0.30
rnaSPAdes 17669 21244 7637 13607 10032 0.36 0.43 0.39
Trinity 17669 21279 8765 12514 8904 0.41 0.50 0.45

aThe boldfaced numbers and green highlights show the best score among all the methods for each dataset.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of unique contigs assembled by the assembly method.

To recover more contigs, assemblies using multiple k-mer lengths were pooled for

each assembly method. As shown in Table 4.2, in these pooled assemblies, all the

methods assembled a large number of contigs ranging from 116% (BayesDenovo) to
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1,269% (rnaSPades) for all datasets. This was because the numbers of incorrectly

assembled contigs (FP) significantly increased for all datasets affecting the precision.

For BayesDenovo, the precision reduces by close to 50%, from an average of 0.54 in

the default assembly to 0.29 in the pooled assembly. Despite this negative effect on

precision, the recall values increased in all datasets. The highest recall value among

all the assembly methods increased from 0.64 in the default assembly by Trinity to

0.75 in the pooled assembly by rnaSPAdes (both for No-0). Overall, BayesDenovo

exhibited a better balance between precision and recall, producing the best F1.

Table 4.2: Performance of individual de novo assemblers using multiple k-mersa

Dataset Assembly Method Actualb Totalc TP FP FN Precision Recall F 1

No-0

BayesDenovo 18875 40207 11945 28262 6930 0.30 0.63 0.40
IDBA-trans 18875 106631 13799 92832 5076 0.13 0.73 0.22
SOAPdenovo-Trans 18875 209403 13615 195788 5260 0.07 0.72 0.12
rnaSPAdes 18875 258550 14172 244378 4703 0.05 0.75 0.10
Trinity 18875 84687 12783 71904 6092 0.15 0.68 0.25

Col-0

BayesDenovo 15508 33562 9273 24289 6235 0.28 0.60 0.38
IDBA-trans 15508 60312 10318 49994 5190 0.17 0.67 0.27
SOAPdenovo-Trans 15508 158677 9324 149353 6184 0.06 0.60 0.11
rnaSPAdes 15508 177276 9441 167835 6067 0.05 0.61 0.10
Trinity 15508 77211 10104 67107 5404 0.13 0.65 0.22

Human

BayesDenovo 17669 28722 8179 20543 9490 0.28 0.46 0.35
IDBA-trans 17669 52368 9301 43067 8368 0.18 0.53 0.27
SOAPdenovo-Trans 17669 124507 9318 115189 8351 0.07 0.53 0.13
rnaSPAdes 17669 249643 10216 239427 7453 0.04 0.58 0.08
Trinity 17669 40726 9603 31123 8066 0.24 0.54 0.33

aThe boldfaced numbers and green highlights show the best score among all the methods for each dataset.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of unique contigs assembled by the assembly method.

The results show that de novo assemblers are bound to behave differently depend-

ing on the dataset in question. Further, we will always encounter the trade-off between

precision and recall depending on our approach. Therefore, it is apparent that using

a single de novo assembly method will always be insufficient. ConSemble leverages

the commonalities among various assembly methods to construct a consensus-based

ensemble assembly. Despite how different assembly methods can be, their assembled
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contigs have overlaps.

4.1.2 ConSemblEX assembly

Among the results of individual assembly (Table 4.1), the newly included method,

BayesDenovo, performed consistently well in all the datasets. Therefore, inclusion

of this method in the ConSemble pipeline is expected to improve the assembly per-

formance. Using the current ConSemble pipeline, this cannot be achieved very eas-

ily. Thus, as described in Section 3.7 we introduced ConSemblEX, an extension of

ConSemble, which allows us to include any number of assemblies in the consensus

assembly pipeline and extract and examine all combinations of methods easily.

The principle behind the consensus assembly is to combine different assemblies

and determine overlapping contigs among them. These overlapping contigs are more

inclined toward being correctly assembled. In Figure 4.1 as well as Figures B.1 and

B.2, how the correctly assembled contigs are overlapped among the assembly methods

is illustrated. There are 26 distinct overlap sets each with a cardinality between 2

and 5 (Tables 4.3 as well as in Tables A.1 and A.2). TP increases proportionally

with the cardinality of the overlap sets across the datasets. In the unique sets of

individual assemblers, only a few contigs were correctly assembled out of the many

contigs produced, resulting in a large FP (averages of 10,203 and 74,029, for default

and pooled pipelines, respectively) and lower precision. When the 2-way overlaps were

considered, the total number of contigs in the overlaps reduced significantly, reducing

FP (averages of 878 and 5473, for default and pooled pipelines, respectively) and

increasing the precision. The 3-way and 4-way overlaps consistently showed lower

FP, besides a few anomalies, and had better precision than the 2-way and 1-way

(unique) overlaps. When all the assembly methods were considered in the overlap

(5-way intersection), 70% - 96% of the contigs were correctly assembled, leaving only
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small proportions of contigs incorrectly assembled. The 5-way overlap may therefore

seem like the best assembly because of its high precision. However, the assembled

contigs include only 40 ∼ 60% of the benchmark transcripts (shown as recall) leading

to not very high F1 scores (0.51 ∼ 0.74). Therefore, it provides an important assembly

set that can be incorporated to obtain further improved assemblies.

When the unions of various overlaps are considered, the trade-off between precision

and recall became clearer. In the union of all assembled contigs, “1-way+” in Table

4.4 (also in Tables A.3 and A.4), the recall increased to the average of 0.72 (0.78,

0.74, and 0.64, respectively, for No-0, Col-0, and Human), indicating a good amount

of benchmark transcripts recovered correctly. However, more false positives were

introduced in the assembly reducing the precision significantly. The 2-way+ assembly

set significantly reduced the number of false positives from an average of 450,000 in

the 1-way+ assembly set to an average of 38,000 across the datasets, increasing the

precision and hence F1 significantly. The 3-way+ and 4-way+ assembly sets followed

the same pattern and achieved the average precision and recall at 0.70 (4-way+) and

0.63 (3-way+), respectively, and F1 at 0.63 (4-way+) accross the datasets. Higher

overlaps show higher precision while lower overlaps tend to have higher recall.

4.1.3 Selecting the best ConSemblEX output assemblies

While any new assembly method can be added to ConSemblEX, it would be neces-

sary to understand how each assembly method affects the overall consensus assembly.

Table 4.3, shows details of the pooled consensus assembly for the Col-0 dataset, high-

lighting how each assembly method and overlaps among them contribute to the overall

assembly. The detailed results for the No-0 and the Human datasets are found in Ta-

bles A.1 and A.2, respectively. Among the assembler unique sets, SOAPdenovo-Trans

and rnaSPAdes produced large numbers of total unique contigs despite only a small
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(a) Col-0 default k-mer

(b) Col-0 pooled k-mers

Figure 4.1: Distribution of the assembled contig overlaps for the Col-0 dataset. The
numbers of total assembled contigs (blue) and correctly assembled contigs (orange)
are shown for each overlapping assembly set among five de novo assemblers. Assem-
bly was performed using the default k-mer values (a) or multiple k-mer values (b).
Overlaps among the five methods are indicated with connected closed circles. Each
overlapping set is exclusive to each other.
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Table 4.3: De novo assembly overlaps using multiple k-mers for the Col-0 dataseta

BayesDenovo IDBA-tran SOAPdenovo rnaSPAdes Trinity Actualb Totalc TP FP FN Precision Recall F 1

✘ 15508 16106 180 15926 15328 0.0112 0.0116 0.0114
✘ 15508 36559 239 36320 15269 0.0065 0.0154 0.0092

✘ 15508 122985 67 122918 15441 0.0005 0.0043 0.0010
✘ 15508 141131 197 140934 15311 0.0014 0.0127 0.0025

✘ 15508 54134 86 54048 15422 0.0016 0.0055 0.0025
All unique (1-way) 15508 370915 769 370146 14739 0.0021 0.0496 0.0040

✘ ✘ 15508 1884 117 1767 15391 0.0621 0.0075 0.0135
✘ ✘ 15508 648 7 641 15501 0.0108 0.0005 0.0009
✘ ✘ 15508 762 53 709 15455 0.0696 0.0034 0.0065
✘ ✘ 15508 451 91 360 15417 0.2018 0.0059 0.0114

✘ ✘ 15508 2132 49 2083 15459 0.0230 0.0032 0.0056
✘ ✘ 15508 1905 66 1839 15442 0.0346 0.0043 0.0076
✘ ✘ 15508 1259 210 1049 15298 0.1668 0.0135 0.0250

✘ ✘ 15508 14296 143 14153 15365 0.0100 0.0092 0.0096
✘ ✘ 15508 2202 19 2183 15489 0.0086 0.0012 0.0021

✘ ✘ 15508 2881 30 2851 15478 0.0104 0.0019 0.0033
All 2-way overlaps 15508 28420 785 27635 14723 0.0276 0.0506 0.0357

✘ ✘ ✘ 15508 491 43 448 15465 0.0876 0.0028 0.0054
✘ ✘ ✘ 15508 385 35 350 15473 0.0909 0.0023 0.0044
✘ ✘ ✘ 15508 883 402 481 15106 0.4553 0.0259 0.0491
✘ ✘ ✘ 15508 418 20 398 15488 0.0478 0.0013 0.0025
✘ ✘ ✘ 15508 115 16 99 15492 0.1391 0.0010 0.0020
✘ ✘ ✘ 15508 234 43 191 15465 0.1838 0.0028 0.0055

✘ ✘ ✘ 15508 977 62 915 15446 0.0635 0.0040 0.0075
✘ ✘ ✘ 15508 593 86 507 15422 0.1450 0.0055 0.0107
✘ ✘ ✘ 15508 576 125 451 15383 0.2170 0.0081 0.0155

✘ ✘ ✘ 15508 1509 108 1401 15400 0.0716 0.0070 0.0127
All 3-way overlaps 15508 6181 940 5241 14568 0.1521 0.0606 0.0867

✘ ✘ ✘ ✘ 15508 469 57 412 15451 0.1215 0.0037 0.0071
✘ ✘ ✘ ✘ 15508 644 386 258 15122 0.5994 0.0249 0.0478
✘ ✘ ✘ ✘ 15508 525 241 284 15267 0.4590 0.0155 0.0301
✘ ✘ ✘ ✘ 15508 178 61 117 15447 0.3427 0.0039 0.0078

✘ ✘ ✘ ✘ 15508 1661 679 982 14829 0.4088 0.0438 0.0791
All 4-way overlaps 15508 3477 1424 2053 14084 0.4095 0.0918 0.1500

✘ ✘ ✘ ✘ ✘ 15508 9369 7521 1848 7987 0.8028 0.4850 0.6047

aThe highlights show the overlaps included in the ConSemblEX-select-d assembly. The boldfaced numbers show the best scores among all the overlaps.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.

fraction being correctly assembled. The total number of contigs found in their 2-way

intersection set was much higher than in any other 2-way intersection due to its very

high FP. The rest of the 2-way intersections produced ∼90% fewer contigs than the

SOAPdenovo-Trans and rnaSPAdes intersection. However, all the 2-way intersections

had low precision, mostly ≤ 0.2 in all the datasets. When the 3-way and 4-way in-

tersections were considered, only a few 3-way intersections still had precision ≥ 0.2,

while four out of five 4-way intersections had precision ≥ 0.2. This indicated that

not all overlap sets could contribute positively to the consensus assembly. Therefore,

a better approach would be needed to ensure that only those contributing positively

to the consensus assembly were included in the “final” ConSemblEX set. Four as-

sembly sets were constructed using four precision values (0.1, 0.2, 0.3, and 0.4) as
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Table 4.4: De novo assembly using various union sets among overlapping contig sets
for the Col-0 dataseta

Assembly setsb Actualc Totald TP FP FN Precision Recall F 1

1-way+ 15508 418362 11439 406923 4069 0.0273 0.7376 0.0527
2-way+ 15508 47447 10670 36777 4838 0.2249 0.6880 0.3390
3-way+ 15508 19027 9885 9142 5623 0.5195 0.6374 0.5725
4-way+ 15508 12846 8945 3901 6563 0.6963 0.5768 0.6310

1-way ∪ 2-way 15508 399335 1554 397781 13954 0.0039 0.1002 0.0075
2-way ∪ 3-way 15508 34601 1725 32876 13783 0.0499 0.1112 0.0688
3-way ∪ 4-way 15508 9658 2364 7294 13144 0.2448 0.1524 0.1879
1-way ∪ 4-way 15508 374392 2193 372199 13315 0.0059 0.1414 0.0112
2-way ∪ 4-way 15508 31897 2209 29688 13299 0.0693 0.1424 0.0932
1-way ∪ 5-way 15508 380284 8290 371994 7218 0.0218 0.5346 0.0419
2-way ∪ 5-way 15508 37789 8306 29483 7202 0.2198 0.5356 0.3117
3-way ∪ 5-way 15508 15550 8461 7089 7047 0.5441 0.5456 0.5449

1-way ∪ 2-way ∪ 3-way 15508 405516 2494 403022 13014 0.0062 0.1608 0.0118
1-way ∪ 2-way ∪ 4-way 15508 402812 2978 399834 12530 0.0074 0.1920 0.0142
1-way ∪ 3-way ∪ 4-way 15508 380573 3133 377440 12375 0.0082 0.2020 0.0158
1-way ∪ 2-way ∪ 5-way 15508 408704 9075 399629 6433 0.0222 0.5852 0.0428
1-way ∪ 3-way ∪ 5-way 15508 386465 9230 377235 6278 0.0239 0.5952 0.0459
1-way ∪ 4-way ∪ 5-way 15508 383761 9714 374047 5794 0.0253 0.6264 0.0487
2-way ∪ 3-way ∪ 5-way 15508 43970 9246 34724 6262 0.2103 0.5962 0.3109
2-way ∪ 4-way ∪ 5-way 15508 41266 9730 31536 5778 0.2358 0.6274 0.3428

aThe boldfaced numbers with green highlights show the best score among all the overlaps for each union.
b1-way to 4-way overlaps are shown in Table 4.3 such as “All 2-way overlaps”.
cTotal number of transcripts in the benchmark transcriptomes.
dTotal number of contigs assembled by assembly method.

the inclusion threshold. As shown in Figure 4.2, at the precision threshold of 0.2, a

better balance between precision and recall was observed. Therefore, the precision

threshold of 0.2 was chosen to select the overlap sets to be included. This assem-

bly is called ConSemblEX-select-d. Eight intersections sets (highlighted in cyan in

Table 4.3) of varying cardinality make up the ConSemblEX-select-d, for the Col-0

dataset. Eight and nine sets were also chosen for the No-0 and Human dataset, as

indicated in Tables A.1 and A.2. We also examined performance of ConSemblEX-

3+d, ConSemblEX-4+d, and ConSemblEX-5d, and compared to the performance of

ConSemblEX-select-d assembly.

As shown in Table 4.4 (also in Tables A.3 and A.4), the 5-way overlap contributed

the most to any assembly set it was a part of. All the unions that included the 5-way
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overlap set had either a good precision or a good recall. The most notable was the

“3-way ∪ 5-way”, which recorded 0.54 in all the metrics for the Col-0 dataset. The

“2-way ∪ 4-way ∪ 5-way” had a high recall of 0.63. However, we did not include

these assembly sets in the further analysis later as they did not show a significant

improvement over their core 5-way overlap set.

Figure 4.2: Selection of the precision thresholds for the de novo ConSemblEX-select
assembly for the Col-0 dataset. Four thresholds were used to explore the selection of
assembly overlap sets for ConSemblEX-select-d based on performance metrics.

4.1.4 Performance of ConSemblEX compared to other de novo assembly

methods

The assembly performance of ConSemblEX-3+d, ConSemblEX-4+d, ConSemblEX-

5d, as well as ConSemblEX-select-d were compared against ConSemble and all in-

dividual assemblers. The results are summarized in Figure 4.3 and Table A.5. The

results were highly dependent on the complexity of the datasets for all the assembly

methods.
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(a) No-0 dataset

(b) Col-0 dataset

(c) Human dataset

Figure 4.3: Performance comparison among individual de novo assemblers, ConSem-
ble3+d, and ConSemblEX assemblies. Numbers of all assembled contigs and correctly
assembled contigs are shown in blue and orange bars, respectively. ConSemble and
ConSemblEX assemblies were run using multiple k-mers, while the individual assem-
bly methods were run using default k-mer lengths.
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In the No-0 dataset, which does not include isoforms, ConSemble3+d recorded

precision of 0.66 and recall of 0.71 resulting in F1 of 0.68. It assembled 20,297 contigs

in total (11% more than expected), 13,352 of them were correctly assembled, and

6,945 were incorrectly assembled. ConSemblEX-5d had the highest precision (0.96),

which is expected since the core contigs are more likely to be shared among all as-

sembly methods. On the other hand, it only recovered 60% of transcripts in the

benchmark resulting in the highest F1 of 0.74 (shared with ConSemblEX-4+d and

ConSemblEX-select-d). Even with the large disparity between precision and recall,

ConSemblEX-5d outperformed all the individual methods. It also had better precision

and F1 than ConSemble3+d but a lower recall. ConSemblEX-4+d assembled slightly

fewer correct contigs than ConSembleEX-3+d and ConSemble3+d, but more than

any of the individual methods. While it assembled 15,050 contigs in total, fewer than

the transcripts in the benchmark by 6,292 (33%), 12,583 were correctly assembled,

leaving only 2,467 contigs incorrectly assembled. With these numbers, ConSemblEX-

4+d recorded the second-highest precision (0.84) and the shared highest F1 (0.74)

among all de novo assemblers. In contrast, ConSemble3+d and ConSemblEX-3+d

reported the highest recall (0.71) among all de novo assemblers. However, ConSem-

ble3+d recorded a higher precision (0.66) and hence, a higher F1 (0.68) compared

to ConSemblEX-3+d (precision: 0.60 and F1: 0.65). The ConSemblEX-select-d had

the overall best performance for the No-0 dataset showing a great balance between

precision (0.78) and recall (0.70) with an F1 score of 0.74. It assembled 13,273 contigs

correctly, only 213 lower than ConSemblEX-3+d, the consensus set with the highest

TP.

All the methods assembled fewer contigs correctly in the more complex Col-0

and Human datasets where isoforms were present. ConSemble3+d displayed another

similar performance to ConSemblEX-3+d in both Col-0 (precision: 0.57 and F1: 0.58)
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and Human (precision: 0.47 and F1: 0.49), besides correctly assembling 300–500 less

contigs than ConSemblEX-3+d. ConSemblEX-5d consistently recorded the highest

precision (0.80 and 0.71 for Col-0 and Human, respectively) among all methods, and

had lower recall (0.49 and 0.40 for Col-0 and Human, respectively). ConSembEX-

4+d and ConSemblEX-select-d had the best F1 (0.64 and 0.52 for Col-0 and Human,

respectively) among all methods. However, both consensus sets still assembled fewer

contigs than expected. ConSemblEX-3+d again reported the highest recall (0.64

and 0.53 for Col-0 and Human, respectively) in both datasets with 18–23% more

than expected assembled contigs. However, it showed lower precision (0.52 and 0.44

for Col-0 and Human, respectively) and F1 (0.57 and 0.48 for Col-0 and Human,

respectively). ConSemblEX-select-d again showed the best balance between precision

(0.66 and 0.53 for Col-0 and Human, respectively) and recall (0.62 and 0.51 for Col-0

and Human, respectively) and, hence, the best performance.

Despite the lower performance in datasets containing isoforms, ConSemblEX-4+d

and the ConSemblEX-select-d showed superior performance compared to the original

ConSemble. Although ConSemblEX-3+d showed an identical or a slightly lower per-

formance compared to ConSemble3+d, ConSemblEX still produced more correctly

assembled contigs and reduced the number of incorrectly assembled contigs. These

observations prove that the addition of BayesDenovo improved the overall transcrip-

tome assembly performance.

4.2 Performance of Genome-guided Assembly Methods

4.2.1 Individual genome-guided assembly methods

As described in Voshall et al. [46], the performance of genome-guided assemblers

mostly depends on the reference genome used. The assembly performs well if the
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reference genome is from the same organism from which the RNA-seq was performed.

Using a different reference genome, even if slightly (such as from a different strain

of the same species), could lead to poor assembly performance. Such effects of using

different reference genomes were confirmed in this study. As shown in Table 4.5, when

the same reference genome was used, all the methods performed relatively well across

all the datasets. In the simpler No-0 dataset, all but Bayesembler recorded high

recall ranging from 0.77 to 0.83 (StringTie) and precision ranging from 0.71 to 0.75.

Considering the No-0 dataset did not include any isoforms and the same reference

was used, the methods could have achieved better precision and recall. Bayesembler

also stood out in terms of the total number of contigs recovered with 20% fewer

contigs than expected (shown as “Actual”). The rest of the methods recovered an

average of 9% more contigs than expected, ranging between 2.2% (Cufflinks) and

13.4% (Scallop).

Table 4.5: Performance of individual genome-guided assemblers using the same ref-
erence genomea

Dataset Assembly Method Actualb Totalc TP FP FN Precision Recall F 1

No-0

Bayesembler 18875 15172 11201 3971 7674 0.74 0.59 0.66
Cufflinks 18875 19288 14531 4757 4344 0.75 0.77 0.76
Scallop 18875 21397 15184 6213 3691 0.71 0.80 0.75
StringTie 18875 21026 15634 5392 3241 0.74 0.83 0.78
StringTie2 18875 21196 15137 6059 3738 0.71 0.80 0.76

Col-0

Bayesembler 15508 15143 9158 5985 6350 0.60 0.59 0.60
Cufflinks 15508 15768 8560 7208 6948 0.54 0.55 0.55
Scallop 15508 18055 10534 7521 4974 0.58 0.68 0.63
StringTie 15508 16908 9891 7017 5617 0.58 0.64 0.61
StringTie2 15508 17722 10034 7688 5474 0.57 0.65 0.60

Human

Bayesembler 17669 13919 7524 6395 10145 0.54 0.43 0.48
Cufflinks 17669 14923 7280 7643 10389 0.49 0.41 0.45
Scallop 17669 26857 8642 18215 9027 0.32 0.49 0.39
StringTie 17669 16311 8094 8217 9575 0.50 0.46 0.48
StringTie2 17669 15850 7388 8462 10281 0.47 0.42 0.44

aThe boldfaced numbers and green highlights show the best score among all the methods for each dataset.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.
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In the Col-0 and Human datasets, all methods had a lower performance with

precision ranging from 0.54 to 0.60 and from 0.32 to 0.54, respectively. Bayesembler

had the highest precision in both datasets (0.60 and 0.54 for Col-0 and Human,

respectively), making it the most precise, despite consistently producing the least

number of contigs (20% fewer than expected). Scallop recorded the highest recall (0.68

and 0.49 for Col-0 and Human, respectively) and recovered the most contigs (16.4%

and 52% more than expected for Col-0 and Human, respectively). When a different

reference genome was used, as shown in Table 4.6, all the assembly methods performed

substantially worse, reporting precision ≤ 0.37, recall ≤ 0.37, and F1 = 0.34 in all

datasets. Scallop barely produced any correct contigs (66/16705), resulting in all

the metrics being below 0.01. It is also interesting to note that the older version

of StringTie slightly outperformed the newer version, StringTie2, when the same

reference genome was used. StringTie had better precision and recall and hence

better F1 across all datasets. The performance was very close when the different

reference genome was used. Regardless, StringTie2 only had a slight edge in the more

complex datasets (Col-0 and Human), in which it recovered a slightly higher TP than

StringTie. This difference in performance further highlights how unpredictable and

challenging transcriptome assembly can be.

4.2.2 ConSemblEX assembly

Distribution of assembly overlaps are shown in Figure 4.4 (also in Figures B.3 and

B.4). The 26 distinct overlap sets are summarized in Table 4.7 (also in Tables A.6

and A.7). When the same reference was used, the number of correctly assembled

contigs (TP) increased with the number of overlapping assembly methods in an over-

lap set. All unique sets from individual methods were among overlap sets with the

lowest precision (average of 0.05) and FP (average of 2884). The precision increased
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Table 4.6: Performance of individual genome-guided assemblers using a different ref-
erence genomea

Dataset Assembly Method Actualb Totalc TP FP FN Precision Recall F 1

No-0

Bayesembler 18875 15531 5142 10389 13733 0.33 0.27 0.30
Cufflinks 18875 19938 6510 13428 12365 0.33 0.34 0.34
Scallop 18875 22298 6908 15390 11967 0.31 0.37 0.34
StringTie 18875 21772 7069 14703 11806 0.32 0.37 0.35
StringTie2 18875 21768 6858 14910 12017 0.32 0.36 0.34

Col-0

Bayesembler 15508 15330 4810 10520 10698 0.31 0.31 0.31
Cufflinks 15508 16664 4321 12343 11187 0.26 0.28 0.27
Scallop 15508 16705 66 16639 15442 0.004 0.00 0.00
StringTie 15508 17791 5074 12717 10434 0.29 0.33 0.3
StringTie2 15508 18332 5199 13133 10309 0.28 0.34 0.31

Human

Bayesembler 17669 14610 5413 9197 12256 0.37 0.31 0.34
Cufflinks 17669 16258 5296 10962 12373 0.33 0.30 0.31
Scallop 17669 18778 6132 12646 11537 0.33 0.35 0.34
StringTie 17669 18339 5851 12488 11818 0.32 0.33 0.32
StringTie2 17669 20203 6217 13986 11452 0.31 0.35 0.33

aThe boldfaced numbers and green highlights show the best score among all the methods for each dataset. The

boldfaced numbers and orange highlights show the worst score across the methods for all datasets.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.

significantly to an average of 0.21 in the 2-way overlap sets, reducing the FP (aver-

age of 270) significantly as a result. The 3-way and 4-way overlaps showed further

reduction in FP and a higher precision than the 2-way overlaps and unique sets. The

5-way overlap again had high precision (0.95, 0.80, and 0.74, for the No-0, Col-0,

and Human datasets, respectively) and a lower recall (0.50, 0.40, and 0.26, for the

No-0, Col-0, and Human datasets, respectively). Because of its low recall the 5-way

overlap was not considered the best assembly but remained an important part of the

chosen output assembly sets. When the different reference was used, all the unique

sets from individual methods had an even lower precision (average of 0.02). In the

2-way overlaps, the precision increased to an average of 0.24. However, some overlap

sets within the 2-way overlaps of the Col-0 dataset only assembled as few as 2 contigs,

hence inflating the precision. The 3-way and 4-way overlaps showed a similar pattern

to the 2-way overlaps, with a further increase in precision, and the Col-0 dataset hav-
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ing a number of overlap sets assembling as few as 3 contigs. The 5-way overlap had

a higher precision (0.49, 0.0.62, and 0.54, for the No-0, Col-0, and Human datasets,

respectively) than all the other overlap sets, but considerably lower than the same

reference assembly.

In the unions of overlaps, as shown in Table 4.8, (also in Tables A.8, and A.9),

“1-way+” union that includes all assembled contigs recovered a considerable amount

of benchmark transcripts indicated by an average recall of 0.73 (0.88, 0.75, and 0.57

for No-0, Col-0, and Human, respectively). However, this is at the cost of lower pre-

cision resulting from the many FP introduced by the individual overlap sets. Better

assemblies were achieved in the “2-way+” and “3-way+” with increased precision and

recall, and hence a better F1 score. The pattern extended to the “4-way+” that finally

recorded the best precision (0.91, 0.74, and 0.68 for No-0, Col-0, and Human, respec-

tively) and recall (0.74, 0.60, and 0.40 for No-0, Col-0, and Human, respectively)

among all union assembly sets.

The observations in the unions of overlaps were consistent in the assemblies using

a different reference; however, the overall performance was much worse. Therefore, we

only focused on the better performing “3-way+” and “4-way+” for further analysis.

4.2.3 Selecting the best ConSemblEX output assembly

As indicated earlier in Section 4.2.2, the overlaps and unions collectively show an

improvement in the accuracy of the assembly. However, not every overlap may be

contributing to better assemblies. Table 4.7 (as well as Tables A.6 and A.7) details the

performance of various assembly overlaps when the same reference genome is used. In

the Col-0 dataset, all the unique sets of individual assemblers had similar performance

with very low precision in both the same and different reference assemblies. The
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(a) Col-0 same reference genome

(b) Col-0 different reference genome

Figure 4.4: Distribution of the assembled contig overlaps for the Col-0 dataset. The
numbers of total assembled contigs (blue) and correctly assembled contigs (orange) are
shown for each overlapping assembly set among five genome-guided assemblers. Each
assembly was performed using the same reference genome (a) and different reference
genome (b). Overlaps among the five methods are indicated with the connected closed
circles. Each overlap set is exclusive to each other.
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Table 4.7: Genome-guided assembly overlaps using the same reference genome for the
Col-0 dataseta

Bayesembler Cufflinks Scallop StringTie StringTie2 Actualb Totalc TP FP FN Precision Recall F 1

✘ 15508 2567 273 2294 15235 0.1063 0.0176 0.0302
✘ 15508 3109 87 3022 15421 0.0280 0.0056 0.0093

✘ 15508 2217 171 2046 15337 0.0771 0.0110 0.0193
✘ 15508 1423 43 1380 15465 0.0302 0.0028 0.0051

✘ 15508 1795 73 1722 15435 0.0407 0.0047 0.0084
All unique (1-way) 15508 11111 647 10464 14861 0.0582 0.0417 0.0486

✘ ✘ 15508 133 32 101 15476 0.2406 0.0021 0.0041
✘ ✘ 15508 681 249 432 15259 0.3656 0.0161 0.0308
✘ ✘ 15508 159 51 108 15457 0.3208 0.0033 0.0065
✘ ✘ 15508 257 89 168 15419 0.3463 0.0057 0.0113

✘ ✘ 15508 108 33 75 15475 0.3056 0.0021 0.0042
✘ ✘ 15508 256 14 242 15494 0.0547 0.0009 0.0018
✘ ✘ 15508 164 21 143 15487 0.1280 0.0014 0.0027

✘ ✘ 15508 320 51 269 15457 0.1594 0.0033 0.0064
✘ ✘ 15508 544 57 487 15451 0.1048 0.0037 0.0071

✘ ✘ 15508 517 51 466 15457 0.0986 0.0033 0.0064
All 2-way overlaps 15508 3139 648 2491 14860 0.2064 0.0418 0.0695

✘ ✘ ✘ 15508 149 90 59 15418 0.6040 0.0058 0.0115
✘ ✘ ✘ 15508 58 19 39 15489 0.3276 0.0012 0.0024
✘ ✘ ✘ 15508 61 20 41 15488 0.3279 0.0013 0.0026
✘ ✘ ✘ 15508 220 132 88 15376 0.6000 0.0085 0.0168
✘ ✘ ✘ 15508 521 267 254 15241 0.5125 0.0172 0.0333
✘ ✘ ✘ 15508 188 84 104 15424 0.4468 0.0054 0.0107

✘ ✘ ✘ 15508 214 116 98 15392 0.5421 0.0075 0.0148
✘ ✘ ✘ 15508 122 58 64 15450 0.4754 0.0037 0.0074
✘ ✘ ✘ 15508 613 105 508 15403 0.1713 0.0068 0.0130

✘ ✘ ✘ 15508 640 138 502 15370 0.2156 0.0089 0.0171
All 3-way overlaps 15508 2786 1029 1757 14479 0.3693 0.0664 0.1125

✘ ✘ ✘ ✘ 15508 227 173 54 15335 0.7621 0.0112 0.0220
✘ ✘ ✘ ✘ 15508 227 157 70 15351 0.6916 0.0101 0.0200
✘ ✘ ✘ ✘ 15508 208 72 136 15436 0.3462 0.0046 0.0092
✘ ✘ ✘ ✘ 15508 1746 1279 467 14229 0.7325 0.0825 0.1483

✘ ✘ ✘ ✘ 15508 2378 1392 986 14116 0.5854 0.0898 0.1557
All 4-way overlaps 15508 4786 3073 1713 12435 0.6421 0.1982 0.3028

✘ ✘ ✘ ✘ ✘ 15508 7741 6171 1570 9337 0.7972 0.3979 0.5309

aThe highlights show the overlaps included in the ConSemblEX-select-g assembly. The boldfaced numbers show the best score among all the overlaps.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.

differing overlap performances became more visible in the 2-way overlaps, where 40%

of overlaps had precision ≥ 0.3 while the rest had ≤ 0.15, indicating that not all

overlaps could be effective. The 3-way and 4-way overlaps showed the same pattern

with an even more significant number of them reporting precision ≥ 0.3. As we

did for de novo assemblies, four assembly sets were constructed using precision as

the inclusion thresholds in both the same and different reference assemblies. The

precision of 0.3 was chosen for the threshold for the same reference assembly because,

as shown in Figure 4.5 it showed a better balance between precision and recall and

hence the better F1. In the different reference assembly, the precision of 0.2 was

chosen as the threshold to cover more overlaps as most high scoring overlaps only
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Table 4.8: Genome-guided assembly using various union sets among overlapping con-
tig sets and using the same reference genome for the Col-0 dataseta

Assembly setsb Actualc Totald TP FP FN Precision Recall F 1

1-way+ 15508 29563 11568 17995 3940 0.3913 0.7459 0.5133
2-way+ 15508 18452 10921 7531 4587 0.5919 0.7042 0.6432
3-way+ 15508 15313 10273 5040 5235 0.6709 0.6624 0.6666
4-way+ 15508 12527 9244 3283 6264 0.7379 0.5961 0.6595

1-way ∪ 2-way 15508 14250 1295 12955 14213 0.0909 0.0835 0.0870
2-way ∪ 3-way 15508 5925 1677 4248 13831 0.2830 0.1081 0.1565
3-way ∪ 4-way 15508 7572 4102 3470 11406 0.5417 0.2645 0.3555
1-way ∪ 4-way 15508 15897 3720 12177 11788 0.2340 0.2399 0.2369
2-way ∪ 4-way 15508 7925 3721 4204 11787 0.4695 0.2399 0.3176
1-way ∪ 5-way 15508 18852 6818 12034 8690 0.3617 0.4396 0.3969
2-way ∪ 5-way 15508 10880 6819 4061 8689 0.6267 0.4397 0.5168
3-way ∪ 5-way 15508 10527 7200 3327 8308 0.6840 0.4643 0.5531

1-way ∪ 2-way ∪ 3-way 15508 17036 2324 14712 13184 0.1364 0.1499 0.1428
1-way ∪ 2-way ∪ 4-way 15508 19036 4368 14668 11140 0.2295 0.2817 0.2529
1-way ∪ 3-way ∪ 4-way 15508 18683 4749 13934 10759 0.2542 0.3062 0.2778
1-way ∪ 2-way ∪ 5-way 15508 21991 7466 14525 8042 0.3395 0.4814 0.3982
1-way ∪ 3-way ∪ 5-way 15508 21638 7847 13791 7661 0.3626 0.5060 0.4225
1-way ∪ 4-way ∪ 5-way 15508 23638 9891 13747 5617 0.4184 0.6378 0.5053
2-way ∪ 3-way ∪ 5-way 15508 13666 7848 5818 7660 0.5743 0.5061 0.5380
2-way ∪ 4-way ∪ 5-way 15508 15666 9892 5774 5616 0.6314 0.6379 0.6346

aThe boldfaced numbers with green highlights show the best score among all the overlaps for each union.
b1-way to 4-way overlaps are shown in Table 4.7 such as “All 2-way overlaps”.
cTotal number of transcripts in the benchmark transcriptomes.
dTotal number of contigs assembled by assembly method.

assembled a few contigs. The overlaps that are included in ConSemblEX-select-g

assembly for the Col-0 dataset using the same reference are shown in Table 4.7 with

cyan highlights. Those chosen in the No-0 and Human datasets are shown in Tables

A.6 and A.7, respectively. As shown in Table 4.8 (also in Tables A.8 and A.9), all

the unions that included the 5-way overlap had a good precision or a good recall.

4.2.4 Performance of ConSemblEX compared to other genome-guided

assembly methods

Figures 4.6 and 4.7 summarize the performance comparisons (see Tables A.10 and

A.11 for details) among ConSemble, ConSemblEX, and all individual assembly meth-

ods using the same and different reference genomes. In the simpler No-0 dataset,
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Figure 4.5: Selection of the precision thresholds for genome-guided ConSemblEX-
select assembly using the same reference for the Col-0 dataset. Four precision thresh-
olds were used to explore ConSemblEX-select-g based on their performance metrics.

while using the same reference genome, ConSemble3+g recorded a high precision

(0.91) and recall (0.75) resulting in high F1 (0.82). ConSemblEX-5g recorded the

highest precision (0.95) but a lower recall (0.50) than ConSemble3+g, indicating

that only half of the benchmark transcripts were recovered. ConSemblEX-4+g had

virtually the same performance. ConSemblEX-3+g had a slightly lower performance

(precision: 0.84, recall: 0.82 and F1: 0.83) compared to ConSemblEX-4+g and Con-

Semble3+g, however, it recovered ∼1300 more contigs correctly than both assembly

sets. Its total number of assembled contigs was also very close (only 424 fewer) than

the expected number in the benchmark (18,875 transcripts). Despite recovering the

bigger number of correctly assembled contigs amongst the consensus-based assembly

sets, the ConSemblEX-select-g recorded a slightly lower precision (0.87) than both

ConSemblEX-4+g and ConSemble3+g, but a higher recall, and hence slightly higher

F1 (0.85). ConSemblEX-select-g also recovered ∼1376 correctly assembled contigs

than ConSemble3+g and ConSemblEX-4+g.

Similar to what we observed in individual assembly methods, the performance of
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ConSemblEX was lower in the more complex Col-0 and Human datasets. ConSemblEX-

4+g and ConSemble3+g performances were again close, with a max of 0.3 separating

their metrics. ConSemblEX-5g recorded the highest precision (0.80 and 0.74 for Col-0

and Human, respectively) and the lowest recall (0.40 and 0.26 for Col-0 and Human,

respectively) among all methods. ConSeblEX-3+g recovered ∼1000 more correct con-

tigs than ConSemblEX-4+g and ConSemble3+g leading to a better recall (0.66 and

0.46 for Col-0 and Human, respectively) than both. Finally, ConSemblEX-select-g

recorded a slightly lower precision than ConSemblEX-4+g and ConSemble3+g but

assembled ∼1000 more contigs correctly and had higher recall (0.67).
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(a) No-0 dataset

(b) Col-0 dataset

(c) Human dataset

Figure 4.6: Performance comparisons among individual genome-guided assemblers,
ConSemble3+g, and ConSemblEX assemblies using the same reference genome. Num-
bers of total assembled contigs and incorrectly assembled contigs are shown in blue
and orange bars, respectively.
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(a) No-0 dataset

(b) Col-0 dataset

(c) Human dataset

Figure 4.7: Performance comparisons among individual genome-guided assemblers,
ConSemble3+g, and ConSemblEX assemblies using a different reference genome.
Numbers of total assembled contigs and incorrectly assembled contigs are shown in
blue and orange bars, respectively.
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As reported before, using a different reference decreased the assembly performance

significantly in all the datasets (see Figure 4.7). All the methods had low precision ≤

0.49, recall ≤ 0.37 resulting in low F1 ≤ 0.39. From these observations, it is clear

that using the de novo approach would be a better option in cases where a good

reference does not exist. Further, it would be interesting to investigate whether the

assembled contigs, when using a different reference, can be used with the de novo

approach to improve the performance of the assembly.

The consensus-based assembly methods collectively outperformed the individual

assembly methods, highlighting the advantage of using a consensus assembly method

even in the genome-guided assembly. When the realistic output, ConSemblEX-4+g,

was considered, the performance of ConSemblEX was identical to or very close to

that of ConSemble. Nonetheless, ConSemblEX-select-g recovered more correctly as-

sembled contigs, which reduced the FP overall.

4.3 Discussion

Assembling an accurate and complete transcriptome is a challenging task. Many

assembly methods, be it de novo or genome-guided, only assemble part of the tran-

scriptome correctly. In de novo assembly, we observed that most of the individual

methods generated far more contigs than expected and yet only accurately assembled

≤ 60% of the transcripts. In genome-guided assembly, even when a good reference

was available, the assembly methods only managed to recover ≤ 80%of the tran-

scripts. The performance was even worse when a different reference was used in

the assembly. Regardless of the triviality of the difference (e.g., versions of the hu-

man genome), the assembly was significantly impacted. The genome-guided assembly

methods with different reference genomes only recovered ≤ 37% of the benchmark
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transcripts. In addition, the assembly results were heavily dependent on the com-

plexity of the dataset, which can cause inconsistency in the assemblies produced by

various methods.

Ensemble methods can overcome some of the limitations of de novo and genome-

guided methods by selecting consensus contigs from various individual assemblers.

The likelihood of accurately assembled contigs significantly increases when recovered

in more than one assembler. ConSemble uses consensus information among individual

assembly methods (both de novo and genome-guided) to produce more accurate con-

sensus assemblies that outperform individual assemblers. Nonetheless, it has some

limitations highlighted in Section 1.2. ConSemblEX applies the core principles of

ConSemble assembly, and modifies a few things to address its limitations.

In the de novo approach, ConSemblEX incorporated a new assembly method,

BayesDenovo, increasing the number of assemblers. Besides the union overlaps for the

final assembly sets, ConSemblEX provided ConSemblEX-select-d by selecting over-

lap sets with precision ≥ 0.2. ConSemblEX-select-d delivered a better performance

with higher precision (+9%) and F1 (+5%) than ConSemble3+d across all datasets

tested. The closeness in recall indicated that the higher precision and F1 shown with

ConSemblEX-select-d were mainly due to lower FP leading also to smaller numbers

of total contigs. In fact, while ConSemblEX-select-d and ConSemble3+d only had

a difference of ∼150 in their TP across all datasets, ConSemblEX-select-d had a

lower FP, an average of 30%, than ConSemble3+d across all datasets. While using

the precision threshold to choose assembly sets for ConSemblEX-select-d worked well

with simulated data, it can not be done where no benchmark transcriptome exists.

In this case, simpler union sets such as ConSemblEX-3+d, ConSemblEX-4+d, and

ConSemblEX-5d, can be considered. Compared to ConSemble3+d, ConSemblEX-

4+d also recorded higher precision (+14%) and F1 (+5%) but a lower recall (-3%).
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ConSemblEX-4+d also assembled fewer TP than ConSemble3+d (on average, 630

fewer). Furthermore, ConSemblEX-4+d significantly reduced FP compared to Con-

Semble3+d, (from ∼8100 to ∼4200, equivalent to 49% reduction). We observed that

the addition of BayesDenovo improved the overall assembly. Therefore, ConSemblEX

generally performed better than ConSemble.

In the genome-guided approach, the older version of StringTie was added to

the ConSemblEX assembly pipeline in addition to the four methods initially used

in ConSemble. ConSemblEX-select-g was defined differently for the same-reference

and different-reference assemblies. Regardless of ConSemblEX-select-g reporting a

lower precision (-4%) than ConSemble3+g, it assembled 830 more contigs correctly

and hence a higher recall (+5%) and slightly higher F1 (+1.7%) across all datasets.

The ConSemblEX assemblies (ConSemblEX-3+g, ConSemblEX-4+g, ConSemblEX-

5g) and ConSemble had similar performances across all datasets overall, with only

minor (1%) differences between precision and recall in the No-0 and Human datasets.

With the different reference genomes assemblies, both ConSemblEX and ConSemble

performed badly even with the carefully constructed ConSemblEX-select-g. In the

Col-0 dataset, we saw that ConSemblEX-5g could not assemble a significant number

of contigs, with only 13 contigs assembled. Thus, when a good reference does not

exist, the de novo pipeline would be the better option, as we observed that it out-

performed the genome-guided pipeline. Nonetheless, even when appropriate reference

genomes are not available, combining the best de novo and genome-guided assemblies

would be interesting and such approach needs to be investigated whether the contigs

assembled by both methods could lead to a more accurate assembly.

Although ConSemblEX-select provides a better assembly, defining the metrics to

select overlap sets is the major challenge. Reference-free evaluation tools such as

TransRate [43] would be ideal for calculating statistics of various overlaps and using
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them to determine the performance of overlaps. However, unlike the trivial assessment

using precision, the tools would introduce new patterns that need more understanding

to define a better overlap. Furthermore, various tools define assembly performance

differently. Therefore, a dependency on the selected evaluation tool is likely to exist,

leading to potential inconsistency in the assembly results. Using different evaluation

tools together and applying a machine learning model to understand the varying

patterns would help overcome the possible dependency problem.
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Chapter 5

Conclusions and Future Work

We presented ConSemblEX, a consensus-based transcriptome assembly approach that

is an extension of ConSemble [46]. It expands on the number of individual assembly

methods used in the consensus assembly, provides details about the distribution of

the assembled contigs, and provides alternative assemblies as outputs. We tested

the assembly performance of ConSemblEX using five assembly methods, each of de

novo and genome-guided, across three datasets of varying complexity. In the de novo

pipeline, ConSemblEX-4+d performs better than ConSemble3+d increasing the pre-

cision by 14% and F1 by 5%, despite the 3% lower recall. It also significantly reduces

the FP by 49% resulting in a more accurate assembly. ConSemblEX also provides

a ConSemblEX-select-d, which only consists of the better-performing overlap sets.

Compared to Consemble3+d, ConSemblEX-select-d increases the precision by 9%

and F1 by 5% while maintaining the high recall. It also reduces the FP by 30%.

Therefore, we showed that the extra overlap performance information provided by

ConSemblEX could be used to construct an even more accurate assembly. In the

genome-guided pipeline, ConSemblEX performs identically to ConSemble using the

same and different reference genomes. Comparing ConSemblEX-select-g and Con-

Semble, precision is reduced by 4%, while recall and F1 are increased by 5% and

1.7%, respectively.
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In the future, we can define how overlap sets are selected to construct the better

assembly by applying machine learning model to ConSemblEX. We plan to incorpo-

rate, for example, TransRate and DETONATE [30] evaluation tools to select the best-

performing overlaps sets. TransRate provides reference-free evaluation metrics and

would be more useful in the de novo pipeline. DETONATE provides both reference-

free and reference-based metrics and can be used in both de novo and genome-guided

pipelines. With TransRate and DETONATE, we do not need a benchmark tran-

scriptome to evaluate the performance of the overlaps and final assembly sets. We

also plan to investigate whether we can use the assembled contigs when the appropri-

ate reference genome is not available for genome-guided assembly by analyzing them

together with de novo assembly sets.
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Appendix A

Table A.1: De novo assembly overlaps using multiple k-mers for the No-0 dataseta

BayesDenovo IDBA-Trans SOAPdenovo rnaSPAdes Trinity Actualb Totalc TP FP FN Precision Recall F 1

✘ 18875 20941 18 20923 18857 0.0009 0.0010 0.0009
✘ 18875 78613 157 78456 18718 0.0020 0.0083 0.0032

✘ 18875 167709 74 167635 18801 0.0004 0.0039 0.0008
✘ 18875 215181 426 214755 18449 0.0020 0.0226 0.0036

✘ 18875 55227 30 55197 18845 0.0005 0.0016 0.0008
All unique (1-way) 18875 537671 705 536966 18170 0.0013 0.0374 0.0025

✘ ✘ 18875 1698 8 1690 18867 0.0047 0.0004 0.0008
✘ ✘ 18875 665 8 657 18867 0.0120 0.0004 0.0008
✘ ✘ 18875 831 83 748 18792 0.0999 0.0044 0.0084
✘ ✘ 18875 962 5 957 18870 0.0052 0.0003 0.0005

✘ ✘ 18875 2795 81 2714 18794 0.0290 0.0043 0.0075
✘ ✘ 18875 3165 223 2942 18652 0.0705 0.0118 0.0202
✘ ✘ 18875 1651 32 1619 18843 0.0194 0.0017 0.0031

✘ ✘ 18875 14753 100 14653 18775 0.0068 0.0053 0.0059
✘ ✘ 18875 3121 32 3089 18843 0.0103 0.0017 0.0029

✘ ✘ 18875 4238 25 4213 18850 0.0059 0.0013 0.0022
All 2-way overlaps 18875 33879 597 33282 18278 0.0176 0.0316 0.0226

✘ ✘ ✘ 18875 232 8 224 18867 0.0345 0.0004 0.0008
✘ ✘ ✘ 18875 325 57 268 18818 0.1754 0.0030 0.0059
✘ ✘ ✘ 18875 445 18 427 18857 0.0404 0.0010 0.0019
✘ ✘ ✘ 18875 441 22 419 18853 0.0499 0.0012 0.0023
✘ ✘ ✘ 18875 279 12 267 18863 0.0430 0.0006 0.0013
✘ ✘ ✘ 18875 374 17 357 18858 0.0455 0.0009 0.0018

✘ ✘ ✘ 18875 1635 633 1002 18242 0.3872 0.0335 0.0617
✘ ✘ ✘ 18875 787 37 750 18838 0.0470 0.0020 0.0038
✘ ✘ ✘ 18875 640 42 598 18833 0.0656 0.0022 0.0043

✘ ✘ ✘ 18875 2185 57 2128 18818 0.0261 0.0030 0.0054
All 3-way overlaps 18875 7343 903 6440 17972 0.1230 0.0478 0.0689

✘ ✘ ✘ ✘ 18875 272 107 165 18768 0.3934 0.0057 0.0112
✘ ✘ ✘ ✘ 18875 268 96 172 18779 0.3582 0.0051 0.0100
✘ ✘ ✘ ✘ 18875 246 32 214 18843 0.1301 0.0017 0.0033
✘ ✘ ✘ ✘ 18875 405 80 325 18795 0.1975 0.0042 0.0083

✘ ✘ ✘ ✘ 18875 2036 894 1142 17981 0.4391 0.0474 0.0855
All 4-way overlaps 18875 3227 1209 2018 17666 0.3747 0.0641 0.1094

✘ ✘ ✘ ✘ ✘ 18875 11823 11374 449 7501 0.9620 0.6026 0.7410

aThe highlights show the overlaps included in the ConSemblEX-select-d assembly. The boldfaced numbers show the best score among all the overlaps.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.
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Table A.2: De novo assembly overlaps using multiple k-mers for the Human dataseta

BayesDenovo IDBA-Trans SOAPdenovo rnaSPAdes Trinity Actualb Totalc TP FP FN Precision Recall F 1

✘ 17669 11186 122 11064 17547 0.0109 0.0069 0.0085
✘ 17669 26486 132 26354 17537 0.0050 0.0075 0.0060

✘ 17669 90739 160 90579 17509 0.0018 0.0091 0.0030
✘ 17669 213288 420 212868 17249 0.0020 0.0238 0.0036

✘ 17669 16211 171 16040 17498 0.0105 0.0097 0.0101
All unique (1-way) 17669 357910 1005 356905 16664 0.0028 0.0569 0.0054

✘ ✘ 17669 1212 42 1170 17627 0.0347 0.0024 0.0044
✘ ✘ 17669 600 21 579 17648 0.0350 0.0012 0.0023
✘ ✘ 17669 726 88 638 17581 0.1212 0.0050 0.0096
✘ ✘ 17669 426 42 384 17627 0.0986 0.0024 0.0046

✘ ✘ 17669 2232 17 2215 17652 0.0076 0.0010 0.0017
✘ ✘ 17669 2595 89 2506 17580 0.0343 0.0050 0.0088
✘ ✘ 17669 1137 132 1005 17537 0.1161 0.0075 0.0140

✘ ✘ 17669 10719 336 10383 17333 0.0313 0.0190 0.0237
✘ ✘ 17669 1655 24 1631 17645 0.0145 0.0014 0.0025

✘ ✘ 17669 2963 156 2807 17513 0.0526 0.0088 0.0151
All 2-way overlaps 17669 24265 947 23318 16722 0.0390 0.0536 0.0452

✘ ✘ ✘ 17669 488 7 481 17662 0.0143 0.0004 0.0008
✘ ✘ ✘ 17669 497 26 471 17643 0.0523 0.0015 0.0029
✘ ✘ ✘ 17669 510 113 397 17556 0.2216 0.0064 0.0124
✘ ✘ ✘ 17669 330 47 283 17622 0.1424 0.0027 0.0052
✘ ✘ ✘ 17669 141 17 124 17652 0.1206 0.0010 0.0019
✘ ✘ ✘ 17669 345 99 246 17570 0.2870 0.0056 0.0110

✘ ✘ ✘ 17669 1307 204 1103 17465 0.1561 0.0115 0.0215
✘ ✘ ✘ 17669 693 52 641 17617 0.0750 0.0029 0.0057
✘ ✘ ✘ 17669 903 218 685 17451 0.2414 0.0123 0.0235

✘ ✘ ✘ 17669 1807 268 1539 17401 0.1483 0.0152 0.0275
All 3-way overlaps 17669 7021 1051 5970 16618 0.1497 0.0595 0.0851

✘ ✘ ✘ ✘ 17669 703 75 628 17594 0.1067 0.0042 0.0082
✘ ✘ ✘ ✘ 17669 476 121 355 17548 0.2542 0.0068 0.0133
✘ ✘ ✘ ✘ 17669 843 221 622 17448 0.2622 0.0125 0.0239
✘ ✘ ✘ ✘ 17669 331 117 214 17552 0.3535 0.0066 0.0130

✘ ✘ ✘ ✘ 17669 2378 831 1547 16838 0.3495 0.0470 0.0829
All 4-way overlaps 17669 4731 1365 3366 16304 0.2885 0.0773 0.1219

✘ ✘ ✘ ✘ ✘ 17669 9908 7021 2887 10648 0.7086 0.3974 0.5092

aThe highlights show the overlaps included in the ConSemblEX-select-d assembly. The boldfaced numbers show the best score among all the overlaps.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.
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Table A.3: De novo assembly using various union sets among overlapping contig sets
and multiple k-mers for the No-0 dataseta

Assembly setsb Actualc Totald TP FP FN Precision Recall F 1

1-way+ 18875 593943 14788 579155 4087 0.0249 0.7835 0.0483
2-way+ 18875 56272 14083 42189 4792 0.2503 0.7461 0.3748
3-way+ 18875 22393 13486 8907 5389 0.6022 0.7145 0.6536
4-way+ 18875 15050 12583 2467 6292 0.8361 0.6666 0.7418

1-way ∪ 2-way 18875 571550 1302 570248 17573 0.0023 0.0690 0.0044
2-way ∪ 3-way 18875 41222 1500 39722 17375 0.0364 0.0795 0.0499
3-way ∪ 4-way 18875 10570 2112 8458 16763 0.1998 0.1119 0.1435
1-way ∪ 4-way 18875 540898 1914 538984 16961 0.0035 0.1014 0.0068
2-way ∪ 4-way 18875 37106 1806 35300 17069 0.0487 0.0957 0.0645
1-way ∪ 5-way 18875 549494 12079 537415 6796 0.0220 0.6399 0.0425
2-way ∪ 5-way 18875 45702 11971 33731 6904 0.2619 0.6342 0.3708
3-way ∪ 5-way 18875 19166 12277 6889 6598 0.6406 0.6504 0.6455

1-way ∪ 2-way ∪ 3-way 18875 578893 2205 576688 16670 0.0038 0.1168 0.0074
1-way ∪ 2-way ∪ 4-way 18875 574777 2511 572266 16364 0.0044 0.1330 0.0085
1-way ∪ 3-way ∪ 4-way 18875 548241 2817 545424 16058 0.0051 0.1492 0.0099
1-way ∪ 2-way ∪ 5-way 18875 583373 12676 570697 6199 0.0217 0.6716 0.0421
1-way ∪ 3-way ∪ 5-way 18875 556837 12982 543855 5893 0.0233 0.6878 0.0451
1-way ∪ 4-way ∪ 5-way 18875 552721 13288 539433 5587 0.0240 0.7040 0.0465
2-way ∪ 3-way ∪ 5-way 18875 53045 12874 40171 6001 0.2427 0.6821 0.3580
2-way ∪ 4-way ∪ 5-way 18875 348929 13180 35749 5695 0.2694 0.6983 0.3888

aThe boldfaced numbers with green highlights show the best score among all the overlaps for each union.
b1-way to 4-way overlaps are shown in Table A.1 such as “All 2-way overlap”.
cTotal number of transcripts in the benchmark transcriptomes.
dTotal number of contigs assembled by assembly method.
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Table A.4: De novo assembly using various union sets among overlapping contig sets
and multiple k-mers for the Human dataseta

Assembly setsb Actualc Totald TP FP FN Precision Recall F 1

1-way+ 17669 403835 11389 392446 6280 0.0282 0.6446 0.0540
2-way+ 45925 17669 10384 35541 7285 0.2261 0.5877 0.3266
3-way+ 17669 21660 9437 12223 8232 0.4357 0.5341 0.4799
4-way+ 17669 14639 8386 6253 9283 0.5729 0.4746 0.5191

1-way ∪ 2-way 17669 382175 1952 380223 15717 0.0051 0.1105 0.0098
2-way ∪ 3-way 17669 31286 1998 29288 15671 0.0639 0.1131 0.0816
3-way ∪ 4-way 17669 11752 2416 9336 15253 0.2056 0.1367 0.1642
1-way ∪ 4-way 17669 362641 2370 360271 15299 0.0065 0.1341 0.0125
2-way ∪ 4-way 17669 28996 2312 26684 15357 0.0797 0.1309 0.0991
1-way ∪ 5-way 17669 367818 8026 359792 9643 0.0218 0.4542 0.0416
2-way ∪ 5-way 17669 34173 7968 26205 9701 0.2332 0.4510 0.3074
3-way ∪ 5-way 17669 16929 8072 8857 9597 0.4768 0.4568 0.4666

1-way ∪ 2-way ∪ 3-way 17669 389196 3003 386193 14666 0.0077 0.1700 0.0148
1-way ∪ 2-way ∪ 4-way 17669 386906 3317 383589 14352 0.0086 0.1877 0.0164
1-way ∪ 3-way ∪ 4-way 17669 369662 3421 366241 14248 0.0093 0.1936 0.0177
1-way ∪ 2-way ∪ 5-way 17669 392083 8973 383110 8696 0.0229 0.5078 0.0438
1-way ∪ 3-way ∪ 5-way 17669 374839 9077 365762 8592 0.0242 0.5137 0.0463
1-way ∪ 4-way ∪ 5-way 17669 372549 9391 363158 8278 0.0252 0.5315 0.0481
2-way ∪ 3-way ∪ 5-way 17669 41194 9019 32175 8650 0.2189 0.5104 0.3064
2-way ∪ 4-way ∪ 5-way 17669 38904 9333 29571 8336 0.2399 0.5282 0.3299

aThe boldfaced numbers with green highlights show the best score among all the overlaps for each union.
b1-way to 4-way overlaps are shown in Table A.2 such as “All 2-way overlaps”.
cTotal number of transcripts in the benchmark transcriptomes.
dTotal number of contigs assembled by assembly method.
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Table A.5: Performance of ConSemblEX compared to ConSemble and individual de
novo assemblersa

Dataset Assembly Method Actualb Totalc TP FP FN Precision Recall F 1

No-0

BayesDenovo 18875 16332 10022 6310 8853 0.61 0.53 0.57
IDBA-tran 18875 22802 8344 14458 10531 0.37 0.44 0.40
SOAPdenovo-trans 18875 29876 11119 18757 7756 0.37 0.59 0.46
rnaSPAdes 18875 40333 9206 31127 9669 0.23 0.49 0.31
Trinity 18875 23523 12059 11464 6816 0.51 0.64 0.57
ConSemblEX-5d 18875 11823 11374 449 7501 0.96 0.60 0.74
ConSemble3+d 18875 20297 13352 6945 5523 0.66 0.71 0.68
ConSemblEX-3+d 18875 22393 13486 8907 5389 0.60 0.71 0.65
ConSemblEX-4+d 18875 15050 12583 2467 6292 0.84 0.67 0.74
ConSemblEX-select-d 18875 17010 13273 3737 5602 0.78 0.70 0.74

Col-0

BayesDenovo 15508 15316 7876 7440 7632 0.51 0.51 0.51
IDBA-tran 15508 20430 6021 14409 9487 0.29 0.39 0.34
SOAPdenovo-trans 15508 21371 7281 14090 8227 0.34 0.47 0.39
rnaSPAdes 15508 31494 7556 23938 7952 0.24 0.49 0.32
Trinity 15508 19417 9255 10162 6253 0.48 0.6 0.53
ConSemblEX-5d 15508 9369 7521 1848 7987 0.80 0.49 0.60
ConSemble3+d 15508 16500 9326 7174 6182 0.57 0.60 0.58
ConSemblEX-3+d 15508 19027 9885 9142 5623 0.52 0.64 0.58
ConSemblEX-4+d 15508 12846 8945 3901 6563 0.70 0.58 0.63
ConSemblEX-select-d 15508 14521 9549 4972 5959 0.66 0.62 0.64

Human

BayesDenovo 17669 14139 6914 7225 10755 0.49 0.39 0.43
IDBA-tran 17669 20960 6154 14806 11515 0.29 0.35 0.32
SOAPdenovo-trans 17669 22005 5933 16072 11736 0.27 0.34 0.3
rnaSPAdes 17669 21244 7637 13607 10032 0.36 0.43 0.39
Trinity 17669 21279 8765 12514 8904 0.41 0.50 0.45
ConSemblEX-5d 17669 9908 7021 2887 10648 0.71 0.40 0.51
ConSemble3+d 17669 19349 9128 10221 8541 0.47 0.52 0.49
ConSemblEX-3+d 17669 21660 9437 12223 8232 0.44 0.53 0.48
ConSemblEX-4+d 17669 14639 8386 6253 9283 0.57 0.47 0.51
ConSemblEX-select-d 17669 17001 8945 8056 8724 0.53 0.51 0.52

aThe boldfaced numbers with green highlights show the best score among all the overlaps for each dataset.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.
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Table A.6: Genome-guided assembly overlaps using the same reference genome for
the No-0 dataseta

Bayesembler Cufflinks Scallop StringTie StringTie2 Actualb Totalc TP FP FN Precision Recall F 1

✘ 18875 2487 32 2455 18843 0.0129 0.0017 0.0030
✘ 18875 2842 172 2670 18703 0.0605 0.0091 0.0158

✘ 18875 2900 289 2611 18586 0.0997 0.0153 0.0265
✘ 18875 1501 20 1481 18855 0.0133 0.0011 0.0020

✘ 18875 1867 34 1833 18841 0.0182 0.0018 0.0033
All unique 18875 11597 547 11050 18328 0.0472 0.0290 0.0359

✘ ✘ 18875 78 28 50 18847 0.3590 0.0015 0.0030
✘ ✘ 18875 419 52 367 18823 0.1241 0.0028 0.0054
✘ ✘ 18875 40 3 37 18872 0.0750 0.0002 0.0003
✘ ✘ 18875 91 5 86 18870 0.0549 0.0003 0.0005

✘ ✘ 18875 39 17 22 18858 0.4359 0.0009 0.0018
✘ ✘ 18875 311 135 176 18740 0.4341 0.0072 0.0141
✘ ✘ 18875 254 107 147 18768 0.4213 0.0057 0.0112

✘ ✘ 18875 382 75 307 18800 0.1963 0.0040 0.0078
✘ ✘ 18875 615 67 548 18808 0.1089 0.0035 0.0069

✘ ✘ 18875 718 56 662 18819 0.0780 0.0030 0.0057
All 2-way overlaps 18875 2947 545 2402 18330 0.1849 0.0289 0.0499

✘ ✘ ✘ 18875 15 14 1 18861 0.9333 0.0007 0.0015
✘ ✘ ✘ 18875 23 6 17 18869 0.2609 0.0003 0.0006
✘ ✘ ✘ 18875 74 50 24 18825 0.6757 0.0026 0.0053
✘ ✘ ✘ 18875 98 63 35 18812 0.6429 0.0033 0.0066
✘ ✘ ✘ 18875 159 47 112 18828 0.2956 0.0025 0.0049
✘ ✘ ✘ 18875 70 23 47 18852 .3286 0.0012 0.0024

✘ ✘ ✘ 18875 479 421 58 18454 0.8789 0.0223 0.0435
✘ ✘ ✘ 18875 78 43 35 18832 0.5513 0.0023 0.0045
✘ ✘ ✘ 18875 1011 628 383 18247 0.6212 0.0333 0.0632

✘ ✘ ✘ 18875 1081 201 880 18674 0.1859 0.0106 0.0201
All 3-way overlaps 18875 3088 1496 1592 17379 0.4845 0.0793 0.1362

✘ ✘ ✘ ✘ 18875 185 171 14 18704 0.9243 0.0091 0.0179
✘ ✘ ✘ ✘ 18875 51 44 7 18831 0.8627 0.0023 0.0046
✘ ✘ ✘ ✘ 18875 230 152 78 18723 0.6609 0.0081 0.0159
✘ ✘ ✘ ✘ 18875 1279 1137 142 17738 0.8890 0.0602 0.1128

✘ ✘ ✘ ✘ 18875 3745 3169 576 15706 0.8462 0.1679 0.2802
All 4-way overlaps 18875 5490 4673 817 14202 0.8512 0.2476 0.3836

✘ ✘ ✘ ✘ ✘ 18875 9873 9374 499 9501 0.9495 0.4966 0.6521

aThe highlights show the overlaps included in the ConSemblEX-select-g assembly. The boldfaced numbers show the best score among all the overlaps.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.
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Table A.7: Genome-guided assembly overlaps using the same reference genome for
the Human dataseta

Bayesembler Cufflinks Scallop StringTie StringTie2 Actualb Totalc TP FP FN Precision Recall F 1

✘ 17669 2172 133 2039 17536 0.0612 0.0075 0.0134
✘ 17669 3437 289 3148 17380 0.0841 0.0164 0.0274

✘ 17669 12267 277 11990 17392 0.0226 0.0157 0.0185
✘ 17669 1951 89 1862 17580 0.0456 0.0050 0.0091

✘ 17669 3078 379 2699 17290 0.1231 0.0214 0.0365
All unique 17669 22905 1167 21738 16502 0.0509 0.0660 0.0575

✘ ✘ 17669 157 28 129 17641 0.1783 0.0016 0.0031
✘ ✘ 17669 627 182 445 17487 0.2903 0.0103 0.0199
✘ ✘ 17669 142 30 112 17639 0.2113 0.0017 0.0034
✘ ✘ 17669 174 37 137 17632 0.2126 0.0021 0.0041

✘ ✘ 17669 291 49 242 17620 0.1684 0.0028 0.0055
✘ ✘ 17669 303 61 242 17608 0.2013 0.0035 0.0068
✘ ✘ 17669 183 45 138 17624 0.2459 0.0025 0.0050

✘ ✘ 17669 528 86 442 17583 0.1629 0.0049 0.0095
✘ ✘ 17669 739 244 495 17425 0.3302 0.0138 0.0265

✘ ✘ 17669 910 93 817 17576 0.1022 0.0053 0.0100
All 2-way overlaps 17669 4054 855 3199 16814 0.2109 0.0484 0.0787

✘ ✘ ✘ 17669 189 71 118 17598 0.3757 0.0040 0.0080
✘ ✘ ✘ 17669 108 28 80 17641 0.2593 0.0016 0.0032
✘ ✘ ✘ 17669 56 20 36 17649 0.3571 0.0011 0.0023
✘ ✘ ✘ 17669 477 223 254 17446 0.4675 0.0126 0.0246
✘ ✘ ✘ 17669 385 175 210 17494 0.4545 0.0099 0.0194
✘ ✘ ✘ 17669 146 51 95 17618 0.3493 0.0029 0.0057

✘ ✘ ✘ 17669 408 174 234 17495 0.4265 0.0098 0.0193
✘ ✘ ✘ 17669 73 19 54 17650 0.2603 0.0011 0.0021
✘ ✘ ✘ 17669 456 123 333 17546 0.2697 0.0070 0.0136

✘ ✘ ✘ 17669 645 167 478 17502 0.2589 0.0095 0.0182
All 3-way overlaps 17669 2943 1051 1892 16618 0.3571 0.0595 0.1020

✘ ✘ ✘ ✘ 17669 1476 1055 421 16614 0.7148 0.0597 0.1102
✘ ✘ ✘ ✘ 17669 244 121 123 17548 0.4959 0.0068 0.0135
✘ ✘ ✘ ✘ 17669 253 115 138 17554 0.4545 0.0065 0.0128
✘ ✘ ✘ ✘ 17669 1219 717 502 16952 0.5882 0.0406 0.0759

✘ ✘ ✘ ✘ 17669 1195 544 651 17125 0.4552 0.0308 0.0577
All 4-way overlaps 17669 4387 2552 1835 15117 0.5817 0.1444 0.2314

✘ ✘ ✘ ✘ ✘ 17669 6094 4538 1556 13131 0.7447 0.2568 0.3819

aThe highlights show the overlaps included in the ConSemblEX-select-g assembly. The boldfaced numbers show the best score among all the overlaps.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.
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Table A.8: Genome-guided assembly using the same reference genome using various
union sets among overlapping contig sets for the No-0 dataseta

Assembly setsa Actualc Totald TP FP FN Precision Recall F 1

1-way+ 18875 32995 16635 16360 2240 0.5042 0.8813 0.6414
2-way+ 18875 21398 16088 5310 2787 0.7518 0.8523 0.7989
3-way+ 18875 18451 15543 2908 3332 0.8424 0.8235 0.8328
4-way+ 18875 15363 14047 1316 4828 0.9143 0.7442 0.8206

1-way ∪ 2-way 18875 14544 1092 13452 17783 0.0751 0.0579 0.0654
2-way ∪ 3-way 18875 6035 2041 3994 16834 0.3382 0.1081 0.1639
3-way ∪ 4-way 18875 8578 6169 2409 12706 0.7192 0.3268 0.4494
1-way ∪ 4-way 18875 17087 5220 11867 13655 0.3055 0.2766 0.2903
2-way ∪ 4-way 18875 8437 5218 3219 13657 0.6185 0.2765 0.3821
1-way ∪ 5-way 18875 21470 9921 11549 8954 0.4621 0.5256 0.4918
2-way ∪ 5-way 18875 12820 9919 2901 8956 0.7737 0.5255 0.6259
3-way ∪ 5-way 18875 12961 10870 2091 8005 0.8387 0.5759 0.6829

1-way ∪ 2-way ∪ 3-way 18875 17632 2588 15044 16287 0.1468 0.1371 0.1418
1-way ∪ 2-way ∪ 4-way 18875 20034 5765 14269 13110 0.2878 0.3054 0.2963
1-way ∪ 3-way ∪ 4-way 18875 20175 6716 13459 12159 0.3329 0.3558 0.3440
1-way ∪ 2-way ∪ 5-way 18875 24417 10466 13951 8409 0.4286 0.5545 0.4835
1-way ∪ 3-way ∪ 5-way 18875 24558 11417 13141 7458 0.4649 0.6049 0.5257
1-way ∪ 4-way ∪ 5-way 18875 26960 14594 12366 4281 0.5413 0.7732 0.6368
2-way ∪ 3-way ∪ 5-way 18875 15908 11415 4493 7460 0.7176 0.6048 0.6564
2-way ∪ 4-way ∪ 5-way 18875 18310 14592 3718 4283 0.7969 0.7731 0.7848

aThe boldfaced numbers with green highlights show the best score among all the overlaps for each union.
b1-way to 4-way overlaps are shown in Table A.6 such as “All 2-way overlaps”.
cTotal number of transcripts in the benchmark transcriptomes.
dTotal number of contigs assembled by assembly method.
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Table A.9: Genome-guided assembly using the same reference genome using various
union sets among overlapping contig sets for the Human datasets

Assembly setsb Actualc Totald TP FP FN Precision Recall F 1

1-way+ 17669 40383 10163 30220 7506 0.2517 0.5752 0.3501
2-way+ 17669 17478 8996 8482 8673 0.5147 0.5091 0.5119
3-way+ 17669 13424 8141 5283 9528 0.6065 0.4608 0.5237
4-way+ 17669 10481 7090 3391 10579 0.6765 0.4013 0.5037

1-way ∪ 2-way 17669 26959 2022 24937 15647 0.0750 0.1144 0.0906
2-way ∪ 3-way 17669 6997 1906 5091 15763 0.2724 0.1079 0.1545
3-way ∪ 4-way 17669 7330 3603 3727 14066 0.4915 0.2039 0.2883
1-way ∪ 4-way 17669 27292 3719 23573 13950 0.1363 0.2105 0.1654
2-way ∪ 4-way 17669 8441 3407 5034 14262 0.4036 0.1928 0.2610
1-way ∪ 5-way 17669 28999 5705 23294 11964 0.1967 0.3229 0.2445
2-way ∪ 5-way 17669 10148 5393 4755 12276 0.5314 0.3052 0.3877
3-way ∪ 5-way 17669 9037 5589 3448 12080 0.6185 0.3163 0.4186

1-way ∪ 2-way ∪ 3-way 17669 29902 3073 26829 14596 0.1028 0.1739 0.1292
1-way ∪ 2-way ∪ 4-way 17669 31346 4574 26772 13095 0.1459 0.2589 0.1866
1-way ∪ 3-way ∪ 4-way 17669 30235 4770 25465 12899 0.1578 0.2700 0.1991
1-way ∪ 2-way ∪ 5-way 17669 33053 6560 26493 11109 0.1985 0.3713 0.2587
1-way ∪ 3-way ∪ 5-way 17669 31942 6756 25186 10913 0.2115 0.3824 0.2724
1-way ∪ 4-way ∪ 5-way 17669 33386 8257 25129 9412 0.2473 0.4673 0.3235
2-way ∪ 3-way ∪ 5-way 17669 13091 6444 6647 11225 0.4922 0.3647 0.4190
2-way ∪ 4-way ∪ 5-way 17669 14535 7945 6590 9724 0.5466 0.4497 0.4934

aThe boldfaced numbers with green highlights show the best score among all the overlaps for each union.
b1-way to 4-way overlaps are shown in Table A.7 such as “All 2-way overlaps”.
cTotal number of transcripts in the benchmark transcriptomes.
dTotal number of contigs assembled by assembly method.
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Table A.10: Performance of ConSemblEX compared to individual genome-guided
assemblers using the same reference genomea

Dataset Assembly Method Actualb Totalc TP FP FN Precision Recall F 1

No-0

Bayesembler 18875 15172 11201 3971 7674 0.74 0.59 0.66
Cufflinks 18875 19288 14531 4757 4344 0.75 0.77 0.76
Scallop 18875 21397 15184 6213 3691 0.71 0.80 0.75
StringTie 18875 21026 15634 5392 3241 0.74 0.83 0.78
StringTie2 18875 21196 15137 6059 3738 0.71 0.80 0.76
COnSemblEX-5g 18875 9873 9374 499 9501 0.95 0.50 0.65
ConSemble3+g 18875 15688 14200 1488 4675 0.91 0.75 0.82
ConSemblEX-3+g 18875 18451 15543 2908 3332 0.84 0.82 0.83
ConSemblEX-4+g 18875 15363 14047 1316 4828 0.91 0.74 0.82
ConSemblEX-select-g 18875 17870 15576 2294 3299 0.87 0.83 0.85

Col-0

Bayesembler 15508 15143 9158 5985 6350 0.60 0.59 0.60
Cufflinks 15508 15768 8560 7208 6948 0.54 0.55 0.55
Scallop 15508 18055 10534 7521 4974 0.58 0.68 0.63
StringTie 15508 16908 9891 7017 5617 0.58 0.64 0.61
StringTie2 15508 17722 10034 7688 5474 0.57 0.65 0.60
ConSemblEX-5g 15508 7741 6171 1570 9337 0.80 0.40 0.53
ConSemble3+g 15508 13380 9679 3701 5829 0.72 0.62 0.67
ConSemblEX-3+g 15508 15313 10273 5040 5235 0.67 0.66 0.67
ConSemblEX-4+g 15508 12527 9244 3283 6264 0.74 0.60 0.66
ConSemblEX-select-g 15508 15265 10452 4813 5056 0.68 0.67 0.68

Human

Bayesembler 17669 13919 7524 6395 10145 0.54 0.43 0.48
Cufflinks 17669 14923 7280 7643 10389 0.49 0.41 0.45
Scallop 17669 26857 8642 18215 9027 0.32 0.49 0.39
StringTie 17669 16311 8094 8217 9575 0.50 0.46 0.48
StringTie2 17669 15850 7388 8462 10281 0.47 0.42 0.44
ConSemblEX-5g 17669 6094 4538 1556 13131 0.74 0.26 0.38
ConSemble3+g 17669 11945 7744 4201 9925 0.65 0.43 0.52
ConSemblEX-3+g 17669 13424 8141 5283 9528 0.61 0.46 0.52
ConSemblEX-4+g 17669 10481 7090 3391 10579 0.68 0.40 0.50
ConSemblEX-select-g 17669 13055 8085 4970 9584 0.62 0.46 0.53

aThe boldfaced numbers with green highlights show the best score among all the overlaps for each dataset.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.
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Table A.11: Performance of ConSemblEX compared to individual genome-guided
assemblers using a different reference genomea

Dataset Assembly Method Actualb Totalc TP FP FN Precision Recall F 1

No-0

Bayesembler 18875 15531 5142 10389 13733 0.33 0.27 0.3
Cufflinks 18875 19938 6510 13428 12365 0.33 0.34 0.34
Scallop 18875 22298 6908 15390 11967 0.31 0.37 0.34
StringTie 18875 21772 7069 14703 11806 0.32 0.37 0.35
StringTie2 18875 21768 6858 14910 12017 0.32 0.36 0.34
ConSemblEX-5g 18875 8797 4279 4518 14596 0.49 0.23 0.31
ConSemblEX-3+g 18875 18101 7020 11081 11855 0.39 0.37 0.38
ConSemblEX-4+g 18875 14291 6336 7955 12539 0.44 0.34 0.38
ConSemblEX-select-g 18875 16649 6879 9770 11996 0.41 0.36 0.39

Col-0

Bayesembler 15508 15330 4810 10520 10698 0.31 0.31 0.31
Cufflinks 15508 16664 4321 12343 11187 0.26 0.28 0.27
Scallop 15508 16705 66 16639 15442 0.0 0.0 0.0
StringTie 15508 17791 5074 12717 10434 0.29 0.33 0.3
StringTie2 15508 18332 5199 13133 10309 0.28 0.34 0.31
ConSemblEX-5g 15508 13 8 5 15500 0.62 0.00 0.00
ConSemblEX-3+g 15508 13083 4840 8243 10668 0.37 0.31 0.34
ConSemblEX-4+g 15508 7256 3317 3939 12191 0.46 0.21 0.29
ConSemblEX-select-g 15508 17161 5266 11895 10242 0.31 0.34 0.32

Human

Bayesembler 17669 14610 5413 9197 12256 0.37 0.31 0.34
Cufflinks 17669 16258 5296 10962 12373 0.33 0.3 0.31
Scallop 17669 18778 6132 12646 11537 0.33 0.35 0.34
StringTie 17669 18339 5851 12488 11818 0.32 0.33 0.32
StringTie2 17669 20203 6217 13986 11452 0.31 0.35 0.33
ConSemblEX-5g 17669 7234 3881 3353 13788 0.54 0.22 0.31
ConSemblEX-3+g 17669 15006 6000 9006 11669 0.40 0.34 0.37
ConSemblEX-4+g 17669 11607 5399 6208 12270 0.47 0.31 0.37
ConSemblEX-select-g 17669 13705 5879 7826 11790 0.43 0.33 0.38

aThe boldfaced numbers with green highlights show the best score among all the overlaps for each dataset.
bTotal number of transcripts in the benchmark transcriptomes.
cTotal number of contigs assembled by assembly method.
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(a) No-0 default k-mer

(b) No-0 pooled k-mers

Figure B.1: Distribution of the assembled contig overlaps for the No-0 dataset. The
numbers of total assembled contigs (blue) and correctly assembled contigs (orange)
are shown for each overlapping assembly set among five de novo assemblers. Assem-
bly was performed using the default k-mer values (a) or multiple k-mer values (b).
Overlaps among the five methods are indicated with connected closed circles. Each
overlap set is exclusive to each other.
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(a) Human default k-mer

(b) Human pooled k-mers

Figure B.2: Distribution of the assembled contig overlaps for the Human dataset.
The numbers of total assembled contigs (blue) and correctly assembled contigs (or-
ange) are shown for each overlapping assembly set among five de novo assemblers.
Assembly was performed using the default k-mer values (a) or multiple k-mer values
(b). Overlaps among the five methods are indicated with connected closed circles.
Each overlap set is exclusive to each other.
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(a) No-0 same reference-genome

(b) No-0 different reference-genome

Figure B.3: Distribution of the assembled contig overlaps for the No-0 dataset. The
numbers of total assembled contigs (blue) and correctly assembled contigs (orange)
are shown for each overlapping assembly set among five genome-guided assemblers for
the Col-0 dataset. Each assembly was performed using the same reference-genome (a)
and different reference-genome (b). Overlaps among the five methods are indicated
with the connected closed circles. Each overlap set is exclusive to each other.
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(a) Human same reference

(b) Human different reference

Figure B.4: Distribution of the assembled contig overlaps for the Human dataset. The
numbers of total assembled contigs (blue) and correctly assembled contigs (orange)
are shown for each overlapping assembly set among five genome-guided assemblers for
the Col-0 dataset. Each assembly was performed using the same reference-genome (a)
and different reference-genome (b). Overlaps among the five methods are indicated
with the connected closed circles. Each overlap set is exclusive to each other.
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