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We report on a theoretical study on the tunneling anomalous Hall effect (TAHE) in a ferroelectric

tunnel junction (FTJ), resulting from spin-orbit coupling (SOC) in the ferroelectric barrier. For

ferroelectric barriers with large SOC, such as orthorhombic HfO2 and BiInO3, we predict sizable

values of the tunneling anomalous Hall conductivity (TAHC) measurable experimentally. We

demonstrate strong anisotropy in TAHC depending on the type of SOC. For the SOC with equal

Rashba and Dresselhaus parameters, we predict the perfect anisotropy with zero TAHC for certain

magnetization orientations. The TAHC changes sign with ferroelectric polarization reversal provid-

ing useful functionality of FTJs. Conversely, measuring the TAHC as a function of magnetization

orientation offers an efficient way to quantify the type of SOC in the insulating barrier. Our results

provide a valuable insight into the TAHE and open avenues for potential device applications.

Published by AIP Publishing. https://doi.org/10.1063/1.5051629

Since its discovery more than a century ago,1 the anoma-

lous Hall effect (AHE)2 has been attracting continued interest.

Two distinct mechanisms of the anomalous Hall conductivity

are commonly accepted: intrinsic and extrinsic. Both originate

from broken time reversal symmetry and spin-orbit coupling

(SOC), but the former is driven purely by the electronic band

structure which gives rise to the spin-dependent transverse

(anomalous) velocity3 and the associated Berry curvature,4

whereas the latter results from spin-dependent impurity scatter-

ing, such as the skew scattering5 or the side jump scattering.6

Recently, the AHE was proposed in tunneling geometry

and was coined the tunneling AHE (TAHE).7–9 The TAHE

can be observed in a tunnel junction, which consists of two

metal electrodes, with one being ferromagnetic, separated by

a thin barrier layer. The TAHE originates from the skew

tunneling (in analogy to the skew scattering), where the spin-

polarized carriers experience asymmetric chiral contributions

to the tunneling transmission probability due to the SOC in

the barrier or at the barrier/metal interface.9

The experimental demonstration of the TAHE is chal-

lenging due to the small SOC in the proposed conventional

semiconductor barriers [�10 meV (Ref. 10)]. Recently, how-

ever, a number of ferroelectric materials have been predicted

to exhibit a very large SOC (�102–103 meV) resulting from

a large polarization-induced potential gradient.11–18 In addi-

tion to the sizable SOC favorable for the experimental dem-

onstration of the TAHE, these materials have the advantage

of the reversible ferroelectric polarization which can be

switched by an applied electric field. Since ferroelectric

materials are non-centrosymmetric, the spin-momentum cou-

pling linear in the wave vector k is allowed by symmetry,

giving rise to the linear Rashba and Dresselhaus SOC in the

bulk of these compounds.19 As the result, reversal of ferro-

electric polarization changes the sign of the SOC parameter

and thus that of the TAHE, which enables a nonvolatile

electric field control of the TAHE.11,16,18 This property adds

unexplored functionality to a ferroelectric tunnel junction

(FTJ), which is known to exhibit a tunneling electroresist-

ance (TER) effect—a sizable change in resistance of the FTJ

with polarization reversal.20–23

In this work, we employ the quantum-mechanical trans-

port theory to calculate the TAHE in a FTJ with a ferromag-

netic electrode. In contrast to the previous work9 considering

the interfacial Rashba24 and cubic bulk Dresselhaus25 SOC,

we focus on the linear bulk SOC, which is appropriate for

the ferroelectric barriers. Based on these calculations, we

analyze the tunneling anomalous Hall conductivity (TAHC)

dependent on the type and magnitude of SOC, the magneti-

zation orientation, and the exchange coupling. We discuss

the feasibility to observe the TAHE in FTJs in real experi-

mental conditions.

Figure 1(a) shows a FTJ, which consists of a semi-

infinite left (L) ferromagnetic (FM) electrode (z< 0) and a

right (R) nonmagnetic (NM) electrode (z> a) separated by

an insulating (ferroelectric) barrier of thickness a. The corre-

sponding Hamiltonian in each region is given by

HL ¼ �
�h2

2m
r2 � Jex

2
rx cos /þ ry sin /
� �

; z < 0;

HB ¼ �
�h2

2m
r2 þ U þ HSOC; 0 < z < a;

HR ¼ �
�h2

2m
r2 þW; a > z:

8>>>>>>>><
>>>>>>>>:

(1)

Here, Jex is the exchange splitting in the FM electrode, rx

and ry are the Pauli matrices, and m is the electron effective

mass, which is assumed to be constant in the whole junction.

U is the barrier height, W is the potential in the NM elec-

trode, and / is the magnetization angle with respect to the

x axis, as shown schematically in Fig. 1(b). The SOC in

Eq. (1) is given bya)Author to whom correspondence should be addressed: tsymbal@unl.edu
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HSOC ¼ kRðkxry � kyrxÞ þ kDðkxry þ kyrxÞ; (2)

which includes both the Rashba (the first term) and linear

Dresselhaus (the second term) contributions.

The TAHC is determined by the spin-dependent scatter-

ing states in the NM electrode resulting from the incoming

waves from both electrodes. The right propagating state of

energy E (normalized to the unit current density) incoming

from the left FM electrode can be expressed as

wr
L ¼

ffiffiffiffiffiffiffi
m

�hkr
z

r
u0eikr

z zvr
/; (3)

where u0 ¼ eiðkxxþkyyÞ, r ¼"; # is the spin index, k";#z

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE7Jex=2Þ=�h2 � k2

jj

q
is the z-component of the wave

vector, kjj ¼ ðkx; kyÞ is the transverse wave vector, and v";#/

¼ 1ffiffi
2
p e�i/=2

6ei/=2

� �
are the spinor eigenfunctions. Similarly, the

left propagating state incoming from the right NM electrode is

wr
R ¼

ffiffiffiffiffiffiffi
m

�hqz

r
u0e�iqzzvr

/; (4)

where qz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE�WÞ=�h2 � k2

jj

q
. The scattering state in

the right electrode due to the incoming state wr
L is given by

wr
R L ¼

ffiffiffiffiffiffiffi
m

�hqz

r
trr
RLeiqzzvr

/ þ t�rr
RLeiqzzv�r

/

� �
; (5)

where �r ¼ �r (i.e., �r ¼# if r ¼" and vice versa), and trr
RL

(t�rr
RL) is the transmission amplitude between the left and right

electrodes without the (with) spin flip. The scattering state in

the right electrode due to the incoming state wr
R is

wr
R R ¼

ffiffiffiffiffiffiffi
m

�hqz

r
e�iqzz þ rrr

RReiqzz
� �

vr
/ þ r�rr

RReiqzzv�r
/

h i
; (6)

where rrr
RR (r�rr

RR) is the reflection amplitude without the

(with) spin flip. Similarly, the scattering states in the left

electrode due to the incoming states wr
L and wr

R are

expressed as

wr
L L ¼

ffiffiffiffiffiffiffi
m

�hkr
z

r
eikr

z z þ rrr
LLe�ikr

z z
� �

vr
/ þ

ffiffiffiffiffiffiffi
m

�hk�r
z

r
r�rr

LL e�ik�r
z zv�r

/;

(7)

wr
L R ¼

ffiffiffiffiffiffiffi
m

�hkr
z

r
trr
LRe�ikr

z zvr
/ þ t�rr

LRe�ik�r
z zv�r

/

� �
; (8)

respectively, where rrr
LL (r�rr

LL ) and trr
LR (t�rr

LR) are the respective

reflection and transmission amplitudes. The scattering state

in the barrier is given by

wB ¼ u0

aþ1 eQþz þ aþ2 e�Qþz þ a�1 eQ�z þ a�2 e�Q�z

c aþ1 eQþz þ aþ2 e�Qþz � a�1 eQ�z � a�2 e�Q�z
� �

 !
;

(9)

where Q6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðU � E6qÞ=�h2 þ k2

jj

q
, c ¼ ðiakx þ bkyÞ=q,

and q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k2

x þ b2k2
y

q
.

The Hall current density Jr
i (i¼ x, y) resulting from

wr
R L can be expressed as

JL r
i ¼

e

ð2p Þ3�h

ð
Re wr

R L

� ��
vi w

r
R L

h i
fL 1� fRð Þdp; (10)

where dp � dkjjdE and vi (i¼ x, y) is the velocity operator.

fL;R ¼ f ðE� lL;RÞ and lL;R are, respectively, the Fermi func-

tion and the electrochemical potential of the left and right

electrodes. Similarly, the Hall current resulting from wr
R R is

given by

JR r
i ¼ e

ð2p Þ3�h

ð
Re wr

R R

� ��
vi w

r
R R

h i
fL 1� fRð Þdp: (11)

Substituting Eqs. (5) and (6) into Eqs. (10) and (11), we

obtain

JL
i ¼

e

ð2 pÞ3�h

X
r

ð
ki

qz
jtrr

LRj
2 þ jt�rr

LRj
2

� �
fL 1� fRð Þdp (12)

and JR
i ¼ JR

i1 þ JR
i2; where

JR
i1 ¼

e

ð2 pÞ3�h

X
r

ð
ki

qz
2Re rrr

RRe2iqzz
� �	 


fR 1� fLð Þdp; (13)

JR
i2 ¼

e

ð2 pÞ3�h

X
r

ð
ki

qz
1þ jrrr

RRj
2 þ jr�rr

RRj
2

� �
fR 1� fLð Þdp:

(14)

It is notable that the current component JR
i1 is z dependent.

This dependence originates from interference of the reflected

waves incoming from the right electrode. Assuming that

lL;R ¼ EF6eV=2, where EF is the Fermi energy and V is the

bias voltage; at low temperature, this component is zero for

V > 0, but non-zero for V < 0. In the latter case, fR ¼ 1 and

fL ¼ 0 in the energy window ½EF � eV=2; EF þ eV=2� so

that Eq. (13) is reduced to

Gi1 ¼
e2

ð2 pÞ3�h

X
r

ð
ki

qz
2Re rrr

RRe2iqzz
� �	 


E¼EF
dkjj; (15)

FIG. 1. (a) Schematic structure of a FTJ, which consists of semi-infinite left

(L) ferromagnetic (FM) and right (R) nonmagnetic (NM) electrodes sepa-

rated by a ferroelectric barrier of thickness a. FM magnetization M lies in

the x-y plane at angle / with respect to the x axis. Spin-dependent skew

tunneling is schematically shown by the curved arrows indicating the two

spin channels. (b) Potential profile across the junction. EF is the Fermi

energy, U is the barrier height, and Jex is the exchange splitting.
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where conductance per unit area Gi1 is defined by Gi1

¼ JR
i1=V and V is assumed to be small. The integral of Gi1

over z is zero, and thus, Gi1 does not contribute to the total

TAHC. However, the local variation of the TAHC is notable

and discussed below.

The total Hall current is obtained by the sum of Eqs.

(12) and (14) resulting in

Ji ¼
e

ð2 pÞ3�h

X
r

ð
ki

qz
jtrr

LRj
2 þ jt�rr

LRj
2

� �
fL � fRð Þdp: (16)

For small V and low temperature, fL � fR ¼ ð� @f
@EÞeV

¼ dðE� EFÞeV and the integration of Eq. (16) over E leads

to the TAHC per unit area Giz ¼ Ji=V as follows:

Giz ¼
e2

ð2 pÞ3�h

X
r

ð
ki

qz
jtrr

LRj
2 þ jt�rr

LRj
2

� �
E¼EF

dkjj; (17)

which is in line with the previous result.9 The respective

transmission amplitudes can be obtained by matching the

wave functions given by Eqs. (5)–(9) at the FTJ interfaces.

Next, we perform numerical calculations of the TAHC.

In the calculations, we assume a ¼ 2 nm, EF ¼ 3 eV, U ¼ 1

eV, W ¼ �1 eV, and Jex ¼ 2 eV as representative values.

Figure 2 shows the results for TAHC as a function of magne-

tization angle / for different values of SOC parameters, kR

and kD, such that kR þ kD ¼ k0, where k0 ¼ 1 eV Å. In

agreement with the previous results,9 we find that the Hall

conductance Gxz (Gyz) exhibits a sine(cosine)-type depen-

dence on /. The TAHE originates from the imbalance of

transmitted electrons with opposite transverse wave vectors,

kjj and �kjj, resulting from an effective spin- and kjj-depen-

dent barrier height and the spin polarization of the FM elec-

trode. The largest contribution to the TAHC occurs along

directions where the spin polarization of the incoming elec-

tron is (anti)parallel to the polarization of the state at a given

kjj. For example, electrons travelling along the kjj ¼ ð0; kyÞ
direction and contributing to Gyz tunnel through an effective

spin-dependent barrier which height is determined by the

SOC ðkD � kRÞkyrx. In this case, the largest spin asymmetry

in transmission is expected for electrons polarized along the

x-direction, and hence the largest magnitude of Gyz appears

when the magnetization is (anti)parallel to the y-axis [/¼ 0�,
180�, 360� in Fig. 2(b)]. Rotating the magnetization changes

the x-component of the spin such that sx / cos /, resulting

in a cosine-type variation of Gyz. When kD ¼ kR and

ðkD � kRÞkyrx ¼ 0, Gyz vanishes [the green line in Fig. 2(b)].

A similar interpretation is applied to the sine-type variation

of Gxz [Fig. 2(a)]. In this case, however, under conditions of

kR þ kD ¼ k0 fixed, Gxz is weakly dependent on kR due to

the spin-dependent tunneling barrier height at kjj ¼ ðkx; 0Þ
being determined by k0kxry independent of kR.

Figure 2(c) shows the absolute value of TAHC jGj as a

function /. As expected, jGj is / independent for the pure

Rashba or Dresselhaus SOC, while it varies notably with /
at intermediate values of SOC. Interestingly, jGj becomes

zero when the magnetization is parallel or antiparallel to the

x-axis. This distinct /-dependent TAHC for different SOC

points to the possibility of quantifying the SOC in a TAHE

experiment. Figure 2(d) shows the angle H of the Hall cur-

rent direction with respect to the x-axis. For the pure Rashba

(or Dresselhaus) SOC, H is a linear function of /, while at

intermediate SOC, it has a tendency to exhibit a step-like

behavior consistent with the TAHC features discussed

above. When the Rashba and Dresselhaus parameters are

equal (kR/k0¼ 0.5), H becomes a perfect step function of /,

due to Gyz being zero [Fig. 2(b)] while Gxz exhibiting a sign

change at /¼ 180� [Fig. 2(a)].

The magnitude of the TAHC is largely controlled by the

SOC and increases with increasing kR or kD. As is evident

from Fig. 3(a), the increase is linear at small values of SOC

[inset in Fig. 3(a)], but at larger values of SOC (k0 � 1 eV

Å) jGj increases exponentially with k0. The exchange cou-

pling Jex determines the spin imbalance of the current car-

riers being responsible for TAHC. Therefore, as is seen from

Fig. 3(b), jGj is zero in the absence of spin polarization,

when Jex¼ 0, but increases nearly linear with increasing Jex.

The presence of switchable ferroelectric polarization

and large SOC in the tunnel barrier opens additional interest-

ing possibilities for the TAHE. In ferroelectric materials, the

spin texture is fully reversed in response to polarization

switching.11,16 This changes sign of the SOC parameters kR

and kD in Eq. (2) resulting in reversal of the TAHC. The

electrically switchable TAHC offers useful functionality of

FTJs which can be observed experimentally.

FIG. 2. Results of calculations of the TAHC as a function of magnetization

angle / for different SOC parameters, kR and kD, such that kR þ kD¼ k0,

where k0¼ 1 eV Å: (a) Gxz component of TAHC, (b) Gxz component of

TAHC, (c) absolute value of TAHC jGj, and (d) angle H of the TAHE cur-

rent with respect to the x-axis.

FIG. 3. TAHC jGj as a function of (a) SOC parameter k0, where k0 ¼ kR

þ kD and (b) exchange coupling Jex for k0¼ 1 eV Å. In the case of kD ¼ kD,

the magnetization angle is fixed at /¼ 45�.

172405-3 Zhuravlev et al. Appl. Phys. Lett. 113, 172405 (2018)



There are a number of ferroelectric oxide materials with

a large SOC which can be employed for performing the

TAHE experiment. For example, a large Rashba SOC

kR¼ 0.74 eV Å was found in BiAlO3.13 A giant SOC with

equal Rashba and Dresselhaus parameters kR¼ kD¼ 0.96 eV

Å was predicted for BiInO3.18 If used in a FTJ, the latter

would produce a perfect anisotropy in the TAHC with zero

(non-zero) response for magnetization pointing along the x-

(y-) direction. Another viable choice for a ferroelectric bar-

rier is orthorhombic HfO2,26 where a large Dresselhaus SOC

kD¼ 0.58 eV Å was predicted.16 This material has been used

as a barrier in FTJs showing a reversible polarization switch-

ing27 as well as the TER effect.28,29 One can estimate the

Hall voltage Vx for a FTJ with a ferroelectric HfO2 barrier

layer as follows:9 Vx � ðGxz=GelÞV, where Gel is the conduc-

tance of the electrode. Assuming for simplicity a sample

with equal tunneling and Hall contact areas A �10	 10

lm2, resistivity of the electrode q � 10 lX cm, and V �1 V,

and taking into account the calculated Gxz� 3 S/cm2, we find

Vx � 3 nV, which is measurable experimentally.

Finally, we discuss the local variation of the TAHC

resulting from the z-dependent Hall current contribution Gi1

given by Eq. (15). Figure 4 shows the calculated Gi1 for dif-

ferent SOC parameters kR and kD. It is seen that Gi1 exhibits

an oscillatory behavior and decay away from the interface.

The oscillation period is determined by the Fermi wave vec-

tor qz in the right electrode. The slow decay / z�1 results

from the integration over kjj. Similar to the total TAHC, Gi1

reveals spatial anisotropy which is strongly dependent on the

type of SOC. For the magnetization orientation /¼ 45�, we

see that Gx1 and Gy1 oscillate in phase for the Rashba SOC

[Fig. 4(a)], whereas they oscillate in antiphase for the

Dresselhaus SOC [Fig. 4(b)]. For equal Rashba and

Dresselhaus SOC, the conductance is perfectly anisotropic

with Gy1 being zero but Gx1 being finite [Fig. 4(c)]. In a gen-

eral case, both Gx1 and Gy1 are finite and oscillate over a

large distance from the interface [Fig. 4(d)]. We note, how-

ever, that detecting the oscillatory TAHC is challenging due

to diffuse scattering in real experimental conditions.

In summary, we have studied the TAHE in FTJs based
on the quantum-mechanical theory of spin-dependent elec-
tronic transport. For ferroelectric barriers with large SOC,
such as orthorhombic HfO2 and BiInO3, we predict sizable
TAHC values, which are measurable experimentally. We
predict anisotropy in the TAHC which depends on the type
of SOC and becomes perfect for the SOC with equal Rashba
and Dresselhaus parameters, where TAHC vanishes for a
certain magnetization orientation. The TAHC changes sign
with ferroelectric polarization reversal providing useful func-
tionality of FTJs. We hope that our findings will stimulate
experimental studies of the TAHE in FTJs.
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