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ABSTRACT: Brain-inspired computing architectures attempt to emulate the
computations performed in the neurons and the synapses in the human brain.
Memristors with continuously tunable resistances are ideal building blocks for
artificial synapses. Through investigating the memristor behaviors in a
La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 multiferroic tunnel junction, it was
found that the ferroelectric domain dynamics characteristics are influenced by
the relative magnetization alignment of the electrodes, and the interfacial spin
polarization is manipulated continuously by ferroelectric domain reversal, enriching
our understanding of the magnetoelectric coupling fundamentally. This creates a
functionality that not only the resistance of the memristor but also the synaptic
plasticity form can be further manipulated, as demonstrated by the spike-timing-
dependent plasticity investigations. Density functional theory calculations are
carried out to describe the obtained magnetoelectric coupling, which is probably
related to the Mn−Ti intermixing at the interfaces. The multiple and controllable
plasticity characteristic in a single artificial synapse, to resemble the synaptic morphological alteration property in a biological
synapse, will be conducive to the development of artificial intelligence.

KEYWORDS: multiferroic tunnel junctions, magnetoelectric coupling, interface, memristor, synaptic plasticity

1. INTRODUCTION

The information in the human brain is transmitted, stored, and
processed in the neuron network through synapses. Synapses
capable of varying their connecting strength due to the change
of their activity, the so-called synaptic plasticity, play a
fundamental role in the abilities of learning and memory.1−3

The new emerging memristor with a continuously tunable
resistance can be treated as an electronic equivalent of the
synapse for artificial neural networks.4,5 The memristor was first
demonstrated experimentally in titanium oxide capacitors
where continuous resistance states involve coupled motion of
electrons and ions within the oxide layer under an applied
electric field.6 Since then, to further improve the efficiency of
emulating synapses, considerable efforts have been dedicated to
investigating memristors based on different mechanisms,
including spintronic,7,8 ferroelectric,9−11 phase-change,12,13

ionic/electronic hybrid or 2D material three-terminal mem-
ristors,14,15 and so forth. Magnetic tunnel junctions (MTJs) are

typical spintronic memristors, where the multilevel resistances
are linked to the continuous displacement of the magnetic
domain walls (DWs).7,8 However, the resistance and tunneling
magnetoresistance (TMR) variations in most MTJ-based
memristors are not quasicontinuous and produced by a high
operating current density of 106 to 107 A/cm2.7,8,16 On the
other hand, ferroelectric tunnel junctions (FTJs) have been
demonstrated to be good candidates for low energy
consumption memory devices with high performance.17,18 It
is known that the resistance states in FTJ-based memristors can
be continuously tuned by engineering the ferroelectric domain
states associated with the ferroelectric domain nucleation and
growth dynamics.9,10 The plasticity of conductance in these
memristors confirms their potential for emulating the plasticity,
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particularly spike-timing-dependent plasticity (STDP), of
biological synapses and thus learning and memory abilities.9

However, these memristor prototypes only show a single
plasticity form in one device unit cell. While it is believed that
in biological synapses, synaptic morphological alterations
(including synaptic density, curvature, perforations, and the
size of synaptic elements) will result in different forms of
synaptic plasticity.19 The multiple plasticity forms in analogous
to the property of multimorphology in a single biological
synapse has not been achieved in any memristor device above,
limiting its complete emulation of natural synapses in human
brains.
Artificial multiferroic tunnel junctions (MFTJs), employing

ferroelectric barriers in MTJs or ferromagnetic electrodes in
FTJs, provide not only the combined functionalities of MTJs
and FTJs to achieve multistate devices20−24 but also promising
applications utilizing the magnetoelectric coupling at the
ferromagnetic/ferroelectric interfaces.25−28 The interfacial spin
polarization and the TMR can be tuned via ferroelectric
polarization reversal.26−28 Using an MFTJ as a memristor, one
can manipulate the resistance by modifying not only magnetic
states but also ferroelectric domains, which enhances the
operability in the plasticity of artificial synapses based on
MFTJs. Furthermore, from the point of view of magnetoelectric
coupling,29 it could be expected that for a memristor based on
MFTJs, the magnetic states of electrodes may affect the
ferroelectric memristive behaviors, which can provide a way to
emulate the property of different biological synaptic morphol-
ogies. However, this has not been discovered yet. Meanwhile, it
will be interesting to investigate whether the TMR-based
memristive behavior can be tuned by energy efficient
ferroelectric control.
Here, by investigating the voltage-controlled resistance

variations in La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 (LSMO/
BTO/LSMO) MFTJs, we found that the interfacial spin

configuration can modify the ferroelectric memristive dynamics
and that the interfacial spin polarization can be continuously
manipulated by electric field. Density functional theory
calculations allow us to understand the effect of magnetic
states on the ferroelectric switching behaviors. Such an
individual electronic solid-state synapse, which can capture
diversified plasticity forms, can bring another degree of freedom
to the design of complex cognitive systems of artificial
intelligence in the future.

2. RESULTS AND DISCUSSION

2.1. Atomic Structures at the Interfaces. To emulate a
biological synapse, we work with an electronic memristor based
on LSMO/BTO/LSMO MFTJs, as sketched in Figure 1a.
Figure 1b shows an aberration-corrected high-angle annular
dark-field (HAADF) scanning transmission electron micros-
copy (STEM) images and core-level electron energy-loss
spectroscopy (EELS) line scans of an LSMO/BTO/LSMO
trilayer, demonstrating the single crystalline, fully epitaxial BTO
and LSMO. The thickness of the BTO barrier is approximately
9 unit cells. Furthermore, we acquired the EELS spectra at
different positions of the trilayer, as shown in Figure 1c.
Referring to the signal of Mn-L2,3 at the LSMO electrode
(spectrum 1 shown in Figure 1c), the weak signal of Mn-L2,3
can be detected inside of the BTO barrier (spectra 2−4),
indicating the small amount of Mn ions inside of the BTO
barrier.
By using the quantitative analysis of the atomic-resolution

HAADF−STEM image (the probe scanning direction is along
the growth direction), the two-dimensional atom positions
could be confirmed by 2D Gaussian fitting and the structural
parameters for each unit cell can be obtained. The spatial
distribution of the out-of-plane lattice spacing is displayed in
Figure 1d,e. The out-of-plane lattice spacing increases abruptly
at the BTO/LSMO top interface (Figure 1e), indicating an

Figure 1. (a) Sketch of preneurons and postneurons connected by a synapse, and the magnetoelectrically coupled memristor based on LSMO/
BTO/LSMO MFTJ. (b) STEM−HAADF image of the LSMO/BTO/LSMO trilayer. Inset: Elemental profiles of Ti and Mn. (c) EELS spectra
acquired at different positions as illustrated in the HAADF image in (b). (d,e) Bird’s eye map and the mean value of the out-of-plane lattice spacing,
respectively. The blue shaded areas in (e) indicate the width of both LSMO/BTO interfaces.
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atomically sharp interface. In contrast, the LSMO/BTO bottom
interface is more gradual, consistent with our previous result
that there are more Mn−Ti intermixing at the bottom interface
than that at the top interface.24

2.2. Magnetoelectrically Coupled Memristor Behav-
iors. The memristive behaviors were performed by measuring
the pulsed voltage (Vpulse, 100 ms) dependent resistances (R)
for parallel (P) and antiparallel (AP) magnetic states, as shown
in Figure 2a,b. The P and AP magnetic states were confirmed
and realized at zero magnetic field (H) by measuring R−H
curves, as shown in Figure 2c. The junction resistance (at 10
mV) versus Vpulse hysteresis loops were measured with Vpulse
swept in the −2.0 V → +Vmax → −2.0 V sequence, where Vmax
increased from 1.6 to 2.2 V. The MFTJ was set to low-
resistance states by negative voltage pulses and to high-
resistance states by positive voltage pulses. Here, the variation
of the junction resistance is directly linked to the different
ferroelectric status in the BaTiO3 barrier in which the robust
ferroelectricity is evidenced by piezoresponse force microscopy
(see Supporting Information Figure S1). We define the low
resistances after Vpulse = −2.0 V as on states (upward
ferroelectric polarization) and the high resistances after Vpulse
= +2.2 V as off states (downward ferroelectric polarization).
Interestingly, the resistance switching between the on state and
the off state shows a broad range of intermediate resistance
states. Different intermediate resistance states can be achieved
nonvolatilely by tuning the magnitude of Vpulse, which clearly
demonstrates a memristive behavior. Treating the continuously
tunable resistance as the biological synaptic strength, a low
(high) resistance is regarded analogous to a strong (weak)
synaptic connection.4,9 Thus, in the implementation of artificial
synapses for our memristors, the decrease/increase in junction
resistances after negative/positive voltage pulses can be used to
emulate the potentiation/depression of synaptic strength,
respectively. It is noted that the R−Vpulse curves shift to the

positive voltage side with the positive voltage thresholds (Vth
+ )

larger than the negative ones (Vth
−), as guided by the dash lines

in Figure 2a,b. Here, the voltage thresholds Vth
+ (or Vth

−) are
defined as the ones where the resistances are 10% higher (or
lower) than those at on (or off) states. In addition, both Vth

+ and
Vth
− for the P magnetic state are lower than those for the AP

magnetic state, indicating different memristive behaviors
between P and AP magnetic states. Furthermore, to
demonstrate its potential in high density memories as expected
in memristors,30 we applied −2.0 V → +Vmax write pulses with
different +Vmax (1.6, 1.85, 2, and 2.2 V) to set junctions into
different polarization states. Combining the TMR effect, 10
distinguishable nonvolatile, stable, and reversible states were
obtained, as shown in Figure 2d,e.
The memristive behaviors can be analyzed using the voltage-

controlled ferroelectric-domain nucleation and growth model.
Defining s as the relative area fraction of the ferroelectric down
domains, the on and off states can be treated as fully
ferroelectric up (s = 0) and down (s = 1) states, while the
intermediate state is a mixture of regions with ferroelectric up
and down states (0 < s < 1). Thus, the s for any intermediate
state could be extracted from its resistance according to a
parallel circuit model9,10

= − +
R

s
R

s
R

1 1

on off (1)

where Ron and Roff represent the junction resistances of on and
off states at the P or AP magnetic state, respectively. Figure 2f
shows the relative fraction s during the R−Vpulse scans for P and
AP magnetic states. It shows that with increasing positive
voltage pulse magnitude, s varies from 0 in the on state to 1 in
the off state. Importantly, after a same positive voltage pulse
from the on to off states, the s for the P magnetic state is larger
than that for the AP magnetic state, which means the
memristive manipulation associated with the ferroelectric

Figure 2. Junction resistances recorded at 10 mV as a function of voltage pulses with the positive maximum voltage increasing from 1.6 to 2.2 V for
(a) parallel magnetic state and (b) antiparallel magnetic state, respectively. The dash lines show the voltage thresholds (Vth

+ and Vth
−) and the single-

headed arrows show the directions of ferroelectric polarization. (c) Junction resistances recorded at 10 mV as a function of magnetic fields after
different voltage pulses. Solid square: typical R−H curves. Open circles: resistance memory loops showing nonvolatile resistance states. (d) Data
retention of the MFTJ at 10 different states up to 30 min. (e) Reversibility test of switching among multistates using sequence of voltage pulses:
(top) the applied voltage pulses and (bottom) response of resistance. (f) Voltage pulse dependences of s estimated by resistance for P and AP states
and the effective interfacial spin polarization of the MFTJ.
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domain switching is easier at the P magnetic state. The
difference of ferroelectric memristive behaviors between P and
AP magnetic states confirms the potential of such a
magnetoelectrically coupled memristor for emulating the
synapses with diversified plasticity characteristics. Just like the
ferroelectric property can be affected by the magnetic state, the
magnetic property, e.g., TMR effect, can also be tuned by
ferroelectric reversal. As shown in Figure 2c, the TMR value at
the on state is ∼75% (defined as TMR = (RAP − RP)/RP, where
RP and RAP are the resistances in the parallel and antiparallel
states, respectively), and it gradually decreases to ∼10% with an
increasing positive pulse amplitude to +2.2 V. Correspondingly,
large and tunable tunnel electromagnetoresistance values
suggesting interfacial magnetoelectric coupling are obtained as
shown in Supporting Information Figure S2. According to the
Julliere model,31 TMR = 2P1P2/(1 − P1P2), TMR is related to
the effective spin polarizations P1 and P2 at the top and bottom
ferromagnetic/ferroelectric interfaces. The variations of the
TMR with the ferroelectric polarization reflect the changes in
spin polarization upon the ferroelectric polarization. Thus, we
can estimate P1P2 versus pulse voltages, as shown in Figure 2f.
It is found that P1P2 of ∼0.27 after a negative pulse voltage of
−2.0 V (ferroelectric poled up) gradually reduces upon pulse
voltage reversal and down to ∼0.047 after a positive pulse
voltage of +2.2 V (ferroelectric poled down). The continuous
manipulation in the effective spin polarization demonstrates a
way to achieve the TMR-based memristive behavior by the
gradual ferroelectric reversal. This is another function in
magnetoelectrically coupled MFTJ-based memristor and is
more power-efficient than the simple MTJ-based memristors.16

Furthermore, the continuously tunable spin polarization is a
desired functionality for spintronics technology.
2.3. Magnetoelectrically Coupled Ferroelectric Do-

main Dynamics. We now investigate the resistance evolutions

upon voltage pulse numbers (durations). It has been reported
that the velocity of the ferroelectric DW motion varies from
10−8 to 3000 m/s, depending on the amplitude and duration of
the applied electric field,32−34 and thus the time of DW motion
in micrometer along the interface can be up to a few
seconds.34,35 Through repetitive application of voltage pulses
(100 ms) of a certain polarity and amplitude, the junction
resistances can be continuously tuned. As shown in Figure 3a,
after applying four consecutive positive pulses with an
amplitude of 2.2 V to set the junction into high-resistance
states for both parallel and antiparallel states, the resistance
continuously decreases (synaptic potentiation) with the
increasing number of negative write pulses of −1.6 V. Vice
versa, as shown in Figure 3b, beginning from a low resistance
state set by four negative pulses (−2.0 V), the resistance
increases continuously (synaptic depression) with the increas-
ing number of positive write pulses of 1.8 V. Such resistance
evolutions upon voltage pulse numbers are repeatable as shown
in Supporting Information Figure S3.
After converting the resistances to ferroelectric domain

ratios, Figure 3c−f show a typical set of data on the evolution of
s as a function of cumulative pulse time (t). As proposed by
Chanthbouala et al.,10 the junction area can be divided into a
finite number of zones N with different propagations ruled by
the Kolmogorov−Avrami−Ishibashi model.36,37 Considering
that the timescale for nucleation is typically 1 ps to 1 ns,38 the
nucleation processes under a relatively longer voltage pulse
duration (100 ms) could be neglected. Thus, s can be written as

∑ τ= − · − −
=

s S t1 {1 exp[ ( / ) ]}
i

N i

i
i

1

( )

p
2

(2)

for down-to-up switching, and

Figure 3. Evolution of the junction resistances for P and AP states upon voltage pulse sequences of (a) Vpulse = +2.2 and −1.6 V with a duration of
100 ms, and (b) Vpulse = −2 and +1.8 V with a duration of 100 ms. The cumulative pulse time dependences of the switched fraction for down-to-up
(c,e) and up-to-down (d,f) switchings with different voltage amplitudes at P and AP states. The lines are the fits using eqs 2 and 3. Propagation time
vs 1/E of the different zones for (g) down-to-up and (h) up-to-down switchings. The symbol size is proportional to the corresponding size of the
considered zone, and the solid lines are fits based on Merz’s law.
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∑ τ= · − −
=

s S t{1 exp[ ( / ) ]}
i

N i

i
i

1

( )

p
2

(3)

for up-to-down switching, where Si is the area of each zone
normalized by the junction area and τp is a characteristic
propagation time. Figure 3c,e (Figure 3d,f) shows the fits of the
experimental data by eq 2 (eq 3) for negative (positive) voltage
pulses with different amplitudes at the P and AP magnetic
states. The data are well-fitted in the whole-time range with a
reduced number of zones N ≤ 3, see the solid lines in Figure
3c−f. The propagation time for each zone was extracted and
plotted as a function of electric field (E) for negative (Figure
3g) and positive pulses (Figure 3h). The size of the symbol is
proportional to the area Si of the zone it represents.

10 It can be
seen that, for all zones at each E, the values of τp at the AP
magnetic state are larger than those at the P magnetic state.
Because the DW propagation is proportional to exp(−Ea/E)

based on Merz’s law,39,40 we can obtain the activation electric
field Ea by fitting the time versus 1/E data to further evaluate
the difference of the resistance evolution behaviors between the
parallel and antiparallel magnetic states. Here, we only consider
the DW propagation of the largest zone at each E which
dominates resistance variations at each voltage amplitude. The
activation fields Ea for the DW propagations at the P magnetic
state are 0.82 × 109 and 1.20 × 109 V/m for the down-to-up
and the up-to-down domain switchings, respectively, while
those at the AP magnetic state are 1.87 × 109 and 2.18 × 109

V/m for the down-to-up and the up-to-down domain
switchings, respectively. These values of Ea are in the same
order as reported by Boyn et al.9 Importantly, the activation
fields for the P magnetic state are always smaller than those for
the AP magnetic state, which is consistent with the relatively
easier ferroelectric switching upon voltage pulse for the P
magnetic state as discussed above. This should be the reason
why the resistance evolutions upon pulse numbers for the AP
magnetic state are relatively slower than those for the parallel
state.
2.4. Magnetoelectrically Coupled STDP. To implement

STDP in our MFTJs, we apply a voltage waveform shown in
Figure 4a to our memristors to emulate the pre- and
postneuron activities (Vpre and Vpost). The voltage waveform
is made up of rectangular voltage pulses followed by smooth
slopes of opposite polarity, where the voltage never exceeds Vth,

so that a single spike cannot induce a change in resistance.
When both pre- and postneuron spikes reach the memristor
with a delay Δt, their superposition produces the waveforms
(Vpre − Vpost) as displayed in the inset of Figure 4b (indicating
the values of Δt in the figure), and the combined waveform
transitorily exceeds the threshold voltage. As shown in Figure
4b, for a causal pre- to postspike timing relation (Δt > 0), the
voltage activities will lead to the enhancement of the synaptic
connectivity with a positive weight change (Δw, in percent),
i.e., potentiation. While for an anticausal relation (Δt < 0), it
results in the suppression of the synaptic connectivity, i.e.,
depression. Notably, as can be seen from the experimental
STDP curves in Figure 4b, the change of the synaptic weight is
larger for the P state than that for the AP state. This can be
ascribed to the fact that the voltage thresholds of R−Vpulse
curves or the activation fields for the P magnetic state are
always smaller than those for the AP magnetic state, as
discussed above. These results indicate that multiple and
controllable STDP forms in a single artificial synapse based on
MFTJ are realized, which is useful to mimic the property of
morphological alterations in a biological synapse. More
specifically, as sketched in Figure 4c,d, the memristor at the
P magnetic state with relatively low resistances, small
propagation time, and activation field corresponds to a
relatively strong synaptic connection and a nonimpaired
synaptic plasticity. While the memristor at the AP magnetic
state with relatively high resistance, large propagation time, and
activation field corresponds to a relatively weak synaptic
connection and an impaired or declined synaptic plasticity. The
changes of the magnetic states in such a magnetoelectrically
coupled memristor from parallel to antiparallel are similar to
the synaptic morphological alteration in a biological synapse,
resulting in the variations of memory and learning abil-
ities.3,19,41 It is worth mentioning that the magnetic states in the
MFTJ may be varied continuously as an MTJ,8 which would
lead to a continuously tunable plasticity form in this kind of
solid-state synapse. Because integrating multiple plasticity forms
in a single artificial synapse makes it more similar to a biological
synapse, it may be particularly in demand for the integration of
the magnetoelectrically coupled memristor based on MFTJs in
the development of artificial intelligence.

2.5. First-Principles Calculations. The ab initio plane-
wave calculations were carried out to study the structural

Figure 4. (a) Presynaptic and postsynaptic spikes with the total length of 25 ms. (b) Measurements of STDP in MFTJ with P and AP states. The
insets show the waveforms produced by the superposition of presynaptic and postsynaptic spikes. (c) Schematic illustration of the
magnetoelectrically coupled memristor and (d) Sketch of the corresponding synapses.
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properties of the MFTJ (see Methods). Here, considering the
asymmetric Mn−Ti intermixing at the interfaces, the MFTJ was
modeled by a structure in which a single monolayer (two
monolayers) of La0.7Sr0.3Mn0.5Ti0.5O3 separates the top
(bottom) LSMO electrode from the BTO barrier film. The
fully relaxed structures with polarization upward and downward
states are shown in the insets of Figure 5a. The notable Ti−O
displacements can be obtained directly from the relaxed
structures, and their specific quantities are reported in Figure
5b. These results indicate that the nanoscale ferroelectricity
survives in BTO sandwiched between the electrodes. We
calculated the energy per supercell as a function of the soft
mode distortion, as shown in Figure 5a. Two inequivalent
energy minima in the curve are shown as the signature of
asymmetric ferroelectricity in the MFTJs at P and AP magnetic
states. The relative lower energy for polarization up indicates
the BTO thin film energetically favors upward polarization,
which is responsible for the shift of R−Vpulse curves to the
positive side in Figure 2a,b. Furthermore, we found that the
ferroelectric polarization switching barrier for the AP magnetic
state of ∼91 meV/supercell is larger than that for the P
magnetic state of ∼79 meV/supercell, which indicates the
ferroelectric polarization for the P magnetic state would be
switched easier than that for the AP magnetic state. This
computational result is in good agreement with the smaller
activation field Ea for the P magnetic state compared with that
for the AP magnetic state as obtained above. Note that the
magnetic moments at Ti sites can be induced by the
superexchange between Ti and Mn via the intermediate oxygen
ions, the possibility of interlayer exchange coupling would be
existing as a result.42,43 This makes the B−O (B = Ti, Mn, or
MnmTi1−m) displacements for the AP magnetic state different
from those for the P magnetic state as shown in Figure 5b,
which is responsible for the difference in the switching barrier
between P and AP magnetic states.

3. CONCLUSIONS
In summary, we have demonstrated the magnetoelectrically
coupled memristive behaviors in an MFTJ, which are induced
by the coupling of the ferroelectric domain reversal and the
interfacial spin state. The resistance can be continuously and
reversibly tuned by varying the pulse amplitude and/or the
pulse duration. Moreover, the multiple and controllable
plasticity characteristic is achieved by setting P or AP
magnetization alignments of electrodes, which is analogous to
the plasticity form changes with morphological alterations in a

biological synapse. Meanwhile, the voltage-controlled continu-
ously tunable interfacial spin polarization is also observed to
enrich the particular function of the solid-state synapse. All of
the interesting phenomena could be ascribed to the interfacial
magnetoelectric coupling, which is confirmed by theoretical
calculations. The control of ferroelectric domain dynamics by
magnetic states not only enriches our understanding of the
magnetoelectric coupling fundamentally and deserves further
investigations but also opens unforeseen perspective applica-
tions of magnetoelectrically coupled spintronics in next-
generation neuromorphic computational architectures.

4. EXPERIMENTAL SECTION
4.1. Device Fabrication. The LSMO (∼50 nm, bottom layer)/

BTO/LSMO (∼30 nm, top layer) heterostructures were epitaxially
grown on (001)-oriented SrTiO3 substrates by pulsed laser deposition
(KrF laser 248 nm) at a deposition temperature of 750 °C in a flowing
oxygen atmosphere of 300 mTorr. After cooling down to room
temperature, a Cr/Au layer was subsequently grown by dc magnetron
sputtering on the top of the multilayer for electrical contacts. The
micron-scale junction in the cross-strip geometry was patterned by a
three-step UV photolithography and Ar ion milling process.24 SiO2
deposited by radio frequency sputtering was used to isolate the bottom
LSMO layer from the top Au lead. The device structure of LSMO/
BTO/LSMO MFTJ is schematically shown in Figure 1b.

4.2. Characterization. The structural and chemical integrity of the
cross-sectional LSMO/BTO/LSMO multilayers were characterized by
atomically resolved aberration-corrected STEM and core-level EELS,
which were performed on a JEOL ARM200F microscope operating at
200 kV and equipped with a probe-forming spherical-aberration
corrector and Gatan image filter (Quantum 965). Room-temperature
piezoresponse force microscopy (PFM) measurements of the LSMO/
BTO/LSMO MFTJs were performed by an Asylum Research Cypher
scanning probe microscope with conductive Pt/Ti-coated tips
contacting with the top electrodes and being grounded. The PFM
hysteresis loops were collected in the dual ac resonance tracking mode
with triangle pulse waveforms applying on bottom electrodes.

The transport properties were characterized using a four-point
probe method in a physical property measurement system (EverCool-
II, Quantum Design), and the positive bias corresponds to the current
flows from the top to the bottom layer. That is, a positive voltage pulse
corresponds to poling the ferroelectric polarization downward.
Magnetic fields (H) were applied along the [110] easy axis of the
LSMO. The transport measurements of Figures 2 and 3 were
performed in a 100 μm2 MFTJ at 80 K with an electrical bias of 10
mV. The STDP curves in Figure 4 were obtained on another MFTJ
with a size of 2500 μm2 at 80 K with a bias of 10 mV. Its representative
TMR and tunneling electroresistance effects are shown in Supporting
Information Figure S4. To obtain the STDP curves, we always

Figure 5. (a) Energy per slab model as a function of normalized displacement of soft mode distortion. The amplitude of the ion displacements along
the c-axis is normalized, i.e., 1 and −1 correspond to the polarization (Ps) up and downward, respectively. The black single-headed arrows show the
directions of ferroelectric polarization. The energy of polarization up in the AP magnetic state is taken as the reference energy. (b) Profile of the
relative B−O (B = Ti, Mn, or MnmTi1−m) displacements in each atomic layer in two polarization states under P and AP magnetic states.
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initialize the junction to an intermediate resistance state between on
and off both for Δt > 0 and Δt < 0.
4.3. Theoretical Calculations. The calculations were carried out

using Quantum ESPRESSO44 with generalized gradient approximation
functional. A plane-wave cutoff of 40 Ry was used in all first-principles
calculations. Structural relaxations were performed using 5 × 5 × 1
Monkhorst−Pack k-meshes45 for slab models, and the atomic
positions were converged until the Hellmann−Feynman forces on
each atom became less than 10 meV/Å. The in-plane lattice constants
of all models were fixed to the experimental lattice constant of SrTiO3
(i.e., 3.905 Å) to simulate the epitaxial growth on a SrTiO3 substrate.
In each model, the top and bottom electrodes are separated by an 18 Å
thick vacuum to avoid magnetic interaction between them. The
pseudopotentials of all the atoms were generated using Vanderbilt’s
ultrasoft pseudopotential generation code.46 Virtual crystal approx-
imation is employed to introduce Sr (Ti) doping at A-site La (B-site
Mn) sites, in which the pseudopotentials (U) of the virtual LaxSr1−x
and MnmTi1−m ions are generated simply by compositionally averaging
the pseudopotentials of Sr and La (Ti and Mn) atoms

= + −
−

U xU x U(1 )La Sr La Srx x1

= + −
−

U mU m U(1 )Mn Ti Mn Tim m1

in which x is 0.7 and m is 0.5 to simulate La0.7Sr0.3Mn0.5Ti0.5O3.
Because of the fact that our experiments suggested Mn diffusing into
BTO barrier layers, we introduced 5% Mn at B sites to simulate
BaTi0.95Mn0.05O3.
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