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ARTICLE

Spin-neutral currents for spintronics
Ding-Fu Shao 1✉, Shu-Hui Zhang 2, Ming Li1, Chang-Beom Eom3 & Evgeny Y. Tsymbal 1✉

Electric currents carrying a net spin polarization are widely used in spintronics, whereas

globally spin-neutral currents are expected to play no role in spin-dependent phenomena.

Here we show that, in contrast to this common expectation, spin-independent conductance in

compensated antiferromagnets and normal metals can be efficiently exploited in spintronics,

provided their magnetic space group symmetry supports a non-spin-degenerate Fermi

surface. Due to their momentum-dependent spin polarization, such antiferromagnets can be

used as active elements in antiferromagnetic tunnel junctions (AFMTJs) and produce a giant

tunneling magnetoresistance (TMR) effect. Using RuO2 as a representative compensated

antiferromagnet exhibiting spin-independent conductance along the [001] direction but a

non-spin-degenerate Fermi surface, we design a RuO2/TiO2/RuO2 (001) AFMTJ, where a

globally spin-neutral charge current is controlled by the relative orientation of the Néel

vectors of the two RuO2 electrodes, resulting in the TMR effect as large as ~500%. These

results are expanded to normal metals which can be used as a counter electrode in AFMTJs

with a single antiferromagnetic layer or other elements in spintronic devices. Our work

uncovers an unexplored potential of the materials with no global spin polarization for utilizing

them in spintronics.
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The field of spintronics utilizes the spin degree of freedom in
condensed matter for information processing and storage1.
Most spintronic applications rely on electric currents with

sizable spin polarization for detection or manipulation of the
magnetic order parameter in spintronic devices. A typical and
widely used spintronic device is the magnetic tunnel junction
(MTJ), where a longitudinal charge current spin polarized by one
ferromagnetic metal quantum-mechanically tunnels into another
ferromagnetic metal through an insulating barrier layer2,3. Con-
ductance of the MTJ is controlled by the relative magnetization
orientation of the two ferromagnetic electrodes, resulting in a
tunneling magnetoresistance (TMR) effect4.

Contrary to the spin-polarized currents, spin-neutral currents
are usually considered impractical for spintronics due to being
unable to directly interact with the magnetic order parameter.
This fact challenges spintronics based on non-ferromagnetic
materials, such as compensated antiferromagnets, which normally
do not support spin-polarized currents. Due to being robust
against magnetic perturbations, the absence of stray fields, and
ultrafast spin dynamics, antiferromagnets are considered as out-
standing candidates to replace the widely used ferromagnets in
the next generation spintronics5–9. This promising route has been
recently stimulated by the demonstrated control of the anti-
ferromagnetic Néel vector by spin-orbit torques10,11. However,
the absence of a net magnetization and hence spin-independent
conductance makes the electrical detection of the Néel vector
using conventional methods, such as TMR measurements,
unfeasible5. So far, the electrical detection of the Néel vector has
been performed using anisotropic10,11 or spin-Hall12–15 magne-
toresistance. Unfortunately, both methods suffer from relatively
small signals easily influenced by perturbations16 and require
multiple in-plane terminals resulting in large device dimensions7.
Antiferromagnetic spin valves17–20 and antiferromagnetic
tunnel junctions (AFMTJs)21,22 have been theoretically proposed,
promising, in some cases, sizable magnetoresistance effects.
However, these magnetoresistance effects rely on perfect inter-
faces and switching the interfacial magnetic moment alignment
between parallel and antiparallel. This mechanism is not robust
against disorder and interface roughness inevitable in experi-
mental conditions. Recent efforts have been aimed at exploring
unconventional methods for the Néel vector detection based
on topological properties9,23–25 but require an experimental
confirmation.

One promising direction is to create spin-polarized currents in
antiferromagnets. Recently, it has been predicted that certain types
of compensated antiferromagnets exhibit a momentum-dependent
spin splitting of the Fermi surface26–28, resulting in spin-polarized
currents along certain crystallographic orientations29–31. These
predictions indicate that these antiferromagnets can work as fer-
romagnets in spintronic devices, which broadens the range of
materials useful for spintronics.

Here, we embark on a different path and argue that globally
spin-independent conductance in compensated antiferromagnets
can be efficiently used in spintronics, provided their crystal
symmetry supports a non-spin-degenerate Fermi surface and thus
momentum-dependent spin polarization. While such a spin
polarization is cancelled out in the net conductance due to being
antisymmetric with respect to certain symmetry operations, its
presence in the momentum space can be functionalized if such an
antiferromagnet is combined with another similar antiferro-
magnet in a spintronic device such as an AFMTJ. In this case, the
resistance change of the AFMTJ occurs in response to the
orientation of the antiferromagnetic Néel vector due to changing
matching conditions between the spin-polarized conduction
channels in the two metal electrodes. These considerations can be
expanded to normal (nonmagnetic) metals with spin-orbit

coupling where the combined space inversion-time reversal
symmetry is broken, indicating that they can also be utilized in
spintronics despite globally spin-neutral currents.

Results
Spin polarized conduction channels. To explore the possible use
of spin-neutral currents in a spintronic device, we first consider
ballistic conductance of a material under investigation. Since the
ballistic conductance is determined by the number of conduction
channels, i.e. propagating Bloch states at the Fermi energy, it can
provide an important characteristic of a spintronic device where
this material is used as a metal electrode32,33. In the absence of
spin-orbit coupling, the ballistic conductance g per unit area
along the z direction can be obtained in terms of two spin
components as follows34.

g ¼ g" þ g# ¼ e2
h ∑

kk
ðN"

k þ N#
k Þ; ð1Þ

Nkð k
!

kÞ ¼ _
2∑n

R jvσnzj ∂f

∂Eσ
nð k
!

Þ
dkz: ð2Þ

Here σ denotes the spin component ↑ or ↓, k
!

is the wave

vector in the three-dimensional Brillouin zone, Nσ
kð k
!

kÞ is the
number of conduction channels (integer) at the transverse wave

vector k
!

k ¼ ðkx; kyÞ for spin σ, Eσ
n is energy for the n-th band,

vσnz ¼ ∂Eσ
nð k
!

Þ
_∂kz

is the band velocity along the transport z direction,
and f is the Fermi distribution function.

The net transport spin polarization is defined by

p ¼ g"�g#

g ð3Þ
and represents an important quantity useful in spintronics. For

example, in a crude approximation of k
!

k-independent transmis-
sion between two ferromagnetic electrodes with spin polarizations
p1 and p2 in an MTJ, the TMR effect is given by the well-known
Julliere’s formula2 TMR ¼ 2p1p2

1�p1p2
. Clearly, a larger spin polariza-

tion of the electrodes favors a larger TMR.
A large spin polarization p is generally expected for ferro-

magnets where the finite net magnetization breaks time reversal

symmetry T̂ . The latter flips the spin σ and changes sign of k
!

k,

resulting in T̂N"
k ð k
!

kÞ ¼ N#
k ð�k

!
kÞ. Compensated antiferromag-

nets do not have net magnetization and hence (with some
exceptions29–31) do not support the macroscopic spin-polarized
current. However, even though macroscopically the net transport
spin polarization p is absent, microscopically the conductance
could be spin polarized as reflected in the spin polarization of

conduction channels at k
!

k:

pkð k
!

kÞ ¼
N"

k�N#
k

N"
kþN#

k
: ð4Þ

If both electrodes in a two-terminal spintronic device are made
of materials with zero net spin polarization but have spin-
polarized conduction channels, this momentum-dependent spin
polarization will be reflected in the device conductance and can
be functionalized through the antiferromagnetic Néel vector.
Indeed, in the transport regime conserving spin (no spin-orbit

coupling) and wave vector k
!

k (no diffuse scattering), the device
conductance is largely affected by the spin matching of the

conduction channels k
!

k of the electrodes. If their spin
polarization changes in response to the Néel vector rotation in
an antiferromagnetic electrode, this alters the net conductance of
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the device. Thus, although the spin polarization of the charge

current remains zero, the device conductance reflects the k
!

k-
dependent spin polarization of the conduction channels.

Next, we identify magnetic space group symmetry require-

ments for crystals to exhibit the k
!

k-dependent spin polarization.
Obviously, in ferromagnets, the conduction channels are spin
polarized due to the spin-dependent Fermi surface. Thus, passing
a spin-neutral current through a ferromagnetic material makes it
spin polarized (Fig. 1a). On the contrary, most compensated
antiferromagnets contain symmetries that not only prevent
the net magnetization but also lead to a spin-degenerate
Fermi surface and thus spin-independent conduction channels.
For example, if a compensated antiferromagnet exhibits P̂T̂
symmetry, where P̂ and T̂ are space inversion and time reversal

symmetries, respectively, pk ¼ 0 due to P̂T̂N"
k ð k
!

kÞ ¼ N#
k ð k
!

kÞ.
This property follows from the spin-degenerate Fermi surface due

to P̂T̂E"
n ð k
!Þ=E#

n ð k
!Þ (Fig. 1b). The spin degeneracy also appears

in compensated antiferromagnets with T̂ t̂ symmetry (̂t is half a
unit cell translation) in the absence of spin-orbit coupling.

The spin degeneracy is however broken in compensated
antiferromagnets belonging to magnetic space groups with
violated P̂T̂ and T̂ t̂ symmetries26. The vanishing net magnetiza-
tion in such antiferromagnets originates from the combination of
some other magnetic space group symmetries of the crystal. For
example, Fig. 1c shows a collinear antiferromagnet with the Néel
vector pointing along the z direction. The zero net magnetization
in this antiferromagnet is guaranteed by two glide symmetries Ĝx

and Ĝz , where Ĝl ¼ fM̂l ĵtg represents mirror symmetry M̂l with a

mirror plane normal to vector l
!

combined with translation t̂.
The symmetry transformation ĜxN

"
k ðkx; kyÞ ¼ N#

k ð�kx; kyÞ flips
the spin and thus according to Eqs. (1) and (2) results in a

vanishing net spin polarization p for the current along the z
direction. On the other hand, due to the Néel vector pointing

along the z axis, the symmetry transformation ĜzE
σ
nð k
!

k; kzÞ ¼
Eσ
nð k
!

k;�kzÞ conserves the spin σ ¼";# of the conduction

modes at k
!

k and there is no symmetry operation which would
enforce pk ¼ 0. The presence of spin-polarized conduction
channels in this type of antiferromagnets can be understood in
terms of two congruent (but not identical) up- and down-spin
Fermi surfaces, which are transformed to each other by the
symmetry transformation Ĝx (Fig. 1c). In this case, each
conduction channel is spin polarized (except high-symmetry

k
!

k points invariant to Ĝx), whereas the net conductance is spin
neutral.

Due to the non-spin-degenerate Fermi surface and spin-
polarized conduction channels, the globally spin-neutral conduc-
tion of the compensated antiferromagnets can be exploited in
spintronic devices, such as AFMTJs. Fig 1d shows an AFMTJ
which contains two identical antiferromagnetic electrodes sepa-
rated by a nonmagnetic insulating spacer. The antiferromagnets
are assumed to have spin-polarized conduction channels along the
out-of-plane transport direction. The functionality of the AFMTJ
is controlled by the relative orientation of the Néel vector of the
two antiferromagnetic electrodes. In the parallel state, the spin-
polarized conduction channels of the electrodes perfectly match,
resulting in a low resistance state. In the antiparallel state, the spin
polarized conduction channels are mismatched, resulting in a high
resistance state.

Electronic structure of RuO2. To demonstrate this spintronic
functionality, we consider the recently discovered room-
temperature antiferromagnetic metal RuO2

35 suitable for realiz-
ing the proposed AFMTJ. RuO2 exhibits interesting properties

Fig. 1 Spin-polarized conduction channels in different types of magnetic materials. a Schematics of the atomic structure (left) and spin-polarized Fermi
surface (right) for a ferromagnet. A spin-neutral current passing through the ferromagnet becomes spin polarized. b Schematics of the atomic structure
(left) and spin-degenerate Fermi surface (right) for a compensated antiferromagnet where the net magnetization is forbidden by P̂T̂ symmetry. A spin-
neutral current passing through this antiferromagnet remains spin neutral. c Schematics of the atomic structure (left) and non-spin-degenerate Fermi
surface congruent for opposite spins (right) for a compensated antiferromagnet where the net magnetization is forbidden by glide symmetries Ĝx and Ĝz. A
spin-neutral current passing through this antiferromagnet remains globally spin neutral but has a momentum-dependent spin polarization. d Schematics of
an AFMTJ where two antiferromagnetic (AFM) layers are separated by a nonmagnetic (NM) barrier layer. The Néel vector (indicated by arrows) of the
bottom free layer can be switched resulting in the TMR effect.
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such as spin splitting without spin-orbit coupling36, a crystal Hall
effect37, and a magnetic spin Hall effect31,38. RuO2 has a rutile
structure with an out-of-plane Néel vector (Fig. 2a) and magnetic
space group P42'/mnm', which contains glide Ĝx ¼ fM̂xjð12 ; 12 ; 12Þg,
Ĝy ¼ fM̂yjð12 ; 12 ; 12Þg and mirror M̂z symmetries. In the absence of
spin-orbit coupling, the energy bands are spin degenerate at the
k-planes invariant to Ĝx and Ĝy , such as kx ¼ 0; π2 or ky ¼ 0; π2.
This is evident from our first-principles density functional theory
(DFT) calculations. As seen from Fig. 2b, the energy bands of
RuO2 are spin degenerate along the Г–X, Г–Z, X–M, Z–R, and
R–A directions lying in these glide-invariant planes. On the other
hand, a large spin splitting appears along the directions away
from these planes, such as Г–M and Z–A.

The spin-dependent band structure leads to the momentum-
dependent spin polarization of the conduction channels along the
z direction. We explicitly demonstrate this by calculating the

number of conduction channels Nσ
kð k
!

kÞ in the two-dimensional
(2D) Brillouin zone of RuO2. As seen from Fig. 2c, the
distributions of N"

k and N#
k in the ðkx; kyÞ plane have congruent

shapes and are symmetric with respect to the Ĝx and Ĝy symmetry
transformations, which enforce a zero global spin polarization in
the conductance along the z direction. On the contrary, as seen

from Fig. 2d, the k
!

k-dependent spin polarization pk remains
finite across a sizable portion of the 2D Brillouin zone. This
demonstrates that RuO2 (001) exhibits a globally spin-neutral
conductance through spin-polarized conduction channels.

TMR in a RuO2/TiO2/RuO2 AFMTJ. Next, we design an AFMTJ
using RuO2 (001) as electrodes and TiO2 (001) as an insulating
barrier layer. Due to both having a rutile structure and a similar
lattice constant, this AFMTJ is feasible in practice. Fig 3a shows
the atomic structure of the RuO2/TiO2/RuO2 (001) supercell,
which is used in our DFT and quantum transport calculations
and includes 8 TiO2 layers in the center and 10 RuO2 layers on
each side. We find that a wide band gap of TiO2 is well main-
tained in this heterostructure, and the Fermi energy EF is located
deeply inside the band gap (Fig. 3b).

The RuO2/TiO2/RuO2 (001) structure in Fig. 3a is then used as
the scattering region of the AFMTJ connected to two semi-
infinite RuO2 (001) electrodes for calculating transmission. The
transmission is obtained for parallel (Fig. 4a) and antiparallel
(Fig. 4b) alignments of the Néel vectors of the electrodes. For the

parallel-aligned AFMTJ, the k
!

k-resolved transmission Tσ
Pð k
!

kÞ is
shown in Fig. 4c for spin up (left panel) and spin down (right

panel). The clearly seen spin asymmetry between T"
Pð k
!

kÞ and

T#
Pð k
!

kÞ reflects the related asymmetry in the distribution of the
spin-polarized conduction channels in RuO2 (Fig. 2c). The
suppressed transmission near the Brillouin zone corners is due to

Fig. 2 Electronic properties of RuO2. a The atomic and magnetic structures of RuO2. b The calculated band structure of RuO2. c The number of~kk-resolved
conduction channels in the 2D Brillouin zone of RuO2 for spin up N"

k (left) and spin down N#
k (right). High-symmetry~kk-points are indicated. N

"
k and N#

k can
be transformed to each other by the glide transformations Ĝx or Ĝy . d Spin polarization of conduction channels pk ~kk

� �
. Gray contrast indicates regions

where N"
k ¼ N#

k ¼ 0 and thus pk undefined.

Ru

a

b

Ti

O

-2

0

2

E
- E

F
(e

V)

AP state
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Fig. 3 Atomic and electronic structure of a RuO2/TiO2/RuO2 supercell.
a, b The atomic structure (a) and layer resolved density of states (DOS) (b)
of the RuO2/TiO2/RuO2 supercell. Each panel in b contains two atomic
layers of MO2 (M= Ru, Ti) and has left and right subpanels corresponding
to up- and down-spin states, respectively. The arrows in (a) indicate the
magnetic moments of Ru atoms.
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a larger decay rate of the evanescent states for k
!

k away from the
zone center.

For the antiparallel-aligned AFMTJ, the transmission

Tσ
APð k

!
kÞ is blocked for the wave vectors k

!
k with no conduction

channels in one of the spin states, i.e. Nσ
kð k
!

kÞ ¼ 0 for σ ¼" or

σ ¼#. These are the regions where pk ¼ ± 1 or N"
k ¼ N#

k ¼ 0 in
Fig. 2c and d. As a result, only the states near the zone center
where the spin channels are degenerate (enforced by Ĝx and Ĝy)
contribute to the transmission (Fig. 4d). This leads to the total
transmission being much smaller for the antiparallel state (TAP)
than for the parallel state (TP) (Fig. 4e). At the Fermi energy EF ,
we find the TMR ratio ðTP � TAPÞ=TAP as large as ~500%.
This value is comparable to the values obtained for the well-
known Fe/MgO/Fe (001) MTJs39,40 which are currently used in
magnetic random-access memories. The giant TMR appears not
only for E ¼ EF but also for the energies around the Fermi level,
with the smallest value of ~50% at E ¼ EF � 0:25 eV (Fig. 4f).
This fact indicates that the large TMR will be sustained under an
applied bias voltage.

The predicted TMR is largely independent of the interface
terminations and the relative alignment of the interface magnetic
moments, as follows from our explicit DFT calculations
(Supplementary Figs. S1 and S2). This distinguishes our results
from the previous findings21,22, where the interface termination
controls TMR and implies that the predicted TMR effect is likely
less sensitive to the interface roughness than that in the previous
studies. The bulk origin of TMR in the proposed AFMTJs makes

it also more robust against other types of disorder, as long as the
crystallinity of the tunnel junction and the direct tunneling
transport mechanism are maintained (see Section C of Supple-
mental Material).

Discussion
The above properties are sustained in the presence of spin-orbit
coupling. This is due to the momentum-dependent spin polar-
ization in rutile antiferromagnets being inherited from the anti-
ferromagnetic order rather than spin-orbit coupling27,31,37. In
RuO2, the M̂z symmetry transformation reverses the wave vector
component kz , conserves the spin component σz but flips σx and

σy . As a result, the conduction modes at k
!

k are spin polarized
purely along the z axis and the x- and y-spin components vanish
(see Supplementary Section D). Supplementary Fig. S5e shows the
results of the DFT calculation for RuO2 in the presence of spin-
orbit coupling. It is seen that the spin polarization of the most
conduction channels is well preserved, indicating that the giant
TMR is robust against spin-orbit coupling in the RuO2

based AFMTJ.
The spin-polarized conduction channels are not limited to

RuO2, but typical for a wide group of materials with violated P̂T̂
symmetry, including those with a noncollinear antiferromagnetic
order29. For the antiferromagnets with magnetization being
compensated by combined mirror and/or rotation symmetries,
the spin-polarized conduction channels can exist purely
due to the antiferromagnetic order, even in the absence of spin-
orbit coupling26–31. On the other hand, in compensated
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Fig. 4 Giant TMR in RuO2/TiO2/RuO2 AFMTJ. a, b The atomic and magnetic structures of RuO2/TiO2/RuO2 AFMTJ for parallel (P) (a) and antiparallel
(AP) (b) alignment of the Néel vectors. c, d The calculated~kk-resolved transmission in the 2D Brillouin zone for the AFMTJ in P (c) and AP (d) states.
e Total transmission as a function of energy for the AFMTJ in P (red dots) and AP (blue dots) states. f TMR as a function of energy.
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antiferromagnets with T̂ t̂ symmetry, the spin-polarized con-
duction channels appear due to the spin degeneracy lifted by
spin-orbit coupling. Such antiferromagnets can also be used in
AFMTJs if they have sizable spin-orbit splitting.

These considerations can be expanded to normal metals with
broken space inversion symmetry, where the band spin degen-
eracy is lifted by spin-orbit interaction. In these materials, the two
conduction channels with opposite spin polarizations are linked
by the time reversal symmetry operation. For example, in topo-
logical metal TaN41,42, the conduction channels along the [001]
direction carry the spin polarization pointing along the same
[001] direction (Supplementary Fig. S6). This property is
enforced by the M̂z mirror symmetry. While the momentum-
dependent spin polarization in non-centrosymmetric normal
metals is fixed by their crystal symmetry and band structure, they
can be used in spintronics in conjunction with antiferromagnets.
For example, the antiferromagnetic reference layer in the AFMTJ
in Fig. 1d can be replaced by a normal metal layer. Alternatively,
one can create an antiferromagnet/normal metal interface. In
such systems with a single antiferromagnetic layer, the spintronic
functionality is controlled by the Néel vector orientation that
regulates a matching of the conduction channels in the anti-
ferromagnetic and normal metal layers.

Note that in junctions with a single antiferromagnetic layer,
reversal of the Néel vector is equivalent to the time-reversal
transformation which does not change the resistance. However,
the resistance changes with rotation of the Néel vector, resulting
in a tunnelling anisotropic magnetoresistance (TAMR) effect43.

Another possibility is to utilize non-centrosymmetric insula-
tors as a tunneling barrier layer in an AFMTJ. Due to the broken
space inversion symmetry and spin-orbit coupling, the evanescent
states in these insulators are spin-polarized44,45. Therefore, the
Néel vector of the free antiferromagnetic layer can be used to
control the matching between the propagating Bloch states in the
antiferromagnetic electrode and the evanescent gap states in the
barrier resulting in a TAMR effect. An additional useful func-
tionality of this kind of tunnel junctions may be provided by a
switchable polarization of the non-centrosymmetric insulating
barrier layer if it is ferroelectric45.

The proposed use of spin-neutral currents in spintronics is
feasible from the experimental perspective. For example, the
proposed RuO2/TiO2/RuO2 (001) AFMTJ has all rutile structure
with a good match of the RuO2 and TiO2 lattice constants and
thus can be grown epitaxially preserving crystallinity of the
overall heterostructure. The Néel vector of the antiferromagnetic
free layer can be switched by a spin-orbit torque via the spin
current from an adjacent heavy metal layer generated by an in-
plane charge current8,46. With the in-plane writing path and
out-of-plane reading path, only two in-plane terminals and one
out-of-plane terminals are required for such an AFMTJ, which is
desirable for nanoscale spintronic applications. In addition, the
large magnitude of TMR indicates a possibility of a strong spin
transfer torque in the AFMTJs, which may be robust against
disorder47 and may offer an alternative way to switch the Néel
vector.

In conclusion, we have proposed that globally spin-neutral
currents flowing through oppositely spin-polarized conduction
channels can be efficiently used in spintronics. Such currents exist
in compensated antiferromagnets and normal metals with the
magnetic space group symmetries which lift the spin-degeneracy
of the Fermi surface. In the heterostructures, such as anti-
ferromagnetic tunnel junctions or antiferromagnet/normal metal
interfaces, these currents can be controlled by the Néel vector
orientation providing a useful functionality for spintronics. Based
on first-principles density functional theory combined with

quantum transport calculations, we have demonstrated such
functionality using a room-temperature antiferromagnetic metal
RuO2 as electrodes in a RuO2/TiO2/RuO2 AFMTJ and predicted a
giant TMR effect of ~500%. Our work uncovers an unexplored
potential of the materials with no global spin polarization for
utilizing them in spintronics. We hope therefore that our pre-
dictions will stimulate experimental investigations of these
materials and the associated phenomena.

Note added: During the review of this manuscript, we became
aware of the relevant work by Šmejkal et al. posted recently48.

Methods
The atomic and electronic structures shown in Figs. 2a, b, 3, S5a, and S6a, b of the
systems are calculated using the projector augmented wave (PAW) method49

implemented in the VASP code50. A plane-wave cut-off energy of 500 eV and a
16 × 16 × 16 k

!
-point mesh in the irreducible Brillouin zone are used in the cal-

culations. The exchange and correlation effects are treated within the generalized
gradient approximation (GGA) developed by Perdew-Burke-Ernzerhof (PBE)51.
The GGA+U functional52,53 with Ueff= 2 eV on Ru 4d orbitals and Ueff= 5 eV on
Ti 3d orbitals is included in the calculations.

The transport properties shown in Fig. 4 and S1–S3 are calculated using the non-
equilibrium Green’s function formalism (DFT+NEGF approach)54,55, as imple-
mented the Atomistic Simulation Toolkit (ATK) distributed in the QuantumWise
package (Version 2015.1) (ATOMISTIX TOOLKIT version 2015.1 Synopsys
QuantumWise (www.quantumwise.com). QuantumWise A/S is now part of
Synopsys, and from the upcoming version ATK will be part of the QuantumATK
suite)56. The atomic structures are relaxed by VASP and the nonrelativistic Fritz-
Haber-Institute (FHI) pseudopotentials using a single-zeta-polarized basis. The
spin polarized GGA+U functional51,52 with Ueff= 2.3 eV on Ru 4d orbitals and
Ueff= 5 eV on Ti 3d orbitals is included in the calculations. A cut-off energy of 75
Ry and a 11×11×101 k

!
-point mesh are used for the self-consistent calculations to

eliminate the mismatch of the Fermi level between the electrodes and the central
region. Unless mentioned in the text, the transmission is calculated using an
adaptive k

!
-point mesh. These parameters are confirmed to yield a good balance

between the computational time and accuracy.
The tight-binding Hamiltonians of RuO2 and TaN are obtained using Wan-

nier90 code57 utilizing the maximally localized Wannier functions58. A 500 × 500 ×
500 k

!
-point mesh and the adaptive smearing method59 are used to calculate the

k
!

k-resolved ballistic conductance shown in Fig. 2c, d, S5e and S6c, d. The spin-
projected Fermi surfaces of RuO2 with spin-orbit coupling shown in Figs. S5b–d
are calculated using WannierBerri code60,61.

Figures are plotted using VESTA62, FermiSurfer63, gnuplot64, and the SciDraw
scientific figure preparation system65.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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