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ABSTRACT

Curvature impacts physical properties across multiple length scales, ranging from the macroscopic scale, where the shape and size vary
drastically with the curvature, to the nanoscale at interfaces and inhomogeneities in materials with structural, chemical, electronic, and
magnetic short-range order. In quantum materials, where correlations, entanglement, and topology dominate, the curvature opens the path
to novel characteristics and phenomena that have recently emerged and could have a dramatic impact on future fundamental and applied
studies of materials. Particularly, magnetic systems hosting non-collinear and topological states and 3D magnetic nanostructures strongly
benefit from treating curvature as a new design parameter to explore prospective applications in the magnetic field and stress sensing, micro-
robotics, and information processing and storage. This Perspective gives an overview of recent progress in synthesis, theory, and characteri-
zation studies and discusses future directions, challenges, and application potential of the harnessing curvature for 3D nanomagnetism.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054025

I. INTRODUCTION

Understanding the relationship between electronic and mag-
netic properties and structural and chemical quantities is one of
the overarching themes in condensed matter and applied physics
and key to the discovery of novel quantum materials. Correlated
electron systems and magnetic materials are particularly interesting
because microscopic characteristics of entangled and topological
states are heavily determined by local atomic and nanoscale fea-
tures. To date, research efforts have largely been focusing on syn-
thesizing planar single-crystals, epitaxial films, and multilayer
stacks with tailored functionalities originating from the nearly
perfect long-range order and symmetry. The existence or absence
of symmetry is essential to many phenomena emergent in topologi-
cal insulators, ferroelectric, multiferroic, and magnetic materials
whose physical properties are described by vector order parameters
relying on, e.g., spin–orbit coupling.1–3 In fact, current information
processing and storage architectures as well as concepts for novel
microelectronics, including the evolving field of spintronics,4 rely
on low-dimensional systems with well-defined symmetry and
special types of spin–orbit coupling. However, structural and chem-
ical inhomogeneities and disorder emerge even in the most perfect
materials and at interfaces. A new way of describing those

imperfections is to assign them a curvature in real, reciprocal, or
spin space (Fig. 1). A local curvature can be employed to design
systems with spontaneous or inhomogeneous inversion symmetry
breaking and to stabilize 3D magnetization vector fields or to tailor
topology and magneto-transport properties in amorphous corre-
lated electron systems.5–7 Sculpting 3D curved nanostructures
provides means to tailor the curvature on the nanoscale while
simultaneously expanding 1D and 2D nanostructures into the third
dimension8 and is heavily used in microrobotics.9–11

Topological vector fields, such as vortices,12 skyrmions13 and
topological knots,14–17 possess a curvature in the vector order
parameter space, e.g., spin space. Compared with uniformly polar-
ized or topologically trivial configurations, topological vector fields
span the Bloch sphere N times with N referring to the topological
charge. The representation in terms of a Bloch sphere is convenient
to describe electromagnetism in solids18–20 and to link topological
properties to electronic transport phenomena.21 The latter has
stimulated a multitude of theoretical and experimental studies of
magnetic22–27 and polar28,29 skyrmions in a large variety of materi-
als systems in view of both basic sciences and novel information
storage and processing units, such as the racetrack memory.30–32

Alternative concepts propose to use topological states as 3D curved
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magnonic waveguides33 for spin wave-based spintronics,34 for
neuromorphic35–38 and probabilistic39 computing, or for topologi-
cal magnonics,40,41 taking advantage of their quasi-particle charac-
ter. The vast majority of magnetic topological vector fields has
been stabilized in systems with inversion symmetry breaking, pro-
vided either by virtue of their crystal structure42,43 or through the
presence of planar interfaces,44–46 causing an asymmetric vector
spin exchange known as the Dzyaloshinskii–Moriya interaction
(DMI).42,43 However, those concepts and governing mechanisms
are universally applicable to ferroelectric,28,29 multiferroic,47 and
2D van der Waals materials,48–51 as well as to amorphous
materials52–54 with local inversion symmetry breaking. In fact,
systems with a locally varying DMI55,56 or a spontaneous symmetry
breaking with respect to spin chirality have been proposed for sta-
bilizing twisted and anisotropic magnetic solitons,16,57 including
topological spin knots referred to as hopfions.14–17,58 The inherent

dilemma of mutually exclusive small topological states and high
magnetic ordering temperature, essential to spintronics applica-
tions, may be addressed using targeted synthesis of magnetically
ordered alloys.59 The prerequisite non-planar arrangement of
atoms of the same element can be interpreted as a curved interface
within the solid-state material, opening a completely new direction
of exploring curvature as a new design parameter.

A complementary route to break inversion symmetry without
impairing intrinsic properties relies on engineering curved nano-
structures and tailoring magnetic exchange interactions.60

Curvature has been employed to design tubular architectures with
virtually unlimited magnetic domain wall velocity and unidirec-
tional spin wave propagation owing to curvature-driven magneto-
chirality.61 Since curvature-driven inversion symmetry breaking is
conceptually analogous to an emergent DMI, topological states can
be created and manipulated solely by curvature62 without the need

FIG. 1. Magnetism in curved geometries in real, reciprocal, and spin space. Magnetic properties and novel functionalities are governed by the curvature and short-range
order alongside elements and composition. Local inversion symmetry breaking by the curvature, strain, and short-range order can promote the formation of 3D topological
spin textures owing to an emergent local vector exchange interaction (DMI) with prospective applications to microelectronics while offering greater flexibility in materials syn-
thesis. Geometrically confined structures, such as nanorods, nanotubes, and nanohelices, induce a curvature-driven DMI that discriminates between spin chirality and sup-
ports the nucleation of chiral and topological states with unprecedented stability upon current excitation. 3D nanostructures are synthesized by self-assembly of
nanoparticles, nanoprinting, or etching enable microrobotics in gaseous and liquid phases, fundamental studies on 3D spin frustration, and 3D magnetic logic and storage
systems.
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for intrinsic inversion symmetry breaking. To this extent, we envi-
sion that curvature will be used as a scientific design principle
in the form of rough, curved structural, chemical, and magnetic
interfaces, gradients, and inhomogeneities/disorder in solid-state
materials. This includes, in particular, artificial magneto-electric
materials,63 local DMI to stabilize anisotropic topological states,
room-temperature skyrmions spanning a few nanometers, and spin
waves emanating from and along non-collinear spin textures, such
as chiral domain walls64,65 and 3D topological states,33 enabling
configurable 3D magnonic crystals. The advantage of designing
and implementing curved vector fields over structurally predefined
curvature opens a new way to tune on-demand the spin wave dis-
persion, i.e., band structure, through twisting and deforming or
altering the topology of the magnetization configuration.

Similar to the recent success of expanding low-dimensional
magnetism into 3D nanomagnetism,66–68 implementing curvature
as a design concept into future magnetic materials requires an inte-
grated approach of advanced modeling, synthesis, and characteriza-
tion to validate the properties and behavior of curved magnetic
structures. Recent developments of analytical and numerical frame-
works have allowed for quantifying curvature-induced magneto-
chirality,61,69 curvature-driven formation of topological states,62,70

and vector spin exchange on the atomic scale.71 Advances in elec-
trochemical deposition72 and 3D nanoprinting73–76 enabled the
synthesis of tubular, helical, and more complex nanostructures
with ever-growing quality of magnetic and structural properties.
Magnetic properties of planar films have been tailored by interface
engineering taking advantage of improved growth capabilities and
ab initio guided synthesis.3 Magnetic microscopy, tomography, and
scattering77–81 at coherent x-ray light sources and aberration-
corrected transmission electron microscopy centers have become
essential to characterize chemical and structural inhomogeneities
within the magnetic material and near interfaces/surfaces, and to vis-
ualize 3D magnetization vector fields. Great progress has been made
in pushing limits of optical and scanning probe microscopies relying
on, e.g., the Kerr effect, superconducting quantum interference
device magnetometry,82 and nitrogen-vacancy magnetometry.83

Given the enormous scientific opportunities and challenges
with adding curvature as a critical parameter to magnetic materials,
this Perspective provides an overview of recent progress in synthesis,
theory, and experimental studies and discusses potential future direc-
tions of harnessing curvature for 3D nanomagnetism. In particular,
we summarize the current state of 3D nanostructures, curvature
effects, and their relation to topological magnetic states in Sec. II.
Current and future technological advances in numerical modeling,
synthesis, and characterization, enabling these scientific break-
throughs, are discussed in Sec. III. Sections IV and V give a scientific
and technological perspective of the harnessing curvature for basic
sciences and prospective applications of 3D nanomagnetism.

II. STATE-OF-THE-ART OF CURVATURE-INDUCED
EFFECTS

Curved geometries are characterized by the spatial distribution
of the local inverse radius, i.e., curvature, which can span a wide
range from 1/μm down to 10/nm. Generally, the upper and lower
boundaries are governed by extrinsic properties, including the

shape and size of 3D nanostructures and structural deformation,
and intrinsic properties, such as interfaces, heterogeneity, and dis-
order, respectively (Fig. 1). The unique feature of the curvature is
its inherent local inversion symmetry breaking which, depending
on its origin, leads to a constant or gradually/randomly changing
modification to magnetic properties.60,84,85 The former refers to the
special case of a constant curvature and magnetization orientation
with respect to the curvature; the latter to the general case of a
varying microscopic or nanoscopic curvature. Note that this applies
to real, reciprocal, and spin space; curved spin geometries in recip-
rocal and spin space affect mainly spin excitations and electronic
transport due to different spin–orbit coupling phenomena. The
effect of a locally varying curvature in the form of structural, chem-
ical, electronic, and magnetic inhomogeneities and disorder scales
with its ratio of magnitude to spatial variation. A sufficiently large
ratio can affect magnetic properties and, for instance, stabilize
topological spin textures on the corresponding length scale; other-
wise, curvature-induced modifications to magnetic interactions will
mostly compensate each other. On the other hand, engineering
curved nanostructures allow for tailoring magnetic exchange inter-
actions without impairing intrinsic properties. This approach is
fundamentally different from traditionally tuning the shape and
size to modify magnetic dipole energies of nanostructures.

A. 0D and 1D nanostructures

The most prominent properties of nanostructures are the shape
and size that alter or even completely suppress magnetism when
approaching tens of nanometers. These modifications stem from an
increased surface-to-volume ratio that boosts unfavorable magnetic
dipole contributions, triggering a high sensitivity to short-range
order and location/orientation of the magnetization of adjacent nano-
particles. The latter can be employed to design complex 3D nano-
structure assemblies of core-shell and solid magnetic nanoparticles
possessing a centered magnetic moment, as well as Janus particles
with an off-center magnetic moment in the form of a well-defined
in-plane or perpendicular86–88 magnetization, vortices,89–92 or topo-
logical states.93 Magnetic short-range and even long-range orders
manifest in clusters with spin frustration [Fig. 2(a)],94 2D hetero-
structured colloidal crystals [Fig. 2(b)],95 and straight tubular chains
with variable diameters.96 Theoretical studies revealed novel
assemblies beyond straight chains97 and flakes, such as meander-
ing chains,98 rings with different sizes, shapes and topology
[Fig. 2(c)],99–101 and shells [Fig. 2(d)].102

Physically expanding a spherical nanoparticle along one axis
results in cylindrical nanorods with a uniaxial structural and mag-
netic symmetry. These structures typically stabilize a longitudinal
magnetization similar to planar nanowires lacking a magneto-
crystalline anisotropy; all other magnetic properties, such as
domain wall nucleation and motion, magnetization reversal, and
spin wave propagation, are fundamentally different due to constant
local curvature (circular cross section). Early theoretical works on
domain wall nucleation and propagation in nanorods provided
quantitative proof for a suppressed Walker breakdown103 for trans-
verse walls.104 The unprecedented large domain wall velocities have
only recently been contested by synthetic antiferromagnets and
angular moment-compensated ferrimagnets105,106 with inversion
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FIG. 2. Magnetization configurations in 0D and 1D nanostructures. (a)–(d) Self-assembly of magnetic Janus particles into (a) and (b) 2D arrays with specific symmetry
(static), (c) straight chains, closed loops, and helices (static, length, temperature, and field dependent), and (d) 3D shells (static, electric charge-stabilized). (a) Reproduced
with permission from Baraban et al., Phys. Rev. E 77, 031407 (2008). Copyright 2008 American Physical Society. (b) Reproduced with permission from Tsyrenova et al.,
Langmuir 35, 6106–6111 (2019). Copyright 2019 American Chemical Society. (c) Reproduced with permission from Hernández-Rojas and Calvo, Phys. Rev. E 97, 022601
(2018). Copyright 2018 American Physical Society. (d) Reproduced with permission from D. Morphew and D. Chakrabarti, Nanoscale 10, 13875 (2018). Copyright 2018
Author(s), licensed under a Creative Commons Attribution (CC BY) license. (e) 3D non-collinear spin textures forming in FeGe nanorods with DMI revealing dependence
on spatial confinement (diameter). Reproduced with permission from Charilaou and Löfller, Phys. Rev. B 95, 024409 (2017). Copyright 2017 American Physical Society.
(f ) Magnetization in Co-rich CoNi nanorods with face-centered cubic (fcc) and hexagonal close packed (hcp) crystal structures visualized with electron holography.
Reproduced with permission from Andersen et al., ACS Nano 14, 1399 (2020). Copyright 2020 American Chemical Society. (a), (b), and (f ) and (c)–(e) are experimental
and numerical data, respectively.
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symmetry breaking. The combination of uniaxial symmetry and
shape of the nanorods causes, depending on the diameter,107 either
deterministic nucleation of transverse domain walls or Bloch points
at the center of vortex walls108–110 (Fig. 1). More complex non-
collinear spin textures emerge in nanorods with an intrinsic inver-
sion symmetry breaking and resulting in Dzyaloshinskii–Moriya
interaction (DMI),42,43 which reveal a periodic switching between
skyrmionic and helical spins for matching and non-matching rod
diameter, respectively [Fig. 2(e)].111

In recent years, tremendous progress has been made in syn-
thesis and visualizing the magnetization configuration,112 including
magnetization reversal process and correlation with local structural
and chemical properties. Adopting x-ray photon emission electron
microscopy113 to conduct transmission experiments and analyzing
both direct and shadow XMCD contrast enabled the visualization
of helical spins in curved nanomembranes114 and nanorods115 and
studying 3D printed nanohelices.116 The correlation between local
structural and chemical properties and the magnetization configu-
ration has been addressed with electron holography in nanorods in
terms of imperfections,117–119 such as grains and surface roughness,
and engineered chemical/structural segmentation [Fig. 2(f )].120–122

The latter approach allowed for transforming a simple longitudinal
magnetization prevailing in elongated nanorods into helical, vortex,
or transverse configurations, which are strong contenders for novel
spin torque nanooscillators. Recently, experimental studies of the
current-driven domain wall motion in nanorods corroborated the
theoretically predicted high velocities.123

B. 2D curved geometries and curvature effects

Nanoparticles (0D) and nanorods (1D) without a magnetic
core resemble shell (spherical shell) or ring (nanotube) structures
with distinct magnetic properties are governed by topology and
curvature. Hollow tubular architectures with longitudinal magneti-
zation and vortex domain walls lack, in contrast to nanorods, a
Bloch point in the center (Fig. 1). These nanostructures promise
virtually unlimited magnetic domain wall velocity [Fig. 3(a)],124

unidirectional spin wave propagation [Fig. 3(b)],125–128 and vortex
chirality-dependent standing spin wave spectra,127,129 owing to
curvature-driven magneto-chirality.61,69 The latter refers to the spin
chirality selection in nanotubes due to lifted degeneracy between
moving vortex walls with opposite circulation. The spin transfer
torque tilts the magnetization within the domain wall inward
(outward), depending on its circulation, and enhances (impairs)
the stability of the vortex wall by reducing (increasing) its magnetic
stray field.125 In addition to these dynamic modifications, tube
diameter or strength of magnetic dipole interactions can be varied
to switch between longitudinal, helical and vortex configurations
[Fig. 3(c)].130 Engineering systems with unidirectional spin wave
propagation are appealing for energy efficient magnonics34 and cre-
ating unidirectional magnetoacoustic waves.131 The former has just
recently been demonstrated in planar architectures by resonantly
exciting non-collinear spin textures, such as vortices,65 Bloch
points,64 and domain walls,132 in ferromagnetic and synthetic anti-
ferromagnets. Particularly interesting is the spin wave propagation
along curved domain walls64 and skyrmion tubes33 to design 3D
reconfigurable magnonic waveguides.

Mathematically, curved geometries can be treated as planar
systems following a coordinate transformation. The generalized
theory of curvilinear micromagnetism60 illustrates how local and
non-local interactions emerge from the curvature, including a mag-
netic exchange interaction similar to DMI (Fig. 4),66,84,85 an easy-
surface anisotropy,133 and, for rough interfaces and surfaces and
heterogeneous materials, i.e., local curvature, a spatial distribution
of easy-axis, easy-cone, or easy-plane anisotropy. The vector spin
exchange originates from the local inversion symmetry breaking
and causes a local preference for spin chirality if the magnetization
and normal vector of the curved surface are not aligned (Fig. 4).
For instance, spheres and tubes with radial magnetization do not
show a preference. The curvature-driven DMI puts magneto-
chirality69 in a broader context and explains the emergence of chiral
and topological spin textures in curved surfaces with cylindrical sym-
metry,134 cones,84 twisted bands,135 Möbius bands [Fig. 3(d)],136

tori,137 bent nanotubes138 and rods,139,140 nanohelices,63,141,142

shells,143–146 and indentations [Fig. 3(e)].62,70 Antiferromagnetic
nanohelices support the formation of coherent magnon condensates
in the momentum space.142 Geometrically tailoring the curvature of
nanohelices allows for stabilizing topologically distinct chiral spin
textures, such as cycloidal and helicoidal configurations, as well as
collinear single-domain and multi-domain states [Fig. 3(f)].63,141

These states can be transformed into each other by stretching
or squeezing the nanohelix, offering a new approach to design
magneto-electric materials without external magnetic fields.63

Similarly, the vortex ground state in ring-shaped nanowires transi-
tions upon deformation into the trivial onion state.147 These trans-
formations represent an unwinding of chiral, topological spin
textures into trivial states, triggered by the curvature-induced DMI.

Nanoscale indentations enable the stabilization and manipula-
tion of topological spin textures, such as skyrmions and skyrmio-
niums also known as target skyrmions [Fig. 3(e)],62,70 in magnetic
materials with otherwise absent inversion symmetry breaking.
Relying on exchange instead of magneto-static energies, this mech-
anism is fundamentally distinct from using thickness gradients to
nucleate vortex lattices in percolated non-planar films.148 The
shape, size, and topology of the magnetic state can be tailored by
adjusting the local curvature. In a broader sense, these theoretical
studies infer that local inversion symmetry breaking, due to struc-
tural and chemical inhomogeneity, and rough, curved interfaces
causes an inhomogeneous, local DMI in real materials. The chal-
lenge is to engineer these curved interfaces to promote the forma-
tion of topological spin textures instead of randomly canted spins
occurring in frustrated spin systems.

To date, experimental studies of curvature effects are still rare.
Magnetic switching in tubular architectures with radial magnetiza-
tion and nanotubes with longitudinal magnetization were visual-
ized with magnetic force microscopy149 and superconducting
quantum interference device microscopy.82 These tabletop tools,
providing spatial resolution on the sub-100 nm scale, represent a
significant advancement compared with earlier works using cantile-
ver magnetometry.150,151 Azimuthal soft-magnetization configura-
tions,152 inaccessible in planar geometry, have proven essential to
giant magneto-impedance field sensors with unprecedented sensi-
tivity.153 A first glimpse of the potential of curvature for spintronics
was recently given by disentangling spin and charge resistance in
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FIG. 3. Numerically predicted curvature effects in 2D curved geometries. (a) Ultra-fast domain wall velocities in nanotubes due to delayed Walker breakdown associated
with spin chirality selection. Reproduced with permission from Yan et al., Appl. Phys. Lett. 99, 122505 (2011). Copyright 2011 AIP Publishing LLC. (b) Asymmetric magnon
dispersion in nanotubes originating from spin chirality selection similar to interfacial DMI in planar systems. Reproduced with permission from Otálora et al., Phys. Rev.
Lett. 117, 227203 (2016). Copyright 2016 American Physical Society. (c) Transformation of magnetic states in nanotubes with magnetic dipole coupling strength. From
Salinas et al., Sci. Rep. 8, 10275 (2018). Copyright 2018 Author(s), licensed under a Creative Commons Attribution (CC BY) license. (d) Spin chirality selection in Möbius
bands governed by perpendicular magnetic anisotropy. From Pylypovskyi et al., Phys. Rev. Lett. 114, 197204 (2015). Copyright 2015 Author(s), licensed under a Creative
Commons Attribution (CC BY) license. (e) Formation of skyrmions in nanoindentations and spherical surfaces due to emergent DMI associated with local inversion symme-
try breaking. Reproduced with permission from Kravchuk et al., Phys. Rev. Lett. 120, 067201 (2018). Copyright 2018 American Physical Society and Phys. Rev. B 94,
144402 (2016). Copyright 2016 American Physical Society. ( f ) Helicoidal spin textures in nanohelices reversibly transforming into homogeneous and periodical states upon
stretching/compression. From Volkov et al., Sci. Rep. 8, 866 (2018). Copyright 2018 Author(s), licensed under a Creative Commons Attribution (CC BY) license.
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FIG. 4. Theory of curvilinear micromagnetism. Non-local magnetic interactions emerge from a curvature-driven DMI in systems where the magnetization is not aligned
along the normal vector of the curved surface. From Sheka et al., Commun. Phys. 3, 128 (2020). Copyright 2020 Author(s), licensed under a Creative Commons
Attribution (CC BY) license.
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aluminum nanowires deposited above a groove.154 The experiment
showed a higher efficiency compared with planar structures, which
is essential to low-power spin current electronics and 3D microelec-
tronics architectures with curved interconnects.

C. Topological states

Topological magnetic states are 3D inherently curved magneti-
zation vector fields (Fig. 1) that behave like quasi-particles upon
magnetic and electric field excitation.155 The magnetic properties
and electronic transport phenomena21 are linked via solid-state
electromagnetism,18–20 which sets them apart from chiral domain
walls and vortices12 and makes them both fundamentally intriguing
and relevant to low-power spin-based microelectronics. Since the
theoretical prediction of skyrmions13 and their experimental observa-
tion in single-crystals156,157 and thin films,158 magnetic skyrmions
have been extensively studied in view of current manipulation,159

current creation,160,161 and electric detection of individual skyrmions
via the topological Hall effect162,163 associated with the perpendicular
deflection of skyrmions164 or, more recently, the Nernst effect.165,166

These investigations had mainly been driven by engineering planar
interfaces3 to tailor spin–orbit coupling, essential to DMI42,43

(formation), topological Hall effect (detection), and spin–orbit
torque (manipulation). Synthesizing ultra-thin multilayer stacks with
tailored interfacial DMI71 enabled the stabilization of room-
temperature skyrmions in ferromagnets167 and ferrimagnets.106,168,169

The latter benefit from significantly enhanced current-driven veloc-
ities near angular moment compensation. Using complex oxide
materials to grow epitaxial interface heterostructures with broken
inversion symmetry and a large gradient of the electrostatic potential
promoted the formation of skyrmions at low temperature170,171

whose size can be controlled by the ferroelectric polarization.172

The smallest room-temperature skyrmionic spin structures
(,20 nm) were stabilized by pseudo-random substitution of
Si atoms with Co excess atoms in polycrystalline B20 Co–Si
materials.59 Disorder also exists in multicomponent B20 single-
crystals stabilizing topological phases [Fig. 5(a)],173 such as
Fe1�y(Co, Mn)y(Ge, Si),

59,173–176 which crystallize as a chiral lattice
with an inherent chemical disorder that becomes chiral to the
atomic building blocks.177 A recent theoretical work178 showed the
necessity of spin frustration to explain the experimentally observed
transition between different topological phases in B20 structures
[Fig. 5(b)],173,179 including magnetic monopoles on the order of
1 nm,179–181 and rebuked the commonly accepted requirement of
large DMI to stabilize small topological states. Atomistic simula-
tions182 and experimental studies183,184 of amorphous ferrimagnets
confirmed further the persistence of DMI in structurally and chem-
ically disordered materials. In fact, chemical and structural disorder
can cause bulk DMI52,184 and stabilize topological states in amor-
phous compounds [Fig. 5(c)].54 This is attributed to an increased
Anderson localization185,186 and the suppression of electron trans-
fer between transition metal atoms that enlarge local density of
states and spin–orbit coupling,187 local DMI, magneto-resistance,
and Hall effects.188 However, observing topological knots in poly-
crystalline soft-magnetic bulk materials lacking inversion symmetry
breaking demonstrated a certain degree of randomness in the
occurrence of topological objects similar to magnetic vortices in

extended soft-magnetic films.58 The coordination number of the
amorphous structure can be tuned by the deposition temperature
from a high-coordination-phase at low temperatures189 to a
lower-coordination-phase at room temperature190 with a short-
range order resembling that of B20 structures. In this context, dis-
order refers to locally varying DMI due to atomic short-range
order and not to randomly distributed pinning sites, which have
theoretically been investigated in view of current-driven skyrmion
dynamics.191–195

Systems with a locally varying DMI55,56 or a spontaneous
symmetry breaking with respect to spin chirality, triggered by spin
frustration, have been proposed for stabilizing twisted and aniso-
tropic magnetic solitons,56,57 including topological spin knots
referred to as hopfions16,17,196 [Fig. 5(e)], and, in part, experimen-
tally been observed [Fig. 5(d)].54,58,197,198 The lowest-order hopfion
can be pictured as a spin torus which is twisted along its circumfer-
ence continuously transforming between vortex and antivortex.
The increased complexity of hopfions generally hinders a determin-
istic formation; a recent numerical study proposed to combine
spatial confinement with DMI and perpendicular magnetic anisot-
ropy to stabilize hopfion-like spin textures [Fig. 5(f )].196 These
higher-order, anisotropic topological states possess a vanishing
gyro-vector and intrinsically compensate the perpendicular deflec-
tion of quasi-particles due to Magnus force promising a straight
trajectory at increased velocities [Figs. 11(b) and 11(c)]. Examples
range from biskyrmions (bound pair of skyrmions with opposite
chirality)199–201 and bilayer skyrmions202 to antiskyrmions,203,204

skyrmioniums (biaxial skyrmions)205–207 and antiskyrmioniums208

to skyrmion bags,209,210 and hopfions,211,212 as well as antiferro-
magnetic topological states.213–217 Moreover, the Magnus force can
be suppressed by nanoscale modifications to structural and mag-
netic properties in the form of tracks and pinning sites,23,218 or
switching to tubular systems with a corresponding helical skyrmion
trajectory.219 Considering topological states in 2D and disordered
materials further benefits novel concepts for manipulating magnetic
exchange and topological states via curvature [Fig. 3(e)],62,70

voltage,220–225 strain,226–228 or pressure,229–231 which are less effec-
tive or even destructive in (poly-)crystalline metallic systems. These
alternate routes provide a convenient way to twist and deform or
even alter the topology of 3D curved magnetization vector fields
needed to design configurable 3D magnonic crystals33 or tunable
topological magnonics.40,41

D. Curved spin geometries in reciprocal space

In addition to magnetic exchange manifesting collinear, non-
collinear, and topological magnetism, spin–orbit coupling enables
an efficient charge-to-spin conversion and current-induced spin–
orbit torques, mediated by non-trivial spin textures in reciprocal
space. The latter originate from inversion symmetry-breaking
Dresselhaus232 and Rashba233 fields, which impose a spin chirality
on the electronic bands (Fig. 6) and generate a non-equilibrium
spin polarization. The conversion between charge and spin current
relies on the (inverse) Edelstein or (inverse) spin Hall effect and
has experimentally been observed at, e.g., non-magnetic metal
interfaces234,235 and insulating oxide interfaces,236,237 and in ferro-
electric materials238 and 2D van der Waals heterostructures.239
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FIG. 5. Topological states stabilized by inversion symmetry breaking and spin frustration. (a) Topological phase transitions between trigonal and cubic skyrmion phases in
B20 Mn1�xFexGe with x visualized with Lorentz microscopy (electron intensity shown). From Kanazawa et al., New J. Phys. 18, 045006 (2016). Copyright 2016 Author(s),
licensed under a Creative Commons Attribution (CC BY) license. (b) Ab initio calculations of MnGe based on Heisenberg spin frustration without DMI revealing cubic
lattice of skyrmions and magnetic monopoles. Reproduced with permission from Mendive-Tapia et al., Phys. Rev. B 103, 024410 (2021). Copyright 2021 American
Physical Society. (c) Coexistence of helical spins and skyrmions in amorphous Fe–Ge films visualized with Lorentz microscopy (electron phase and magnetization
depicted). Reproduced with permission from Streubel et al., Adv. Mater. 33, 2004830 (2021). Copyright 2021 John Wiley and Sons. (d) Anisotropic skyrmions in (left)
La1�xSrxMnO3, transforming into each other via field–driven motion of Bloch lines and (right) amorphous Fe–Ge retrieved from Lorentz microscopy. Reproduced with per-
mission from Yu et al., Adv. Mater. 29, 1603958 (2017). Copyright 2017 John Wiley and Sons and from Streubel et al., Adv. Mater. 33, 2004830 (2021). Copyright 2021
John Wiley and Sons. (e) Formation of anisotropic skyrmions and topological knots (hopfions, preimages, and cross section shown) by Heisenberg spin frustration retrieved
from micromagnetic simulations. From Zhang et al., Nat. Commun. 8, 1717 (2017). Copyright 2017 Author(s), licensed under a Creative Commons Attribution (CC BY)
license and Sutcliffe, Phys. Rev. Lett. 118, 247203 (2017). Copyright 2020 American Physical Society. (f ) Metastable hopfion relaxed in system with DMI and uniaxial sym-
metry by micromagnetic simulations (preimages shown). Reproduced with permission from Balasubramanian et al., Phys. Rev. Lett. 125, 057201 (2020). Copyright 2020
American Physical Society. (a), (c), and (d) and (b), (e), and (f ) are experimental and numerical data, respectively.
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Topological materials possess a gapless surface state protected by
time-reversal symmetry,240 whose band dispersion features a Dirac
cone decorated with electron spins pointing tangential to the
surface.241 This spin texture is dramatically changed upon magnetic
doping due to local time-reversal symmetry breaking that opens a
gap at the Dirac point and causes a magnetically induced
hedgehog-like spin configuration (Fig. 1).242 The latter allows for
generating spin currents243 and producing spin-transfer torques on
adjacent ferromagnets.242 Chiral crystals, which lack inversion,
mirror, or other rotation-inversion symmetries, stabilize topologi-
cally non-trivial spin textures whose spin components parallel to
the electron momenta appear around highly symmetric k-points.244

Both existence and inverted topology in right- and left-handed
crystals were recently observed in chiral tellurium crystals,241 prom-
ising pure spin current generation. In ferroelectric materials, the
spin texture is coupled to and can be controlled by the ferroelectric
polarization providing a promising platform to explore the cou-
pling between spin, orbital, valley, and lattice degrees of freedom in
solids.245

One particular benefit of Rashba spin–orbit coupling is its
control by a gate voltage across an interface supporting a 2D elec-
tron gas in the form of a spin field-effect transistor. Its practical
realization is challenging since non-collinear spin textures possess a
reduced spin diffusion length owing to an enhanced magnetic
impurity and defect scattering of electrons changing their momen-
tum and randomizing the spin.246 This effect can be circumvented
by engineering structures where the magnitudes of Rashba and
Dresselhaus spin–orbit coupling are equal, resulting in a unidirec-
tional spin–orbit field and a momentum-independent spin configu-
ration, known as the persistent spin texture (Fig. 6). Under these
conditions, the electron motion is accompanied by spin precession
around the unidirectional spin–orbit field, leading to a spatially
periodic mode referred to as a persistent spin helix.247 The latter is
robust against spin-independent disorder and offers an infinite
spin lifetime. It has experimentally been demonstrated in a 2D
electron gas semiconductor quantum-well structure by tuning
quantum-well width and doping,247,248 and theoretically been pre-
dicted in bulk oxide materials with a non-symmorphic space group

FIG. 6. Spin–orbit coupling phenomena with corresponding spin orientation of the two spin-split electronic sub-bands for systems without inversion symmetry. The
Edelstein effect causes a spin accumulation due to shifted Fermi surfaces with an external electric field. An electric current J displaces the Fermi surface along its flow
direction, thereby tilting their spins up (down) for ky . 0 (ky , 0) and creating a spin current in the y-direction (spin Hall effect). L. L. Tao and E. Y. Tsymbal, Nat.
Commun. 9, 2763 (2018). Copyright 2018 Author(s), licensed under a Creative Commons Attribution (CC BY) license and Sinova et al., Rev. Mod. Phys. 87, 1213 (2015).
Copyright 2015 American Physical Society.392
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symmetry.249 Examining the role of local curvature, structural, and
chemical disorder in view of real-space inversion symmetry break-
ing and their potential to enhance charge-to-spin conversion and
increase critical temperatures is critical particularly to the emergent
field of topological amorphous materials.5

III. TECHNOLOGICAL ADVANCES

Scientific advances and future directions are heavily inter-
twined with technological advances in numerical modeling, synthe-
sis and characterization. Their development throughout the last
decade has diversified both the original research perspective and
scientific community.

A. Numerical modeling

Accurate modeling of magnetic systems and magnetic interactions
in solid-state materials is more important than ever before to accelerate
materials discovery, predict magnetic phase transitions, static, and
dynamic properties, and refute or corroborate analytical and experi-
mental data. This is mainly because of an increased complexity com-
pared to, e.g., planar ferromagnetic Permalloy (Ni80Fe20) films, and
driven by the use of multiple elements, including transition metal,
metalloids, heavy-element, and rare-earth materials, curved nanostruc-
tures, disorder, and link to spin–orbit coupling and magneto-transport
phenomena. Affordable parallel computing with multi-core central
processing units (CPU) and graphics processing units (GPU), as well
as inexpensive memory have helped establish numerical simulations as
a mainstream technique to address curvature phenomena.

Numerous public-domain finite element/difference method
software packages are available to model magnetic materials with
DMI, including legacy OOMMF,250 MuMax3,251 and Fidimag.252

Atomistic solvers, such as Vampire,253 Spirit,254 and Fidimag,252

enable a more accurate modeling of singular magnetic spin textures,
e.g., Bloch points/lines and skyrmions, antiferro- and ferrimagnetism,
helimagnets, and frustrated systems, as well as 3D curved nanostruc-
tures, structural and chemical disorder, and temperature effects.
Micromagnetic simulations of 3D curved geometries with arbitrary
shape can be carried out with Nmag,255 which is a powerful frame-
work in combination with the HLib library.256 Future developments
will accommodate computational intense calculations of elastic prop-
erties and magnetostriction, and time-dependent deformation and
motion of realistic multifunctional materials. One leap in this direc-
tion has been done by Boris Computational Spintronics,257 a multi-
physics software with incorporated heat flow solver, electronic trans-
port solver, temperature-dependent material parameters, and
mechanical stress–strain solver. While these micromagnetic platforms
offer insight into magnetic states, magnetization reversal processes,
size effects, and current- and field-driven spin excitations, they do
rely on physical parameters such as saturation magnetization, mag-
netic exchange interactions, magnetic anisotropy, etc., typically
retrieved from experiments or ab initio calculations.

In the wake of interface and curvature engineering, density
functional theory is essential to determining the dependence of inter-
face and curvature effects, including DMI and spin–orbit torque, on
used elements, and structural and chemical order. Three of the most
popular ab initio frameworks are FLEUR,258 VASP,259 and Quantum
ESPRESSO,260 which provide means to model band structures and

quantify atomic DMI values. The numerical results of exchange-
coupled systems strongly depend on the atomic coordinates, which
are typically approximated according to their crystalline structures.
However, this presumption is invalid for inhomogeneous and disor-
dered materials. Arguably, the actual coordinates of each individual
atom are virtually impossible to determine; the systems can however
be approximated according to their short-range order that can be
quantified with molecular dynamics simulations using, e.g.,
LAMMPS.261 The latter simulates dynamic processes of assembly,
nucleation and diffusion during synthesis or upon external stimula-
tion on the atomic scale. This hierarchical approach of modeling will
become more important to future studies of real materials with
imperfections, disorder and highly inhomogeneous regions, includ-
ing amorphous materials and interfaces.

B. Synthesis

Engineering interfaces has been a focus of recent research on
nanomagnetic materials, primarily due to the possibility to harness
the spin–orbit coupling induced by symmetry breaking effects at
such interfaces.2,3 These efforts have been guided by ab initio calcu-
lations to identify the best pairing of heavy-element material or
oxide and magnetic element in view of largest DMI values71 to sta-
bilize chiral spin textures and topological states. Magneto-transport
properties, such as the spin Hall effect and spin–orbit torque,
essential to current manipulation of chiral spin textures have typi-
cally been phenomenologically optimized and correlated to ab
initio calculations. In conjunction with exploring different classes of
materials, including atomic monolayers, epitaxial, polycrystalline and
amorphous films as well as 2D materials, this approach has flour-
ished owing to employing both intrinsic and extrinsic (interface)
properties, which offers new functionalities and greater flexibility in
materials synthesis. The next decade will show to which extent struc-
tural and chemical inhomogeneity, disorder, and curved interfaces
can be harnessed to tailor magnetic exchange interactions and
manipulate topological states in solid-state materials.

The synthesis of 3D nanostructures utilizing electrochemi-
cal deposition [Fig. 7(a)],72,262,263 two-photon lithography
[Fig. 7(b)],75,264–267 and focused electron beam-induced deposi-
tion [Fig. 7(c)]73,74 has seen tremendous progress particularly
with respect to controlling shape, roughness, morphology,
homogeneity and purity. Electrochemical deposition using
porous alumina or gyroid polymer268 templates enabled the syn-
thesis of nanorods, nanotubes nanohelices, multi-segmented
specimens,115,117–122,269 and 3D networks270?–272 with variable
diameter (,50 nm), length (�1 μm), and metallic materials
[Fig. 7(a)]. The default trigonal symmetry of the porous template
was circumvented by focused ion beam guided anodization.270

Focused electron beam-induced deposition has taken the lead
in synthesizing 3D nanostructures with virtually any shape
and curvature, including nanowires,116,274,275 networks
[Fig. 7(c)],276–278 and topological structures.279 Relying on the
dissociation of adsorbed metal-cabonyl precursor molecules by
the electron beam, the printed metallic nanostructures typically
incorporate carbon or oxygen impurities of *10%, which can be
reduced using reactive gases during synthesis or post-growth.
In-depth studies of process parameters, such as growth rate,

Journal of
Applied Physics PERSPECTIVE scitation.org/journal/jap

J. Appl. Phys. 129, 210902 (2021); doi: 10.1063/5.0054025 129, 210902-11

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


FIG. 7. Synthesis of 3D nanostructures using bottom-up techniques. (a) Electrochemical deposition into porous alumina templates for fabrication of magnetic nanorod
arrays, 3D magnetic networks, and nanohelices. Reproduced with permission from Chen et al., Langmuir 27, 800 (2011). Copyright 2011 American Chemical Society; from
Wagner et al., Adv. Electron. Mater. 7, 2001069 (2021). Copyright 2021 Author(s), licensed under a Creative Commons Attribution (CC BY) license; and reproduced with
permission from Sattayasamitsathit et al., Nanoscale 6, 9415 (2014). Copyright 2014 Royal Society of Chemistry. (b) Polymer templates obtained by two-photon lithography
(left) and additional etching and pyrolysis (right) revealing significant shrinkage. Reproduced with permission from Seniutinas et al., Microelectron. Eng. 191, 25 (2018).
Copyright 2018 Elsevier. (c) Nanoprinting of 3D nanostructures utilizing electron beam-induced deposition through dissociation of metal-cabonyl precursor molecules. From
Janbaz et al., Sci. Adv. 3, eaao1595 (2017). Copyright 2017 Author(s), licensed under a Creative Commons Attribution (CC BY) license.
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precursor depletion/diffusion and heat load,277,280 and
computer-aided nanofabrication,278,281 including Monte Carlo
simulations of reaction–diffusion processes, have been essential
to advancing 3D nanoprinting and investigating curvature and
topology effects in 3D nanostructures.

Alternate techniques for 3D nanostructuring are printing
polymeric 3D nanotemplates with two-photon lithography and
subsequent metal deposition,264 implosion fabrication harnessing
shrinkage and dehydration of hydrogel scaffolds,282 and self-
assembly of nanoparticles on curved liquid–liquid interfaces to
structure liquids283–285 that can be endowed with a remanent mag-
netization (Fig. 10).76,286,287 Nanoindentations with engineered cur-
vature can be carved out via dry etching with ion irradiation prior
to non-epitaxial film deposition. Post-growth nanoscale modifica-
tions to magnetic exchange, anisotropy and saturation magnetiza-
tion may be performed with low-current ion irradiation.218

Another versatile technique with respect to tailored magnetic
properties is strain engineering rolled-up nanotech288–290 that
facilitates internal strain gradients to manufacture tubular magnetic
geometries with variable diameter/curvature and thick-
ness.152,291,292 Subsequently, strain engineering has been general-
ized to synthesize shape-morphing micromachines (Fig. 13),293–296

reconfigurable actuators,297,298 and shape memory polymers299

with magnetic functionality.

C. Characterization

Whether 3D nanostructures or topological magnetic states,
the challenge with characterizing 3D magnetization vector fields is
the complexity and ambiguity of many characterization techniques
due to the lack of knowledge about all three magnetization compo-
nents and their spatial distribution at a sufficient spatial resolution.
Joint studies harnessing multimodal techniques and subsequent
detection of remaining components have provided means to identify
stable magnetic states. The most advanced tools with respect to resolu-
tion and sensitivity are x-ray and electron techniques, complemented
by tabletop instruments, such as scanning probe and optical micros-
copy, magneto-transport, electron spin resonance spectroscopy, and
magnetic neutron scattering revealing internal spin structures of nano-
particles.300,301 Choosing state-of-the-art instrumentation is typically a
compromise between high sensitivity, high spatial resolution, temporal
resolution, and accessibility. Additional constraints are element specif-
icity, interaction between probe and magnetization, and environment,
e.g., applying current/voltage, strain/pressure and magnetic fields or
changing temperature and gas/solutions, to create, manipulate and
detect magnetic states.

1. Advanced electron and x-ray characterization

Electron microscopy80,81 combines subatomic spatial resolution
and beam coherence. One prime example harnessing both quantities
is atomic scalar tomography to examine atomic order, internal
defects, and strain of nanoparticles in vacuum302–305 and liquid
cells.306–308 An adequate technique to visualize the magnetization on
the atomic scale would tremendously benefit the study of antiferro-
magnets, disordered materials and topological states spanning only a
few atoms. Future demonstrations might be accomplished by record-
ing the diffraction pattern using 4D scanning transmission electron

microscopy similar to current approaches for strain mapping.304 For
now, 3D magnetization vector fields can be reconstructed on the
nanoscale using vector field tomography based on off-axis or in-line
electron holography [Fig. 8(a)].122,309,310 Electron holography allows
for studying the interaction of electromagnetic waves with 3D
nanostructures117–119,311 or thin films54,157,183,197,205,312–315 on the
nanoscale [Fig. 8(b)]. In-line holography, also known as Fresnel
mode Lorentz microscopy, retrieves the electron phase from a focal
plane series using transport-of-intensity equation316 or Gerchberg–
Saxton algorithm317 without the need for a biprism and reference
beam. The latter can also be avoided by leveraging differential phase
contrast.318–320 Magnetic (vector) and electrostatic/structural (scalar)
contributions to the electron phase can be separated by subtracting
the phase of the magnetically saturated state or of the flipped sample.
A third option unique to the Gerchberg-Saxton algorithm takes
into account different length scales and phase amplitudes54,183 as
well as the slow convergence of low-frequency components of
non-electrostatic features during the iterative phase retrieval.321

The simultaneous detection of both in-plane components of the
magnetic induction (two-dimensional gradient of the electron
phase) sets electron microscopy apart from x-ray techniques and
is essential to time-resolved studies of the vast majority of mag-
netic systems.

X-ray spectromicroscopies,79 harnessing x-ray magnetic
circular dichroism or x-ray magnetic linear dichroism as element-
specific absorption contrast mechanism, have been a workhorse for
quantifying orbital and spin moments322,323 and visualizing magne-
tization configurations and spin excitations on the tens of nanome-
ter scale. Time-resolved measurements concerned thermal spin
fluctuations, and current- and magnetic field-driven nucleation and
manipulation of chiral domain walls, topological states and
magnons. Orbital moments offer insight into the local electron
orbital alignment. The limitation to one magnetization component
can be overcome, for stable magnetic states, by tilting the sample to
access another component or performing vector field tomography.
Within the last few years, magnetic x-ray tomography has matured
from prototypical demonstration with soft x rays [Fig. 8(c)]292 to
full-scale soft and hard x-ray tomography [Fig. 8(d)]58,324–326 to
stroboscopic tomographic imaging of driven magnetization dynam-
ics.327 This incredible progress has been possible by algorithm and
hardware development at numerous synchrotron facilities.
Alternatively, resonant x-ray scattering328 can be employed to
determine periodicity, spin chirality, and depth profile of periodic
structures, such as skyrmion lattices in magnetic329,330 and ferro-
electric331 materials. The interference pattern under the magnetic
diffraction peak created by coherent x rays was used to reconstruct
aperiodic magnetization vector fields on the nanoscale harnessing
ptychography77,78 and to study thermal spin fluctuations near, e.g.,
topological phase transitions on the nanosecond time scale with
x-ray photon correlation spectroscopy at free electron laser
facilities.332

Phase contrast imaging, such as x ray and electron ptychogra-
phy, holography, and tomography techniques, is based on wave
propagation and offers superior sensitivity and contrast compared
with conventional microscopy. At synchrotron facilities, a coherent
x-ray beam is currently generated by a pinhole smaller than 10 μm
that clips more than 90% of the beam. Free electron lasers and
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FIG. 8. Advanced electron and x-ray characterization of 3D curved geometries. (a) Magnetization in Co/Cu multilayered nanorods obtained from holographic vector field
electron tomography. From Wolf et al., Commun. Phys. 2, 87 (2019). Copyright 2019 Author(s), licensed under a Creative Commons Attribution (CC BY) license.
(b) Electron phase contrast imaging of (left) chiral ferrimagnetism in amorphous structures and (right) spin frustration in 3D printed nanostructures visualized with Lorentz
microscopy and electron holography, respectively. Reproduced with permission from Streubel et al., Adv. Mater. 30, 1800199 (2018). Copyright 2018 John Wiley and Sons
and Llandro et al., Nano Lett. 20, 3642 (2020). Copyright 2020 American Chemical Society. (c) 3D imaging of radial magnetization in tubular Co/Pd microstructures using
soft x rays. From Streubel et al., Nat. Commun. 6, 7612 (2015). Copyright 2015 Author(s), licensed under a Creative Commons Attribution (CC BY) license. (d) The 3D
reconstruction of magnetic singularities in striped domain patterns in Ni80Fe20=NdCo5=Ni80Fe20 films. From Hierro-Rodriguez et al., Nat. Commun. 11, 6382 (2020).
Copyright 2020 Author(s), licensed under a Creative Commons Attribution (CC BY) license.
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field-emission aberration-corrected transmission electron micro-
scopes already provide a coherent x ray and electron beam, respec-
tively. Ongoing developments of faster, more sensitive detectors,
and better optics and sources, e.g., monochromatic, brilliant,
smaller, and coherent beams, offered by aberration-corrected trans-
mission electron microscopes and next-generation diffraction-
limited light sources, will significantly lower data acquisition time
and improve illumination conditions and accessibility to a limited
number of high-end instruments. Answering scientific questions
concerning the relation between magnetization, structural and
chemical order, topology and electric response will strongly rely on
advancing operandi and time-resolved capabilities ranging from
millisecond (pump-free)54,333 to picosecond (pump–probe)334,335

time scales. The former is limited by the detector, the latter by the
pulse width and pulse separation. Nanofabrication advances
include developing platforms for current, voltage and piezoelectric
strain manipulation, and correlating magneto-transport properties,
such as the topological Hall effect, with the magnetization configu-
ration of individual topological states. The latter will benefit from
increasing the number of aberration-corrected transmission elec-
tron microscopes and x-ray beamline endstations with liquid
helium cryostat holders and allow for studying topological states in
topological insulators and magnetic systems with possible quantum
fluctuations. Ambient experiments using, e.g., oxygen and hydro-
gen gas provide means to modify interface/surface chemistry (spin–
orbit coupling) or exchange interaction by reversible hydrogen
intercalation. Liquid cells based on amorphous silicon nitride
nanomembranes or graphene can be used to control magnetism via
chemical means or study self-assembly of nanoparticles.

2. Tabletop instrumentation

Magneto-optical Kerr effect magnetometry and microscopy,336

offering sensitivity to normal, transverse, or longitudinal magnetiza-
tion components of the outer 20 nm provided means to study magne-
tization reversal processes and current-driven manipulation of
micrometer-sized topological states161 and 3D nanostructures by ana-
lyzing reflections from different surface regions [Fig. 9(a)].291,337–339

These measurements can be combined with magneto-transport exper-
iments to retrieve magneto-resistance and (topological) Hall coeffi-
cient for non-collinear spin textures [Fig. 9(b)],181 or with micro-Hall
probes to determine the magnetic hysteresis loops for the entire 3D
nanostructures [Fig. 9(c)].281,340 Magnetic imaging on the tens of
nanometer scale is commonly carried out with magnetic force micros-
copy341 by probing the second derivative of the normal stray field.
Recent advances in magnetic tip customization have enabled simulta-
neous measurements of multiple components,342 a configurable tip
magnetization to track normal and in-plane components,343

nanotube-based monopole sensors,344 and a significantly enhanced
sensitivity.345 These steps are essential to quantitative magnetic force
microscopy and reconstructing the 3D magnetization vector field. The
challenge with magnetic force microscopy is the magnetic dipole inter-
action between tip and sample that alters the states in soft-magnetic
systems or drags magnetic domain walls in relatively hard-magnetic
materials. This limitation has been addressed with non-invasive scan-
ning probe microscopies. Superconducting quantum interference
device microscopy82,346 measures the magnetic induction on the

nanoscale, which was demonstrated with ferromagnetic nanotubes
and nanocubes [Fig. 9(d)]. Nitrogen-vacancy scanning probe
microscopy83,347 emerged as a highly sensitive technique to image
non-collinear spin textures at the nanoscale in 2D van der Waals
materials348 and antiferromagnets349 and reconstruct the full 3D mag-
netization vector field.350 Extended magnetic phases were classified
with respect to topology and chirality of the 3D spin textures using
electron spin resonance spectroscopy.231,351,352 The latter also allows
for quantifying magnetic exchange stiffness and damping. Leveraging
the magnon dispersion in inversion symmetry-broken systems,
Brillouin light scattering provided means to quantify DMI near the
interface, including spin chirality inversion in ferrimagnets.184

IV. SCIENTIFIC PERSPECTIVE

Growing expertise and capabilities in modeling, synthesis and
characterization will enable researchers to explore rich sciences not
only in magnetism and condensed matter physics, but also in close
conjunction with engineering, biology, and chemistry where the
magnetization is either of central importance or a mean to improve
functionality. In 3D nanomagnetism, this is reflected in an increas-
ing number of theoretical and experimental works that harness cur-
vature in 3D nanostructures and real, disordered materials to
manipulate topological states.

A. 3D nanostructures

We anticipate three major research directions concerning
assemblies of nanoparticles, spin frustration in 3D nanostructures,
and magnetization vector fields and spin excitations in curved
geometries.

1. Nanoparticle assembly

Experimental investigation of theoretically predicted nanopar-
ticle assemblies with non-trivial geometries, such as shells, rings,
helices, and nanopatterns with different sizes, shapes, and topology
will face challenges with the inherent size and shape distribution of
nanoparticles that cause disorder and deformation of the assembly.
Numerical modeling will need to account for these experimental
limitations to provide better insight into the self-assembly and its
application potential. Disordered particle crystals and curved
dipole-coupled systems can be used to explore disorder and curva-
ture effects and to determine to which extent dipole systems resem-
ble exchange-coupled materials.

While the vast majority of experimental and theoretical
studies of nanoparticle assembly in solution353 has relied on mag-
netic dipole interactions, there is ample opportunity to employ
mechanical (gravity, surface tension) and chemical (pH, ligands)
means. One prominent example is the assembly and jamming of
nanoparticles at inversion symmetry broken liquid–liquid interfaces,
which provide a reversible structural transformation between liquid
and glassy states [Figs. 10(a) and 10(d)].76,354 The glassy state can be
pictured as a skeleton enclosing the liquid core with potentially high
anisotropic, non-equilibrium shape. In combination with superpara-
magnetic nanoparticles, this approach enables a transition between
paramagnetic ferrofluid and ferromagnetic liquid housing 2D ferro-
magnetism on the curved liquid interface.76,286,287,355 With each
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FIG. 9. Tabletop characterization tools for 3D nanomagnetism. (a) Surface-sensitive magneto-optical Kerr effect magnetometry of 3D conduit nanoprinted by focused elec-
tron beam-induced deposition of Permalloy and tubular Permalloy cap structure. Reproduced with permission from Sanz-Hernández et al., ACS Nano 11, 11066 (2017).
Copyright 2017 American Chemical Society and Streubel et al., Nano Lett. 12, 3961 (2012). Copyright 2012 American Chemical Society. (b) Magneto-transport in B20
MnGe single-crystal showing temperature-dependent topological Hall effect due to emergence of topological states, including magnetic monopoles shown on the right.
Reproduced with permission from Kanazawa et al., Phys. Rev. Lett. 125, 137202 (2020). Copyright 2020 American Physical Society. (c) Micro-Hall effect measurements
on CoFe nanocube frames printed by focused electron beam-induced deposition. From Al Mamoori et al., Materials 11, 289 (2018). Copyright 2018 Author(s), licensed
under a Creative Commons Attribution (CC BY) license. (d) Superconducting quantum interference device microscopy visualizing the magnetization reversal process in
ferrmagnetic nanotubes. Reproduced with permission from Vasyukov et al., Nano Lett. 18, 964 (2018). Copyright 2018 American Chemical Society. All techniques can be
applied to 3D curved geometries.
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FIG. 10. Self-assembly of nanoparticle building blocks into 3D hierarchical systems in liquid environment. (a) Interfacial jamming of superparamagnetic nanoparticles at
liquid–liquid interfaces forming ferromagnetic liquid droplets with reconfigurable shape and preserved magnetization observed in hydrodynamics experiments. Reproduced
with permission from Liu et al., Science 365, 264 (2019). Copyright 2019 American Association for the Advancement of Science. (b) Isotropic elastic and magnetic proper-
ties stemming from structural short-range order of jammed nanoparticles imaged with transmission electron microscopy in their dried state. Reproduced with permission
from Wu et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2017355118 (2021). Copyright 2021 National Academy of Sciences. (c) In-field and zero-field assembly of nanoparticles
from a mixture of dispersed superparamagnetic and non-magnetic nanoparticles revealing distinct heterostructures with enhanced magnetic anisotropy and remanent mag-
netization. The depicted states are modeled with molecular dynamics and micromagnetic simulations and leave out non-magnetic nanoparticles. (d) Self-assembly of
Au��Fe3O4 dumbbell-like nanoparticles with packing parameter of (left) 0.63 and (right) 0.84 visualized with transmission electron microscopy. Reproduced with permis-
sion from Liu et al., Nano Lett. 20, 8773 (2020). Copyright 2020 American Chemical Society.
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nanoparticle acting as a uniformly magnetized macrospin, thermal
spin excitations, magnetic short-range, and long-range order depend
on the structural short-range order of adjacent nanoparticles
[Fig. 10(b)],286 similar to macrospins in planar systems.356,357 These
systems have the potential to become a versatile platform to investi-
gate spin liquid to spin glass transitions in planar and curved geome-
tries which can be controlled by chemical properties, such as pH and
ligands, stress and strain, electric and magnetic fields. The pH affects
the screening of electrostatic charges and thus the separation
between negatively charged nanoparticles jammed at the interface.
Jamming mixtures of non-magnetic and superparamagnetic nano-
particles in the presence of an external magnetic field provides a
route to adaptive reconfigurable 3D printing and heterostructuring
[Fig. 10(c)], as known from 2D ferrofluids.358 Long chains359–361 and
lattices362 form at liquid–liquid and liquid–air interfaces in alternat-
ing in-plane magnetic fields where the balance between viscous and
magnetic torque, and magnetic attraction and hydrodynamic repul-
sion govern the stability and mechanical response of the dynamically
stable, ordered structures. Jamming these assemblies will inhibit the
mobility of individual particles, producing a locked remanent magne-
tization of the entire droplet. This novel approach stimulates to reim-
agine magnetism and microrobotics from the perspective of liquids
with solid-state functionalities355 and prospective applications to vis-
cosity engineering, magnetically functionalized liquid–crystalline and
plastic–crystalline phases,363–365 organic synthesis in living cells,366

and encapsulation and triggered release of cargo.354,361

2. 3D spin frustration

The expansion of frustrated dipole systems from planar artifi-
cial spin ice structures into 3D space will be essential to the resem-
blance of inherently 3D, frustrated exchange-coupled materials.367

Although providing valuable insight into spin frustration, the
current approach is restricted to 2D planar systems and improperly
scaled nearest and next-nearest neighbor interactions due to the
finite size of nanoislands. Advances in focused electron beam
induced deposition, two-photon lithography and electrochemical
deposition will allow for synthesizing single- and multi-component
nanostructures where magnetic moments are confined to vertices
or connecting segments. This bottom up approach enables a
pathway to design 3D geometrically frustrated heterostructures with
various symmetry and geometry of isotropic lattices, 2D layered
structures, and deliberately disordered systems. Tailoring shape and
size (extrinsic) or anisotropy, exchange and Curie temperature
(intrinsic) of multi-component heterostructures translates to an
ensemble of magnetically harder and softer materials. While single-
component nanostructures are simpler to manufacture, they are less
realistic since exchange interactions affect thermal spin fluctuations
and local ground states. Multi-component materials with different
thermal expansion coefficients will open a path to reversibly trans-
form isotropic into anisotropic spin frustrated systems by changing
dipole interactions which is particularly impactful for isotropic mac-
rospins with negligible energy barrier, such as XY, Kitaev spins, and
spin glasses. The realization of these complex transitions is unique to
macrospin incorporated into a nanostructure matrix and not feasible
to achieve in a conventional way, e.g., changing temperature and
studying systems with various lattice parameters. While the primary

interest in 3D frustrated heterostructures relies on basic science, they
may also find application in random number generation or magnetic
dipole logic.368

3. Non-collinear spin textures in 3D nanostructures

The accumulated knowledge of and advances in synthesis,
characterization, and numerical modeling of 3D nanostructures
will help boost research efforts to manufacture 3D networks for
spintronics (race track memory), magnonics (spin wave excitation),
and neuromorphic computing (spin oscillator). These prospective
applications require high metal purity and minimal interface
roughness to guarantee adequate magnetic exchange interactions,
and spin-transfer or spin–orbit torque. The current manipulation
of spin textures is not only essential with respect to application
but also a critical need as structural complexity prevents an
effective control by external magnetic fields. We envision two
routes going forward addressing domain wall manipulation in 3D
networks, and more complex non-collinear spin textures and
topological states in nanostructures. There are numerous chal-
lenges to overcome before realizing microelectronics based on
topological states in 3D networks.

The coherent, synchronized motion of domain walls via spin-
transfer or spin–orbit torque necessitates replica of domain walls
with the same chirality, type, magnetic moment, width, and thick-
ness. Since domain wall shape and type are governed by extrinsic
(shape, thickness, curvature) and intrinsic (exchange, saturation
magnetization, anisotropy) properties, particular attention will be
devoted to architectures of multiple components, i.e., vertices and
connecting segments, bent and modulated nanostructures that
affect both kinetics and dynamics of domain walls. To some extent,
slightly different domain wall velocities can be compensated using
shift registration in the form of periodic pinning sites. Similarly
important is to ensure compatibility with planar systems, which
demands a mean to effectively couple chiral spin textures into and
out of the 3D networks.337 Alternatively, new ways to nucleate and
manipulate chiral domain walls in 3D networks are needed, taking
advantage of, e.g., local stray fields predefining domain wall chiral-
ity and varying cross section to alter current density beyond the
nucleation threshold. A combination of strain and temperature
manipulation of local magnetic exchange and anisotropy could
enable logical operations in the form of gates and splitters. Even
considering the most ideal case of an amorphous metallic network
without grain boundary pinning, questions remain about contact
resistance, heat dissipation, pinning at corners, and curvature
effects. The challenge will be to harness rather than to compensate
these effects.

The multitude of physical parameters influencing magnetization
vector fields and spin excitations in 3D networks makes the study
and optimization of individual components essential, particularly, in
view of more complex non-collinear spin textures and topological
states. A major milestone is the synthesis of 3D nanostructures with
inversion symmetry breaking to stabilize and retain chiral, non-
collinear spin textures. The common approach of single-crystals with
inversion symmetry-broken unit cells is impossible to achieve with
the vast majority of bottom-up nanofabrication techniques, and
impractical in view of 3D networks and application. This leaves
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curvature, interfaces, and short-range order in amorphous materials.
Biaxial 3D networks provide interfacial and curvature-induced inver-
sion symmetry breaking, while enabling spin–orbit torque manipula-
tion. It is unclear, though, how non-collinear spin textures wrapping
the magnetic shell would transition at vertices and intersections due
to changes of topology. Switching from magnetic shell to magnetic
core allows free navigation through the 3D network at the expense of
compensated inversion symmetry breaking. These symmetry argu-
ments underline the essence of local variations in curvature, inter-
faces and short-range order to consolidate a sizable DMI.

Current efforts to synthesize and investigate cylindrical and
tubular nanostructures in view of magnetic states and magnetiza-
tion reversal process will expand to include domain wall dynamics,
spin excitations, and 3D imaging of the magnetization vector field
as well as its correlation with local structural and chemical proper-
ties in terms of imperfections and engineered chemical/structural
segmentation. The latter allows for stabilizing non-collinear spin
textures, such as helices, skyrmions and skyrmioniums, which may
serve as novel 3D spin oscillators or magnonic crystals for, e.g.,
speech and pattern recognition. Structural transformation by virtue
of thinning (conical shape) or bending (curvature) will further
provide means to localize non-collinear spin textures and transition
regions between states with distinct topology. This includes reversi-
ble switching between collinear and non-collinear spin textures in
bent nanostructures, such as helices and rings, harnessing strain-
mediated curvature modifications to the magnetic exchange
without magnetostriction, magnetic fields, and current flow. While
a first demonstration can be given by mechanical stretching and
compression, designing artificial magneto-electric materials63 will
involve incorporating nanostructures in, e.g., piezoelectric solgel
lead zirconate titanate matrices.369 3D magnonic crystals will likely
be realized using cylindrical or tubular nanostructures with longitu-
dinal and azimuthal magnetization configurations owing to a pro-
found theoretical understanding and significant advances in
synthesis capabilities. The emanation of magnetic spin waves from
domain walls separating uniformly magnetized domains simplifies
analysis, and addresses the fundamental question of curvature-
driven magneto-chirality selection of vortex domain walls and a
unidirectional spin wave propagation in tubular geometries that
can be tuned by magnetic fields, strain and curvature. A more chal-
lenging subject is the spin wave emanating from non-collinear,
topological spin textures in 3D nanostructures, and their depen-
dence on both structural and magnetic properties, including, in
particular, chirality, topology, and periodicity. This close relation-
ship makes them highly appealing from the perspective of quantum
materials for non-volatile, analog information processing.

B. Topological states stabilized by curvature and
short-range order

The research on topological solitons in condensed matter will
diversify with a strong emphasis on expanding the zoo of topologi-
cal magnetization vector fields in homogeneous and inhomoge-
neous materials and harnessing curvature, disorder, strain, and
voltage to tailor type, strength, and inhomogeneity of magnetic
exchange interactions on the nano- and atomic scales. Overcoming
physical and technological limitations of ferromagnetic Néel and

Bloch type skyrmions will be addressed by exploring ferrimagnetic,
antiferromagnetic, and multiferroic isotropic and anisotropic topo-
logical states, such as higher-order skyrmions and hopfions. These
studies will thrive on multimodal investigations combining
magneto-resistance measurements with magnetic imaging of indi-
vidual and ensembles of topological states with different chirality,
topological charge and dimensions. We anticipate similar proce-
dures for dynamic experiments of spin excitations, such as
current-, voltage-, and strain-driven motion, nucleation, and spin
wave propagation (Fig. 11). Reconstructing thermally stable 3D
magnetization vector field with magnetic tomography will provide
unambiguous evidence of its topology. Synthesis and experiment
will be guided by numerical modeling of the most realistic possible
configurations relying on molecular dynamics, ab initio, micromag-
netic, and Monte Carlo simulations. A more detailed discussion of
technological advances is given in Sec. III. Symmetry and order are
regarded essential to quantum materials ranging from supercon-
ductors to topological insulators to topological magnetic and polar
states. Vector spin exchange, i.e., DMI, is an indirect magnetic
exchange interaction mediated by conduction electrons of adjacent
atoms that reveals, similar to RKKY exchange coupling,370–372 a
spatial oscillatory behavior of both sign and magnitude and is
highly sensitive to structural and chemical order.373 The correspond-
ing local DMI can be homogeneous, inhomogeneous, or random on
the microscale and ideally requires a sub-atomically accurate place-
ment of elements and atoms to tailor topological objects and their
current-induced motion [Figs. 11(a) and 11(b)].56,212 However, this is
experimentally impractical in view of both efforts and materials syn-
thesis. Instead, we envision that research will focus on structural and
chemical disorder in the form of random substitution/intercalation of
atoms, rough interfaces, and amorphicity to tailor interatomic
exchange on the atomic and nanoscale. Recent theoretical and experi-
mental works have shown promise of these alternate, unconventional
means and reinforced the need for a profound understanding of fun-
damental mechanisms. This ranges from probing and understanding
to engineering and harnessing curvature, structural and chemical
short-range order in exchange-coupled systems to stabilize topologi-
cally non-trivial states with unprecedented small feature sizes and
tailored symmetry. Room-temperature skyrmions spanning a few
nanometers are currently futuristic but may be realized by enlarging
the mean distance between spin-polarized atoms via pseudo-random
atom substitution in inversion symmetry-broken systems that leaves
the exchange stiffness and DMI exchange constant unaffected.59

Amorphous magnetic materials exhibit, due to suppressed
electron transfer between transition metal atoms and enlarged local
density of states and spin–orbit coupling,187 increased magneto-
resistance and Hall effects and provide greater flexibility in materi-
als synthesis and manipulations via current, voltage, strain, and
curvature. In contrast to single-crystals and epitaxial films, they can
be grown on virtually any planar, curved or modulated substrate,
and will allow for exploring compositions and phases inaccessible
in crystalline form due to, e.g., phase segregation. Minimal
magneto-crystalline anisotropy and sensitivity to short-range order
make amorphous materials ideal prototypical systems to examine
curvature-driven DMI, local inversion symmetry breaking and spin
chirality selection in terms of stabilized topological magnetic states
and magneto-transport phenomena (Fig. 3). This includes, in
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FIG. 11. Manipulation strategies for
topological magnetic states, excluding
curvature-induced effects discussed in
Fig. 3. (a) Spin Hall effect-induced
motion of anisotropic skyrmions.
Reproduced with permission from Jin
et al., Appl. Phys. Lett. 114, 192401
(2019). Copyright 2019 AIP Publishing
LLC. (b) Current-driven motion of hop-
fions by spin-transfer torque revealing
rotation and expansion or shrinking
depending on spin damping α and non-
adiabatic coefficient β. Bottom image
shows cross-sectional view of emergent
magnetic field with velocities for vortex
and antivortex configuration.
Reproduced with permission from Liu
et al., Phys. Rev. Lett. 124, 127204
(2020). Copyright 2020 American
Physical Society. (c) Optically induced
current pulse nucleation and current-
driven displacement by spin–orbit torque
of skyrmionium as compared with sky-
rmion. From Göbel et al., Sci. Rep. 9,
12119 (2019). Copyright 2019 Author(s),
licensed under a Creative Commons
Attribution (CC BY) license. (d) Voltage
control of magnetic anisotropy mediated
by adjacent dielectric layer for directional
motion of topological states.
Reproduced with permission from
X. Wang, W. L. Gan, J. C. Martinez, F.
N. Tan, M. B. A. Jalil, and W. S. Lew,
Nanoscale 10, 733 (2018). Copyright
2018 Royal Society of Chemistry.
(e) Magnetic trapping of magnetic sky-
rmion by vertical magnons with large
orbital angular momentum. Reproduced
with permission from Jiang et al., Phys.
Rev. Lett. 124, 217204 (2020).
Copyright 2020 American Physical
Society. (f ) Strain manipulation of mag-
netic exchange interaction in Co/Pt mul-
tilayers. Reproduced with permission
from Gusev et al., Phys. Rev. Lett. 124,
157202 (2020). Copyright 2020
American Physical Society. (g)
Formation of skyrmions by helium ion
irradiation-induced modifications to mag-
netic anisotropy and exchange in Pt/Co/
MgO. Reproduced with permission from
Juge et al., Nano Lett. 21, 2989 (2021).
Copyright 2021 American Chemical
Society. (a)–(e) and (f ) and (g) are
numerical and experimental data,
respectively.
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particular, the visualization of topological states with different
shape, size, and topology, stabilized by isotropic and anisotropic
nanoscale indentations and sculptures, and quantification of aniso-
tropic exchange interactions and magneto-transport properties
along, e.g., grooves. Selective release from the substrate and
mechanical manipulation of free-standing films in the form of local
curvature, bending, tensile and compressive strain and pressure are
additional intriguing routes to alter magnetic exchange and nucle-
ate and switch topological states. Electric voltage can be used to
manipulate magnetic exchange and anisotropy via modifications to
the electron density of states near the Fermi level [Fig. 11(d)]221

and strain-mediated coupling [Fig. 11(f)],228 altering both degree
of inversion symmetry breaking and magneto-resistance. The high
sensitivity to short-range order of amorphous materials on the
verge between conductors and insulators will enable strain tuning
of DMI far exceeding the values for polycrystalline films of one
order of magnitude using 0.1% in-plane deformation.228 The
spatial variations in voltage consolidate a reconfigurable curved
interface with respect to magnetic exchange that, in principle, can
resemble mechanical curvature and induce a local DMI. These
efforts can be combined with helium ion irradiation to tailor mag-
netic exchange, anisotropy, and magnetic moment on the nano-
scale [Fig. 11(g)].218 The latter allows for writing tracks for
skyrmion nucleation and motion preventing deflection due to the
Magnus force [Fig. 11(c)].207 Since voltage manipulation of the
electronic structures and magnetic exchange is typically limited to
insulators and ultra-thin materials due to screening effects in con-
ductors, it will be highly interesting to see experimental studies on
the potential of amorphous materials.

Initial investigations will concern extended and nanopatterned
homogeneous systems whose compositions are chosen according to
their crystalline B20 counterparts with sizable DMI. In long-term,
heterogeneous and individually optimized layered structures with con-
tinuously varying composition, elements, morphology, and magnetic
properties may emerge, enabling, e.g., the formation of topological
knots with the unique current-driven motion [Fig. 11(b)].212 This
includes different types and strengths of exchange interactions, mag-
netic anisotropy, and transition temperatures, as well as multifunc-
tional films with, e.g., magnetic and ferro-/piezoelectric properties.
These materials have been synthesized as layered heterostructures or
single-crystals and been subject to compatibility limitations. The latter
are lifted in amorphous media requiring only short-range order.
Multifunctional materials promise voltage, strain, and curvature
control of topological magnetism, antiferromagnetism, and multiferro-
ism, magnetic control of polar topological states, and amorphous
topological insulators and superconductors6,374 whose properties can
be locally configured by topological magnetic states. An alternate
route will focus on atomic layered structures to host topological states
spanning a few atoms while taking advantage of negligible damping/
pinning due to hybridization of ordered p-orbitals. Both characteristics
make 2D van der Waals materials exceptionally susceptible to disorder
and voltage and enable a selective release from the substrate to
examine curvature and strain effects all-electrically and via magnetic
imaging.48–51

Discovering new materials and means to manipulate individ-
ual topological states can, in long-term, be accompanied by investi-
gations of collective behavior and spin excitations. This pertains to

both magnetization dynamics and phase transitions between topo-
logically distinct states, and their relation to structural and chemical
short-range order, and local DMI. Spin waves are interesting with
respect to disorder-induced topological magnonics,7 and their
lateral and particularly vertical propagation along, e.g., skyrmion
tubes, which is critical to envisioning configurable 3D magnonic
crystals. Vertical magnons with large orbital angular momentum
provide further means to manipulate topological states
[Fig. 11(e)].375 The advantage of designing and implementing
curved vector fields over structurally predefined curvature is a
new way to tune on-demand the spin wave dispersion, i.e., band
structure and topology, through twisting and deforming, or alter-
ing the topology of the magnetization configuration. In contrast
to topological states confined to 3D nanostructures, extended
films offer further collective behavior and potentially a route to
design 3D networks of topological states and (topological) spin
wave guides.

V. TECHNOLOGICAL PERSPECTIVE

Despite a strong focus on basic sciences and the early stage of
research and development, numerous technological applications of
curved magnetic geometries have been proposed and, in part, been
realized. They differentiate themselves from planar technologies by
enhanced performance, novel functionality, and/or higher effi-
ciency (lower power consumption). Similar to scientific advances,
structural properties have taken the lead in both sensing and micro-
robotics applications. We anticipate a growing interest in structural,
chemical, magnetic, and electronic curved geometries in quantum
materials to manipulate chiral and topological states for novel
sensing and microelectronics based on spintronics. The fundamen-
tal aspects of adding curvature as a critical parameter to magnetic
materials were discussed in detail in Secs. II and IV.

A. Sensing

One of the earliest and most tangible beneficiaries of curved
magnetic geometries are flexible and stretchable magneto-resistive
sensors (Fig. 12),376 which can be synthesized by conventional thin
film deposition directly onto a flexible and/or stretchable polymeric
substrate or via selective release and subsequent transfer onto virtu-
ally any surface. The high-quality structural, chemical and magnetic
properties enable sensing capabilities, comparable with rigid speci-
mens on, e.g., silicon wafers, relying on giant magnetic resistance
and impedance,153,377,378 Hall effect, and giant stress resistance and
impedance.379 While functional multilayer stacks placed either in
the neutral plane or onto micrometer-thick foils experience
minimal impact from strain and stress, films on thicker substrates
suffer magnetostriction which benefits giant stress impedance mea-
surements in the form of an altered magnetic susceptibility and
anisotropy. These characteristics provide the foundation for sensing
fluid and gas flow (bending), thermal and mechanical expansions
of planar and curved geometries (interfacial strain), and the physi-
cal orientation within a constant magnetic field or of a variable
magnetic field as an inexpensive and thin alternative to semicon-
ductor Hall probes. The latter will empower contactless position
sensing for magnetic bearings, 3D “touch” screen and wearable
navigation devices (position and movement in 3D), and on-skin
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interactive electronics for, e.g., augmented and virtual reality
applications.376,380–383 Switching from extended films to 3D nano-
structures, such as nanopillars, tubes, and helices, will offer spatially
resolved sensing capabilities384–386 on the submicrometer scale and
improved sensitivity to both magnetic field and stress.
Magneto-resistive vector field sensing could be realized with 3D
networks of nanostructures. Given that the magnetic anisotropy
and susceptibility of superparamagnetic nanoparticle coatings are
highly dependent on the assemblies’ short-range order, they can be
used to monitor and detect thermal and mechanical expansions as
well as cracks in and twists of conducting wires based on imped-
ance changes. Similarly, local magnetic fields in liquids can be
probed by analyzing self-assembly of superparamagnetic

nanoparticles. The magnetic phase transition from paramagnetism
to ferromagnetism of superparamagnetic nanoparticles upon
jamming in liquid environment could be adapted to sensing pH
with bio-compatible hydrogels.387,388 The latter are highly sensitive
to small changes in pH leading to a hysteresis-free shrinkage and
expansion, which will affect the mean distance between embedded
nanoparticles and their remanent magnetization and boost
sensitivity.389,390

B. Microrobotics

Magnetic nano- and microstructures dispersed in liquid and
gaseous environments are strong contenders for microrobotics

FIG. 12. Development of magnetosensitive e-skins based on magneto-resistive sensing. From G. S. Canon Bermudez and D. Makarov, Adv. Funct. Mater. 2007788
(2021). Copyright 2021 Author(s), licensed under a Creative Commons Attribution (CC BY) license.
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because of a high susceptibility to external magnetic fields, which
enables the remote control of the translational, and rotational
motion, orientation, and direction, and the selection of different
mode of operation. Mechanical actuation and selective transforma-
tion of shape-morphing micromachines with distinct local mag-
netic and elastic properties294–296 can be realized by chemically,
temperature or magnetic field-driven structural deformation, and
adapted to complex origami [Figs. 13(a) and 13(b)],295,297,391 cargo
delivery in liquid293,294,298,354,361 and gaseous294 environments, vis-
cosity/turbulence engineering (microfluidics),359,361 and surface
roughness/modulation (optics). The magnetic functionality is typi-
cally given by ferromagnetic nanoparticles, embedded in elastic
films or magnetic films with tailored magnetic properties, and the
mechanical response to a rotating or constant magnetic field. The
latter offers quasi-static297 and dynamic [millisecond time scale,
Fig. 13(c)]298 actuation, including microrobots that walk, crawl,
roll, and climb in air and liquid environment,294 bio-inspired fla-
gellated micromachines [Fig. 13(d)],293 and printing of complex 3D
structures that emerge from 2D planar films.295 These develop-
ments pave the way toward prospective applications in life sciences
and engineering, such as drug and cargo delivery, directional tissue
growth, microsurgery, and artificial fertilization, as well as func-
tional and reconfigurable microfluidic channels, adaptive optical
elements, viscosity engineering, local magnetic field sensing and
generation, and actuation.9–11 The reconfigurable magnetization of
ferromagnetic liquid droplets provides a mean to promote magneti-
cally aligned cell differentiation and proliferation, which is particu-
larly appealing for blood vessels, cartilage, and nerve tissue
regeneration in living cells.366 In-field assembly and jamming of
mixed phases of non-magnetic and superparamagnetic nanoparti-
cles on liquid–liquid interfaces will enable reversible magnetic field-
sensitive nanopatterning and designing birefringent, refractive, dif-
fractive and potentially chiral liquid optical components. Choosing
ligands with the potential to significantly reduce interfacial tension
will provide means to generate micrometer, potentially, sub-
micrometer, droplets from parent specimens owing to spontaneous
emulsification. A magnetic field promoting the assembly and
agglomeration of nanoparticles at the interface will enable a
stimulated emulsification in the form of an explosive release of
ferromagnetic microdroplets. The viscosity of lubricating liquids
can be enhanced by DC magnetic field-induced assembly of
superparamagnetic nanoparticles into chains, tubes, flakes, or
rings, which decelerates translational and rotational motion of
motors; disassembling may occur naturally at remanence or
within an AC magnetic field.

C. Microelectronics

Compared with sensing and microrobotics, realizing low-
power microelectronics by harnessing curved geometries is a long-
term effort that requires substantial scientific, technological and, to
some extent, conceptual advances regarding, in particular, imple-
mentation and integration. Examples range from more conven-
tional mechanisms, such as dipole spin frustration and current
manipulation, to voltage, curvature, and topology control. Spin
frustration in 3D heterogeneous nanostructures may find applica-
tion in random number generation and magnetic dipole logic.

Current-driven domain wall manipulation and propagation in 3D
networks provide a path toward 3D racetrack memory devices and
domain wall logic, as recently demonstrated in 2D,368 with superior
storage density owing to minimal footprint. Incorporating curved
nanorods in piezoelectric matrices enables voltage-induced switch-
ing between collinear and non-collinear spin textures with distinct
magneto-resistance; this approach allows for designing artificial
non-volatile magneto-electric materials based on strain-mediated
curvature modifications to the magnetic exchange without magne-
tostriction, magnetic fields, and current flow. Thickness-modulated
low-damping materials, such as yttrium iron garnet, or 3D net-
works thereof can be explored in reference to their capability to
serve as tunable ferromagnetic oscillators with multiple indepen-
dent narrow resonances. These efforts will help launch 5G cellular
communication services in the originally intended high-frequency
band of (24 � 28) GHz to bolster future demand in bandwidth and
rate, which is prevented by the currently employed complementary
metal–oxide–semiconductor (CMOS) voltage-controlled oscillators.

Novel 3D spin oscillators and magnonic crystals for, e.g., speech
and pattern recognition can be realized with non-collinear spin tex-
tures, such as chiral domain walls, vortices, helices, and topological
states, formed in segments of 3D networks or individual cylindrical
nanostructures. The close relation between spin wave excitation and
spin chirality, topology, and periodicity as well as structural proper-
ties offers a significantly larger parameter space than conventional
nanospin oscillators and magnonics based on a uniform magnetiza-
tion. These devices will take advantage of spatial confinement and
directionality of the spin excitation (higher efficiency), and a distinct
dispersion relation with potential topological features. Prototypical
systems may be based on reconfigurable vortices in non-planar
antidot arrays, domain walls pinned at corners of bent planar and
3D nanostructures, and domain walls separating uniformly magne-
tized domains in cylindrical or tubular nanostructures with longitu-
dinal and azimuthal magnetization configurations. Harnessing chiral
spin textures in 3D nanostructures and extended films have the
advantage of designing and implementing curved magnetization
vector fields over structurally predefined curvature and opens a new
way to tune on-demand the spin wave dispersion through twisting
and deforming, or altering the topology of the magnetization config-
uration. Extended films offer further collective behavior and a route
to design 3D networks of topological states and topological spin
wave guides, which is intriguing from the perspective of novel
quantum materials. A potential commercialization demands an all-
electric characterization of the spin oscillators and magnonic materi-
als probing the transmitted current signal as a fingerprint of thermal
and radio frequency spin wave excitations.

Greater flexibility in materials synthesis of quantum materials
and correlated electron systems can be accomplished in the form of
amorphous and polycrystalline materials with local inversion sym-
metry breaking. Focusing on the short-range order instead of global
symmetry will allow for designing multifunctional materials which
are typically incompatible due to mismatching lattice constants, sym-
metry and phase segregation. These materials offer voltage, strain
and curvature control of topological magnetism, antiferromagnetism
and multiferroism, magnetic control of polar topological states, and
amorphous topological insulators and superconductors whose prop-
erties can be tuned by local decoration with topological magnetic
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FIG. 13. Shape-morphing magnetic materials in gaseous and liquid environment. (a) Magnetic nanoparticles incorporated into elastomer matrix whose short-range order
and magnetic anisotropy can be tuned at elevated temperatures in a magnetic field. Depicted shapes emerge from planar sheet in the presence of a magnetic field.
Reproduced with permission from Song et al., Nano Lett. 20, 5185 (2020). Copyright 2020 American Chemical Society. (b) Programmed self-assembly of frames equipped
with multipole permanent magnets. From Niu et al., Proc. Natl. Acad. Sci. U.S.A. 116, 24402 (2019). Copyright 2019 Author(s), licensed under a Creative Commons
Attribution (CC BY) license. (c) Millisecond actuation based on perpendicular magnetized films exposed to linear AC magnetic field. From Wang et al., Commun. Mater. 1,
67 (2020). Copyright 2020 Author(s),licensed under a Creative Commons Attribution (CC BY) license.298 (d) Bio-inspired flagellated micromachines with magnetization
stemming from embedded aligned ferromagnetic nanoparticles driven by a rotating magnetic field in liquid environment. From Huang et al., Nat. Commun. 7, 12263
(2016). Copyright 2016 Author(s), licensed under a Creative Commons Attribution (CC BY) license.293
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states. Local voltage applications will provide a mean to consolidate a
reconfigurable curved interface with respect to magnetic exchange,
and to alter local DMI. The latter is envisioned to promote the for-
mation of complex 3D magnetization vector fields all-electrically,
e.g., creating and deleting skyrmioniums and antiskyrmioniums, as
well as anisotropic solitons like topological knots, which is essential
to post-CMOS microelectronics.

VI. CONCLUSION

Harnessing the curvature as a design parameter to tailor and
manipulate magnetic properties of non-collinear and topological
states as well as of 3D magnetic nanostructures is a vital emergent
field with ample opportunity for basic and applied sciences.
Despite its primary focus on basic sciences and early stage of
research and development, a multitude of prospective applications
have emerged, including magnetic field and stress sensing, microro-
botics, and information processing and storage. Their realization
requires an integrated approach of modeling, synthesis, and charac-
terization across multiple length scales. This Perspective presented
recent advances in basic and applied sciences and technology in
the context of ongoing research efforts that we hope will guide and
stimulate future directions.
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