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ABSTRACT

The quasi-static anisotropic permittivity parameters of electrically insulating beta gallium oxide (b-Ga2O3) were determined by terahertz
spectroscopy. Polarization-resolved frequency domain spectroscopy in the spectral range from 200GHz to 1 THz was carried out on bulk
crystals along different orientations. Principal directions for permittivity were determined along crystallographic axes c and b and reciprocal
lattice direction a�. No significant frequency dispersion in the real part of dielectric permittivity was observed in the measured spectral range.
Our results are in excellent agreement with recent radio frequency capacitance measurements as well as with extrapolations from recent
infrared measurements of phonon mode and high-frequency contributions and close the knowledge gap for these parameters in the terahertz
spectral range. Our results are important for applications of b-Ga2O3 in high-frequency electronic devices.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031464

Single crystalline monoclinic structure beta gallium oxide
(b-Ga2O3), an ultra-wide bandgap semiconductor with the direct
bandgap reported in the range from 4.8 eV to 5.04 eV,1–6 is being
extensively researched due to its potential for improved performance
in a wide variety of power switching applications as well as radio fre-
quency (RF) components typically employed in power supplies, radar,
communication systems, etc.7 Because of its high estimated break-
down field (Ebr) of approximately 6–8MV/cm,8–10 its Baliga figure of
merit, which is proportional to the third power of Ebr, has been
estimated to be greater than that of Si and GaN.8,11 In addition to this
primary area of application, since its optical absorption edge lies at
ultra-violet (UV) wavelengths, b-Ga2O3 may also potentially enable
the development of solar-blind UV optoelectronic devices12,13

Moreover, a large bandgap energy and controllable n-type doping

could also facilitate its use as a transparent conductive film for deep-
UV applications.1,14 While the overall focus of b-Ga2O3 research is
targeted toward electronic device applications, there is a considerable
need to understand its dielectric permittivity ��eðxÞ at different
frequencies from static (DC), through the far infrared (FIR) and infra-
red (IR) to the visible, ultraviolet (UV), and deep ultraviolet (DUV)
spectral regions.2,3,5,15–18 As a fundamental constitutive material
parameter, the permittivity is a direct measure of the polarizability of
the constituent atomic lattice and the electron charge distribution
under an externally applied electric field. The low symmetry (C2/m) of
monoclinic b-Ga2O3 results in strongly anisotropic dielectric permit-
tivity parameters along different crystal directions. This anisotropic
behavior extends over different frequency regions and, hence, requires
comprehensive characterization. Recently, FIR and IR ellipsometric
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measurements have identified transverse (TO) and longitudinal (LO)
phonon mode parameters and their contributions to the anisotropic
permittivity in the FIR–IR spectral region. It was observed that
phonons polarized within the monoclinic plane do not coincide with
specific crystallographic directions, and as a consequence, TO and LO
phonons do not coincide in the polarization direction either.16,19–22 A
generalization of the well-known Lyddane–Sachs–Teller relationship
was reported for monoclinic and triclinic materials, which relate static
and high-frequency permittivity values to the infrared-active phonon
mode parameters.16,23 More recently, Fiedler et al. using AC measure-
ments on capacitor structures fabricated perpendicular to principal
planes (100), (010), and (001) reported strong anisotropy of the mea-
sured permittivity.15 However, in low-symmetry crystal systems, prin-
cipal lattice planes are not perpendicular to principal unit cell
directions, and the AC capacitance measurements did not provide the
full set of intrinsic permittivity values. In this Letter, we characterize
the quasi-static dielectric permittivity of b-Ga2O3 in the frequency
range approximately from 0.2 to 1THz, and we obtain the full set of
permittivity values for all major lattice directions and directions per-
pendicular to all principal planes. We compare our results with those
from AC capacitance and FIR–IR spectral investigations. Our investi-
gation bridges the previously reported FIR–IR and AC capacitance
studies and provides information about the dielectric permittivity in
the upper gigahertz spectral region of this emerging semiconductor.

Due to the monoclinic symmetry, the anisotropy of b-Ga2O3

requires careful consideration of lattice directions and unambiguous
assignment of lattice axes and coordinate systems. In general, the
dielectric tensor possesses four independent complex-valued elements
and cannot be diagonalized for all wavelengths due to the frequency
dependence of the permittivity. Optical axes, which describe directions
within a given crystal along which light can propagate while maintain-
ing its polarization, change angular orientation in spectral regions
where the permittivity undergoes dispersion in monoclinic crystal sys-
tems. This phenomenon is also known as rotation of optical axes. This
was recently demonstrated for the IR and FIR range for b-Ga2O3,
where all four tensor components show strong dispersion behavior
across the phonon mode spectral region.16 In another example, Yiwen
et al. studied propagation of terahertz waves in a monoclinic crystal of
BaGa4Se7.

24 The existence of free charge carriers with direction-
dependent mobility parameters produces anisotropic properties with
strong dispersion in the terahertz spectral range. If free charge carriers
can be suppressed, either by compensation doping or by using high-
quality crystalline material, then the dielectric response is composed of
all higher frequency bound excitations, such as phonons, band-to-
band transitions, excitons, and x-ray absorption. Phonon modes in
this material system are known to be present at frequencies
>3THz.16,25,26 If phonon modes are far enough away from the tera-
hertz spectral range measured, then the dispersion caused by phonons
can be neglected. If there is no other dielectric mechanism such as
polaron absorption or charge re-localization between different defects,
then the dielectric permittivity tensor should be constant and reveal
no significant frequency dispersion. This criterion is important for
determining dielectric constants, which can then be compared with
static or AC measurements. We, therefore, refer to the terahertz dielec-
tric permittivity parameters here discussed as quasi-static permittivity
parameters. We use polarization-resolved frequency domain spectros-
copy methods and extract the anisotropic dielectric permittivity along

different crystal directions. We compare our results with recent AC
capacitance measurements as well as with extrapolations from recent
FIR–IR measurements of phonon mode and high frequency permittiv-
ity contributions, which close the knowledge gap for these parameters
in the terahertz spectral range. The results of our study are of great
technological interest for applications of b-Ga2O3 in electronic
devices.

Figure 1 depicts the unit cell of b-Ga2O3 and a set of Cartesian
coordinates (x, y, z), which represent the laboratory coordinates that
are permanently assigned to the monoclinic system (a, b, c) as depicted
in Fig. 1(b). Euler rotations then relate these laboratory coordinates to
the auxiliary (or the ellipsometer) coordinate system (x0; y0; z0),
which, in turn, represents the respective surface cut and sample rota-
tion for every measurement (as explained in more detail in Ref. 16).
Due to the monoclinic angle (b ¼ 103:7�),27 axes a and c are not per-
pendicular to each other. The samples investigated in this work are
characterized by the Miller indices of the crystallographic planes at the
surface. The vectors normal to the planes are obtained by the recipro-
cal lattice vectors,

a? ¼ b� c
aðb� cÞ ; b? ¼ a� c

bða� cÞ ; c? ¼ a� b
cða� bÞ ; (1)

where� is the vector product, and because b is perpendicular to a and c,
vectors b? and b are parallel. Vectors a? and c? are depicted in Fig. 1(b).

The frequency-dependent permittivity of b-Ga2O3 can be
expressed by a second-rank tensor,16

FIG. 1. (a) The unit cell of b-Ga2O3 with monoclinic angle b and crystal unit axes
a, b, and c. (b) Monoclinic plane a–c viewed along axis b (b points into the plane).
Definition of the laboratory Cartesian coordinate system (x, y, z) and crystal unit
axes (a, b, c). Reciprocal lattice vector c? parallel to axis y, a parallel to axis x, and
b parallel to axis z (not drawn to scale). Principal plane Miller indices for surfaces
of samples investigated here are shown in (c), with surface normal reciprocal lattice
vectors. Note that b?jjb. The relationship between the laboratory coordinate system
(x, y, z) and the monoclinic system (a, b, c) shown in (b) is valid for all surface ori-
entations shown in (c). The figure was redrawn with permission from Phys. Rev. B
93, 125209 (2016).16 Copyright 2016 American Physical Society.
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��eðxÞ ¼
exx exy 0
exy eyy 0
0 0 ezz

2
4

3
5; (2)

where elements exx; exy; eyy , and ezz are generally independent func-
tions of frequency. With the coordinates defined in Fig. 1, exx; eyy , and
ezz correspond to permittivities for displacements occurring along axes
a, c?, and b, respectively, while exy corresponds to the shear contribu-
tion due to displacements occurring along directions y under electric
fields along x and vice versa. Simple Euler angle rotations around axes
z (/), x (h), and z0 (w; axis z after rotation by h) as defined in Ref. 16
permit us to express the permittivity tensor in the coordinate system
(x0; y0; z0) of the measurement setup and according to the crystallo-
graphic surface orientation of a given sample. For example, rotation of
��e in Eq. (2) by / ¼ �ðb� 90�Þ results in new elements ex0x0 and ey0y0 ,
which correspond to permittivity parameters for displacements occur-
ring along axes a? and c, respectively. We determine the anisotropy
and the frequency-dependent permittivity tensor by frequency-
domain polarized terahertz transmission measurements (THz-pT)
at normal incidence and generalized spectroscopic ellipsometry
(THz-GSE) at the oblique angle of incidence in reflection.

We use the Mueller matrix concept28 to describe the electromag-
netic properties of an arbitrary anisotropic sample, represented by its
input Stokes vector into its outgoing Stokes vector,

S0
S1
S2
S3

0
BB@

1
CCA

output

¼

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

0
BB@

1
CCA

S0
S1
S2
S3

0
BB@

1
CCA

input

; (3)

with Stokes vector components defined here by S0 ¼ Ip þ Is; S1
¼ Ip � Is; S2 ¼ I45 � I�45; S3 ¼ Iþ � I�, and Ip, Is, I45, I�45; Iþ, and
I� denote the intensities for the p-, s-, þ45�, �45�, left-handed, and
right-handed circularly polarized light components, respectively.29,30

In our THz-GSE setup,31 we obtain elements in the upper 3� 3 block
normalized to element M11. We use matrix algebra approaches to
calculate the Mueller matrix elements for arbitrary anisotropic permit-
tivity configurations, as explained in detail previously.5,16,19,29,32 In
THz-pT, we measure M11 þM12, which corresponds to the linearly
polarized (horizontal) Stokes vector intensity.

Three electrically insulating samples were studied in our mea-
surements; (i) sample A—Czochralski-grown Al3þ-doped crystal
with (100) surface orientation,33,34 (ii) sample B—(010) Fe-doped
crystal, and (iii) sample C—Fe-doped (001) substrate (refer to the
supplementary material for additional details). The thickness parame-
ters of all samples were determined by mechanical measurements and
from analysis of the spectroscopic measurements (in good agreement
with each other). Crystallographic plane Miller indices for surfaces of
samples investigated here are shown in Fig. 1(c), with surface normal
vectors expressed in reciprocal lattice vectors.

THz-GSE measurements were carried out at angles of incidence
of 40� and 60� in a reflection configuration on sample A and sample
B, wherein the samples were also rotated to multiple azimuth orienta-
tions as described in Ref. 16. THz-GSE data from these samples were
analyzed simultaneously in a best-match model regression analysis to
determine the values of the relevant permittivity tensor elements.
Specific sample orientations were accounted for by mathematical
rotations of the permittivity tensor. THz-pT measurements were

performed on samples B and C using a linearly polarized incident
beam at normal incidence. Samples were oriented such that the inci-
dent electric field is parallel to a?, b, and c axes.

Figure 2 depicts the selected reflection-type GSE data from sam-
ple A, (100) b-Ga2O3, at multiple angles of incidence and at multiple
sample azimuths. Experimental data and best-match model calculated
data are in excellent agreement. Upon rotation to various azimuths,
the sample reveals strong anisotropy, recognizable in nonvanishing
off-diagonal block elementsM31,M13,M32, andM23. At azimuth posi-
tions P1 and P3, axes b and c align with the instrument coordinates x
and y, and therefore, the off-diagonal block elements vanish. Similar
data are shown in the supplementary material for sample B. Both data-
sets were analyzed simultaneously, where parameters for �e and azi-
muth orientation / are determined. Our analysis reveals that the
fourth tensor element exy is too small to be identified. This observation
is in agreement with our previous IR–FIR GSE results where the DC
value of exy was predicted by extrapolation to be very small (�0.13).16
Hence, in the measured frequency range, we find that the permittivity
tensor can be diagonalized, where only three elements are needed.
These three elements correspond to the principal dielectric axes. An
excellent match to the measured Mueller matrix data can be achieved
by setting the directions of the principal axes to be along a?, b, and c.
Therefore, the Euler angles for the (100) cut sample A are fixed at
h ¼ 90� and w ¼ 90� and for (010) cut sample B at h ¼ 0� and
w ¼ 0�. We note that the principal dielectric axis directions in mono-
clinic materials do not necessarily coincide with crystallographic axes.
For the case of b-Ga2O3, we find that these axes are indistinguishably
close to a?, b, and c. This observation is further verified by the THz-
pT measurements as discussed below. Furthermore, we observe no dis-
persion in the measured frequency range (0.6–0.9THz). From the
frequency-independent values of �e , permittivity parameters for all
crystallographic axes are obtained and listed in Table I.

Figures 3(a) and 3(b) depicts THz-pT data for sample B, (010)
b-Ga2O3, while Fig. 3(c) shows the THz-pT data for sample C, (001)
b-Ga2O3. In order to obtain the data shown in Figs. 3(a) and 3(b), the
orientation of sample B was rotated with respect to the polarization of
the incident terahertz beam and the corresponding transmission was
measured at several angles in the a–c plane. We expect to observe
single-mode Fabry–P�erot (FP) oscillations when the incident E-field is
along a major polarizability axis, and given the insulating nature of the
Fe-doped substrates, we expect the FP transmission maxima to
approach unity. Our measurement of polarization-resolved transmis-
sion at different angles in the a–c plane indicates that the principal
axes are close to a? and c-directions in the (010) substrate (in agree-
ment with the THz-GSE results). Figures 3(a) and 3(b) show the trans-
mitted E-field amplitude when the directions a? and c are aligned with
the incident polarization, respectively. Figure 3(c) shows the THz-pT
data for sample C where the in-plane b axis is parallel to the incident
polarization. Experimental data and best-match model are in good
agreement (see the supplementary material for further details). The
indices of refraction values extracted from these particular analyses are
na� ¼ 3:166 0:09; nc ¼ 3:516 0:10, and nb ¼ 3:186 0:035. No fre-
quency dispersion is observed as evidenced by a constant free spectral
range over the measured spectral range. A small drop of the peak
transmission levels is observed at the higher frequency end of the mea-
sured spectrum (i.e., above 0.7THz), which, in all cases, is associated
with an imaginary part of refractive index�0.01.
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All permittivity values obtained here are listed in Table I and
compared with previous AC capacitance and FIR investigation
results. Our results are consistent across our two techniques and
compare very well with the previous electrical and optical methods.
It is worth noticing that the error bars for the THz-GSE results are
significantly smaller compared to the THz-pT results. This is a
result of (i) more information about the samples’ optical response
being contained in the Mueller matrix spectra in comparison to
the measured transmission spectra and (ii) the Mueller matrix
analysis being performed on a dataset that contains information
from two samples (A and B) measured at multiple incident angles
and sample azimuths. In comparison, THz-pT data for a? and c
are obtained at normal incidence and a few in-plane angles (from

sample B only), while the value along the b axis is obtained from
sample C when the incident E-field is parallel to b. The AC capaci-
tance measurements report permittivity values that correspond to
the reciprocal directions of the principal lattice planes, i.e., a?; b?,
and c? corresponding to (100), (010), and (001) planes, respec-
tively. Some of us reported previously on an FIR–IR GSE analysis
by introducing a parameterized eigendielectric polarization model
for phonon mode contributions based on a best-match model of
the four functions of the permittivity tensor. From the extrapola-
tion in this model toward zero frequency, the DC permittivity
values were reported. It is noted here that due to a misprint, values
reported in Ref. 16 for permittivity parameters corresponding to a
and c? were accidentally switched and are reported correctly here.

FIG. 2. GSE data of sample A, (100) b-Ga2O3, at angles of incidence of Ua ¼ 40� and 60�: green symbols (experiment); solid red lines (best match model calculated). Solid
green circles indicate data for Ua ¼ 40�, and open squares for Ua ¼ 60�. Data are presented in the Mueller matrix formalism. All data are normalized to element M11. Data
are shown for three azimuths: P1 (u ¼ �1:5�6 0:2�); P2 (u ¼ 43:5�6 0:2

�
); P3 (u ¼ 88:5�6 0:2�). The inset depicts schematically the location of axes b and c in posi-

tion P2. Axes x0 and y0 indicate the ellipsometer coordinate axes, where x0 and z0 are parallel to the plane of incidence. The sample thickness was determined from the same
model analysis as d ¼ 4696 1lm.
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We also include values corresponding to a? and c, which change
very little and within the uncertainty limits. In Table I, it is impor-
tant to note that using THz-pT measurements, we extract the
dielectric permittivity values along a?, c, and b and values for a and
c? are obtained by mathematical rotation of the tensor. The knowl-
edge of the principal directions for permittivity as reported here
will be of importance for the accurate simulation of electric field
distribution in electronic devices. Furthermore, our results could
invariably assist subsequent investigations of terahertz conductiv-
ity of epitaxially grown conductive films (e.g., doped b-Ga2O3).

In conclusion, we determined the dielectric permittivity along
principal lattice directions and directions perpendicular to principal
planes for b-Ga2O3 from 200GHz to 1THz. In this spectral range, we
do not observe any significant dispersion in the real part of the dielec-
tric permittivity. Our results are in good agreement with recent AC
capacitance and FIR–IR measurements. Our data can be used to pre-
dict the permittivity along any direction within the highly anisotropic

crystal. The data reported here will be of importance for electronic
device designs and simulations involving b-Ga2O3.

See the supplementary material for detailed sample information,
analytical models for Fabry–P�erot interference in the THz-pT data,
THz-GSE of the (010) sample, and THz transmission in the a–c plane,
including Refs. 30, 36, and 37.

This work was supported in part by the Air Force Office of
Scientific Research under Award Nos. FA9550-18-1-0507, FA9550-
18-1-0360, and FA9550-18-1-0332, by the National Science
Foundation under Award Nos. DMR 1808715 and ECCS 1810096,
by the National Science Foundation supported Nebraska Materials
Research Science and Engineering Center under Award No. DMR
1420645, by the Swedish Governmental Agency for Innovation
Systems (VINNOVA) under Competence Center Program Grant

FIG. 3. Experimental (blue) and best-match calculated (red) THz-pT (polarized transmission) measured for electric field directions parallel to (a) a? -axis [measured in sample
B, (010) b-Ga2O3], (b) c-axis [measured in sample B, (010) b-Ga2O3], and (c) b-axis [measured in sample C, (001) b-Ga2O3]. The variation in the Fabry–P�erot fringes
between spectra shown in (a) and (b) reveals the strong anisotropy between the permittivities for directions a? and c. The sample thickness for the fits in (a) and (b) was found
to be 515 lm, while that in (c) is taken to be 656lm.

TABLE I. Static permittivity parameters for b-Ga2O3 for dielectric displacement along axes a, a?, b, c, and c? as defined in Fig. 1, obtained from THz-GSE and THz-pT experi-
ments, in comparison with theory, AC capacitance measurements, and extrapolations from FIR–IR GSE using the eigendielectric polarization model. Note that the values given
for the THz-GSE-determined a and c? are calculated by rotating the diagonalized permittivity tensor (which contains the values of a?, b, and c). Error bars indicate the confi-
dence interval at 95% confidence level. For the FIR–IR GSE results from Ref. 16, the last digit, which is determined at the 90% confidence level, is indicated within the
parentheses.

a c? a? c b

THz-GSE 10.19a 12.27a 10.056 0.05 12.46 0.06 10.66 0.06
THz-pT 10.11b 12.21b 9.976 0.57 12.356 0.70 10.096 0.23
AC capacitance15 … 12.46 0.04 10.26 0.2 … 10.876 0.08
FIR–IR GSE16 10.(9) 12.(7) 10.(8) 12.(6) 11.(2)
Theory35 10.84 … … 13.89 11.49

aThe resulting off-diagonal tensor component associated with a and c? is �0.54.
bThe resulting off-diagonal tensor component associated with a and c? is �0.56.
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