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Abstract
The spatial variability of groundwater levels is often inferred from sparsely 
located hydraulic head observations in wells. The spatial correlation struc-
ture derived from sparse observations is associated with uncertainties that 
spread to estimates at unsampled locations. In areas where surface water 
represents the nearby groundwater level, remote sensing techniques can es-
timate and increase the number of hydraulic head measurements. This re-
search uses light detection and ranging (LIDAR) to estimate lake surface wa-
ter level to characterize the groundwater level in the Nebraska Sand Hills 
(NSH), an area with few observation wells. The LIDAR derived lake ground-
water level accuracy was within 40 cm mean square error (MSE) of the 
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nearest observation wells. The lake groundwater level estimates were used 
to predict the groundwater level at unsampled locations using universal krig-
ing (UK) and kriging with an external drift (KED). The results indicate unbi-
ased estimates of groundwater level in the NSH. UK showed the influence of 
regional trends in groundwater level while KED revealed the local variation 
present in the groundwater level. A 10-fold cross-validation demonstrated 
KED with better mean squared error (ME) [–0.003, 0.007], root mean square 
error (RMSE) [2.39, 4.46], residual prediction deviation (RPD) [1.32, 0.71] 
and mean squared deviation ratio (MSDR) [1.01, 1.49] than UK. The research 
highlights that the lake groundwater level provides an accurate and cost-ef-
fective approach to measure and monitor the subtle changes in groundwater 
level in the NSH. This methodology can be applied to other locations where 
surface water bodies represent the water level of the unconfined aquifer and 
the results can aid in groundwater management and modeling. 

Keywords: Groundwater level, Lake groundwater level, Light detection 
and ranging (LIDAR), Universal kriging (UK), Kriging with an external drift 
(KED), Remote sensing, Lake surface area 

1. Introduction 

An accurate representation of groundwater level in aquifers is impor-
tant to many problems in hydrologic and numerical model analysis 
and designs. A large number of observation wells help to characterize 
and analyze the change and vulnerability of aquifers to natural or an-
thropogenic factors such as climate change and global warming (Des-
barats et al., 2002; Döll et al., 2012; Meixner et al., 2016; Scanlon et 
al., 2006; Taylor et al., 2013). Groundwater level in aquifers, however, 
due to large installation and maintenance costs, are often sparsely 
measured and monitored (Singh et al., 2010; Strassberg et al., 2009). 
Gaps at unsampled locations are often filled using geostatistics with 
the available measurements, thus leading to uncertainty in the water 
level prediction. The associated uncertainty can be reduced using an 
alternate approach such as satellite altimetry to measure and monitor 
the groundwater level. Satellite altimetry provides remote estimates 
of water level at the interface of groundwater and surface interaction 
and provides an increased number of hydraulic heads that can suffi-
ciently characterize the spatial correlation structure and predict the 
groundwater level with adequate accuracy. 
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Satellite altimetry measures the range (distance from the satel-
lite to surface), by computing the travel time of the reflected and re-
ceived pulse from the satellite antenna. With the use of reference el-
lipsoid, the relative height of the surface is thus determined (Nielsen 
et al., 2017). Many studies have used satellite altimetry to estimate 
water surface elevation (Asadzadeh Jarihani et al., 2013). Satellite la-
ser altimeters such as Ice, Cloud, and land Elevation Satellite-2 (IC-
ESat-2) provides sufficient accuracy (<10 cm) to characterize large 
water bodies but fails to provide good accuracy of smaller and shal-
low water due to a larger footprint size and use of green (532 nm) la-
ser frequency that penetrates shallow water (Li et al., 2017; Ryan et 
al., 2020; Yuan et al., 2020; Zhang et al., 2019). Similarly, synthetic 
aperture radar (SAR) altimeters, such as CryoSat-2 with footprints of 
300 m, provide measurements within 15 cm accuracy for larger lakes 
or water bodies (Nielsen et al., 2017; Roohi et al., 2021). Airborne al-
timeters, such as light detection and ranging (LIDAR), estimates lake 
surface elevation for small as well as large water bodies with accu-
racy ranging from 3–50 cm (Höfle et al., 2009; Hofton et al., 2000; 
Hopkinson et al., 2011; Paul et al., 2020; Zhang et al., 2020). While 
airborne LIDAR provides high accuracy for smaller lakes, the widely 
available topographic LIDAR data suffers from low backscatter and 
laser dropouts as the near-infrared wavelengths are highly absorbed 
by water (Fernandez-Diaz et al., 2014; Milan et al., 2010). The uncer-
tainty associated with low backscatter, however, can be reduced us-
ing approaches such as the waterline method. The waterline method 
uses the boundary between the water surface and landmass, derived 
from the remotely sensed image, and superimposes them on the ele-
vations relative to mean sea level (Bell et al., 2016; Kang et al., 2017; 
Qi et al., 2019; Yue and Liu, 2019). The water surface boundary from 
satellite images is generally delineated using methods such as single-
band thresholding, classification, multi-band, subpixel, and hybrid 
approaches (Bijeesh and Narasimhamurthy, 2020; Du et al., 2012). 
The accuracy is increased when the original bands are combined with 
transformed spectral bands such as image color space, principal com-
ponent analysis, tasseled cap transformation (TCT), and water indices 
(Balázs et al., 2018; Jiang et al., 2012; Ma et al., 2019; Verpoorter et 
al., 2012; Zhuang and Chen, 2018). Satellite altimetry, therefore, pro-
vides remote estimates of groundwater levels in areas where surface 
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and groundwater interact (Zhang et al., 2017). The increased measure-
ments thereby reduce the uncertainty and better characterizes the spa-
tial variation in the groundwater level using geostatistical methods. 

Geostatistics are often used to fill the gaps in areas where field ob-
servations are sparse. Geostatistics estimate and define the spatial 
correlation structure from sampled locations and make predictions 
at unsampled locations. Stochastic methods such as ordinary kriging, 
universal kriging (UK), kriging with an external drift (KED), and co-
kriging are extensively used to map the spatial and temporal variation 
of groundwater levels (Adhikary and Dash, 2017; Boezio et al., 2006; 
Varouchakis and Hristopulos, 2013). Ordinary kriging provides an op-
timal estimate of the groundwater level given the data follow a mul-
tivariate normal distribution with a theoretical variogram (Ahmadi 
and Sedghamiz, 2007; Goovaerts, 1997; Theodoridou et al., 2017; Va-
rouchakis et al., 2016; Varouchakis and Hristopulos, 2013). Groundwa-
ter levels with effects of regional trends are modeled using the UK as 
the linear drift improves the accuracy of the interpolated heads (Ad-
hikary and Dash, 2017; Ahmed, 2007; Kambhammettu et al., 2011). Al-
though UK provides better estimates of groundwater level, when the 
observations are sparse and linearly associated with external vari-
ables, KED improves the estimation of hydraulic heads (Boezio et al., 
2006; Desbarats et al., 2002; Deutsch and Journel, 1992; Rivest et al., 
2008). As groundwater is the subdued replica of topography (Con-
don and Maxwell, 2015; Haitjema and Mitchell-Bruker, 2005) and is 
widely available, digital elevation models are often used to define the 
external drift (Desbarats et al., 2002; Goovaerts, 2000). For example, 
Desbarats et al. (2002) used KED with topography as drift and found 
that the use of topography provides robust estimates of the water ta-
ble elevation. While methods such as co-kriging incorporates more 
than one secondary variable in the covariance structure to explain the 
groundwater level variation, the difference is not always significant 
(Ahmadi and Sedghamiz, 2008) and requires inference of direct and 
cross covariance functions. Co-kriging is also cumbersome and time-
consuming when many secondary variables are used (Desbarats et al., 
2002). Methods other than geostatistics, such as multiple linear re-
gression and neural networks, are also used to predict the groundwa-
ter level. These methods, although provide higher accuracy, require a 
large number of ancillary data to capture the water level variation in 
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an aquifer. Regardless of the interpolation method, the accuracy de-
pends on the distribution, number, and quality of data from observa-
tion wells. The spatial correlation structure derived from a few ob-
servations is unable to characterize the spatial variability present in 
the aquifer, thus leading to higher uncertainties and coarser repre-
sentation of aquifer water level (Buchanan and Triantafilis, 2009; Li 
and Heap, 2008). 

This research combines airborne altimetry with geostatistics and 
provides a novel approach to estimate the groundwater level in ar-
eas of surface water groundwater interchange. The objective of this 
research was to map the spatial variability of the groundwater levels 
estimated from LIDAR-derived lake water level in the Nebraska Sand 
Hills (NSH). The specific objectives of this research were to i) esti-
mate the feasibility of LIDAR-derived groundwater level from lake 
water level ii) evaluate UK and KED to characterize the groundwater 
levels and iii) validate/ compare the interpolated groundwater lev-
els to numerical model predicted hydraulic heads and published wa-
ter table contours. 

2. Methods 

2.1. Study area 

The NSH has an area of 50,000 km2 and is the largest grass-stabi-
lized dune field in the western hemisphere with 450 km2 of shallow 
lakes and 4500 km2 of subirrigated meadows (Fig. 1) (Ahlbrandt and 
Fryberger, 1980; Smith, 1965; Gosselin et al., 2000; Sweeney and 
Loope, 2001). The areas of the lakes range from 0.004 to 12 km2 with 
most lake depths averaging less than one meter (Gosselin et al, 2000).  
Table 1 shows the proportion of lake sizes used in the study. The 
majority (76%) of the lakes are smaller than 0.2 km2. The lakes are 
denser in the western and northern parts of the NSH and sparse in the 
south (Fig. 1). The semiarid climate of NSH has temperatures ranging 
from –40 to 43.3 °C with an average annual temperature of 8.9 °C. The 
annual average precipitation ranges from 450 mm in the west to 690 
mm in the eastern part of NSH (National Climatic Data Center, 2020). 
Lake hydrology is dependent on precipitation and groundwater as 
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inputs and evaporation and seepage losses as outputs (Winter, 1986). 
High total dissolved solid concentrations and water levels lower than 
the regional potentiometric surface indicate that lakes are focused 
groundwater discharge areas (Gosselin et al., 2000; Ong, 2010; Win-
ter, 1986; Zlotnik et al., 2009). The evaporation from lakes exceeds 
the precipitation. For example, the Alkali Lake in the NSH from July to 
September of 2007–2009 averaged 5.1 mm day–1 of evaporation com-
pared to 1.3 mm day–1 of precipitation (Riveros- Iregui et al., 2017). 

NSH lies on the northern part of the High Plains aquifer system. 
The Ogallala Group is the dominant and major water bearing geo-
logic unit in the NSH and is formed of moderate to low-permeable 
sand, sandstone, and siltstones deposited during the mid-Tertiary age 
(Fig. 1). The aquifer dips gently eastward at 0.9–1.3 m per kilometer 
(Gutentag et al., 1984) and is part of the High Plains aquifer system, 
where saturated. In NSH, dunes of the Quaternary age overlie the un-
consolidated alluvial sand, gravel, silt, and clay that overlie the Ogal-
lala Group. The dunes, composed of very fine to medium sand, form 
an important part of aquifer by promoting aquifer recharge (Guten-
tag et al., 1984; Peterson et al., 2020). The Arikaree Formation and 
the White River Group, which lie beneath the Ogallala Group, are also 
part of the High Plains aquifer, though are finer-grained, and only con-
tain usable quantities of water locally at fractured or coarse-grained 
area. In the western NSH, the Arikaree Group is underlain by the Brule 
Formation. This unit is composed of very fine to fine-grained sand-
stone with a maximum thickness of about 300 m (McGuire, 2017). 
Due to the fine-grained nature of the Arikaree and Brule formations, 
they may or may not be hydraulically connected to overlying geologic 
units. The Cretaceous Pierre Shale forms the impermeable base of the 
High Plains Aquifer in the NSH. 

Table 1 Lake size distribution percentage in the study area. 

Lake size (km2)                                    Percentage 

0–0.2  76.8 
0.2–0.5  15.8 
0.5–2  6.74 
>2  0.717
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Although the NSH has the greatest volume of saturated sediment in 
the High Plains aquifer and least net groundwater declines (Haacker 
et al., 2016; McGuire, 2017; Peterson et al., 2016; Scanlon et al., 2012), 
the area is vulnerable to climate change, irrigation, and Redcedar (Ju-
niperus virginiana) encroachment (Adane et al., 2019; Burbach and 
Joeckel, 2006; Loope and Swinehart, 2000; Suttie et al., 2005; Zou 
et al., 2018). For example, irrigation wells increased from only a few 
hundred in 1940 to 7775 within a 10 km buffer of NSH in 2019 (Ne-
braska Department of Natural Resources, 2019). Research suggests 
that the change in supply and demand of precipitation and evapotrans-
piration can decrease recharge by 25–50% and lead to desertification 
(Adane et al., 2019; Peterson et al., 2020). With 23 continuous obser-
vation wells, and 61 seasonal and annual wells, the spatial variability 
present in the groundwater level is difficult to characterize. As such, 
the annual Nebraska Statewide Groundwater Level Monitoring Report 
only provides partial groundwater level change information for the 
NSH region (Young et al., 2019). Similarly, the most widely used wa-
ter table elevation maps of spring 1995 (hand-drawn) and 2012 (nat-
ural neighbor interpolation) from the NSH region are based on lim-
ited observations (Rossman et al., 2018) and uses method that do not 
account for the associated uncertainty. This study, therefore, provides 
an alternative approach to assess the spatial variability of groundwa-
ter level in the NSH using remote measurement of the water level in 
thousands of shallow endorheic lakes. 

2.2. Dataset 

The study uses Sentinel-2 satellite images to delineate the boundary 
between the lake and land surface area. Sentinel-2, a constellation of 
Sentinel-2a and Sentinel-2b satellites operated by the European Union 
Copernicus program, has a spatial resolution of 10, 20, and 60 m with 
13 spectral bands in the visible, near infrared, and shortwave infrared 
region. The revisit frequency of each single satellite is 10 days, and the 
combined constellation revisit is 5 days. The level 2A images, used in 
the study, are bottom-of-atmosphere reflectance values corrected for 
radiometric, geometric, and atmospheric effects. 

The LIDAR point cloud data was collected by United States Geologi-
cal Survey (USGS) in 2016 and 2017 (hatched lines in Fig. 1) in the NSH. 
The LIDAR data has an aggregate nominal pulse spacing of ≤ 0.71 m 
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and an aggregate nominal pulse density of ≥ 2 points per m2. The level 
2 (QL2) data used in the study has an absolute vertical accuracy of ≤ 
10 cm root mean square elevation (RMSEz) with NAVD88 and NAD83 
as a vertical and horizontal datum, respectively. We downloaded point 
cloud through the USGS FTP server and used FUSION tools (McGaughey, 
2009) to clip, filter, and merge within the buffered boundary of lakes. 
The time of LIDAR data, Sentinel-2 satellite images, and observation 
wells were matched such that the water levels are measured at a similar 
timeframe. The areas with missing point cloud (Fig. 1) data were filled 
from 1 m resolution digital elevation model derived from LIDAR data.   

The study also uses data from observation wells (Fig. 1). The ob-
servation well data were hosted in the database maintained by the 
Conservation and Survey Division, School of Natural Resources, Uni-
versity of Nebraska-Lincoln, and the Nebraska Department of Natural 
Resources. These data have been checked for quality and consistency 
(Young et al., 2019). The 23 observation wells have hourly measure-
ments of the depth to water from the land surface. The depth to wa-
ter from the land surface was then subtracted from the surveyed ele-
vation of the land surface to obtain the elevation of the water table or 
potentiometric surface. Fig. 2 shows the overall method used to de-
rive the lake groundwater variation in the NSH. 

Fig. 2. Methodological framework for predicting the groundwater level derived 
from lake groundwater level using LIDAR data. Green color shows the data that 
were matched for time.
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2.3. Lake area delineation 

The visible and near infrared bands of Sentinel-2 images, hosted in 
Google Earth Engine (Gorelick et al., 2017), were filtered for cloud 
cover less than 10% and were mosaicked using median values for 
May to June 2017 in correspondence with LIDAR data acquisition time. 
The mosaicked images were transformed using tasseled cap coeffi-
cients derived from Sentinel images (Shi and Xu, 2019). The bright-
ness, greenness, and wetness components were stacked with original 
bands and classified into water and non-water pixels using a random 
forest classifier in Google Earth Engine. The tasseled cap transforma-
tion reduces the influence of shadows and enhances water area de-
tection and delineation (Zhuang and Chen, 2018) whereas the orig-
inal bands provide the classifier with spectral variability present in 
water areas. Random forest classifier, an ensemble of decision trees, 
provides higher accuracy and is widely used in processing remotely 
sensed imagery, including water and wetland classification (Shrestha 
et al., 2021; Tian et al., 2016; Wang et al., 2018, 2020). The classifier 
was trained using samples collected through visual image interpreta-
tion of National Agriculture Imagery Program (NAIP) with 75% train-
ing (287) and 30% testing (109) set. The classified image was con-
verted into a shapefile and exported for further analysis. Lakes with 
an area less than 0.008 km2 were filtered and removed to reduce the 
effect of smaller misclassified pixels due to the ephemeral water ar-
eas that form near lakes and wetlands. The smaller lakes were also re-
moved to avoid the effect of clustering and overfitting the variogram 
(Goovaerts, 1997). Similarly, lakes with a higher perimeter to area ra-
tio were filtered to reduce the triangular and irregular-shaped poly-
gons. The lakes were then buffered by 1 m to reduce the effect of miss-
ing LIDAR point cloud from water due to low backscatter. 

2.4. Lake surface water level estimation and validation 

Lake surface water level was estimated by combining the lake bound-
ary and LIDAR point cloud using the waterline method. The wa-
terline method, mainly used to evaluate the water level changes 
in coastal areas and lakes (Bell et al., 2016; Kang et al., 2017; Qi et 
al., 2019; Yue and Liu, 2019; Zhang et al., 2020), superimposes the 
boundary between the water surface and landmass on the elevations 
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relative to mean sea level. The overall process involves the following: 
(i) delineate lake boundaries from Sentinel-2 images and create a 1 
m buffer; ii) superimpose the buffered lake boundary with the LI-
DAR point cloud to clip and filter the last returned LIDAR points; and 
(iii) calculate the minimum, maximum and mean value that repre-
sents the lake water level or lake groundwater level. Given the gen-
tle dune topography, the boundary between the lake and land surface 
is assumed to transition smoothly, therefore, a difference greater 
or equal to 5 m between the minimum and maximum LIDAR point 
cloud within the buffer was filtered as outliers. The outliers were 
considered errors associated with an inaccurate representation of 
the boundary derived from Sentinel-2 images. A total of 2300 lakes 
were retained and converted to points for geostatistical analysis.  
Fig. 3 shows the lakes (thinned for visualization) clusters at the 
western and northern part of the NSH while fewer or no lakes are 
present in the southern part. The points that represent reservoirs or 
man-made impoundments were manually removed. 

Fig. 3. Determining the lakes and observation wells for comparison using flow di-
rection, separation distance and ambient gradient correction.  
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The lake groundwater level derived from LIDAR data were validated 
against the water level from the observation wells. The lakes and ob-
servation wells were selected (Fig. 3) based on the following criteria: 
i) water level measurements from the observation wells were matched 
up with the time the LIDAR point cloud was collected; ii) since the lake 
water level represents the unconfined aquifer, any wells that pene-
trated the confined aquifer, based on the well drilling profile, were fil-
tered; and iii) lakes nearest and along the regional groundwater flow 
direction were retained. The selected lakes were corrected for ambient 
hydraulic gradient and then compared with water levels in the obser-
vation wells. In general, the LIDAR data were acquired between May 
and June of 2017 and therefore represents the spring season or pre-
stress groundwater level. Of the 23 observation wells, only eight were 
used and compared to the nearest lake level elevation. The other 15 
observation wells were not used for the following reasons: four wells 
penetrated the confined aquifer and thus the water didn’t interact di-
rectly with the lakes; three wells were farther than 20 km from any 
lake; four wells were missing LIDAR data, and four wells data were 
missing at the time of LIDAR data collection.  

2.5. Geostatistical estimation and prediction 

Geostatistic-based methods were used to estimate and predict the lake 
groundwater level in the NSH. Geostatistics uses the sampled attribute 
Z at location si to estimate the Z at unsampled location s0. The observa-
tion is decomposed into the mean and the stochastic component (ran-
dom variable) as in Eq. (1). The mean or the trend component μ(s) is 
estimated either using the polynomial functions (UK) or auxiliary in-
formation such as elevation (KED) (Desbarats et al., 2002; Goovaerts, 
1997). The spatial dependence between the observations is estimated 
from residuals (stochastic component) using semivariogram and pre-
dicted for the unsampled locations. Additional detail on UK and KED 
equations are provided in Desbarats et al. (2002); Deutsch and Jour-
nel (1992), and Goovaerts (1997). 

Z(s) = μ(s)+Z(s)                                          (1) 

We used UK and KED to estimate and predict the lake groundwater 
level variation in the NSH. The lake groundwater level was checked 
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for normality using histogram plots, skewness, and kurtosis coeffi-
cients. The test showed that the raw data are skewed towards the left 
(Fig. 4a) with a skewness coefficient of –0.89 and a kurtosis of 2.55. 
A skewness value closer to zero and kurtosis closer to 3 indicates a 
normal distribution. 

2.6. Universal kriging 

UK is used when the data shows the presence of regionalized variables. 
A semivariogram analysis of raw data (not shown here) shows the 
presence of a regional trend, therefore, first and second order poly-
nomials were used to estimate the trend from the lake groundwater 
level. A first and second order polynomial fit explained 96 and 98% of 
the variance present in the lake groundwater level, respectively. Sim-
ilarly, the histogram plot (Fig. 4b, c) and skewness coefficient of 0.02 
and –0.51 and kurtosis coefficient of 1.93 and 2.77 for the residuals of 
first and second-order polynomials, respectively, indicate a distribu-
tion closer to normal. Therefore, we used a second order polynomial 
fit to remove the trend and estimate the residuals for further analysis.  

The initial values of nugget, range, and sill were determined from 
the visual analysis of a semivariogram plot. Theoretical semivariogram 
models such as spherical, Gaussian, exponential, and Bessel (Cressie 
and Wikle, 2015; Deutsch and Journel, 1992; Gringarten and Deutsch, 
2001) were fitted to the empirical lake groundwater level data  

Fig. 4. Distribution of lake groundwater level for a) raw data, b) residuals of first 
order polynomial c) second order polynomial.  
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(Fig. 5a). The model with the lowest residual sum of squares (RSS) 
were used for modelling the spatial correlation structure. Anisotropy 
present were checked using directional variograms at four main direc-
tions (0, 45, 90, and 135) with an angle of tolerance of ± 22.5 (Goo-
vaerts, 1997). Fig. 5b shows the presence of anisotropy that were 
corrected using the angle and scaling factor. The prediction was per-
formed in 90 m resolution grid. 

2.7. Kriging with an external drift 

The drift present in the lake groundwater level was estimated using 
the bare earth digital elevation model of 90 m resolution. Regression 
analysis between lake groundwater level and topography was used to 
determine the association of dependent and independent variables. 
The results show that the lake water level was highly linear with the 
elevation (R2 > 0.95). As with the UK, the theoretical models with the 
least RSS were used to determine the spatial correlation structure 
(Fig. 6a). The semivariogram of residuals after trend removal does 
not show the presence of trend and anisotropy (Fig. 6b). The opti-
mal resolution for KED prediction was determined by predicting and 
evaluating the surface at 90, 200, 500, 700, and 1000 m grids. The 

Fig. 5. Semivariance and directional semivariance for universal kriging.
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higher resolution grids (<90 m) were overwhelmed with the local 
topographic variation and resulted in noisy lake groundwater level. A 
coarser-resolution topography (>500 m) averaged the local ground-
water level variation. Therefore, a 200 m grid was selected as opti-
mal resolution for KED. 

We used the gstat package (Pebesma and Graeler, 2013) to imple-
ment the UK and KED approach to map the groundwater level varia-
tion in the NSH. 

2.8. Validation 

The K-fold cross-validation measure was used to determine the accu-
racy of the predicted surface. The method divides the data into mul-
tiple sets, one subset is used to test while the other is used to predict. 
Based on the results of the cross-validation, the following evalua-
tion statistics were used to compare the accuracy of the interpola-
tion. Mean square error (MSE) is sensitive to outliers as it measures 
the magnitude of the error. Root mean square error (RMSE) provides 
a standard deviation of the residuals. The mean squared deviation ra-
tio (MSDR) is the mean of the ratio of the squared prediction errors to 
the variance. A MSDR close to one indicates a good model. Modified 

Fig. 6. Semivariogram and directional semivariogram using kriging with an exter-
nal drift.   
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index of agreement (MD) is the ratio between the mean square error 
and the potential error. MD is like root mean square error with a value 
between 0 and 1. Residual prediction deviation (RPD) is the standard 
deviation of the observation divided by the root mean square error of 
prediction. A higher RPD value shows good prediction. Residual sum 
of squares (RSS) is used to evaluate the degree of fitting between the 
empirical and theoretical variogram models. 

MSE = 1  ∑n
i=1 [ẑ(si) – z(si)]2

                                                (2) 
                           

n

RSS = ∑n
i=1 [ẑ(si) – z(si)]2

                                                                                       (3) 

RMSE =     1 ∑n
i=1 [ẑ(si) – z(si)]2                                          (4) 

                             
√ n

MSDR = 1  ∑n
i=1 

[ẑ(si) – z(si)]2
                                             (5) 

                              n             σ̂2(si)

MD = 1 –
               ∑n

i=1 |z(si) – ẑ(si)|2                                 (6)

                                 ∑n
i=1 (|ẑ(si) – z(si)||z(si) – z(si)|)                     

                               1 ∑n
i=1 [z(si) – z(si)]2  

RPD =  
√

 
n
                                                                           (7)

                           √  ∑n
i=1 |z(si) – ẑ(si)|       

The lake groundwater level derived from UK was validated against 
the contour from a comprehensive regional groundwater flow model. 
Rossman et al. (2018) developed a two-dimensional numerical ground-
water flow model to simulate the hydraulic head distribution in the 
groundwater-fed lakes system for the entire NHS. They represented 
the High Plains aquifer as a single layer with spatially varying hydrau-
lic conductivities with a satellite-derived distributed recharge applied 
from the top surface. A finite-difference numerical groundwater mod-
eling code, MODFLOW, was used to solve the governing groundwater 
flow equations under steady-state conditions using a 1 km uniform 
horizontal grid discretization. Recharge and hydraulic conductivities 
were calibrated using a non-linear automated calibration code, PEST 
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(Parameter ESTimation). A strong correlation coefficient of 0.99 was 
attained between simulated and observed heads after the PEST cali-
bration. Even though the hydrostratigraphy was represented as a sin-
gle layer, the numerical modeling approach captured the groundwa-
ter heads in the High Plains aquifer in the NHS. Details on the model 
can be found in Rossman et al. (2018).    

The result of KED was compared against the groundwater level 
contour of spring 2012 derived by the Conservation and Survey Di-
vision of the School of Natural Resources, University of Nebraska-
Lincoln. The contours were generated using the natural neighbor 
interpolation method (Gilmore et al., 2019) that preserves the local 
variation of the groundwater level and were comparable with the 
results of KED. 

The accuracy of extracted lake area was validated using the over-
all accuracy and Kappa statistics (Stehman, 1997). The samples were 
generated randomly and labeled using visual image interpretation 
of NAIP. 

3. Results 

3.1. Accuracy of lake area and lake groundwater level 

Lake area accuracy assessment shows an overall accuracy of 95%. A 
Kappa statistic of 0.94 shows that the lake’s boundary is delineated 
better than chance. The water level in the observation wells, at the 
time of LIDAR data acquisition, were compared with the minimum, 
maximum, and mean lake groundwater level. The results (Table 2) 
show that the lowest mean square error (MSE) was the maximum lake 
groundwater level and is twice as accurate as the mean and the min-
imum value. The lakes on the southern (Well ID 37) and easternmost 
part (Well ID 11, 12, and 51) (Fig. 1) of the NSH had the largest error. 
It is hypothesized that this is due to the pumping from irrigation wells 
and groundwater flow direction (Shrestha et al., 2021) (Fig. 3). The 
low MSE highlights that the lake water level provides sufficient ac-
curacy to characterize the groundwater levels in the NSH and the LI-
DAR data can be used to characterize the short-term as well as long-
term water level variation. 
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3.2. Spatial dependence of lake groundwater level 

The semivariogram analysis reveals that the Gaussian model pro-
vides the best fit for UK (Table 3) with RSS of 0.27 while the Bessel, 
spherical and exponential models have RSS of 0.95, 5.03, and 6.19, 
respectively. Similarly, the exponential model has the lowest RSS of 
0.00000609 followed by Bessel, spherical and Gaussian for KED (Ta-
ble 3). Sill variance is consistent with all the theoretical semivario-
gram models for KED while it varies for UK. KED shows a smaller 
range such that the semivariogram flattens at shorter distances than 
the UK. A nugget-to-sill ratio of 0.013 for UK shows higher spatial de-
pendence while 0.83 for KED showed a weak spatial dependence. A 
variable has strong dependence when the nugget-to-sill ratio is less 
than 0.25, moderate dependence with values between 0.25 and 0.75, 
and weak dependence with values >0.75 (Liu et al., 2006). 

Table 2 Comparison of LIDAR estimated groundwater levels and water levels in observation wells at the cor-
responding time (m.a.s.l. = meters above sea level). 

Well   Water                                                                           Correction           
ID Level    LIDAR water level (m)  Gradient  Distance factor   Corrected water level (m)                Difference (m) 

 
(m.a.s.l.)

 min.  max.  mean       i    L  i*L  min.  max.  mean  min.  max.  mean 

8 1069.66 1067.35 1068.04 1067.44 0.0011 1490 1.60 1068.95 1069.64 1069.04 0.71 0.01 0.62 
27 1184.97 1183.22 1184.22 1183.32 0.0006 958 0.58 1183.80 1184.80 1183.90 1.18 0.17 1.08 
37 1012.52 1012.55 1013.67 1012.80 0.0035 560 1.96 1010.59 1011.71 1010.84 1.94 0.81 1.68 
22 1186.02 1184.17 1184.34 1184.25 0.0003 3462 1.19 1185.36 1185.53 1185.43 0.66 0.49 0.59 
51 737.15 737.16 737.34 737.22 0.0019 337 0.65 737.81 737.99 737.87 –0.66 –0.84 –0.72 
47 711.15 703.05 703.83 703.41 0.0024 2797 6.81 709.86 710.63 710.21 1.30 0.52 0.94 
11 578.16 578.67 578.76 578.74 0.0021 160 0.34 579.01 579.10 579.08 –0.85 –0.94 –0.92 
12 618.43 611.96 612.05 612.01 0.0027 2118 5.72 617.67 617.77 617.72 0.76 0.66 0.71 
MSE 1.18 0.4 0.93

      

Table 3 Comparison of theoretical variogram model parameters between universal 
kriging and kriging with an external drift using residual sum of squares. 

Theoretical     Variogram parameters 
 models                 Nugget                            Sill                           Range                        RSS 

 UK  KED  UK  KED  UK  KED  UK  KED 

Gaussian  10.35  5.45  818.13  6.18  43,143  15,656  0.27  1.35e–5 
Bessel  0  5.38  1081.51  7.16  38,554  11,307  0.95  7.49e–6 
Spherical  0  5.37  960.96  6.25  132,775  41,809  5.03  1.08e–5 
Exponential  0  5.24  3390.28  6.31  315,374  17,403  6.19  6.09e–6  
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3.3. Groundwater level prediction 

The predicted map illustrates the spatial variability present in the 
groundwater level. The western part contains higher groundwater el-
evation while the eastern part of NSH contains the lowest elevation 
(Fig. 7). The UK approach that uses second order polynomial as trend 
surface provides smoother water level variation (Fig. 7a) that resem-
bles the regional water flow regime. Predicted KED surface (Fig. 7b), 
however, reveals the local variation in the groundwater level. The 
streams, along with areas with little or no observations, are better 
represented by KED as compared to UK. The advantage of UK is that 
no external variables are necessary to remove the trend and it is easy 
to implement. KED, however, requires external variables to be linearly 
correlated with the groundwater level and must be present at the sam-
pled and unsampled locations.  

Fig. 7. Predicted lake water level using a) universal kriging b) kriging with an ex-
ternal drift.  
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A 10-fold cross-validation result shows that both UK and KED 
are unbiased with a mean error estimate closer to zero. UK shows 
a slightly higher RMSE of 4.46 m compared to 2.39 m of KED. KED 
confirms better prediction with better MSDR, RPD, and MD than UK  
(Table 4). The Taylor diagram (Fig. 8) also highlights that KED pro-
vides a better approximation of groundwater level than the UK. The 
standard deviation map (Fig. 9) shows the error distribution of the 
kriging interpolation at NSH. The southern and eastern part of NSH 
shows higher error both in UK (Fig. 9a) and in KED (Fig. 9b) where 
there are fewer lakes. KED, however, shows lower standard deviation 
as the digital elevation model effectively removed the regional trend 
present in the data as compared to second-order polynomials fitting 
of UK.   

Table 4 Performance measures comparison between the universal kriging and krig-
ing with an external drift. 

Method                    Performance measures 

 MSE (m2)  RMSE (m)  MSDR  RPD  MD 

UK  0.007  4.46  1.49  0.71  1 
KED  –0.003  2.39  1.01  1.32  1  

Fig. 8. Taylor diagram showing the universal kriging and kriging with an exter-
nal drift.
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Comparison between the contour lines generated using UK and the 
numerical model shows a high degree of correspondence. Fig. 10a  
shows that the hydraulic head contours match with lake groundwa-
ter level contours especially in the western part of the NSH where 
the lake density is higher. In the parts where the head distributions 
are dominated by river-aquifer interactions, contours were less likely 
to match as the river aquifer interaction in the numerical model was 
represented by a head-dependent flux boundary, which resulted in a 
better estimation of the head near the stream network. The differ-
ence could be attributed to the limitation of kriging that the ground-
water flow is not necessarily conserved and fails to reproduce fea-
tures such as boundary conditions (Rivest et al., 2008; Tonkin and 
Larson, 2002). 

Fig. 9. Standard deviation error distributing for a) universal kriging b) kriging with 
an external drift.  
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Fig. 10. Contour comparison a) universal kriging and regional numerical groundwa-
ter flow model b) kriging with an external drift and natural neighbor contour 2012.
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KED-generated contours and 2012 water table contours do not 
agree in many areas (Fig. 10b). The KED, with a large number of lake 
groundwater level observations (>2300), provides a better character-
ization of groundwater level and captures the trend and general pat-
tern seen in the water table contours from 2012. KED also captured 
the variation along streams not well captured in UK. The dissimilarity 
in water table contours may be due to the difference in methods and 
the number of hydraulic head measurements used for interpolation. 
The contours of 2012 were generated using the natural neighbor in-
terpolation technique for the spring season (Gilmore et al., 2019) with 
fewer observation wells and some information from smaller scale con-
tour maps (A. Young, personal communication, 2020). 

4. Discussion 

The results of this study show that the lake groundwater level de-
rived using topographic LIDAR provides an accurate representation of 
groundwater levels in the NSH. With lake water levels lower than the 
regional potentiometric surface and evaporation significantly higher 
than precipitation, the lakes, in general, are areas of focused ground-
water discharge (Gosselin et al., 2000; Winter, 1986; Zlotnik et al., 
2009). Although the lake groundwater level follows the surface ter-
rain at the regional scale, significant differences are observed near 
lakes at local scales (Winter, 1999) as seen on the predicted surface 
from UK and KED. Locally, lake position, in relation to the regional 
groundwater flow regime and the gradient between the regional and 
local head, determines whether a lake gains or loses water from the 
groundwater system (Born et al., 1979; Zlotnik et al., 2009). For ex-
ample, when lakes are closely spaced and are on a hummocky topog-
raphy, transient groundwater mounds forms. The presence of ground-
water mounds induces groundwater flow towards the lake while the 
absence of mounds induces the water to flow away from the lake lead-
ing to a change in lake water levels (Gosselin and Khisty, 2001; Win-
ter, 1999). Seasonal changes in groundwater configuration also alters 
the location, magnitude, and direction of groundwater flow into or out 
of the lake (Winter, 1986). At a regional scale, however, the water ta-
ble elevations in the NSH show minor spatiotemporal trends (<±2m) 
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since predevelopment (1953) and between 2001 and 2015 (Korus et 
al., 2010; McGuire, 2017). The accuracy of lake groundwater level de-
rived from topographic LIDAR was based on eight observation wells. 
A larger number of observation wells distributed across the study 
area would provide a better estimate of the groundwater level. In this 
study, however, only eight observation wells satisfied the conditions 
defined in section 2.4. Besides the number and distribution of the ob-
servation wells, the estimated lake water level depends on the: i) accu-
racy of the boundary between the lake and adjacent landmass derived 
from satellite images, ii) strength of backscatter from topographic LI-
DAR from water areas, and iii) response of water level due to hydrau-
lic stresses caused by drought or irrigation demand from neighboring 
irrigation wells. The accuracy assessment shows that the Sentinel-2 
images with spatial resolution of 10 m provides proper representation 
of the lake area for the study. However, higher resolution satellite or 
aerial images such as National Agriculture Imagery Program would 
reduce the uncertainty associated along the boundary between lake 
and landmass. Similarly, the waterline method reduces uncertainty 
associated with the low backscatter and laser dropout of topographic 
LIDAR at deeper water. The response of a local groundwater system 
to stress is dependent on the depth to water, thickness and geologic 
composition of the unsaturated zone and the hydraulic characteris-
tics of the aquifer (Burbach and Joeckel, 2006). For example, the lake 
responses suggest the unconfined aquifer in the NSH has shorter re-
sponse times (5–10 years) (Rossman et al., 2014; Shrestha et al., 2021) 
compared to confined aquifer (hundreds of years).  

The semivariogram analysis of raw lake groundwater level reveals 
the presence of a regional trend. The regional trend present in the 
groundwater level overwhelms the local variation (Kitanidis, 1997) 
and therefore has to be removed before using kriging (Goovaerts, 
1997). Although the second order polynomial fitting in UK removes 
the trend, it still shows the presence of anisotropy in the direction of 
groundwater flow. The use of topography in KED effectively removes 
the trend and anisotropy (Fig. 6b) and captures the local variation 
present in the groundwater level. Therefore, the use of topography 
as an explanatory variable provides a simple and powerful method 
to capture the local variation present in an area. However, in areas 
with sparse observation data, secondary topographic features can 
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cause undesirable variation in the interpolated water level when the 
drift captures the random and short-scale fluctuations rather than the 
larger-scale variations (Desbarats et al., 2002; Rivest et al., 2008). The 
presence of sand dunes in the digital elevation model created an un-
realistic representation of groundwater levels. Therefore, several rep-
resentations of topography (Desbarats et al., 2002) at 90, 200, 500, 
700, and 1000 m, were used to determine the appropriate relation-
ship between the water table elevation and topography. Wolock and 
Price (1994) found that the coarser topographic representations more 
accurately represent the water table configuration that are smoother 
than the land surface topography. UK captured the regional pattern 
of groundwater level variation (Fig. 7a) similar to the results of the 
regional scale steady-state groundwater flow model. The comparison 
between the contours generated using UK and the numerical model 
shows good correspondence in areas with a large number of lake 
groundwater level observations. Although the KED and 2012 contour 
maps do not match perfectly, they depict the magnitude and patterns 
of the groundwater level variation. The difference in contours may be 
due to the use of different interpolation method, number of hydrau-
lic head measurement, and change in water level between 2012 and 
2017. For example, the groundwater level increased by 0.6 – 3 m from 
spring 2013 to spring 2018 in the NSH (Young et al., 2019).  

Since the method has been validated with observation wells, future 
work can use Sentinel-2 images to create monthly or bi-monthly wa-
ter table maps. This can be used to update managers with the status 
of the water depth and calibrate a transient groundwater model across 
the NSH. To apply this method, the lake level would have to be equal 
to or greater than the water level measured by LIDAR. Alternatively, 
bathymetry survey could be integrated with LIDAR to create lakebed 
map and use it for estimating the lake groundwater level at regular 
intervals. The method is applicable in semi-arid and arid regions of 
North America, Africa (Carter, 1995), Asia (Chen et al., 2004; Ma and 
Edmunds, 2006), Europe (Heine et al., 2015; Sacks et al., 1992), and 
Australia (Turner and Townley, 2006; Tweed et al., 2009) that hosts 
closed lakes with dominant groundwater hydrology. The method may 
work with lakes in glaciated terrain composed of unconsolidated and 
permeable materials and connection to local and intermediate ground-
water flow system (e.g., (Holzbecher, 2001; Hunt et al., 2013; Lischeid 
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et al., 2010; Merz and Pekdeger, 2011; Speldrich et al., 2021)). The 
method can be tested in several geomorphological settings with lake 
(closed) hydrology primarily dominated by groundwater influx. 

5. Conclusion 

The study shows that the LIDAR data accurately represents the 
groundwater level in the Nebraska Sand Hills (NSH). The integration 
of optical and LIDAR sensor compensates each other and significantly 
increases the hydraulic head observations to characterize the spatial 
correlation structure present in the groundwater of NSH. The study 
finds that kriging with an external drift (KED) provides better esti-
mates of the groundwater level than universal kriging (UK) at unsam-
pled locations. The use of topography as an explanatory variable cap-
tures the local variation present in the groundwater level. A higher 
correspondence of the predicted surface with a numerical model de-
rived hydraulic head highlights the LIDAR derived lake groundwa-
ter level can calibrate or define the boundary conditions in numerical 
models. The method can be applied to other areas where the surface 
water represents the groundwater level. 

With the possibility of LIDAR instruments to mount on a platform 
near lakes or use current LIDAR data, the study also provides a frame-
work to monitor the groundwater level in the NSH at high spatial and 
temporal resolution. Similarly, the study also provides the prospect 
to combine the high spatial resolution digital elevation model and ba-
thymetry survey and thereby use lakes as observation wells for fu-
ture research. 
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