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End-Effector Contact and Force Detection for Miniature
Autonomous Robots Performing Lunar and Expeditionary Surgery

Eric Psota, PhD*,†; Jay Carlson, PhD Scholar†; Priscila Rodrigues Armijo, M.D.*,‡; Laura Flores, BA*;
Ka-Chun Siu, PhD*,§; Dmitry Oleynikov, MD∥; Shane Farritor, PhD∥,¶; Nathan Bills, PhD, MBA*,‡

ABSTRACT
Introduction:
The U.S. Space Force was stood up on December 20, 2019 as an independent branch under the Air Force consisting of
about 16,000 active duty and civilian personnel focused singularly on space. In addition to the Space Force, the plans
by NASA and private industry for exploration-class long-duration missions to the moon, near-earth asteroids, and Mars
makes semi-independent medical capability in space a priority. Current practice for space-based medicine is limited and
relies on a “life-raft” scenario for emergencies. Discussions by working groups on military space-based medicine include
placing a Role III equivalent facility in a lunar surface station. Surgical capability is a key requirement for that facility.

Materials and Methods:
To prepare for the eventuality of surgery in space, it is necessary to develop low-mass, low power, mini-surgical robots,
which could serve as a celestial replacement for existing terrestrial robots. The current study focused on developing
semi-autonomous capability in surgical robotics, specifically related to task automation. Two categories for end-effector
tissue interaction were developed: Visual feedback from the robot to detect tissue contact, and motor current waveform
measurements to detect contact force.

Results:
Using a pixel-to-pixel deep neural network to train, we were able to achieve an accuracy of nearly 90% for contact/no-
contact detection. Large torques were predicted well by a trained long short-term memory recursive network, but the
technique did not predict small torques well.

Conclusion:
Surgical capability on long-duration missions will require human/machine teaming with semi-autonomous surgical
robots. Our existing small, lightweight, low-power miniature robots perform multiple essential tasks in one design
including hemostasis, fluid management, suturing for traumatic wounds, and are fully insertable for internal surgical
procedures. To prepare for the inevitable eventuality of an emergency surgery in space, it is essential that automated
surgical robot capabilities be developed.
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INTRODUCTION
Human exploration throughout our solar system has long been
a priority for NASA and has recently gained attention in
private industry. Research and development priorities have
expanded to include long-durationmissions to themoon, near-
earth asteroids, and Mars. These momentous pursuits have
also been joined with the new Space Force. The Space Force,
the first newmilitary service inmore than 70 years, is intended
to serve as the lead military service for space operations and
consists of ∼16,000 personnel.1 As we aspire to the goal
of long-term space missions, it is imperative for NASA, the
Space Force, and private industry to address sustainedmedical
capacity for long-term space missions.

Surgery performed at a distance, telesurgery or telepres-
ence surgery, has been a topic of research for over 25 years.2,3

This early research investigated robotics for telesurgery for
forward military applications. The idea was that a robot could
be deployed in a high-risk environment, such as a battlefield,
and surgery could be performed by a surgeon in a remote and
safe location. This work led to the development of the da Vinci
Surgical System that has now become the standard of care for
several procedures [e.g., 3].4
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Other research has investigated different types of robot
system that are smaller and more easily deployed to remote
environments and can also be assistants in surgical systems.5,6

The most extensive research was a DARPA project called
Trauma Pod that sought to make a fully autonomous system
for surgery in remote environments.7 Trauma Pod attempted
to automate some aspects of surgery so that less trained per-
sonnel, such as an astronaut, could be more capable in the for-
ward environment. Other research focused on the automation
of specific surgical tasks such as suturing.8

Specific to surgery in space, some work has investigated
using “aqueous immersion” as a means of controlling bleed-
ing during surgery in micro-gravity.9 Using a fluid to apply
pressure to the surgical environment could prevent blood
from becoming free in the operating room. This work fur-
ther progressed into the creation of a chamber for this type
of surgery.10

Current practice for space-based medicine is limited.
Although our understanding of the consequences of long-term
space exploration is growing, the strategies for responding
to medical emergencies in space are still incomplete.11 Cur-
rently, the response to medical emergencies on the space
station relies on a “life-raft” scenario, where an injured astro-
naut would be returned to earth as quickly as possible on
available craft.12 Although areas including diagnostic eval-
uation, hemorrhage control, and the effects of microgravity
have been explored; more research and development is needed
particularly in terms of urgent extra-terrestrial surgical treat-
ment and medical care systems.13,14 To address this gap,
current discussions for space-based medicine include plac-
ing a Role III equivalent medical facility on a lunar surface
station. Role III equivalent facilities must have the capabil-
ity for general and subspecialty surgical procedures, and we
believe a key requirement for in-flight expeditionary medical
care would be a surgical robotic system.14 It has been estab-
lished that minimally invasive surgical procedures, such as
laparoscopy and thoracoscopy, are possible in a microgravity
environment.15 Other groups have also demonstrated the fea-
sibility of advanced trauma life support procedures performed
during parabolic flights.16 Additionally, diagnostic capabili-
ties, even if limited to ultrasonography, currently exist, with
the cumulative knowledge of the physiologic variations in
this environment.14,15 However, this still does not address the
challenges of communication delay between crew and Earth,
nor the need for trained personnel to perform these complex
procedures on-site.14,17

Telesurgery has long been contemplated as a technical
solution to solve the issue of a lack of proximate skilled
surgical expertise. Indeed, the original vision for develop-
ment of telesurgical robots by DARPA (leading eventually
to the daVinci robot) was for remote surgeons to operate in
the battlefield with a mobile surgical unit linked via two-
way microwave communication.18 The first transcontinental
surgery (a cholecystectomy) was performed in 2001.19 Steady
improvements in bandwidth and reliability have sped the

subsequent adoption of telesurgery. Anvari et al. (2005) doc-
umented a fully implemented remote telesurgical network to
serve rural patients in Canada.20 Recently, a Chinese group
performed a series of successful demonstration “ultra-remote”
(over 3,000 km distant) telesurgeries in pigs using a 5G
network.21

NASA has long used telemedicine to monitor and treat
astronauts and has been a major contributor to the develop-
ment of terrestrial telemedicine. The COVID 19 pandemic
has only highlighted and accelerated this transition. As a suc-
cessor to the Integrated Medical and Behavioral Laboratories
and Measurement Systems program, the Space Technology
Applied to Rural Papago Advanced Health Care and NASA
integrated astronaut care with rural health care.22 Subse-
quently NASA was able to use telehealth to assist in two nat-
ural disasters, the earthquakes in Mexico City and Armenia.23

Recently, the wisdom of the deployment of diagnostic
(and therapeutic) ultrasound to the International Space Sta-
tion was proven when a deep-vein thrombosis was diagnosed
and mitigated using an anticoagulant regiment.24 However,
even though remote cooperative telesurgery is feasible ter-
restrially, transmission delays beyond ∼500 milliseconds
make it unworkable beyond near earth orbit.25 An alterna-
tive to the eventuality of an emergency surgery in space is
to advance proper surgical robotics with specific qualities fit
for long-term space exploration. Thus, we have been working
on the development of low-mass, mini-surgical robots with
surgical capability for long-duration missions.17 Our exist-
ing small, lightweight, low-power miniature robots perform
multiple essential tasks in one design including hemostasis,
fluid management, suturing for traumatic wounds, and are
fully insertable for internal surgical procedures. Capabili-
ties of flight surgeons are necessarily limited, therefore for
long-duration occupation of space, some level of autonomous
medical capability will ultimately be key. Libraries of sur-
gical procedures, residing on virtual reality (VR), or mixed
reality training platforms will require human/machine inter-
active teaming with semi-autonomous surgical robots. A VR
surgical trainer would grant spaceflight crew the capability
for continued practice using a library of simulated subtasks
and complete surgical procedures that would enable schedul-
ing of skill acquisition and retention during long-duration
missions and would provide a virtual assistant for emergent
surgeries. These capabilities will have to be enabled with min-
imal ground-based guidance by incorporating autonomous
and smart technology systems into the robots.

Recent advances in deep learning and artificial intelligence
have demonstrated that complex, multistep tasks (e.g., self-
driving vehicles) can be performed autonomously. However,
applications of deep learning schema to automating surgical
tasks are at least an order of magnitude more difficult than
many current applications of deep learning to such domains
as image identification or language recognition. The surgical
environment is not only deformable in three dimensions, but
also highly reflective and subject to changes in wavelength
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due to bleeds, vascular, and respiratory changes. Tissue inter-
actions with surgical tools can rapidly and radically change
the shape, color, and conformation of tissue, making recog-
nition of the current state of the surgical field and appropriate
automatic response a significant challenge. In addition, sur-
gical tasks are happening concurrently with feedback from
the surgical field that must be recognized and responded to
by the autonomous robot in real time. Just as autonomous
vehicle technology has developed hierarchically, we envision
evolving levels of autonomous surgery development:

Level 0: Current technology. A surgical robot’s movement
is directly controlled by the surgeon, using an input device.

Level 1: Basic safety features. The surgical robot’s tools
can be stopped or slowed down automatically by a com-
puter system that analyzes video and torque data from the
robot, while considering parameters of the surgery input by
the surgical team.

Level 2: Partial autonomous actuation. While the surgical
robot’s tools are still guided directly by the surgeon using con-
trollers, the robot can actuate the tools to perform basic tasks,
such as performing depth-controlled incisions or grasping
tissue with correct forces.

Level 3: Surgeon-guided actuation. The robot is no longer
directly controlled using a traditional input controller. Rather,
the surgeon guides the robot’s actions using a touch screen,
pen input, VR headset, or other decoupled controller. The
surgeon provide high-level instructions—like which tissue to
excise, what path a cautery or suture line should follow—and
the robot executes these instructions.

Level 4: Full autonomy. The surgeon instructs the robot
which procedure to implement, and the robot is responsi-
ble for the surgery. The surgeon intervenes if complications
arise.

The current study focuses on level 2 low-level development
of semi-autonomous capability in medical robotics, specif-
ically using machine learning techniques for robot vision
detection of touch and force-detection using machine learn-
ing and waveform analysis. This basic form of measurement
is essential to developing a system that can perform primitive
surgical tasks, including depth-controlled incision, suturing,
cautery, and grasping.

In summary, the potential need for an emergent surgery
during long-term space missions is essential. Our study
focuses on task automation surgery and on the development
of semi-autonomous capability in medical robotics that
could help make surgery safer through the prevention of
collision and iatrogenic injury, increasing the crew medical
capabilities.

We are on a long mission, (a) to develop a suite of
low-mass, low-power robots capable of multiple internal
and external surgical and medical tasks for long-duration
missions, (b) to develop semi-autonomous capability in
these robots, and (c) to understand how to build capable
human/robot teams for surgery in space. To prepare for the
probability of an emergency surgery during space flight, it is

essential that surgical robot capabilities be further developed
and automated.

METHODS
To achieve semi-autonomous capabilities, force-detection is
a critical step. The approaches to force-detection used in our
study can be separated into two categories. The first one uses
visual feedback from the robot to predict events that corre-
spond to physical contact between the robot and tissue in the
operating environment. The second approach measures the
motor current waveform used to drive the robot arms and uses
deep learning to predict the amount of force being applied by
the robot. The following sections describe each method.

Visual Contact Detection Using a Pixel-To-Pixel
Deep Neural Network

Visual Contact Detection

A pixel-to-pixel fully convolutional neural network estimates
contact between the robot arm and tissue. This network is gen-
erally derived from the U-net architecture proposed in.26 The
input image is a three-channel image captured from the per-
spective of the robot, as illustrated in the leftmost images in
Fig. 1. While a single image capture does not convey motion
in the scene, a series of image captures taken at different time
points can be used to visualize both motion and deformation
of objects in the scene. Therefore, instead of simply providing
a single image to the network to estimate contact, the pro-
posed method includes three stacked grayscale images from
0.5 seconds prior, 0.25 seconds prior, and the current time. In
Fig. 1, the differences between these stacked images manifest

FIGURE 1. Illustration of the network inputs and the target feature out-
puts. As input the network concatenates images from 0.5 seconds prior,
0.25 seconds prior, and the current frame (all in grayscale) to get a single
three-channel image capable of conveying motion and deformation within
the scene. The output (on the right) is a four-channel output that combines
local Gaussian kernels for end-effector detection with a −1 to 1 mapping
for contact and no-contact events. Here, top and bottom kernels on the left
illustrated by waves and grid patterns represent the spatial location of the
left end-effector tip when it is contacting and not contacting with the tis-
sue, respectively. The top and bottom right kernels illustrated by diagonal
lines and sawtooth patterns represent the locations of the right end-effector
tip in contact and no-contact scenarios, respectively. In the top example, the
left end-effector is grasping the tissue while the right end-effector is pressing
firmly into the tissue. In the bottom example, neither end effector is contacting
the tissue.
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as chromatic artifacts where the color indicates the direction
of motion.

The output of the network is a four-channel feature space
that encodes both the location of the end-effectors and a
numerical method for representing contact or no contact. The
first two channels produce Gaussian kernels at the locations
of the left and right end-effector tips, respectively. The third
and fourth channels encode contact/no-contact events numer-
ically between −1 and 1 at the locations of the left and right
end-effectors, respectively. Fig. 1 illustrates a colorized ver-
sion of the four-channel feature space, where the green and
red kernels indicate the location of the left end-effector and the
yellow and blue kernels indicate the location of the right end-
effector. Green and yellow, in this case, correspond to contact
events where the third and fourth channel of the feature space
would be encodedwith a 1. Red and blue are no-contact events
that correspond to encodings of −1 in the third and fourth
channel.

The reason for separating the location from contact/no-
contact events is to orthogonalize the outputs of the network.
Processing the output of the network involves two stages.
First, the peaks in the first two channels are found by compar-
ing the 3× 3 max pooling output of the first two channels to
their original values. If the max pooling output is equal to the
max pooling input, this corresponds to a regional maximum.
If this regional maximum is also greater than 0.5, this corre-
sponds to the estimated location of the end-effector. Once this
location is found, the third and fourth channels are sampled at
this location to determine whether the end-effector is contact-
ing the tissue. Lastly, the precise location in the image space
of the end-effector is found using quadratic interpolation of
the feature space maximum and its vertical and horizontal
neighbors.

To train and evaluate the proposed neural network
approach to contact detection, we captured and annotated
three separate videos where the robot manipulated the tis-
sue with its end-effectors. The videos and their properties are
provided in Table I. Tissue types include beef steak, skin-
on chicken breast, and chicken gizzards. These three types

were chosen to represent muscle tissue, skin, and internal
organs. They were also chosen due to their widely varying
appearance, where beef steak and skin-on chicken are not
highly reflective and chicken gizzards are smooth and highly
reflective. During the videos, the tissues were manipulated
using single end-effector operations like pushing, pulling,
squeezing, and cutting. Together, the two end-effectors also
performed pull and cut and spreading operations. Through-
out the course of each video, the robot was moved along the
surface of the tissue, which altered its appearance through
physical manipulations.

To train the neural network, only the first half of each
video was used. The second halves of the videos are reserved
for evaluating the accuracy of the trained network. It is
worth noting that each frame of video was annotated for
contact/no-contact events, but only every 75th frame was used
for identifying the location of the end-effectors.

Sensorless Force Estimation

To enhance visual contact touch detection with high-fidelity
force measurement data, we propose using motor current
as a sensorless predictor for the force applied to the surgi-
cal environment. The proposed method uses a trained long
short-term memory recursive neural network (LSTM RNN)
to estimate the output torque of a motor’s shaft based on
the electrical current waveforms of the motor. The estimated
torque is directly proportional to the output force through the
robot’s physical geometry, which the system models based
on existing joint angle sensors. A spinning motor consuming
I amperes exerts a torque of T= I kT where kT is the motor’s
torque constant. However, this formulation excludes the inef-
ficiencies between the motor shaft and the rest of the robot.
Miniature motors used on small in vivo surgical robots use
gearboxes with substantial gear ratios—4,000:1 scaling is not
uncommon.

In the presence of friction, these gear trains do not transfer
100% of the power from the motor to the output shaft. This
means when a motor uses a certain amount of current to pro-
duce a torque, the actual torque produced by the output of the

TABLE I. A. Dataset and Annotation Parameters for the Three Videos Used to Train and Evaluate the Visual Contact Estimation Network;
B. The Results of the Visual Contact Detection Method on the Annotated Dataset. Both Training and Testing Accuracy are Given so that
the Degree of Overfitting Can Be Assessed. Note That, “No Touch” Events Occur More Often than “Touch” Events, so the Accuracies
between 50% and 78% are Achievable by Simply Guessing “No Touch” for Every Frame. These Effectively Provided as a Lower-bound

for Classification Performance

Video
A
Frames

Left
Touch

Right
Touch

Left No
Touch

Right No
Touch

B
Training
Left

Training
Right

Testing
Left

Testing
Right

Beef Steak 37,401 (10.39
minutes)

18,600
(50%)

11,766
(31%)

18,801
(50%)

25,635
(69%)

94% 90% 90% 90%

Skin-On Chicken
Breast

59,758 (16.60
minutes)

16,922
(28%)

13,092
(22%)

42,836
(72%)

46,666
(78%)

92% 92% 88% 86%

Chicken Gizzards 55,054 (15.29
minutes)

14,756
(27%)

17,323
(31%)

40,298
(73%)

37,731
(69%)

87% 87% 88% 87%
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FIGURE 2. The dynamometer and control board measures motor current waveforms and delivered torque.

gear train can vary considerably depending on many factors,
including gear meshing, lubricant temperature, particulate
contamination in the gearbox, and manufacturing tolerance
issues. The amount of efficiency drop caused by these fac-
tors is not constant (even for a particular unit) and cannot be
parameterized easily.

Rather than attempting to model this efficiency in a for-
ward fashion, we implement an LSTM RNN that can learn
the relationship between motor current waveforms and output
torque—possibly considering other inputs, like absolute out-
put shaft position, temperature, humidity, age of the motor, a
one-time factory calibration, etc.

This initial work focuses on building a test bed to begin to
train the LSTM RNN. We created a dynamometer designed
specifically for programmatically applying dynamic loads
to a motor and measuring—with high precision—the output
torque delivered (Fig. 2). The dynamometer uses 16-bit ana-
log to digital converters for measuring motor current with
a resolution of 15 µA, plus a 24-bit analog to digital con-
verter for measuring output torque at a resolution of 417 nNm
torque, and the system can capture these data at 500 kHz with
more than 100 dB of signal-to-noise ratio.

For sensorless force estimation, the work covered here
attempts to classify time-series electrical current waveforms,
captured at 1.3 million samples per second, into motor torque
output predictions. The measured motor was a Maxon EC12-
series 8 mm brushless motor with a 1,024:1 gearbox.

RESULTS
The accuracy of visual contact detection is evaluated using
the second half of the videos listed in Table I, which were not
used for training the network. The results of the evaluation are
also given in Table I. Regardless of tissue type, the accuracy
is nearly 90% for contact/no-contact estimation. Furthermore,
the difference between the training set performance and test-
ing set performance is, at its maximum, 6%. In some cases,
such as for chicken gizzards, the testing accuracy is better than
the training accuracy.

Figure 3 illustrates the relationship of average current
consumed by the motor to the output torque it produces. Due
to static friction, it takes an average of at 150 mA of current
just to get the shaft to start to spin (with no braking applied),
and once the static friction is overcome and the motor starts
spinning, the motor can start to develop torque with only
minimal current consumption increase. The wide variance
coupled with near-vertical slope of the data in this part of
the plot illustrates the challenges of predicting output torque
from average motor current. One input value—current—must
correlate with a range of output torques. Most of this friction
comes from the high-gain gearbox, though bearing friction in
the dynamometer itself is also a contributor. Our instrument
approaches 90% efficiency in the midband under a torque load
of approximately 1 Nm and current consumption of approxi-
mately 200 mA, but the efficiency drops as current increases
further and ohmic loss in the motor windings overwhelms the
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FIGURE 3. Ten-thousand instances of various motor current waveform sam-
ple windows plotted against the ground truth torque measured. The solid line
illustrates the motor’s torque constant; if the gearbox were 100% efficient, all
sample points from the observed data would lie on the line. The dashed line is
the maximum efficiency of the gearbox, as rated by the manufacturer. If the
gearbox’s efficiency were constant, all sample points would lie on the dotted
line.

gains in torque. There is significant variance among motor
current measurements for each applied torque value, and these
measurements often overlap. This means that looking at win-
dows averages of motor current time series is insufficient for
predicting torque.

The LSTMRNN trained on 80%of the raw time-series data
over several thousand epochs, and then evaluated against the
remaining 20% ground truth data. Fig. 3 shows the output of
the LSTM RNN during one time series. Note that the initial
predicted current is quite poor, but after approximately 200
samples (∼150 µs), the LSTM RNN converges to the correct
torque value.

The LSTM RNN’s time-series analysis predicted large
torques with remarkable precision but struggled to pre-
dict small torque values from motor current. Further
investigations—including integrating the previously men-
tioned additional data sources into the LSTM RNN model—
will attempt to address these shortcomings.

DISCUSSION
Our preliminary data comprised a visual contact detection
accuracy average greater than 90% for the training set and
80% for the testing set, providing feasibility of autonomous
surgical tasks. Overall, the results indicate that even a small
dataset is capable of being used to develop a visual contact
estimation method for surgical robots. For implementation in
a functional surgical platform, we expect that contact detec-
tion should be closer to 99%, as unintended physical contact
can cause tissue damage and compromise the patient’s safety.
A final solution would likely include a multimodal sensing
platform that combines inputs from visual and motor current
feedback to achieve maximum fidelity.

While these results demonstrate that deep learning
can achieve impressive accuracy in terms of classifying

“touch”/“no-touch” events from single-camera video, this
classification task is particularly well-suited to depth imag-
ing either from active depth sensing or stereo reconstruction.
Either of these imaging modalities would likely provide more
useful inputs when texture deformation is difficult to discern
from a single perspective. However, time-of-flight sensors at
this scale are not currently available and stereo reconstruc-
tion in highly reflective environments presents considerable
computer vision challenges.

Future directions include the combination of contact detec-
tion with estimation of applied forces, in addition to the
recognition of binary “touch”/“no-touch” states. We also
plan to build deep network models on top of touch/contact
detection to perform primitive surgical tasks, including depth-
controlled incision, suturing, cautery, and grasping. The out-
comes demonstrated in this study are just one of the steps
within the complex long-term work to provide autonomous
surgical capabilities for long-term missions.
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