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Using deep learning to detect 
digitally encoded DNA trigger 
for Trojan malware in Bio‑Cyber 
attacks
M. S. Islam1*, S. Ivanov1, H. Awan4, J. Drohan3, S. Balasubramaniam2, L. Coffey3, 
S. Kidambi5 & W. Sri‑saan2

This article uses Deep Learning technologies to safeguard DNA sequencing against Bio-Cyber attacks. 
We consider a hybrid attack scenario where the payload is encoded into a DNA sequence to activate 
a Trojan malware implanted in a software tool used in the sequencing pipeline in order to allow the 
perpetrators to gain control over the resources used in that pipeline during sequence analysis. The 
scenario considered in the paper is based on perpetrators submitting synthetically engineered DNA 
samples that contain digitally encoded IP address and port number of the perpetrator’s machine in 
the DNA. Genetic analysis of the sample’s DNA will decode the address that is used by the software 
Trojan malware to activate and trigger a remote connection. This approach can open up to multiple 
perpetrators to create connections to hijack the DNA sequencing pipeline. As a way of hiding the data, 
the perpetrators can avoid detection by encoding the address to maximise similarity with genuine 
DNAs, which we showed previously. However, in this paper we show how Deep Learning can be used 
to successfully detect and identify the trigger encoded data, in order to protect a DNA sequencing 
pipeline from Trojan attacks. The result shows nearly up to 100% accuracy in detection in such a novel 
Trojan attack scenario even after applying fragmentation encryption and steganography on the 
encoded trigger data. In addition, feasibility of designing and synthesizing encoded DNA for such 
Trojan payloads is validated by a wet lab experiment.

Genetic sequencing has become an essential tool for analyzing numerous DNAs that are used in the field of medi-
cine, agriculture, as well as forensics. Numerous systems have been developed over the years to increase accuracy, 
such as throughput shot-gun sequencing technologies (e.g., vector-borne pathogens detection in blood1, food 
authentication and food fraud detection2, or even molecular data to be transported through artificial biologi-
cal networks3,4). Recent developments in sequencing technology have also been miniaturized to allow mobile 
sequencing and one example is the Minion5. We have recently witnessed the importance of timely sequencing 
from oral samples due to the COVID-19 pandemic, which continues to apply pressure on the health care system6. 
The clear benefits of expanded COVID-19 testing7 calls for an expansion of the existing testing (e.g. STEMI8) 
approaches. The importance of sequencing can also be seen in detecting and tracking mutations in other types 
of infectious diseases, where examples include Lassa Fever9 or other prevalent pathogens10, such as seasonal flu11 
or bacterial infections where new strains resistant to existing antibiotics can be identified12,13.

As the genetic sequencing will inevitably introduce additional pressure on the already overburdened health-
care services, it is likely that the genetic analysis may be outsourced to private sequencing services. Similar 
approaches have already been successfully adopted for other testing programmes (e.g. Cervical Screening Pro-
gramme in Ireland14). The services will act as an on-demand genetic-testing infrastructure that receives and 
analyses samples on behalf of the hospitals, medical practices and other healthcare organizations. While this 
approach alleviates pressure on the healthcare system, the system is vulnerable to Bio-Cyber Hacking15.
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Our definition of Bio-Cyber Hacking refers to an attack that is hybrid between ICT systems and biological 
mediums. From the ICT system side, we assume that the pipeline of the sequencing service uses a DNA-analysis 
toolbox infected with Trojan Software. Malware, such as a Trojan, can be implanted at the API levels16, within 
mobile software17 and even in machine learning models18. Trojans can also be implanted into hardwares19–21 of 
computers, as well as IoT devices22. In our scenario, the Trojan contains an empty slot for the IP address and 
port number for remote connections to an external machine. On the biological side, an attacker encodes the IP 
address and port number into DNA strands. Using DNA-steganography, the attacker devises synthetic DNA 
that contains the payload and still maintains resemblance with natural DNAs. We will explain the process in 
Fig. 1, where we will first explain a sequencing process for normal DNA (steps 1–3) and then explain a hack-
ing situation (steps 4–8). In (Fig. 1 (1–2)), the service uses one of the state-of-the-art sequencing techniques, 
e.g. shotgun sequencing, to analyze DNA materials extracted from each of the samples (e.g. E. coli Plasmid and 
Cellular DNAs). The machine randomly splits DNA molecules into multiple fragments or reads of a predefined 
length, then it concurrently sequences each read to establish its nucleotide structure. The original DNA is then 
assembled from the reads (Fig. 1 (3)). This is a computationally complex process that often involves the use of 
dedicated resources, often called DNA-sequencing pipeline23. Let us now consider an attack situation. Initially 
the Trojan remains dormant, while the toolbox performs the legitimate DNA-analysis. The trigger sample is 
collected by the hospital (i.e., by swabbing) and sends the samples to the sequencing service for analysis (Fig. 1 
(4)). The samples are then analyzed by the sequencer (Fig. 1 (5)). There the sample is fragmented, sequenced and 
assembled (Fig. 1 (6)). During the assembly, the DNA toolbox retracts the payload and wakes the Trojan (Fig. 1 
(7)), and this happens is when the DNA sample that contains the web address and port number of a remote 
server controlled by the attacker is detected by the digital DNA data that is passed from the sequencer to the 
computer that contains the DNA-analysis toolbox infected with the Trojan. The Trojan establishes a connection 
with the remote server (Fig. 1 (8)), where the Trojan either opens a cyber backdoor, transfers files, or executes 
commands from the attacker. Either of these actions presents a substantial threat to the integrity of DNA-analysis 
and patient diagnostics.

In this article, we develop a solution that is complementary to the existing general-purpose techniques. The 
solution builds on our previous work that only focused on steganography techniques to hide IP address and port 
numbers into DNA strands24 and investigates the use of input control (Fig. 1 (9)) as a countermeasure to the 
Trojan Bio-Cyber attacks. The input control is an intermediary between the DNA-sequencer and the pipeline. 
With the help of a specially designed and trained Deep Neural Network (DNN), the control assesses each DNA 
read generated by the sequencer to establish whether the read comes from a trigger sample. Absence of suspicious 
reads assures cybersafety of further DNA-assembly, but a detection of a trigger sample terminates its further 
processing. This prevents activation of the Trojan software and limits the pipeline’s exposure. In recent times, 
there is a lot of interest in the use of deep learning for malware detection25,26,27. Deep learning techniques are also 
applied to Trojan detection19,28 in conventional cyber attacks. To the best of our knowledge exploiting the Buffer 
overflow vulnerability in DNA sequencing pipeline using a specially designed DNA was first demonstrated in15. 
To detect DNA sequences containing the payloads for buffer overflow exploit, we proposed Case-based Reasoning 
(CBR)24, where we found that such payloads results in sequences that are quite different from the DNA sequences 
which are naturally available. Moreover, we investigated the recovery rate of the DNA sequences containing the 
malicious payloads that was inserted into bacteria after spraying them on various types of surfaces. In another 
article we have shown how a Trojan Attack is possible in a DNA sequencing pipeline29, but the possibility of 
creating such sequence was not validated by conducting any wet lab experiments or detecting the trigger, which 
is what we have investigated in this work. In both of our previous work, we did not consider keeping the natural 
appearance of the DNA while designing the payload to make the detection harder. In this article we improved 
our algorithm of making the payload harder to detect and proposed a CNN based detection technique.

Figure 2 illustrates the construction of the payload that is embedded into a DNA sequence, and in this specific 
example we focus on a bacterial plasmid. We re-designed the construction of the payloads to make it similar to 

Figure 1.   Hybrid Trojan Bio-Cyber Hacking Attack. Steps 1–3 indicate a typical genetic sequencing operation 
for patients. Steps 4–6 indicate a situation where a hacker has embedded their IP address and Port number into 
a DNA that will trigger a remote connection from a Trojan-horse infected software tool leading to a connection 
to the attacker in Step 8. Our proposed approach utilizes Deep-Learning to detect Trojan payload in digital data 
using encoded into DNA strands that can prevent the attack. (The image is drawn using draw.io).
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a natural DNA sequence in order to increase detection difficulty. The construction of the DNA is based on the 
sequence used in29.

Methods
In this section, various terms used in the article will be defined and then the steganography techniques will be 
described, which is applied on the payload used for malicious activities as a means of secrecy of operations. Fol-
lowing that we will describe the injection method of the payload into a host DNA. This is followed up with the 
description of the deep learning model proposed as a detection method to counter the Trojan attacks.

Trojan payload.  The payload DNA for triggering the Trojan malware will be encoded into a DNA sequence 
and will be referred simply as ‘payload’ in the rest of the article. The payload will be hidden inside a longer DNA 
string, which is considered as ‘host DNA’. In order to prevent detection, the content of the payload will be first 

Figure 2.   Trojan Bio-Cyber Hacking: Payload Preparation and Attack Scenario example using DNA plasmids. 
(a) A Trojan payload (using encryption and steganography) is encoded into a DNA sequence which is developed 
and inserted into the plasmid DNA. Antibiotic resistant gene sequences will also be inserted into the plasmid 
DNA in a similar way. (b) The DNA plasmid and the bacteria will be transferred into rich media so that the 
bacteria can uptake these plasmids24. Bacteria resistant to the antibiotic will survive and be transferred into a 
spray. (c) The bacteria can now be sprayed on hands or gloves and provided to a third party which can collect 
samples (from hand or gloves). The third party will then send these samples to the company for sequencing. 
When the sequence will be processed by the tools having the Trojan, it will be activated to perform the malicious 
activities. (The image is drawn using draw.io).
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divided into smaller parts and then encoded into smaller DNA sequences, which will be called as ‘fragments’ and 
this process will be known as ‘fragmentation’. The fragments can be inserted in a random order and at random 
positions of the host DNA. Substitution technique, i.e., replacing a nucleotide of the host DNA with a nucleotide 
of the payload DNA or fragment DNA (if fragmentation is applied), is considered as an insertion technique. 
‘Retention’ is the process of skipping a particular number of nucleotide positions of the host DNA to substitute 
by the nucleotide of the encoded/fragment DNA while performing the insertion. Both encryption and retention 
will be considered when steganography is applied, where the encryption process will be performed before the 
retention. The details of the processes including encryption will be described in the subsequent sections of the 
article. After completing the insertion process, the obtained DNA string is considered as the ‘resultant DNA’.

In general the host DNA string will be significantly larger compared to the encoded DNA for the payload. 
Therefore, the Trojan software needs to perform processes such as identifying those fragments, applying decryp-
tion and decoding techniques before merging and rearranging them in order to activate the malware process 
to trigger the hacking operation. As a result, the Trojan software should apply these processes to integrate the 
substrings to create the full DNA string as an additional task beside performing its normal functional tasks. 
The caveat of such an approach is that the computational complexity will be significantly high and the Trojan 
software might be under suspicion straight away as it will take significantly higher time and consume higher 
memory. To prevent this suspicious behaviour, the Trojan software will need to efficiently determine the location 
to perform decryption and decoding and this will be achieved through ‘tags’. The tags are tiny snippets of chosen 
DNA sequences that indicate the start and end of the fragments that will be searched by the Trojan software, and 
we refer to this process as ‘tagging’.

One of the critical challenges in packaging the Trojan payload is the delivery system which can act as the car-
rier for the DNA materials. To this extent, liposomes and lipid-based nanoparticles have been extensively used 
for targeted gene delivery to various coordinates. Liposomes, also referred to as vesicles, are extremely versatile 
carriers that have been studied and utilized extensively for drug delivery applications including gene and mRNA 
due to their ease of creation, large protective hydrophilic inner cavity for encapsulation, high degree of freedom 
for exterior customization, and controllable drug release kinetics. Recent success of mRNA vaccines for COVID 
is attributed to such lipid based platforms as a delivery vehicle for mRNA. These can be extended to packaging 
the Trojan payload to enhance the stability of the DNA and also establish targeting capabilities to target specific 
locations for Cyber-hacking. Furthermore, there are innovative and robust platforms that can integrate these 
lipid nanoparticles embedded within substrate and matrix based on polymer based films that can control the 
release of these Trojan payloads and extend their stability30. Also this platform can also facilitate hiding these 
Trojan payloads from detection and embed multiple payloads. This platform provides ways to transport the 
Trojan Payload into the targeted region beyond security measures by embedding them into entities including 
clothes, skins, pens or papers as examples.

Steganography.  In this article we consider a scenario where the perpetrator encodes the attack details 
(i.e., web address and port number) into a DNA, which are used as a trigger sample. To avoid the detection of 
this sample and cover the identity of the attacker, the encoding uses an extension of the DNA Steganography 
technique proposed in29.

The extended steganography technique proposed in this article has five steps and this includes fragmentation, 
encryption, encoding, tagging and retention. First, the web address and port number injected into the DNA are 
divided into fragments of a predefined length. Since each fragment is shorter than the original address, this will 
increase the difficulty in the detection process post injection. Next, the binary of the fragment is XOR-encrypted 
using a predefined key. This is followed up by encoding with four basic nucleotides, i.e., “00” bit-pairs are encoded 
as “A”, “01” as “C”, “10” as “G” and “11” as “T”. The ACTG-encoding (represent four nucleic acids, which are 
Adenine, Cytosine, Thymine and Guanine) is enclosed in the nucleotide brackets where the ACTG tags mark 
the beginning and the end of the injection within the DNA. These tags are selected so that the natural DNAs are 
unlikely to include both the start and end tags separated by a number of nucleotides that is required to encode a 
malicious fragment. The tags need to be sufficiently short in order to reduce the footprint of the injected fragment 
as well as increase the similarity with the host DNA and avoid detection. Finally, the retention stage expands 
the result of the tagging using the symbol “*” (see Eq. 1). The expansion is performed in a way that a predefined 
number of retention symbols is inserted between each of the two consecutive nucleotides. The positions of the 
retention symbol determine that the nucleotides of the host DNA will remain unchanged as a result of the mali-
cious code injection. Thus, for a retention number equal to 2, only the first of each 3 consecutive nucleotides of 
the host DNA will be replaced. The second and third nucleotides will remain unchanged. This is done to increase 
the similarity between DNA of the trigger sample and the host DNA.

Injection methods.  In this article we consider substitution as the preferred method of injecting the Trojan 
payload into the host DNA. Consider the case when the Trojan payload dload (with encoded nucleotides and 
retention symbol “*” after applying encryption and steganography as described above) is injected into the DNA, 
dhost , at position i . The result of the injection will present a nucleotide string inj , having the length equal to the 
length of dload . The length of the dhost and dload strings is determined by a function called len , which reflects 
the number of characters in both strings. The nucleotide at position j ∈ [0, len(dhost)) of inj will be the inser-
tion position i and based on dload

[

j
]

 . If the value of j does not fall between the range required for the injection 
position, which is from i to i + len(dload)− 1 as this location is required for the payload injection, then the 
actual nucleotide of host dhost

[

j
]

 will be used, i.e. inj
[

j
]

= dhost
[

j
]

 . Otherwise, the value of  inj
[

j
]

 will depend on 
dload

[

j − i
]

, since the value 
[

j − i
]

 determines the index of the dload  and this has to be considered when it starts 
from 0 (for the very first substitution point j = i ) up to len(dload)− 1 . If the dload

[

j − i
]

 contains a retention 
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symbol “*”, i.e. (dload [j−i] == “*” then inj
[

j
]

= dhost
[

j
]

 (this means the original nucleotide is used for retention) 
otherwise inj

[

j
]

= dload
[

j − i
]

 . This substitution procedure can be defined as:

We define elementary domain domELM that consists of all the possible positions for a Trojan payload injec-
tion. Naturally, such a substitution can be carried out only from the position i onwards and is represented as:

which is referred to as the injection domain and refers to the indices (i.e., values of i  ) of dhost . We use 
inj(dhost , dload , i) to denote the substitutions in domELM . Similarly, to denote the substitutions carried out on 
subdomain dom ⊂ domELM , we use injdom(dhost , dload , i) . This subdomain introduces additional restrictions 
that may be required to preserve particular areas within the host DNA. Figure 3 presents the five stages/steps 
involved in the DNA steganography technique used in this article.

Note that in this article we only consider payloads that consist of a web address (represented by a Tiny URL) 
and port number of a remote server controlled by the attacker (For payloads used in the analysis, please see: 
https://​bitbu​cket.​org/​sible​eislam/​bio-​cyber-​hacki​ng). The payload has the following semantics:

< prefix : character string > . < suffix : character string > :< port number :string of digits > 
As mentioned above, the fragmentation (Fig. 3a) is the first stage of the DNA steganography. First, the pay-

load is rearranged so that the address prefix is followed by the port number and then the address suffix. This 
representation allows the reduction in the auxiliary “.” and “:” characters from the payload, and therefore, size 
reduction of the entire payload. Subsequently, the rearranged payload is divided into fragments, substrings of a 
predefined length (e.g. 2 characters as shown in Fig. 3). Each of the fragments is attached with its serial number 
as a prefix. As only tiny URLs are used in the tojoan payload address, we assume that no more than 16 fragments 
can be formed. If we want to consider a web address with subdomains then the top level domain will be the suffix 
and the rest of the part of the domain name will be the prefix.

The next step after frangementation is encryption, where each fragment is encrypted and nucleotide-encoded 
as illustrated in Fig. 3b. At this stage, the fragment is represented as a bit-array where the first 4 bits represent the 
fragment’s serial number, followed by a series of 8-bit representations of fragment characters. Each character is 
represented by the binary of its ASCII code. The bit-array is then XOR encrypted using a predefined key (e.g. 60 
as depicted in Fig. 3b). This results in a sequence of bit-pairs, which are then encoded into nucleotides strings 
that represent the DNA.

The next step after encryption is encoding as shown in Fig. 3c. The nucleotide-encoding of the fragment is 
attached with a start and end tag as prefix and suffix, respectively. The resultant string is then expanded so that a 
predefined amount of retention symbols is added between each two consecutive nucleotides (e.g., 2 symbols as 
in Fig. 3c). The expanded string is then injected into the host DNA using MaxNW procedure, which is described 
next.

MaxNW technique.  Needleman-Wunsch, or NW score is one of the most popular methods to assess the 
similarity between two DNA samples. This score considers the string-based nucleotide representation of the 
DNA molecules and calculates the number of symbol substitutions, gaps (i.e., symbol insertion or deletion) and 

(1)inj
�

j
�

=







dhost
�

j
�

if j < i or j ≥ i + len(dload),
dhost

�

j
�

if j ∈ [i, i + len(dload)) and dload
�

j − i
�

= “ ∗ ”,

dload
�

j − i
�

if j ∈ [i, i + len(dload)) and dload
�

j − i
�

∈ {A,C,T ,G}.

(2)domELM = [0, len(dhost)− len(dload)+ 1],

Figure 3.   DNA Steganography, Workflow: (a) payload fragmentation, (b) fragment encryption and encoding, 
(c) tagging, retention and host injection. (The image is drawn using draw.io).

https://bitbucket.org/sibleeislam/bio-cyber-hacking
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their expansions (i.e., continuation of gaps) required to align two strings. Depending on the circumstances, a 
specific penalty system is applied to each of the operations as well as matches between DNA nucleotides. The 
system is constructed in a way to favor certain alignment patterns. As in the experiments performed in this 
work, injecting payload typically constitutes not more than 10% of the host DNA string size, therefore we use 
PAM10 substitution scoring matrix31 as the cost matrix for nucleotide substitution. Following this methodology 
outlined in32, we set the costs for the gap opening and extension to 15.79 and 1.29 for the PAM10 substitution, 
respectively.

In this article, we use NW scores to measure the similarity between dhost and inj(dhost , dload , i) . Based on the 
penalties defined above, the NW score increases as similarity between dhost and inj(dhost , dload , i) increases and 
reaches its maximum if dhost and inj(dhost , dload , i) are equal. In other words, the injected payload fits into the 
dhost naturally at position i . Lets assume the NW score is maximum when the insertion position (the value of i ) 
is imax . To emulate the attacker, the malware NW score, MaxNWdom , is defined as:

where

when multiple payloads for malicious activity injections Dload =
{

dload,1, . . . , dload,n
}

 are introduced into the 
same host DNA, dynamic programing is used to determine the optimal positions for the injections. The technique 
employs a recursive procedure, where at each step the best insertion is sought amongst all possible positions. So, 
initially inj(dhost , dload , i) and domELM are considered for the substitution and the domain for the substitutions for 
each of the payloads. Then the injection position of the payload having maximum NW Score will be considered 
for that particular payload injection and that portion of the injection will be restricted for further injections. 
For further steps, the subdomain dom and injection for subdomain injdom(dhost , dload , i) will be considered as 
the restriction is applied. Lets assume, the maximum NW Score and the indices considering subdomain are 
MaxNWdom∗ and , i∗ respectively. The injection process will be repeated until all the payloads are injected. Thus, 
this recursive procedure can be described as:

where

Deep learning.  Various machine learning algorithms and even regular expression based classification tech-
niques might be useful to detect the presence of trigger samples in the DNA sequence as the tags will express 
a pattern. However, the tag will be unknown to the detection subsystem and the number of available tags will 
grow exponentially with the number of nucleotides used for the tags (please see Fig. 5a). Therefore, a machine 
learning algorithm will be a better option as the regular expression will need to consider a huge number of pos-
sible tags. Again, a big challenge of machine learning algorithms (e.g. Random Forest Support Vector Machine, 
K nearest Neighbors etc.) is feature extraction and feature selection. Very large number of features can be applied 
using these techniques. The success of the prediction technique mainly depends on finding appropriate feature 
extraction and feature selection techniques33. To extract the feature, Natural Language Processing (NLP)33 is 
applied to a DNA sequence or DNA is considered as a time series or genomic signal and then signal processing 
techniques like Discrete Fourier Transform (DFT)34 and Discrete Wavelet Transform (DWT)35 are applied. RNN 
is good for sequential data or time series data and also where the context, especially the previous classification, 
is important33. In our classification problem, each classification is independent. However, it is interesting to see 
how to feed the sequence and get intermediate classifications in the hidden layer and then get the final classifica-
tion. On the other hand, in CNN the convolutional layers part of the architecture does the feature extraction 
and selection for us and the flat layers followed by the convolutional layers does the classifications33,36. This is the 
reason we have selected the use of CNN. In this article, we use a 1-Dimensional Convolutional Neural Networks 
(1D CNNs) to identify the Trojan payload within the natural DNAs. This section will provide a brief overview 
of the CNNs we utilized for this work. An overview of various Deep Learning methods, including CNNs, used 
in genetics analysis can be found in37.

Figure 4 depicts the typical architecture of a 1D CNN. Similar to any other neural network, the 1D CNN 
consists of neurons organized in layers. The architecture proposed in this article uses the following layers: input, 
convolution, pooling, and dense.

The first layer represents the input of the network. Here, each of the DNA sequences’ classification is trans-
formed into the set of primary features, i.e., inputs of the network. Each nucleotide of the DNA is represented 
by a vector of 5 boolean indicator values. The first 4 values indicate whether the nucleotide are found to be 
equal, whereas the 5th value indicates whether the nucleotide can be determined (i.e. N—undetermined). As 
an example, A-nucleotides of the DNA will be represented by (1,0,0,0,0) indicator vectors, C-nucleotides will 
be represented by (0,1,0,0,0), and undetermined nucleotides will be represented by (0,0,0,0,1). To formulate the 
primary features of the entire DNA, indicator vectors for all its nucleotides are concatenated in the order of the 
pattern that is found in the original DNA.

The input layer is followed by a number of CONV1D layers as shown in Fig. 4. At each layer, multiple filters are 
applied to the kernels of a particular size. The resultant product is then subjected to ReLU activation. CONV1D 

(3)MaxNWdom(dhost , dload) = inj(dhost , dload , imax),

(4)imax = Arg
(

maxi∈domNW
(

dhost , inj(dhost , dload , i)
))

.

(5)MaxNWdom(dhost ,Dload) = MaxNWdom∗

(

MaxNWdom

(

dhost , dload,i∗
)

,Dload/dload,i∗
)

,

(6)i∗ = Arg
(

maxj∈[0,len(Dload))NWdom

(

dhost , dload,j
))

.
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layers are followed by 1 MaxPool, one dense layer with ReLU activation function, and finally 2-neuron SoftMAX 
layer, the output of which provides the certainty of the sample to be determined if it contains the address infor-
mation. In this article, we consider networks with varying numbers of CONV1D layers, the size of their kernel 
and the number of filters used. We also investigated the impact of the kernel size of the MaxPool layer and the 
size of the ReLU dense layer. Each network is trained for 3000 epochs using 75% of all available DNA samples. 
The remaining 25% of the samples are used to test the performance of the trained network.

Results and discussion
For the Trojan infected softwares, the secrecy of operation is of paramount importance. The longer the Trojan 
remains undetected, the more extensive the damage it can cause. For the Bio-Cyber hacking attack considered in 
this article, it is of vital importance for the attacker to maintain a natural appearance of the trigger sample con-
taining the address details. If we use an unnatural DNA structure as a part of the hybrid attack it can be flagged 
as suspicious not only by the detection method proposed in this article, but also by the similar less sophisticated 
versions of this system proposed in previous works24.

In this section we begin the discussion by evaluating the possible actions of an attacker to design a natural 
trigger sample. We follow this up by investigating the accuracy with which these trigger samples can be detected 
by a CNN. Finally, we describe the wet lab experiments that were used to produce the DNA with the address, in 
order to validate the potential of creating such a DNA sequence that is used as the trigger sample for our attack.

Trigger sample design.  For this article we propose the use of E. coli plasmids that will encode the address 
of the attacker. Escherichia coli bacteria have been sufficiently studied in literature and their plasmids can be 
synthesized and modified with relative ease. Once the attacker identifies a suitable DNA structure, E. coli plas-

Figure 4.   1-Dimensional Convolutional Neural Network (1D CNN): Architecture. (The image is drawn using 
draw.io).

Figure 5.   Trigger Sample Design with the use of DNA-Steganography: (a) nucleotide tag selection; (b) the 
impact of fragmentation.
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mids can be readily synthesized in various laboratories across the globe such as EuroFins Genomics and Twist 
BioScience24. In this section, we present the design of the plasmid DNAs that contains the Trojan payload that 
will maintain the original E. coli plasmids sequence. Specifically, we evaluate the use of DNA steganography (as 
described in the Methodology section) for injecting the address payload into an E. coli plasmid (host) DNA to 
maximize similarity between the resultant inj and host DNAs dhost.

This evaluation requires 1000 bps reads randomly sampled from the plasmid DNAs made available via 
AddGene repository. The sampling serves two purposes. First, it mimics the operation of a DNA-sequencer 
(e.g., Roche 454 FLX + 38) that may be specifically targeted by the attacker. In this case, a higher number of DNA-
reads produced by the sequencer (i.e., 700–1000 bps) will provide better cover for the Trojan address payload 
and, thus, increase the chances for the hybrid attack to be successful. Secondly, the sampling can significantly 
increase the amount of DNA-data used in the evaluation, where we draw 4356 reads from 716 E. coli plasmid 
DNAs stored in the AddGene repository.

Since the steganography technique has five key steps, the encoding step is fixed and cannot be varied, but the 
attacker is free to finetune the tagging, fragmentation, encoding, retention, and encryption steps. In Fig. 5 we 
show the impact of different parameter combinations, e.g. size of the fragment, number of retention positions, 
and value of the encryption keys.

Figure 5a depicts the relationship between the length of nucleotide tags and their availability. The tags mark 
the start and the end of the Trojan payload injections into a plasmid DNA. These tags that mark the start and the 
end of the Trojan payload are two potentially different nucleotide sequences of the same length. The sequences 
are selected in a manner that a host DNA is unlikely to include both tags separated by nucleotides. Note that 
the number of these nucleotides are obtained directly from the fragment size and the retention (i.e. retention of 
host nucleotides) parameters of the steganography technique. The results in Fig. 5a correspond to various values 
of these two parameters. From these results we learn that a predictable growth of tag availability is associated 
with the increase in tag length. As the number of all possible nucleotide sequences grows exponentially, it can 
overcome the number of unique sequences in genuine DNA reads for 4-nucleotide tags. We also realize that 
any further increase in the tag length (i.e., 5 and beyond) will make the number of unique sequences negligible, 
leaving the attacker with ample choice of nucleotide tags. The strength of this effect is such that it can be seen for 
all fragment sizes and retention values. As a result of this observation, we use a minimum 5-nucleotide tags for 
the remainder of this article as this is the lowest length that allows for the substantive tag availability.

In Fig. 5b we study the impact of the fragment size selection on the similarity between the host DNA before 
and after the injection of Trojan payload. This similarity is assessed by using Needleman-Wunsch (NW) scores 
(described in Methodology). The system is designed in such a way that the Needleman-Wunsch score grows as 
the similarity between the two DNAs increases. The value of this score is absolute maximum (i.e. MaxNW) when 
either the DNAs are identical, or the Trojan payload address is inserted into the host DNA naturally. Since due 
to tagging this is not possible we use the maximum (i.e. the NW score between host the DNA and itself) value 
to benchmark the score reduction due to the payload injection. Furthermore, in order to ensure the optimal 
payload injection, the steganography uses MaxNW technique (described in Methodology). To demonstrate the 
efficiency of this technique, Fig. 5b presents a comparison of performance with two alternative techniques, i.e., 
Random and MinNW. Random technique injects the payload at an arbitrary position through uniform distribu-
tion, whereas MinNW is a dynamic programming technique that seeks the worst possible injection position for 
a payload. This means that MinNW is a mirror-image of MaxNW which can minimize the score between the 
host and injected DNAs. This phenomenon is reflected in Fig. 5b, where MaxNW results in significantly lower 
score reduction compared to MinNW, whereas the score reductions by Random technique lies approximately in 
the middle of those produced by MaxNW and MinNW. From this we conclude that the MaxNW and MinNW 
techniques can show the whole range of score reductions that may occur due to payload injections. This also 
reaffirms that MaxNW is the best technique amongst all three possible techniques. In addition, a closer inspection 
of the results for the MaxNW technique also clarifies the impact of payload fragmentation. We realize that using 
a larger fragment size in the host DNA can effectively reduce the similarity between the host and injected DNAs.

Next in Fig. 5a,b we investigate the impact of different retention as well as encryption choices of the attacker. 
The results are presented only for MaxNW which is the optimal injection technique we have selected. For both 
the retention of host nucleotides or payload encryption, we realize that there is no significant effect on the NW 
score. In particular Fig. 6a shows no change in the NW score reduction can be attributed to different retention 
numbers for various fragment sizes for payload encrypted with a key equal to 50. Figure 6b shows similar results, 
where payload fragments of 1 and 5 characters are injected using 1 and 5 retention numbers. For this case, we also 
observe no change in the NW scores when encription keys are utilized. Based on these results, we can conclude 
that neither retention nor encryption are likely to disguise the trigger sample. Although we note that neither of 
these two steps can help the payload appear more naturally, however they still remain an essential part of the 
steganography process. This is because these steps play a key role in maintaining the anonymity of the attacker as 
they are designed to protect the payload (i.e. network address and port number), which may identify the attacker. 
For the case when a trigger sample is identified, the retraction of the payload will require knowledge of both the 
retention number and the encryption key used by the attacker.

DNN detection accuracy.  The DNA sequences of 716 E. coli plasmid DNAs are collected from the 
AddGene repository using web scraping. The Selenium Webdriver is used to crawl and collect the pages con-
taining the DNA sequences. The page was parsed using a python script to get and store the DNA sequences. In 
total, 4356 reads with read size of 1000 were drawn from the DNA sequences.

Although the natural appearance of the trigger sample is necessary to disguise the hybrid attack and avoid 
detection by less sophisticated methods (e.g. NW comparison with known DNAs), the Trojan payload address 
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injection may still be discoverable with the help of other techniques. In this section, we will explore this by evalu-
ating the detection of trigger samples using a state-of-the-art Deep Learning approach. From 4356 reads, where 
the read size is 1000 nucleotide bases, 1000 reads are picked randomly. These are clean or natural samples. 1000 
web addresses were considered for creating the malicious samples. A web address is rearranged, fragmented and 
then expressed as nucleotides and then inserted into the clean sample using the substitution method and using 
the technique described in the “Injection Methods” subsection in “Methods” section based on best NW Scores. 
The whole process is repeated 10 times to create 10 datasets. The idea is to execute 10 CNN model training and 
evaluations and take the average. However, if we consider 5 different fragmentations, 5 retentions and 5 encryp-
tions then for all combinations it will be a huge number of evaluations. Furthermore, for the hyperparameter 
optimization there will be more scenarios to consider. Therefore, for every scenario we combine all 10 clean 
datasets into one and 10 malicious datasets into one. From 10,000 clean and 10,000 malicious data we pick 7500 
(75%) data randomly from each as training dataset and remaining 2500 (25%) data from each as testing dataset. 
For training the model using the training dataset, we take a batch size of 100 at a time. We run the training for 
3000 epochs with a learning rate of 0.001. In each epoch, 10 percent of the training data was used for validation, 
so that we can examine the learning (accuracy and loss comparison for training and validation over epochs) to 
avoid overfitting. Moreover, after every layer a dropout layer is also added to avoid the overfitting. Early stop 
monitoring is also used to avoid unnecessary continuation of the model training if it is reached to its optimal 
accuracy. The trained model is then evaluated by the corresponding test dataset. We achieve this by investigating 
the performance of a 1-Dimensional Convolutional Neural Networks (CNN). The results in Fig. 7a,b summarize 
the performance of various CNNs topologies with respect to the four hyper-parameters considered in this article. 
This includes, (i) the number of hidden layers (1 and 2), (ii) the sizes of the filter (4, 8 and 16), (iii) size of the 
kernel (3, 5 and 8), and (iv) size of the maxpool (2 and 4) used in the network. The results are then obtained for 
trigger samples obtained from natural DNA using 0-retention and no payload encryption. This means that we 
can establish a baseline predictive capacity of CNNs and determine the most suitable network topology. This 
suitable topology is then further tested to evaluate the ability to cope with additional uncertainties introduced 
by nucleotide retention and payload encryption.

For this purpose, we simulated 180 scenarios for 36 combinations of hyper parameters and for 5 different 
fragment sizes, with no retention and no encryption. We obtain the best accuracy (99.9–100%) for all 5 frag-
ment sizes when we have 1 hidden layer, kernel size 16, 16 filters and 4 × 4 max pool size (Fig. 7a). Similarly, we 
obtain the best accuracy for the case we have an additional layer (2 hidden layers), 16 filters, kernel size 5 and 4 
× 4 max pool (Fig. 7b). These features are mainly learned by the kernel, so larger kernels and higher number of 
filters result in achieving the best accuracy. However, in this article we prefer to use a smaller number of required 
hidden layers to increase the execution time performance. Therefore, for the rest of the experiment we consider 
the CNN topology with 1 hidden layer, kernel size 16,16 filters and 4 × 4 max pool.

Next in Fig. 8 we analyze the impact of the fragment size, retention values and encryption on the Trojan 
address detection. In particular, Fig. 8a presents the detection accuracy for the highest and lowest fragment size 
values (1 and 5), and all the retention numbers (1–5), when no encryptions are applied. We made an assumption 

Figure 6.   Trigger Sample Design, the use of DNA-Steganography: (a) retention of host nucleotides; (b) payload 
encryption.
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that if we split the payload into an increasing number of fragments it will be relatively easy to escape the detec-
tion. In such a case it will be comparably difficult to locate the complete Trojan payload address and, therefore, 
be relatively harder to make sense out of a more tinier part of the payload. Furthermore, as shown and explained 
in the previous section (Fig. 6a,b), the DNA sequences remain much more natural for smaller fragment sizes. 
Based on this knowledge, a potential hacker might prefer to choose a smaller fragment size. However in reality 
this approach will leave more tags as low fragment size translates to increase in number of tags. Therefore, this 

Figure 7.   DNN-based detection of trigger samples amongst genuine E. coli plasmids: hyper-parameter 
optimization (no encryption or retention) using (a) 1 and (b) 2 hidden layers.

Figure 8.   DNN-based detection of trigger samples amongst genuine E. coli plasmids: the impact of nucleotide 
retention (a) without encryption and (b) with encryption and with prior knowledge of the encryption key. 
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approach can support the CNN model, which can learn from the tag patterns and the result in Fig. 8a illustrates 
this.

On the other hand, in a real world scenario it will be a significant challenge to design an optimal model which 
can account for many variations of tags. Interestingly, we observe that for higher fragment sizes, the accuracies 
deteriorate very slightly until there is a higher retention number as well (Fig. 8a). This indicates that the model 
proposed in the article does not completely rely on learning the tag patterns. Furthermore, the higher retention 
number means more number of nucleotides (from the original sequence inside the tags) which will result in 
more variations and harder detection. However, we note that for fragment size 1 the accuracies are very high 
for all retention numbers. Overall, the accuracies start to deteriorate significantly for the higher fragment sizes 
with higher retention numbers (Fig. 8a). To analyze the impact of encryption on the Trojan address payload 
detection, we consider fragment size 1 with no retention and retention size 1 as we obtain the best accuracy for 
these options. We apply encryptions with various key values (keyǫ{10, 20, 30, 40, 50}) . In Fig. 8b, the results show 
that there is no significant change in accuracy when applying various encryption keys. Please note that both the 
training and test data are using the same key value for encryption.

We will now further analyze the impact of encryption in detection. In Fig. 9 we present the detection accu-
racies where the rojan payload address in the test data is encrypted with a different key. The model is trained 
with a particular key which is tested by all the data encrypted by the remaining keys. For example, the model 
trained by the data encrypted using key = 10 will be tested by all the test data that are encrypted by other keys, 
i.e. keys = {20, 30, 40, 50}. Similarly, the model for key value 20 will be tested by all the test data encrypted by the 
keys = {10, 30, 40, 50}. In Fig. 9 we plot the average accuracy against the different key values used for training 
the model. From this result, we conclude that a higher accuracy can be achieved for encrypted payloads without 
retention even if the key is unknown. However, the accuracy will deteriorate if we apply retention along with 
encryption. This is because the higher retention will result in the DNA sequence having a more natural pattern, 
which makes it more difficult to detect.

Wet lab experiments.  In the previous sections of this article, we have described how we can disguise the 
address payload for a Trojan attack to make the payload insert indistinguishable compared to a natural DNA 
sequence. Furthermore, applying encryption and steganography techniques will make it harder to detect the 
hybrid Trojan attack. However, it is also important to address how practical it is to synthesize such a DNA 
sequence. In our wet-lab, we constructed the Trojan payload sequences both without and with encryption and 
steganography (Figs.  A.1 and A.2) via commercial gene synthesis with ease. These sequences were prepared 
and received already ligated into bacterial plasmid vector. These plasmids, pNOSTEG and pSTEG, were easily 
cloned into E. coli cells, propagated and purified in abundance (Fig. A.3). The Trojan payloads in both plasmids 
were both DNA sequenced completely and with 100% accuracy, with a sample chromatogram from pNOSTEG 
shown in Fig. A.4. We can assume that constructing natural DNA sequences will be easier and more achievable 
compared to synthesizing artificial DNA with unnatural sequences, due to possible runs and repeats of DNA 
bases that may cause problems in the synthesis reaction. As a result, there will be a need to construct a DNA that 
can allow multiple fragment inserts with the target information of the IP address and port number of the remote 
hacker’s machine. With various techniques emerging for generating, producing or inserting multiple DNA 
sequences into carrier or expression systems, e.g., in-fusion cloning, gene assembly or multiple fragment clon-
ing, hackers can bypass any gene synthesis issues by using a combination of these techniques to generate their 
final Trojan attack sequence. As such, our work presents valuable detection against very feasible attack scenarios.

Data availability
All data used in the manuscript are available in the Addgene repository (https://​www.​addge​ne.​org/), where the 
DNA sequences of type plasmid of E. coli bacteria are collected for our experiments using web scraping. This 
data is also available as a supplementary document (all_plasmid_dna.txt). The Programming code developed to 

Figure 9.   DNN-based detection of trigger samples amongst genuine E. coli plasmids: the impact of nucleotide 
retention, no knowledge of the encryption key.

https://www.addgene.org/
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conduct the experiments (also the scripts for the data collection from Addgene) is freely available in the publicly 
available git repository at the following URL: https://​github.​com/​sible​eislam/​trojan-​malwa​re-​in-​bio-​cyber-​attac​
ks. For any further query related to data availability please contact using the email of the primary author (siblee-
islam@gmail.com) of the manuscript.
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