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Abstract
In this study, a support vector regression (SVR) approach based on a radial basis function was used for estimating

sugarcane yield in the Wonji-Shoa sugarcane plantation (Ethiopia) combining Landsat 8 (L8) and sentinel 2A (S2A) data.

Vegetation Indices(VIs) involving visible, near-infrared, and shortwave infrared bands were calculated from the L8 and

S2A sensor observations, and seasonal cumulative values were computed for the period June to October in the 9th month

and June to November in the 10th month of the year for 2016/17 to 2018/19 cropping seasons. Sugarcane yield was

predicted using the SVR, Multilayer perceptron neural network (MLPNN), and Multiple linear regression (MLR) methods.

Then, a tenfold cross-validation approach was implemented for the performance evaluation. The results showed significant

correlations between sugarcane yield and cumulative values of VIs computed during the 10th month in the growing season.

The results also revealed that the estimation accuracy of sugarcane was better using the combined L8 and S2A

(RMSE = 12.95 t/ha, and MAE = 10.14 t/ha) than using the S2A data alone (RMSE = 14.71 t/ha, and MAE = 12.18 t/ha).

Comparing SVR results with MLPNN and MLR disclosed that SVR outperforms the other two models in terms of

prediction accuracy. Overall, this study demonstrated the successful application of the SVR in developing a model for

Sugarcane yield estimation and it may provide a guideline for improving the estimations of sugarcane in the study area.

Keyword Landsat 8 � Sentinel 2A � Sugarcane � Support vector regression � Wonji-Shoa � Yield estimation

Introduction

Sugarcane (Saccharum officinarum L.) is a perennial crop

widely grown in the tropical and subtropical regions

(Miphokasap & Wannasiri, 2018) and it has become one of

the important crops which supports the economy in many

developing countries (Abdel-Rahman & Ahmed, 2008).

Sugarcane is one of the leading biofuel crops used for

producing the highest renewable energy outputs and

biofuel yield per unit area. It has the lowest production

costs and smallest ecosystem ‘carbon payback times’ as

compared to other crops used for biofuel energy production

(Cuadra et al., 2012; Pagani et al., 2017). Predicting sug-

arcane yield before harvest and understanding its yield

potential is important to manage production and maximize

milling efficiency (Gunnula et al., 2012) as well as support

marketing strategies and industry competitiveness(Pagani

et al., 2017).

Due to their repetitive and synoptic coverage over a

large area, remote sensing data have been recognized as an

effective tool for estimating crop yield (Ban et al., 2017;

Ngie & Ahmed, 2018). In this regard, several remote

sensing-based approaches such as empirical regression

(Franch et al., 2015, 2019; Johnson et al., 2016), inte-

grated agro-meteorological spectral parameters (Huang

et al., 2014; Saeed et al., 2017), semi-empirical radiation

use efficiency model (Liu et al., 2010; Marshall et al.,

2018; Sibley et al., 2014) and assimilating and spectral data

assimilation with crop model (Huang et al., 2015; Li et al.,

2015) have been developed and used to crop yield
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estimation. However, empirical regression methods are the

most widely used remote sensing approaches (Becker-

reshef et al., 2010; Franch et al., 2019) which are based on

Vegetation Indices (VIs) such as seasonal maximum value

(Begue et al., 2010; Nuarsa et al., 2011), seasonal mean

value (Svotwa et al., 2014), or cumulative value for the

growing season (Begue et al. 2010; Lai et al., 2018).

Several studies that were carried out in crop yield esti-

mation using VIs (Lai et al., 2018; Mutanga et al., 2013)

have shown the importance of cumulative NDVI over the

growing season to estimate crop yield. For instance, Begue

et al. (2010) developed regression models using the max-

imum NDVI and integrated NDVI, to estimate sugarcane

yield. They found that maximum NDVI and integrated

NDVI extracted from SPOT4 and SPOT5 time series dur-

ing the cropping season provided similar results. Besides,

Mulianga et al, (2013) used weighted NDVI values

extracted from MODIS products to estimate sugarcane

yield. On the other hand, Rahman & Robson (2016)

developed a regression model using maximum GNDVI

from Landsat data to estimate sugarcane yield. Similarly,

Mutanga et al., (2013) carried out a study at the local level

using cumulative NDVI of the pre-harvest season and

found that the best acquisition period of satellite images for

estimating sugarcane yield is about two months preceding

the beginning of harvest.

Sugarcane yield could be estimated using VIs calculated

from individual sensor data (Robson et al., 2012; Mutanga

et al., 2013; Mulianga et al., 2013). However, combing data

from multi-source satellite data can provide improved

information and overcome various limitations of data from

individual sensors (He et al., 2018; Helder et al., 2018). It

was reported that the accuracy of crop monitoring and yield

estimation was better when using VIs derived from multi-

source data than using VIs from one image data alone

(Amorós-lópez et al., 2013; Skakun et al., 2017, 2019; He

et al., 2018). Thus, using both Landsat 8(L8) and Sentinel

2A (S2A) could help to acquire relatively high spatial

resolution (10–30 m) multispectral imageries with a tem-

poral resolution of 3–5 days (Griffiths et al., 2019).

Sugarcane is the main cash crop in the upper and middle

Awash irrigation basin of Ethiopia. The accurate estimation

of yield for this crop is important for agricultural man-

agement and production in the area. Although, various

studies have described the use of remotely sensed data for

estimating sugarcane yield (Lofton et al., 2012; Mutanga

et al., 2013; Rahman & Robson, 2016), yield estimation in

Ethiopia is based on conventional techniques acquired

through ground-based field visits and reports. However,

such reports are often subjective, expensive, and prone to

large errors (Reynolds et al., 2000) and data compilation

and analysis are only completed several months after har-

vest (Dempewolf et al., 2014). As a result, the use of these

data for decision-making and planning regarding produc-

tion shortages or surplus is limited. Reliable crop yield

estimation is critical for developing effective agricultural

and food policies at a local, regional, and global level (Lai

et al., 2018). In this respect, remotely sensed data becomes

an important tool to provide better yield estimation. Using

satellite images that can be constantly downloaded, crop

yield forecasts can be produced earlier than conventional

estimates and can be updated often throughout the grow-

ing season (Svotwa et al., 2013). In this regard, multi-

source image data with high spatial and temporal resolu-

tions can provide an opportunity to estimate sugarcane

yield efficiently and effectively over large areas.

In this study, we used a support vector regression (SVR)

approach using combined sensor observations from L8 and

S2A vegetation indices (VIs) for predicting ratoon sugar-

cane yield before the harvest period. Series of VIs

involving visible, NIR, and SWIR bands were calculated

from the combined sensor observations and ratoon cane

yield was predicted using yield data and the SVR based on

a non-linear kernel Radial basis function (RBF). Studies

have demonstrated that SVR is more robust than artificial

neural networks owing to its efficient and good general-

ization capability performance (Miphokasap & Wannasiri,

2018; Chen et al., 2016). It has been shown quite recently

that crop yield can be predicted using SVR (Li et al., 2009;

Chen et al., 2016). SVR with RBF kernel function was used

in their study and the authors stated that the model was able

to predict crop yield better (Li et al., 2009; Chen et al.,

2016).

To ascertain the robustness of the SVR model, a com-

parative analysis between SVR and other techniques

(MLPNN and MLR) was used in this study. The models

were expected to be useful for sugarcane estates to estimate

spatial variability in crop yield using combined L8 and

S2A images of at least two–three months before the

beginning of harvest season. Therefore, the objectives of

this study were to (i) investigate the relationships of sug-

arcane yield with spectral vegetation indices (VIs) extrac-

ted from Landsat 8(L8) and sentinel 2A (S2A), (ii) develop

a sugarcane yield estimation model using SVR with the

combined S2A-L8 data, and (iii) evaluate whether SVR

model can effectively estimate sugarcane by comparing

with the model estimates using MLR and MLPNN. The

rest of the manuscript is organized as follows. Section 2

describes the proposed materials and methods. In Sects. 3

and 4, the results and discussion of the proposed model

using a case study of the sugarcane yield dataset are pre-

sented. The conclusion is stated in Sect. 5.
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Materials and Methods

Study Area

The area selected for this study was the Wonji-Shoa sug-

arcane plantation, which is the oldest and pioneer in the

history of Ethiopia’s sugar industry, producing sugar since

1954 (Girma & Awulachew, 2007). This plantation is

located at 8�300N, 39�200E; about 108 km southeast of

Addis Ababa, Ethiopia (Fig. 1). The average elevation of

the site is 1540 m above the mean sea level (Firehun et al.,

2013), and it covers a 12,000 hectares area (Degefa &

Saito, 2017). The total size of out-growers and the estate

grow sugarcane farm areas on 7000 ha and 5000 ha,

respectively Furrow irrigation system is used to water a

total land area of 7022.24 ha out of which 1118.67 ha, is

owned by seven local cooperative farmer associations. The

study area has a semi-arid climate and receives a mean

annual rainfall of 831.2 mm, mean annual maximum and

minimum temperatures of 27.6 �C and 15.2 �C, respec-

tively (Girma & Awulachew, 2007). Furthermore, the area

of the sample fields (ha) and other details are shown in

supplementary Table B1.

Sugarcane Yield Statistics

Field level yield statistics [tons of stalks per hectare (t/ha)]

for 2nd and 3rd ratoon cane crops in the study area were

collected from the Wonj sugarcane research and develop-

ment center for 2016/17 to 2018/19 cropping seasons. In

this study, sugarcane fields ratoon in February and har-

vested 12 to 16 months, were selected with sizes ranging

Fig. 1 Location map of the

study area, superimposed on an

NDVI image of Sentinel 2A

(10/21/2016). The network of

sample fields where field-level

yield statistics were collected is

highlighted in purple (hatched

fields)
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from 2 to 24.6 ha. In the study area, average yields were

around 102 t/ha. The average age at harvest obtained for

ratoon cane was 16 months. In the study area, harvest starts

around November and continues until June, depending on

the onset of first precipitations in summer. Planting takes

place between December and June. Thus, field-level ratoon

cane production statistics involved about 62, 68, and 57

sample plots in 2016/17, 2017/18, and 2018/19, respec-

tively were used for developing an empirical yield esti-

mation model. The cadastral map of the study area was

used to extract zonal average statistics of the sample fields

using their field number.

Satellite Image Acquisition and Pre-Processing

S2A and L8 Data

In this study, 30 multi-temporal L8 and 41 S2A images

were acquired over the study area from the beginning of

June to the end of November 2016–2018 (Table 1). The L8

images were downloaded from the USGS’ Earth Explorer

portal (https://earthexplorer.usgs.gov/), while the S2A

images were obtained from the ESA’s Sentinels data hub

(https://scihub.copernicus.eu/dhus/ #/home). The L8 and

S2A satellites are in circular sun-synchronous orbits with

185 km and 290 km swath widths, with 16-day and 10-day

repeat cycles, respectively (Roy et al., 2019). The L8 has 9

bands with six of them (blue, green, red, NIR, SWIR-1,

SWIR-2 designed for land applications at 30 m spatial

resolution (Irons et al., 2012). S2A has 13 spectral bands

with four bands at 10 m (visible and near-infrared), six

bands at 20 m (red-edge and shortwave infrared), and three

bands at 60 m spatial resolution (atmospheric correction)

(Drusch et al., 2012). Approximately equivalent spectral

bands that were used in this study are bands 2(blue), 3(-

green), 4 (Red), 5 (NIR), 6(SWIR 1), and 7(SWIR 2) from

Landsat-8, and bands 2(blue), 3(green), 4 (Red), 8 (NIR),

11(SWIR 1), and 12(SWIR 2) from Sentinel-2A.

Earlier studies suggested that the best image acquisition

date for predicting sugarcane production is about two

months prior to the beginning of harvesting time (Mutanga

et al., 2013; Ueno et al., 2005) which supports an approach

for sugarcane yield estimation using VIs from eight to ten

months in the growing season(Almeida et al., 2006). For

evaluating the capability of spectral VIs to estimate

sugarcane yield, this study assumed that the most important

relationship between VIs and sugarcane yield statistics

occurred during the 9th and 10th months in the growing

period. The seasonal cumulative values were then calcu-

lated from the multi-temporal VIs for five to six extended

months surrounding the prediction dates. Figure 2

describes sugarcane phenological development in relation

to the dates of image acquisition for the present study.

Image Pre-Processing

The pre-processing of images in this study included geo-

metric co-registration, atmospheric correction, and adjust-

ment for surface reflectance differences. Image registration

is required to combine time series L8 and S2A data (Storey

et al., 2017; Yan et al., 2016). Hence, to confirm spatial

consistency between L8 and S2A data sets, L8 images were

registered to their corresponding S2A images using an

automated image-to-image registration approaches based

on a set of ground control points (GCPs) selected from

Google Earth described by (Forkuor et al., 2017). S2A

images were then resampled to 30 m resolution using the

bilinear resampling technique (Zhang et al., 2018).

Atmospheric correction is required to implement the

yield estimation model (Griffiths et al., 2019) and both

sentinel-2A and Landsat-8 sensors’ top of atmosphere

(TOA) reflectance data were corrected to surface reflec-

tance using the same algorithm to minimize biases that

might occur if different algorithms were used (Zhang et al.,

2018). The L8 TOA reflectance L1T and S2A TOA

reflectance (L1C) products were atmospherically corrected

using image-based Dark Object Subtraction (DOS1) algo-

rithm with the Semi-automatic Classification Plugin (SCP)

V 6.2.9 (Congedo, 2016) in QGIS 3.6.3 software. To

improve the consistency between the S2A and L8 image

data, the L8 surface reflectance was then adjusted with the

S2A surface reflectance using the band-specific surface

reflectance ordinary least square regression parameters

stated in Zhang et al. (2018).

Vegetation Indices and the Seasonal Composites

In this study, the potential of satellite images for estimating

sugarcane yield was evaluated using VIs extracted from

multi-temporal L8 and S2A data. The normalized

Table 1 Sugarcane ratoon date

and associated image

acquisition dates

Crop year Ratoon date Image acquisition dates Number of images

L8 OLI S2A MSI

2016/17 February 2016 June to the end of November 2016 10 13

2017/18 February 2017 June to the end of November 2017 10 14

2018/19 February 2018 June to the end of November 2018 10 14
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difference vegetation index (NDVI) (Rouse et al., 1973),

enhanced vegetation index (EVI) (Liu & Huete, 1995), soil

adjusted vegetation index (SAVI) (Huete, 1988), Modified

soil adjusted vegetation index (MSAVI) (Qi et al., 1994),

Simple ratio (SR) (Jordan, 1969), Green Normalized dif-

ference vegetation index (GNDVI) (Gitelson et al., 1996),

and Short wave infrared ratio (SIRI) (Henrich et al., 2009)

were selected to analyze the relationships between VIs and

sugarcane yield. The QGIS software was used to compute

the VIs from the S2A and L8 images. Then, seasonal

cumulative values were calculated for the period June to

October in the 9th month and June to November in the 10th

month for 2016/17 to 2018/19 cropping seasons. The spa-

tial mean values of each seasonal composite within each

farm field were then calculated using zonal statistics tools

in ArcGIS 10.5 software and used for sugarcane yield

estimation modeling. The data were also normalized and

scaled to the range of 0 to 1 using min–max scaling Eq. (1),

to securely apply the transfer function in the hidden (sig-

moid) and output layer (linear) of MLPNN.

X̂ ¼ Xi � Xmin

Xmax � Xmin

; ð1Þ

where X̂ is the normalized value, Xi is the input variable

x with ith’ training case, and Xmax and Xmin are maximum

and minimum values of input variable, respectively.

Model Development and Performance Metrics

Support Vector Regression (SVR)

In this study, a machine-learning (ML) algorithm known as

Support vector machines (SVMs) was applied to estimate

sugarcane yield. SVMs are a supervised ML technique,

which is nonlinear and is used for both classification and

regression problems (Chen & Wang., 2007). The theoreti-

cal basis of the SVMs is the principle of Structural Risk

Minimization (Vapnik, 1998) and support vector regression

(SVR) is the extension of SVMs when they are applied to

deal with regression problems (Chen & Wang., 2007).

Given a set of the training dataset,

D ¼ ðxi; yijxi 2 RH ; y 2 R; i ¼ 1; 2; . . .nf g, where, xi is a

multivariate input consisting of all the independent

variables,yi is the corresponding scalar output, and n is the

number of the training samples.

The SVR can be expressed by the following formula:

yi ¼ f x;xð Þ ¼
X

x:ui xð Þ þ b ð2Þ

where x is the weight vector corresponding to ui xð Þ;ui xð Þ
is nonlinear transformations mapping function, and b is a

constant threshold. The parameters x and b need to be

estimated. The variables yi—a vector of values for the field

level sugarcane yield statistics [tons of stalks per hectare (t/

ha)] for the period 2016/17–2018/19, x–matrix of variables

consist of NDVI, EVI, SAVI, MSAVI, GNDVI, SR and

SIRI corresponding yi.

Flattens in the regression model means that one is

seeking a small x: The value of x and b can be estimated

using the structural risk minimization principle (Lagat

et al., 2018) and can be expressed as;

RðCð Þ ¼ 1=2 xk k þ C
1

n

Xn

i¼1

Le f x;xð Þð Þ
 

ð3Þ

The different type of loss function termed an e-insensi-
tive loss is defined as:

Le f xi;xð Þð Þ ¼ 0; if yi � f xi;xð Þ\ej
yi � f xi;xð Þj j; otherwise

�
ð4Þ

where e is a predetermined value, Le x;xð Þ is the empirical

error measured by e-insensitive loss function.

SVR estimates weights w by minimizing the following

regularized functional (Verrelst et al., 2012):

1=2 xk k2þC
Xn

i¼1

niþ n�I
� �

ð5Þ

With respect to w and n�I
� �

n
i ¼ 1, constrained to:

yi � f xi;xð Þ � b� eþ ni
f xi;xð Þ þ b� yi � eþ n�I
ni; n�I � 0

8
<

: ð6Þ

where ni and n�I are positive slack variables to deal with

training samples with a prediction error larger than e
(e[ 0), and C is the penalization parameter applied to

these. Note that C controls the trade-off between the

minimization of errors and the regularization term, thus

controlling the generalization capabilities.

Fig. 2 Sugarcane phenological

development and image

acquisition scheme
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The SVRs problem can be easily solved in its dual

formulation using standard quadratic programming proce-

dures (Verrelst et al., 2012), which yields the final solution:

Maximize W (a)

byi ¼
Xn

i¼1

ai� a�i
� �

k xi;xj
� �

þ b; ð7Þ

where K is a kernel function that is expressed as the dot

product of mapped examples k xi; xj
� �

¼ hu xið Þ;uðxjÞi.
Some of the kernel functions are the linear, the polynomial,

and the Gaussian function (RBF) kernel. A Gaussian radial

basis kernel function (RBF) (Nanda et al., 2018; Zhang &

Huihua, 2013) was used in this study, and can be expressed

by the following equation:

k x; x0ð Þ ¼ exp � x� xk k2

2r2

 !
ð8Þ

where x� x0k k2 recognized as the squared Euclidean

distance between the two feature vectors and sigma (r) is
the spread of the distribution used in the kernel function.

Hence, a grid search algorithm with a cross-validation

strategy was implemented to find the optimal parameters

for SVRs (See Appendix A). For statistical modeling, we

used the open-source R 3.6.2(R. Core Team, 2019) statis-

tical computing environment with the caret package (Kuhn,

2008).

Performance Metrics

The performance of the SVR model was evaluated using

the k-fold cross-validation (in this case tenfold cross-vali-

dation) approach. This procedure splits the original data

randomly into k partitions, folds of equal size (Jing et al.,

2017). The performance of the SVR in estimating sugar-

cane yield was then compared against the multiple linear

regression (MLR) model (Noi et al., 2017; Oguntunde

et al., 2018) and the multilayer perceptron neural networks

(MLPNN) with backpropagation algorithm (Anitha &

Chakravarthy, 2019; Panda et al., 2010). To analyze the

performance of the regression models, three accuracy

metrics of regression models were used. These are: root

mean squared error (RMSE), mean absolute error (MAE),

and R-square (R2).

Results

Characteristics of Vegetation Indices Profiles

An example used to illustrate smooth VIs profiles shows

the temporal pattern characteristics of sugarcane planta-

tions for the 2016/17 growing season (Fig. 3). The

cropping calendar of sugarcane in the study region varied

from 12 to 16 months and the temporal intensity of VIs

responses from sugarcane fields generally characterized

seasonal changes of sugarcane crop phenology. This sea-

sonal information confirmed the effectiveness of using

spectral indices for tracking phenological events of sugar-

cane crops and was useful for assessing the crop growth

conditions and yield estimates. The temporal profiles of

spectral data of the sugarcane crop showed peak values

surrounding the day of the year (DOY) 232 and 274

(Fig. 3), indicating the grand growth dates of the sugarcane

crop. Based on the sugarcane phenology analysis, we found

that the maximum intensity of the NDVI (upper bound) of

L8 during the grand growth stage of the sugarcane crop

was 0.63, while that of the S2A was 0.57. The maximum

EVI value of the L8 was 0.61, and that of the S2A was

0.48.

Relationship Between Spectral Vegetation
Indices and Sugarcane Yield

The correlation coefficients for sugarcane were calculated

for cumulative values of selected VIs in the L8 and S2A

images. Among L8 9th month cumulative values, EVI,

NDVI, SAVI, GNDVI, and SIRI exhibited a better corre-

lation with sugarcane yield (0.36 B R2 B 0.57) for the

2016/17 cropping season. GNDVI and SIRI showed a good

agreement in 2018/19 with R2 of 0.67 and 0.68, respec-

tively. Among the 10th month cumulative values of VIs,

the best performance was obtained for NDVI, MSAVI,

GNDVI, and SIRI with an R2 between 0.52 and 0.68 in the

2016/17 cropping season. Good correlations were found

between L8 VIs and sugarcane yield for the 2017/18 and

2018/19 cropping seasons (R2 C 0.42). SIRI and MSAVI

showed a lower performance (R2 B 0.26) for one cropping

season. Compared to the 9th-month cumulative values,

10th-month values showed a relatively better relationship

with ratoon cane yield in the 2017/18 and 2018/19 crop-

ping seasons (See Supplementary Table B2).

Considering, the relationship between the S2A spectral

VIs and sugarcane yields, strong correlations were found

between EVI, NDVI, SAVI, and GNDVI (R2 C 0.53,

p\ 0.05) during the 9th month in the growing period for

2016/17 cropping season. Except for SR and GNDVI, there

was no significant correlation between S2A VIs and sug-

arcane yield for the 2017/18 and 2018/19 cropping periods.

Considering the 10th month period, better correlations were

found between S2A VIs and sugarcane yield from the

2016/17—2018/19 cropping period (0.44 B R2 B 0.76,

p\ 0.05). Compared to the 9th-month cumulative values,

10th-month values showed a relatively better relationship

with ratoon cane yield. Compared to L8 VIs, the
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correlation coefficients of S2A VIs with ratoon cane yield

were higher (Supplementary Table B3).

The results showed that VIs based on different combi-

nations of visible, NIR and SWIR part of the spectrum was

significantly related to sugarcane yield. However, the

majority of VIs used in this study tend to explore the NIR

and red part of the spectral bands, while some others used

either green or SWIR bands (e.g., GNDVI and SIRI). In

this regard, the coefficient of determination values varies

from 0.1 to 0.76, where GNDVI, SR, NDVI, and SIRI were

strongly correlated with sugarcane yield. This is mainly

because, each VI was initially developed in order to reduce

atmospheric noise, soil background effect, or to improve a

specific canopy reflectance parameter, etc. Hence, several

studies combine spectral data from NIR and red bands in

different ways according to their specific objectives (Xue

& Su, 2017).

Estimation of Sugarcane Yield Using Multi-
Temporal S2A Vegetation Indices Data

In this section, the cumulative value of VIs derived from

the S2A data was used as a variable to develop the sug-

arcane yield estimation model using the MLR, MLPNN,

and SVR algorithms. The results are presented in Table 2.

There was a significant relationship between predicted and

observed yield across all three years. Predictive perfor-

mance varied between the three growing years and across

yield estimation algorithms. The comparisons of model

performance indices revealed that the SVR algorithm gave

better predictive accuracy than MLR and MLPNN. MLR

and MLPNN models gave poor results for both the 9th and

10th month periods. During the first period (9th month), the

SVR provides the best performance with a coefficient of

determination (R2) and RMSE values of 0.78 and 18.9 t/ha

in 2016/17, 0.63, and 21.19 t/ha in 2017/18, 0.79 and

15.12 t/ha in 2018/19, respectively. The value of MAE

ranged from 12.37 to 16.65 t/ha. There was a wider range

of predicted yield values in 2017/18 than in 2016/17 and

2018/19, probably because of the quality of the image data.

During the later yield estimation (10th month), the best

results were also obtained with the SVR model. The R2 and

RMSE values were 0.62 and 14.74 t/ha for 2016/2017, 0.74

and 16.74 t/ha for 2017/18, 0.77 and 12.65 t/ha for

2018/2019, respectively. The MAE ranged between 9.65

and 13.73 t/ha.

The Combined Use of S2A and L8 Data
for Sugarcane Yield Estimation

The predicted yield of sugarcane was obtained after the L8

and S2A data were combined. The relationship between the

measured and predicted yields is shown in Fig. 4 and

Table 3. There was a significant relationship between

estimated and observed sugarcane yield across all three

years (Table 3). The estimation accuracies of our results

varied between growing years, prediction dates, and among

the tested regression models. The comparisons of model

performance indicators confirmed that the results were not

good when using MLR and MLPNN models (Table 3). In

this respect, using models based on MLR R2 values ranged

from 0.47 to 0.78 during the 9th month in the growing

period for the 2016/17–2018/19 cropping season. The

ranges of RMSE and MAE were 12.31 to 25.5 t/ha and

10.78 to 20.42 t/ha, respectively, for the same period.

Satisfactory results were obtained during the 10th month

with the RMSE and MAE of yield models, mean values

equaled 17t/ha and 14.06 t/ha, respectively, for the same

Fig. 3 Smooth VIs profiles of sugarcane plantation in the study area: a Landsat 8, b Sentinel 2A

Journal of the Indian Society of Remote Sensing (January 2022) 50(1):143–157 149

123



Table 2 Performance of the

MLR, MLPNN and SVR

models based on S2A data for

predicting sugarcane yield

Year Prediction date MLR MLPNN SVR(radial)

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

2016/17 9th month 0.53 23.44 18.99 0.69 20.12 17.3 0.78 18.9 16.59

2017/18 9th month 0.37 32.55 27.67 0.56 26.02 23.86 0.63 21.19 16.65

2018/19 9th month 0.45 33.64 28.62 0.75 19.73 16.45 0.79 15.12 12.37

Average 0.45 29.87 25.09 0.66 21.95 19.2 0.73 18.4 15.2

2016/17 10th month 0.54 22.63 17.73 0.61 14.73 13.16 0.62 14.74 13.17

2017/18 10th month 0.57 25.36 22.08 0.78 19.59 17.6 0.74 16.74 13.73

2018/19 10th month 0.59 25.63 19.37 0.76 17.86 14.77 0.77 12.65 9.65

Average 0.57 24.54 19.73 0.72 17.39 15.18 0.71 14.71 12.18

Fig. 4 Relationship between observed and predicted sugarcane yield for validation analysis using the SVR model based on the combined S2A-L8

data. Note: The solid line is a one-to-one line
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period. The same ranges of performance indicators were

obtained in the case of models based on MLPNN, with R2,

RMSE, and MAE ranging from 0.43 to 0.85, 10.63 to 26.82

t/ha and 8.73 to 22.86 t/ha, respectively, during the 9th

month in the growing period. Satisfactory values of RMSE

and MAE (Mean value; RMSE = 15.59 t/ha and MAE =

12.85 t/ha) were obtained during the 10th month.

The comparisons of model performance indices,

demonstrated that the results were quite high when using

S2A-L8 data on the SVR algorithm than MLR and

MLPNN (Table 3). During the first period (9th month), the

SVR provides the best performance, with a coefficient of

determination values, ranged from 0.53 to 0.84. The RMSE

and MAE values were 7.64 and 5.51 t/ha for 2016/2017,

21.43, and 17.81 t/ha for 2017/18, 13.92, and 10.57 t/ha for

2018/2019. However, the deviation between the predicted

and observed sugarcane yield in 2017/2018 was larger than

that for the other years (Table 3) and this suggests that the

models did not capture well the extreme input values.

During the second period (10th month), the SVR pro-

vides the best estimates. During this period, the mean

RMSE and MAE are slightly improved, respectively, from

14.33 t/ha to a minimum of 12.95 t/ha and from 11.29 t/ha

to a minimum of 10.14 t/ha (Table 3). Relatively good

sugarcane yield estimation performance was obtained in

the 10th month, compared with the 9th-month forecasts.

This suggests that the sugarcane crop status in the 10th

month is determining the final sugarcane yield in the study

area.

The results of sugarcane yield estimation using the

cumulative value of selected L8-S2A indices as input for

MLR, MLPNN, and SVR models are shown in Table 4. In

overall comparison, higher statistical results were achieved

by using the cumulative value of selected VIs as input for

SVR than using the same indices as input for MLR and

MLPNN for the estimation of sugarcane yield (Table 4).

Compared with the full data sets, relatively higher accu-

racies were observed using 9th month cumulative value of

selected VIs as input for the SVR model (R2 = 0.85,

RMSE = 7.16 t/ha, MAE = 5.22 t/ha for 2016/17,

R2 = 0.63, RMSE = 18.7 t/ha, MAE = 13.65 for 2017/18;

R2 = 0.67, RMSE = 13.21 t/ha, MAE = 8.74 t/ha for

2018/19). The difference in R2, RMSE and MAE between

full data sets and selected variables used as input for SVR

model were 0.01, 0.48 t/ha, and 0.29 t/ha for 2016/17, 0.04,

2.73 t/ha, 4.16 t/ha for 2017/18, 0.14, 0.71 t/ha and 1.83

t/ha for 2018/19, respectively. The results also revealed

that SVR using 10th month cumulative value of selected VI

as input resulted in higher statistical results (R2 = 0.83,

RMSE = 8.39 t/ha, MAE = 6.38 t/ha for 2016/17;

R2 = 0.75, RMSE = 15.36 t/ha, MAE = 12.57 for 2017/18;

R2 = 0.77, RMSE = 10.47 t/ha, MAE = 7.76 t/ha for

2018/19). Compared with the full data sets, the result for

selected VIs shows a slight improvement. In this respect,

the difference in R2, RMSE and MAE between the full data

sets and selected variables used as input for the SVR model

were 0.02, 2.03 t/ha and 2.12 t/ha for 2016/17, 0.01, 1.44

t/ha and 1.21 t/ha for 2017/18, 0.1, 1.17 t/ha, and 0.37 t/ha

for 2018/19, respectively.

Discussion

In this study, seven VIs were used to analyze the rela-

tionships of VIs with sugarcane yield for estimating sug-

arcane production in the study area. The results showed

that cumulative values of multi-temporal L8 VIs were

significantly correlated with cane yield and the current

results in our study confirmed previous findings (Begue

et al. 2010; Mulianga et al., 2013 and Morel et al., 2014).

Previous studies in sugarcane yield estimation have been

published using Landsat TM and ETM ? and have yielded

mixed results. For instance, Ueno et al. (2005) reported

poor correlations between sugarcane yield and VIs

extracted from Landsat imageries. In contrast, the finding

of Almeida et al. (2006) confirmed the usefulness of

Landsat data in estimating sugarcane cane yield. Similar to

L8, seven VIs were used to analyze the relationships

Table 3 Performance of the

MLR, MLPNN and SVR

models based on combined L8-

S2A data for predicting

sugarcane yield

Year Prediction date MLR MLPNN SVR(radial)

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

2016/17 9th month 0.78 12.31 10.78 0.85 10.63 8.73 0.84 7.64 5.51

2017/18 9th month 0.47 25.5 20.42 0.43 26.82 22.86 0.59 21.43 17.81

2018/19 9th month 0.54 18.01 14.99 0.67 14.25 11.56 0.53 13.92 10.57

Average 0.59 18.61 15.39 0.65 17.23 14.38 0.65 14.33 11.29

2016/17 10th month 0.68 12.27 9.17 0.66 11.46 9.86 0.81 10.42 8.5

2017/18 10th month 0.56 19.36 16.53 0.72 19.93 16.08 0.74 16.8 13.78

2018/19 10th month 0.42 19.36 16.48 0.71 15.4 12.62 0.68 11.64 8.13

Average 0.55 17.00 14.06 0.69 15.59 12.85 0.74 12.95 10.14
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between cane yield and S2A VIs. The results from this

study demonstrated strong correlations between S2A VIs

and cane yield during the 10th month (Table 3). Since S2A

is a newly launched satellite, no empirical studies are

demonstrating the usefulness of this imagery in estimating

sugarcane yield at the field level. However, earlier studies

have demonstrated that it could be superior to other

Landsat-like multispectral imageries (Davis et al., 2019;

Korhonen, et al., 2017). In their study on the comparison of

S2A and L8, Davis et al. (2019) reported that S2A VIs has

a slightly higher correlation than L8.

The results demonstrated that the VIs based on different

combinations of visible, NIR and SWIR spectral bands

were significantly related to sugarcane yield, where

GNDVI, SR, NDVI, and SIRI were strongly correlated

with sugarcane yield. The results demonstrated that

GNDVI more accurately estimates sugarcane yield than

other VIs which confirmed findings of previous studies

(Robson et al., 2012). In their study on the sugarcane,

Rahman & Robson (2016) found that the GNDVI per-

formed better than the other VIs, which is in agreement

with our results. Moreover, the GNDVI is an optimized

index designed to reduce the effects of saturation (Gitelson

et al., 1996). This increases the sensitivity of the GNDVI

and explains the relatively good results obtained in this

study. The NDVI and SR include the NIR and Red bands.

The decrease or increase in these spectral bands influences

the value of the VIs, which was highly related to sugarcane

yield. Moreover, the VI based on the SWIR part of the

spectral bands has also revealed the potential use for esti-

mating sugarcane yield. This is due to, VIs extracted using

SWIR spectral bands carrying water and nutrient content

such as nitrogen and carbon information (Laurin et al.,

2016). Hence, SIRI extracted from SWIR bands improves

the estimation accuracy of sugarcane yield.

The findings of this study demonstrated that the multi-

variate approach using the seasonal composites of S2A VIs

and SVR algorithm provides a reasonable predictive

accuracy. In this regard, Li et al. (2009) and Chen et al.

(2016) have used SVR approaches to crop yield and found

that this method can be used to improve the estimation

accuracy of crop yield. Therefore, we have used cumula-

tive values of VIs derived from S2A and SVR algorithms

to estimate ratoon cane yield at the field level. Our study is

consistent with the previous findings on crop yield esti-

mation reported by Gaffar & Sitanggang, 2019). In this

study, the 10th-month cumulative values computed using

the S2A VIs in combination with the SVR approach have

produced higher cane yield accurate results compared to

MLPNN and MLR.

Crop monitoring and yield estimation need a sufficient

number of time series images during critical phases in the

crop growing season. With the growing number of earth

observation satellites at the moderate spatial resolution,

imageries from multisource sensors can be combined to

provide improved temporal coverage (Li & Roy, 2017).

Several high temporal resolution satellites are available for

crop monitoring and yield estimation applications (Justice

et al., 2013), however, at a coarser spatial resolution. In this

respect, combined use of S2A and L8 sensors data together

have the potential to support regional and local coverage

with a moderate spatial resolution (10–30 m) and high

temporal frequency for crop monitoring and yield estima-

tion efforts. Besides, cloud as well as other atmospheric

contamination during the rainy season reduces the number

of observations significantly (Skakun et al. 2019). Hence,

crop monitoring and yield estimation based on the com-

bined use of L8 and S2A might be a better alternative to

improve model performance and data availability. In this

study, a series of pre-processing steps are performed to

obtain a combined L8-S2A surface reflectance data.

Table 4 Performance of the MLR, MLPNN and SVR models based on selected L8-S2A indices for predicting sugarcane yield

Year Prediction date Variables MLR MLPNN SVR(radial)

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

2016/17 9th month EVI, NDVI, SAVI, GNDVI 0.76 12.85 10.29 0.81 9.84 7.13 0.85 7.16 5.22

2017/18 9th month NDVI, SR, GNDVI 0.58 23.04 18.63 0.57 23.68 17.34 0.63 18.70 13.65

2018/19 9th month SR, GNDVI, SIRI 0.65 17.26 13.18 0.69 14.46 11.13 0.67 13.21 8.74

Average 0.66 17.72 14.00 0.69 16.00 11.87 0.72 13.02 9.20

2016/17 10th month MSAVI, GNDVI, SIRI 0.72 13.44 10.28 0.72 15.08 12.26 0.83 8.39 6.38

2017/18 10th month NDVI, MSAVI, SR, GNDVI 0.69 16.32 11.43 0.62 20.80 16.13 0.75 15.36 12.57

2018/19 10th month SAVI, SR, GNDVI, SIRI 0.65 19.60 15.18 0.73 14.59 10.53 0.77 10.47 7.76

Average 0.69 16.45 12.29 0.69 16.82 12.97 0.78 11.41 8.9
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In the present study, the L8 and S2A complementary

sensors data have been combined to transform data from

one earth observation satellite to another satellite data. The

results of the SVR, MLPNN, and MLR methods indicated

that the prediction accuracy of sugarcane yield was slightly

improved when combining L8 and S2A data than when

using only S2A data (Table 3). Previous studies have

combined multisource optical image data to estimate crop

yield (Amorós-lópez et al., 2013; He et al., 2018, Skakun

et al. 2019). Their findings confirmed that the integration of

multi-source image data could be used to improve crop

yield estimations accuracy. The results of this study are

consistent with their findings. These results confirmed that

the combined L8-S2A data based on the SVR algorithm

provide better yield estimates for sugarcane grown in the

study area. It demonstrated that the combined use of image

data is an applicable method for estimating sugarcane yield

in the study area.

The results of the MLR, MLPNN, and SVR approaches

demonstrated that the combined L8-S2A data were highly

related to sugarcane (Table 3 and Fig. 2). The estimation

accuracy of sugarcane yield was higher with the SVR than

the MLR and MLPNN methods. Previous studies have

revealed that SVR outperforms MLR (Li et al., 2009;

Oguntunde et al., 2018) and MLPNN (Chen & Wang,

2007; Ramedani et al., 2014) in estimating crop yield. This

might be since the SVR technique implements the struc-

tural risk minimization principle to minimize an upper

bound of the generalization error rather than reduce the

training error (Chen et al. 2007). This inherent feature of

SVR leads to a better estimation error than that of MLR

and MLPNN. Moreover, another possible reason for the

improved performance of the SVR model might have been

the characteristic of the data due to the facts that statistical

models require a set of data and that their robustness

depends on the properties of the datasets such as the

quality, number and representativeness of the available

samples. So, the result of model performances for sugar-

cane yield indicated that the SVR model is more likely to

catch the nonlinear relationship for the given data and

hence, the SVR method obtained the best estimation

accuracy of sugarcane yield.

The results for predicted yield were more accurate when

combining the S2A imaging data with the L8 using 10th-

month cumulative values than when using the 9th-month

values during the growing period (Table 3 and Fig. 2). In

general, higher correlation levels were clearly observed for

the relationship between VIs and yield data of sugarcane

during the 10th month for sugarcane cropping seasons in

all years. The main reason explaining the better perfor-

mance of VIs datasets for 10th month cumulative values

was the use of additional spectral information in the opti-

mal time (i.e. the transition period from grand growth to

maturity stage) that is critical to improving the potential of

VIs for sugarcane yield estimation. Moreover, error sources

such as cloud cover in the month of July and August might

have a stronger effect on earlier date images and could

lower the model accuracy using 9th month cumulative

values.

These results are in agreement with previous studies that

have reported the optimal time for obtaining image data to

be related to the final yield of sugarcane (Almeida et al.,

2006). These results in the present study indicated that the

combined L8 and S2A sensors data provide good estimates

of sugarcane yield and the high interest in using image data

acquired earlier, before the onset of maturity. The estimates

of yield (at least two months before harvest) are promising

and consistent with previous studies (Mutanga et al., 2013).

The results from this study also demonstrated that the

predicted yield was more accurate when combining the

S2A imaging data with the L8 (Table 3) than when using

only S2A imaging data (Table 2) with the SVR algorithm.

Furthermore, the relatively low estimation error and high

correlation coefficient (Table 4) demonstrated that the

selected VIs improved the predictive performance of the

SVR model compared to the use of the full data set.

Overall, the integration of S2A with the L8 imaging data

based on SVR provides reasonable estimates of sugarcane

yield during the growing period.

Conclusions

The primary objective of this study was to test if the

integration of L8 and S2A data with its temporal resolution

of 3–5 days compared to using only S2A imaging data.

Hence, the sentinel 2A vegetation indices (VIs), combined

L8 and S2A (L8-S2A), and Support vector regression

(SVR), Multilayer perceptron (MLPNN), and Multiple

linear regression (MLR) methods were explored to deter-

mine the most accurate empirical regression equations for

cane yield estimation. Based on the results of this study, we

concluded that the cumulative values of combined S2A-L8

data could be effectively used to optimally estimate ratoon

cane yield compared to only S2A data. Integrating multi-

spectral optical imageries are increasingly being used for

crop monitoring and yield estimation at regional to local

scales. In this study, the combined L8-S2A data was used

with MLR, MLPNN, and SVR, at the field level to improve

the estimation accuracy of ratoon cane yield in different

growth periods (9th and 10th month) and irrigation man-

agement schemes. The conclusions of this study are:

(i) cumulative value of VIs computed from L8 and S2A

data at 10th month in the growing period was highly cor-

related with ratoon cane yield; ii) The multivariate SVR

algorithm with multi-temporal S2A VIs (cumulative
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values) produced better results(R2 = 0.71, RMSE = 14.71

t/ha, and MAE = 12.18 t/ha) compared to the MLR(R2-

= 0.57, RMSE = 24.54 t/ha, and MAE = 19.73 t/ha) and

MLPNN(R2 = 0.72, RMSE = 17.39 t/ha, and MAE =

15.18 t/ha) models, (iii) The combined L8-S2A method

achieved more accurate sugarcane yield estima-

tions(RMSE = 12.95 t/ha, and MAE = 10.14 t/ha) than

only the S2A method(RMSE = 14.71 t/ha, and MAE =

12.18 t/ha); and (iv) Yield estimated with the VIs in the

10th month growth period was consistent with observed

yield across all three years. Our findings indicated that the

empirical prediction error could be significantly reduced by

making use of SVR with the combined L8-S2A data in the

10th month in the sugarcane-growing season. This con-

firmed that the proposed SVR algorithm based on S2A-L8

data performed relatively better than the other two algo-

rithms. Overall, the results demonstrated that a combined

L8-S2A method is an effective approach for estimating

ratoon cane yield and it provides guidance for optimizing

irrigation management strategies for sugarcane production

in the study area. Future studies will verify these results in

different crops and agro-ecological regions.
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supplementary material available at https://doi.org/10.1007/s12524-
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