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1.  Introduction
Unlike precipitation and runoff which are relatively easy to measure, terrestrial evapotranspiration (ET) is one 
of the most uncertain components in the hydrological cycle leading to great challenges in not only in-situ obser-
vations but also in modeling (Brutsaert, 2005; Chen & Liu, 2020; Fisher et al., 2017). While a great amount 
of community efforts by global (e.g., FLUXNET, Baldocchi et  al.,  2001), national (e.g., AmeriFlux, Novick 
et al., 2018), and regional (e.g., HiWATER, Li et al., 2013) networks have substantially improved our understand-
ing of the ET process over multiple ecosystems via intensified eddy-covariance (EC) data sharing and collabora-
tions, the current EC towers are unequally distributed across the world and the data coverage for most of them are 
limited to less than a decade (Baldocchi, 2020; Pastorello et al., 2020). As a result, modeling approaches remain 
essential for characterizing ET at larger spatial (e.g., global) and longer temporal (e.g., decadal) scales.

While a wide range of global ET products have been developed by a variety of models with different scopes and 
complexities, substantial uncertainties still exist in not only the absolute values (Miralles et al., 2016; Mueller 
et al., 2011; K. Zhang et al., 2019) but also in the long-term trends of ET (Kim et al., 2021; Mueller et al., 2013; 
Zeng, Peng, & Piao, 2018). For example, a synthesis of 41 ET products by Mueller et al. (2011) showed that the 
global mean ET rate over vegetated land ranges from ca. 1.2 to 1.8 mm d −1 across the models, with typically 
larger values in atmospheric reanalysis and smaller ones in land surface models (LSMs). Even within the LSM 
community, considerable disparity exists across different LSMs of the Second Global Soil Wetness Project with 
a spread reaching ∼220 mm yr −1 for the global terrestrial ET rate (Schlosser & Gao, 2010). It is therefore neces-
sary and urgent to employ innovative and novel methods for the development of new global ET products with 
improved accuracy for a better understanding of the terrestrial part of the global hydrological cycle, as advocated 
by Fisher et al. (2017).

It has long been recognized that the uncertainties in the modeled ET rates are due primarily to uncertainties in the 
meteorological forcing (Badgley et al., 2015; Vinukollu et al., 2011), model physical structures (Ma et al., 2017; 
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Zheng et al., 2019) and parameter values (Samaniego et al., 2017; K. Zhang et al., 2019). In particular, the param-
eter values are often determined by either static or time-varying gridded vegetation (e.g., land cover, leaf-area-in-
dex [LAI], canopy height, rooting depth), and soil (e.g., soil type, hydraulic, and thermal properties) data, which 
are indispensable inputs for most state-of-the-art LSMs (Lawrence et al., 2019) and remote sensing (RS) models 
(Chen & Liu, 2020) to estimate ET. Numerous sensitivity studies have demonstrated that the accuracy of the latent 
heat fluxes, as provided by the LSMs and RS models, highly depends on the reliability of the employed soil- and/
or vegetation-related parameters (e.g., Cuntz et  al.,  2016; Dennis & Berbery, 2021; Samaniego et  al.,  2017). 
However, formidable challenges in the current global soil data exist, such as (a) gridded soil property character-
istics are derived by interpolating field-scale soil survey measurements which then lead to great uncertainties in 
high-latitude and high-altitude regions where insufficient survey was done (Dai et al., 2019); (b) the empirical 
functions for deriving gridded hydraulic and thermal parameters from plot-scale soil properties are still struggling 
with finding the proper extrapolation and upscaling methods from local to global scales (Van Looy et al., 2017), 
thereby leading to inevitable uncertainties in the modeled ET rates (Dennis & Berbery, 2021). In addition to soil 
data, the current LAI products, a key input for the Penman-Monteith-type ET models, are neither intra-consistent 
over time nor inter-consistent with each other (Jiang et al., 2017) due probably to (a) the intrinsic uncertainties in 
the radiative transfer modeling of light in canopies and the ill-posed inversion problem (Fang et al., 2019), and; 
(b) sensor degradation or orbital drift (Lyapustin et al., 2014). Last but not least, it is worthwhile to note that most 
current ET models require precipitation data as forcing, which may greatly facilitate the estimation of ET because 
accurate precipitation at large spatial and temporal scales may pose an upper bound to constraining terrestrial 
ET rates (Budyko, 1974), especially in arid and semi-arid regions of the world. However, precipitation is often 
regarded as the most uncertain meteorological variable due to its high spatial and temporal variance, which may 
hinder its model forcing value in regions with sparse measurements and/or complex terrain (Clark & Slater, 2006; 
Lundquist et al., 2019). See Sun et al. (2018) for an exhaustive review on the uncertainties in the current gridded 
precipitation products.

For circumventing the uncertainties in not only the gridded vegetation and soil data but also in precipitation forc-
ing, the complementary relationship (CR) of evaporation (Bouchet, 1963) naturally presents itself as a suitable 
choice for large-scale ET estimation because it requires only routine meteorological data as input. Therefore, 
recently there has been a heightened interest among hydrologists in estimating ET by the CR method across 
multiple spatial scales, including plot (Crago & Qualls, 2018; Ma, Zhang, Szilagyi, et al., 2015; Ma, Zhang, 
Xu, et al., 2015), basin (Xu & Singh, 2005), regional (Kyatengerwa et al., 2020; Szilagyi & Jozsa, 2018), and 
continental one (Ma & Szilagyi, 2019; Szilagyi, 2018). More recently, Brutsaert et al. (2020) presented the first 
application of the CR method to estimate monthly ET rates (2001–2013) across the globe with a spatial resolution 
of 0.5°, but they did not fully exploit the unique advantage of the CR of not requiring precipitation forcing, as they 
parameterized their model with the help of mean annual rain depth values.

Even though the CR can, in general, avoid the uncertainties in gridded soil, vegetation and precipitation forcing 
by not relying on such input data, the challenge—typical in most diagnostic ET approaches—of how to calibrate 
the model (Han & Tian, 2020), remains. Calibration is necessary in not only the classical linear CR models 
(Brutsaert & Stricker, 1979) but also in those recently developed non-linear versions by Brutsaert (2015), Han 
and Tian (2018), and Gao and Xu (2020), requiring “prior” knowledge of ET (either EC-measured or water-bal-
ance-derived) to calibrate a few model parameters, for example, the Priestley–Taylor (PT) coefficient (α). Unfor-
tunately, it is very hard, if not impossible, to obtain appropriate parameter values in poorly gauged and ungauged 
basins, where limited or missing water-balance (or EC) data make model calibration much more challenging. For 
the purpose of routinely estimating large-scale ET with the CR, Szilagyi et al. (2017) proposed a novel scheme 
to derive the PT-α value via temperature and humidity gradients between the wet land and the air obtained by 
inverting the PT equation (Priestley & Taylor, 1972) over wet grid-cells, the latter automatically identified within 
a given large spatial domain. In this way, the CR approach no longer requires any ground-truth ET data for the 
common calibration of its sole parameter, α, thereby overcoming the difficulty in parameter estimation for large-
scale ET simulations. The unique calibration-free CR model of Szilagyi et al. (2017) has not yet been applied 
on a global scale to see whether it is able to improve our understanding of the global terrestrial ET rates, though 
previous model evaluations suggested that it excels among the current main-stream ET products tested over China 
(Ma et al., 2019) and the United States (Kim et al., 2019; Ma & Szilagyi, 2019; Ma et al., 2020).
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Motivated primarily by large uncertainties existing in the current global ET products reported by numerous 
studies (e.g., Mueller et al., 2011, 2013; Zeng, Peng, & Piao, 2018), here we extend our previous works on the 
development of continental-scale ET products (Ma & Szilagyi, 2019; Ma et al., 2019), aiming to provide a new 
global ET data set by the calibration-free CR method. The objectives are therefore to (a) develop and validate 
(on multiple spatial and temporal scales) a new global ET product for use in large-scale hydro-climatological 
research; (b) assess whether this CR-based ET estimation improves upon the available widely used global ET 
products, and; (c) reveal the spatial characteristics of global terrestrial ET and its tendencies during 1982–2016. 
This is the first effort of producing a multi-decadal (>30 years with regular planned updates in the future) global 
ET product by a calibration-free version of the CR method, fully independent of previous LSMs, RS models, 
atmospheric reanalysis, or machine-learning upscaling of EC measurements, and also, without relying on any 
vegetation and soil data.

2.  Materials and Methods
2.1.  The Calibration-Free CR Model

In this study, the calibration-free CR model of Szilagyi et al. (2017) was employed for global-scale terrestrial ET 
simulation with a brief description of the equations below. For a pseudocode of the calculations, see Appendix C 
in Ma and Szilagyi (2019). The non-linear CR approach relates two dimensionless evapotranspiration terms via

   22y X X� (1)

where X and y are defined as






max
p p w
max

pp w

E E EX
EE E� (2)


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here ET (mm d −1) is the actual evapotranspiration rate, while the potential evaporation term, Ep, defines the 
evapotranspiration rate of a small, plot-sized wet patch in a drying (i.e., not fully wet) environment, typically 
expressed by the Penman (1948) equation as

   
 
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Δ Δ
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where Δ (kPa °C −1) is the slope of the saturation vapor pressure curve at the measured air temperature, Ta (°C), 
and γ is the psychrometric constant (kPa °C −1). Rn and G (at the monthly scale the latter can be assumed negligi-
ble) are the surface net radiation and soil heat flux into the ground in water equivalent of mm d −1, respectively. 
e* and ea (kPa) are the saturation and actual vapor pressure of the air, correspondingly. fu is an empirical wind 
function (mm d −1 kPa −1) that contains the 2-m wind speed, U2 (m s −1), so that fu = 2.6 × (1 + 0.54 × U2).

Ew in Equation 2 is the wet-environment evaporation rate of a well-watered surface of regional extent, specified 
by the PT equation (Priestley & Taylor, 1972), that is,

 
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Δ
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in which α is the dimensionless PT coefficient. Note that Equation 5 was derived for completely wet environ-
ments (Priestley & Taylor, 1972) and therefore Δ should be evaluated at the air temperature observable in a wet 
environment, Tw (°C), instead of the drying environment air temperature, Ta (Szilagyi & Jozsa, 2008). This is 
important since previous studies have found that the difference between these two may routinely exceed 5°C 
(e.g., Ma, Zhang, Szilagyi, et al., 2015; Szilagyi, 2014). By making use of a negligible vertical air temperature 
gradient typically observable in wet environments, Tw can be approximated by the wet surface temperature, Tws 
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(°C). Szilagyi and Schepers (2014) revealed that the wet surface temperature is independent of areal extent, thus 
Tws can be obtained from the Bowen ratio of a small wet patch for which the Penman equation is valid, that is,

 
 



  
 


n p ws a

p
p ws a

R G E T T
E e T e� (6)

in which βp is the Bowen ratio of the well-watered patch (assuming that available energy at the wet patch surface 
is close to that of the surrounding drying one). The saturation vapor pressure e* now is evaluated at Tws, substi-
tuted for the wet-environment air temperature, Tw. Note that Tws (but not Tw) obtained by Equation 6 may be larger 
than Ta when the air is close to saturation and in such cases Tws should be capped by Ta (Ma, Zhang, Szilagyi, 
et al., 2015; Szilagyi, 2014). For large-scale model applications where measured ET is often missing for the cali-
bration of α, the method of Szilagyi et al. (2017) can be employed to assign an appropriate spatially and tempo-
rally constant value for it by identifying wet grid-cells with their corresponding gridded Ta and humidity data (see 
Appendix B in Ma and Szilagyi, 2019 for a detailed explanation of the procedure).

Ep max in Equation 2 is the maximum value that Ep can reach by the time the environment becomes completely 
desiccated of moisture (ea ≈ 0), that is,

 
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in which Δ (kPa °C −1) and e* (kPa) are evaluated at the dry-environment air temperature, Tdry (°C). The latter can 
be estimated for adiabatic processes as (Szilagyi, 2018):
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
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e T
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where Twb (°C) is the wet-bulb temperature. Twb under adiabatic conditions can be derived from another iteration 
(Szilagyi, 2014), that is,
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
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
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wb d
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where Td (°C) is the dew-point temperature. For a more detailed, thermodynamic-based derivation of Equation 1, 
see Szilagyi (2021).

2.2.  Model Forcing Data

A state-of-the-art meteorological forcing, ERA5 (Hersbach et al., 2020) from the European Center for Medi-
um-Range Weather Forecasts (ECMWF), was employed over the 1982–2016 period globally at a spatial resolu-
tion of 0.25° in the form of monthly air and dew-point temperature, air pressure, 10-m wind speed, downward 
short- and long-wave radiation data. The 10-m wind speed (U10) values were converted to 2-m ones (U2) by a 
power-function transformation, that is, U2 = U10 (2/10) 1/7 (Brutsaert, 2005). Being the latest global reanalysis 
from ECMWF, a wide range of evaluations suggested that the meteorological forcing from ERA5 has an obvi-
ous improved accuracy in comparison with previously available global forcing (e.g., Graham et al., 2019; He 
et al., 2021; Martens et al., 2020), and is therefore appropriate for global ET modeling.

Monthly net radiation (Rn) was calculated by the approach of Ma et al. (2019, Appendix B therein) except that 
monthly land surface temperature (LST) was now from ERA5-Land rather than from Moderate Resolution Imag-
ing Spectroradiometer (MODIS) because the former could provide a continuous record during the 35-year period 
of 1982–2016. The albedo (Version 42) and longwave broadband emissivity (Version 40) data came from the 
Global Land Surface Satellite (GLASS) product (Liang et  al.,  2021), both produced by the Advanced Very 
High Resolution Radiometer. The spatial resolution of LST is 0.1°, while albedo and emissivity are at 0.05°, 
therefore they were resampled to 0.25° to conform with the ERA5 forcing. The monthly radiation-balance-de-
rived grid-values of Rn were further corrected by a multiyear mean monthly coefficient, obtained as the ratio 
of the radiation-balance-derived multiyear mean monthly Rn and the similar Rn value from the Clouds and the 
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Earth's Radiant Energy System (CERES) product (Kato et al., 2018) after the latter was also resampled to 0.25°. 
As CERES is only available since March 2000, here the multiyear mean is taken over their overlap period of 
2001–2016. As CERES Rn generally display slight positive biases according to Wild et al.  (2015), a constant 
scaling factor of 0.9186 (Wild et  al.,  2015) was further applied to the corrected Rn values (except for North 
America and Europe, because previous validations (Kato et al., 2018) suggested that both, downward short- and 
long-wave, radiation were underestimated in those regions) for a match with the global terrestrial Rn derived by 
Wild et al. (2015).

With the final 0.25° Rn as well as the ERA5 Ta, Td, U2, and air pressure (the latter for the calculation of γ) data, 
we derived a spatially and temporally constant PT-α value of 1.10 using the method of Szilagyi et al. (2017), 
which was then employed for a global terrestrial application of Equations 1–9 over the 1982–2016 period on a 
monthly basis.

This study focuses only on land surface ET by excluding the sea and inland water bodies as determined by the 
MODIS land cover type (LCT) product, that is, MCD12C1 Collection 6 (Sulla-Menashe et al., 2019), which also 
provides the International Geosphere-Biosphere Program (IGBP) based LCT classification. For a proper account-
ing of the effect of grid resolution on continental areas along the sea shore, the ratio of the continental land area 
to that of the 0.25° grid—also derived from MCD12C1—was further applied.

2.3.  EC-Measured ET Rates From the FLUXNET2015 Database

The monthly eddy-covariance measured latent heat (LE) flux data from the FLUXNET2015 Database (Pastorello 
et al., 2020) were used to validate the CR simulated results at the plot scale. In the officially released FLUX-
NET2015 Database, the gaps in the raw half-hourly LE data were filled by the marginal distribution sampling 
method (Reichstein et al., 2005). Since any gap-filling may involve uncertainties, only the months tagged with 
“LE_F_MDS_QC” values ≥0.7 (which means that the percentage of measured and good-quality gap-filled data 
was no less than 70% during the given month) were retained for validation purposes.

EC-site selection was based on the following criteria: (a) the site exists 3 years or longer; (b) surface heterogene-
ity within the 0.25° cell where the EC tower is situated is minimal, and; (c) at least one third of the monthly LE 
data released from the FLUXNET2015 Database for this site have “LE_F_MDS_QC” values ≥0.7. As a result, 
altogether 129 sites (Figure 1a and Table S1) became available for the present study, which include 11 land cover 
types: cropland (CRO, 14 sites), deciduous broadleaf forest (DBF, 16 sites), deciduous needleleaf forest (DNF, 
1 site), evergreen broadleaf forest (EBF, 8 sites), evergreen needleleaf forest (ENF, 27 sites), grassland (GRA, 
27 sites), mixed forest (MF, 10 sites), open shrubland (OSH, 3 sites), savanna (SAV, 6 sites), wetland (WET, 
12 sites), and woody savanna (WSA, 5 sites). Table S1 presents further information on these 129 sites, while 
Figure 1a illustrates their spatial distribution.

The number of months for the validations ranges from 13 to 220 among the different sites, yielding a mean 
data length of 83 months per site (see Table S1 and the inset in Figure 1a). Note that there is only one site (i.e., 
RU-SkP) within the DNF classification, which was reclassified into the DBF in the assessment of the LCT-spe-
cific performance of the model.

For 103 sites, the published LE values are Bowen-ratio corrected (Twine et al., 2000) to satisfy the energy balance 
closure. For the remaining 26 sites where FLUXNET2015 does not specify the energy-balance-closure-corrected 
LE values, the measured ones were directly employed for validation.

2.4.  Water-Balance-Based Evapotranspiration Data

The modeled ET rates were also validated against the water-balance-derived evapotranspiration (ETwb) values at 
the basin scale, that is,

  wbET P Q S� (10)

where P, Q, and δS (all three in mm yr −1) are basin-averaged precipitation, runoff, and the change in terrestrial 
water storage within the basin, respectively. ETwb rates from altogether 52 large river basins (Figure  1b and 
Table S2) were employed in this study, representing a broad range of climates and land covers. Basin selection 
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was based on (a) basin area is larger than 40,000 km 2 to minimize uncertainties stemming from potential inter-ba-
sin water transfer and the relatively coarse spatial resolution of the δS data; (b) a continuous record of at least 
12 years (i.e., one third of the present modeling period) of Q data is available to make ETwb accurate in a multiyear 
mean sense, and; (c) the basins should partially cover all continents except Antarctica where basin-wide precip-
itation data does not exist. The measured Q values at the hydrological stations for most basins [except those in 
the conterminous United States (CONUS) and China] came from the Global Runoff Data Center (GRDC), while 

Figure 1.  The geographical distribution of the (a) 129 FLUXNET sites, and; (b) 52 river basins for deriving water-balance estimates (ETwb) of basin-wide 
evapotranspiration. The International Geosphere-Biosphere Program land cover types in (a) include: cropland (CRO), deciduous broadleaf forest (DBF), deciduous 
needleleaf forest (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), grassland (GRA), mixed forests (MF), open shrublands (OSH), 
savannas (SAV), wetland (WET), and woody savanna (WSA). Basin color in (b) denotes the aridity index (AI) defined as the ratio of multi-year mean annual 
precipitation to Penman potential evapotranspiration. The numbers displayed refer to the basin ID in Table S2. The inset in (a) is the box-plot of months with available 
eddy-covariance measurements per station for validation of the complementary relationship (CR) model. The inset in (b) is the box-plot of years with ETwb values per 
basin, employed for validation. Note the same (=35) median and maximum values now. Note also that the whiskers in these two insets represent the minimum and/or 
maximum values.
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Q data of basins in the CONUS and China came from United States Geological Survey (USGS) and the China 
Sediment Bulletin, respectively.

The drainage area of these 52 basins ranges from 4.7 × 10 4 to 347.5 × 10 4 km 2, with mean and median values of 
67.3 × 10 4 and 36.5 × 10 4 km 2, respectively. The basins are located in tropical, temperate and boreal regions with 
aridity indices (AI: the ratio of mean annual precipitation to Ep) between 0.13 and 2.44 (Figure 1b). The mean 
and median AI values of these 52 basins are both 0.85. When a basin did not have a continuous 35-years record 
of runoff data for 1982–2016, the longest (≥12 years) available such record was used. In the end, a total of 1572 
basin-year runoff data were employed to calculate annual ETwb for the validation of the CR-modeled ET rates at 
the watershed scale. Detailed information about these 52 river basins including name, drainage area, hydrological 
station, country, continent, and the length of continuous runoff data is presented in Table S2.

For annual P values, the gauge-based precipitation product from the Global Precipitation Climatology Center 
(GPCC) Full Data Monthly Version 2018 (Schneider et al., 2018) was used except for the CONUS. Over the 
CONUS, the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) precipitation data (Daly 
et al., 2008) were employed, because it is regarded as the most accurate precipitation product for that region 
(Lundquist et al., 2015). Note that PRISM has an overall 4.2-km spatial resolution, thus it was resampled to 0.25° 
to conform with that of GPCC. While we are aware of another global, gauge-based precipitation product, that 
is, the Climate Research Unit (CRU) of the University of East Anglia (Harris et al., 2020), the spatial resolution 
of CRU is 0.5°, which is coarser than that of GPCC (0.25°), plus the latter also fits the resolution of the present 
CR-modeled ET rates. Furthermore, the GPCC product incorporates roughly three to four times as many precip-
itation stations as CRU (Becker et al., 2013), thus improving spatial representativeness.

While previous studies suggested that the basin-wide annual δS could be neglected (Brutsaert, 2005), it is more 
reasonable to consider δS in Equation 10 for a more accurate calculation of ETwb (Han et al., 2020), though it 
might be a minor term in comparison with P or Q. As the Gravity Recovery and Climate Experiment (GRACE) 
data is only available since 2002, the 0.5° resolution monthly terrestrial water storage anomaly (TWSA) data 
from GRACE-REC (Humphrey & Gudmundsson, 2019) were employed in Equation 10. TWSA in GRACE-REC 
was reconstructed for the past century by a statistical model with inputs of precipitation and temperature at each 
global terrestrial grid point. GRACE-REC is a state-of-the-art TWSA product consistent with the GRACE data 
for their temporal overlap. Its century-long coverage including the pre-GRACE period, has made it popular for 
long-term hydroclimatological studies (Humphrey et al., 2018). The development of GRACE-REC involved two 
kinds of GRACE products (for training purpose) and three kinds of climate forcing, thus leading to six different 
versions of it (Humphrey & Gudmundsson, 2019). In the present study, the TWSA version that employed ERA5 
precipitation and temperature data as forcing and was calibrated by mascons from the Jet Propulsion Laboratory 
(JPL) was employed. After re-sampling GRACE-REC into 0.25°, the annual δS values for 1982–2002 were 
obtained. The annual δS values during 2003–2016 were derived from the JPL Mascon RL06 Version 2.0 GRACE 
(Watkins et al., 2015) after it was also resampled into 0.25°. Note that the annual δS were calculated as the differ-
ence in TWSA between consecutive Decembers.

As the generally strong coupling of the land-atmosphere system weakens considerably near sudden and strong 
discontinuities in surface moisture status (Morton, 1983), such as found along the sea-shore in desert climates, 
CR-modeled ET rates were rescaled each month by the ratio of mean annual precipitation and original CR ET 
values for grid-cells where (a) mean annual precipitation is less than 300 mm; (b) original CR-modeled mean 
annual ET to precipitation ratio is greater than two, and; (c) the grid cell is within 200 km of the sea (300 km 
for the Atacama Desert in South America, Western Sahara, and the Horn of Africa). See Figure S1 for the areas 
involved.

The statistical metrics of assessing the model performance in the present study involve the Pearson correlation 
coefficient (R), root mean square error (RMSE), relative bias (RB), and Nash-Sutcliffe efficiency (NSE) between 
modeled results and either EC measurements or water-balance-derived ETwb rates.

2.5.  Other Available Global Terrestrial ET Products

For an inter-comparison of the CR ET rates with those of other global ET models, 12 main-stream ET products 
(Table 1) were selected by the following four categories.
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1.	 �Three atmospheric reanalysis ET products from the ERA5 of ECMWF (Hersbach et al., 2020), the Modern-
Era Retrospective Analysis for Research and Applications Version 2 (MERRA2) of NASA's Global Modeling 
and Assimilation Office (Gelaro et  al., 2017), and the Japanese 55-years reanalysis (JRA55) of the Japan 
Meteorological Agency (Kobayashi et al., 2015). It should be noted that the ERA5's ET estimation is based on 
its land surface model, called Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (Hersbach 
et al., 2020), which is totally different from the present CR method, though both employ ERA5 meteorological 
data as forcing.

2.	 �Three state-of-the-art machine learning-based upscaling of EC measurements from FLUXCOM (Jung 
et  al.,  2019), which were driven by remote sensing data plus different meteorological forcing (i.e., RS_
METEO) including (a) WATCH Forcing Data ERA-Interim (WFDEI; Weedon et al., 2015); (b) Global Soil 
Wetness Project 3 Forcing (GSWP3; Kim, 2017), and; (c) a fused forcing of the Climate Research Unit and 
National Centers for Environmental Prediction (CRUNCEP; Wei et al., 2014).

3.	 �Three LSM-based ET products from the Global Land Data Assimilation System version 2.0 (GLDAS-2; 
Rodell et al., 2004), which includes Noah_GL (Beaudoing & Rodell, 2019), CLSM_GL (Li et al., 2019), and 
VIC_GL (Beaudoing & Rodell, 2020).

4.	 �Three RS-based ET products from the Global Land Evaporation Amsterdam Model (GLEAM) Version 3.3a 
(Martens et al., 2017), the Process-based Land Surface Evapotranspiration/Heat Fluxes Algorithm (PLSH; K. 
Zhang et al., 2015), and the Penman-Monteith-Leuning Version 2 (PML_V2; Y. Zhang et al., 2019).

The period of comparison was restricted to the temporal coverage of the present CR ET values, that is, 1982–
2016, or to their overlap with it. Note that the spatial coverage may be different among the models as desert and/
or permanent snow and ice (e.g., Antarctica and Greenland) areas may be excluded in certain ET products. From 
these 12 products, only ERA5, JRA55, and GLEAM cover the global land surface fully. Table 1 displays addi-
tional information about the products, while full details can be found in the references specified therein.

ET products Category
Spatial 

resolution Spatial coverage
Temporal 
coverage References

ERA5 Reanalysis 0.25° Global land 1982–2016 Hersbach et al. (2020)

MERRA2 Reanalysis 0.5° × 0.625° Global land without permanent 
ice and snow

1982–2016 Gelaro et al. (2017)

JRA55 Reanalysis 1.25° Global land 1982–2016 Kobayashi et al. (2015)

FLUXCOM_WFDEI Machine learning-based upscaling of EC 
measurements

0.5° Global vegetated surface 1982–2013 Jung et al. (2019)

FLUXCOM_GSWP3 Machine learning-based upscaling of EC 
measurements

0.5° Global vegetated surface 1982–2014 Jung et al. (2019)

FLUXCOM_CRUNCEP Machine learning-based upscaling of EC 
measurements

0.5° Global vegetated surface 1982–2016 Jung et al. (2019)

Noah_GL Land surface model 0.25° Global land without Antarctic 1982–2014 Beaudoing and Rodell (2019)

CLSM_GL Land surface model 1° Global land without Antarctic 1982–2014 Li et al. (2019)

VIC_GL Land surface model 1° Global land without Antarctic 1982–2014 Beaudoing and Rodell (2020)

GLEAM Remote sensing model 0.25° Global land 1982–2016 Martens et al. (2017)

PLSH Remote sensing model 0.0833° Global land without permanent 
ice and snow

1982–2013 K. Zhang et al. (2015)

PML_V2 Remote sensing model 500 m Global land without permanent 
ice and snow

2003–2016 Y. Zhang et al. (2019)

Note. The periods of temporal coverage displayed are the overlaps with that of the CR (i.e., 1982–2016).
Abbreviations: CR, complementary relationship; CRUNCEP, Climate Research Unit and National Centers for Environmental Prediction; EC, eddy-covariance; ET, 
evapotranspiration; JRA, Japanese reanalysis; GLEAM, Global Land Evaporation Amsterdam Model; GSWP, Global Soil Wetness Project; MERRA, Modern-Era 
Retrospective Analysis for Research and Applications; PLSH, Process-based Land Surface Evapotranspiration/Heat Fluxes Algorithm; PML, Penman-Monteith-
Leuning; WFDEI, WATCH Forcing Data ERA-Interim.

Table 1 
Overview of 12 Mainstream ET Products Employed in This study
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In addition to the above main-stream ET products, outputs from the “historical simulation” of 20 Earth System 
Models that participated in the Coupled Model Inter-comparison Project Phase 6 (CMIP6; Eyring et al., 2016) 
were also included for further comparison. The CMIP6 historical experiments, driven by historical all/individual 
forcing, were designed to simulate a wide range of variables in the climate system from 1850 to 2014 with a 
consideration of numerous observed records (representing impacts from both human activities and natural varia-
tions) including greenhouse gas emissions and land use changes. While a great number of models participated in 
the CMIP6 project, we selected only those 20 that yielded the longest overlap with the CR ET data in this study 
(i.e., 1982–2014 vs. 1982–2016). Note that the present selection of CMIP6 models was mostly based on the “one 
institute, one model” criterion, though it may be somewhat arbitrary. For each model, the ensemble member 
“r1i1p1” was used. Further information about the selected CMIP6 models can be found in Table S3.

Since there are differences in the spatial resolution of the above ET datasets (see Tables 1 and S3), all ET products 
were first resampled into 0.25° by the nearest neighbor method, followed by calculation of the area-weighted ET 
rates for each river basin. Similar spatial averages were also obtained for the global land area and for the vege-
tated surface only, again, with consideration of the land fraction in each 0.25° grid along the sea shore. The least 
squares regression technique was used to estimate the trend in annual ET values. The statistical significance of 
the trend was determined using the Student's t test and a trend is considered to be statistically significant when 
the p value is smaller than 0.05.

3.  Results
3.1.  Validation Against Plot-Scale Monthly FLUXNET EC Measurements

Figure 2 illustrates the spatial distribution of the statistical metrics for validating the CR estimated monthly ET 
rates against 129 EC sites from the FLUXNET2015 Database. Albeit about 10% of the sites display negative 
NSE values, the same values are larger than 0.5 in more than 72% of the stations, suggesting that the modeled 
results are satisfactory in the majority of the FLUXNET sites (Figure 2a). Furthermore, 61 sites have NSE values 

Figure 2.  Spatial distribution of the statistical metrics including (a) Nash-Sutcliffe efficiency (NSE); (b) Pearson correlation coefficient (R); (c) relative bias (RB), and; 
(d) root-mean-square-error (RMSE) for validating the monthly complementary relationship (CR)-simulated evapotranspiration rates against eddy-covariance-measured 
results of the 129 FLUXNET sites. The inset in each panel displays the histogram of relative frequency (RF) of the performance values with bin limits (and matching 
color) specified in the horizontal bars.
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in excess of 0.7. The simulated monthly ET rates correlate highly with measurements due to the inherent season-
ality in ET. The R values are larger than 0.8 in about 88% of the selected sites, with 89 sites having R values in 
excess of 0.9 (Figure 2b). For the relative bias, 40% of the total sites are within ±10%, while 60% have an RB 
within ±20% (Figure 2c). The RMSE values are smaller than 30 mm mo −1 at approximately 90% of the 129 sites 
(Figure 2d).

Figure 3 summarizes the performance of CR for each LCT. Averaged over the 129 sites, the mean and median NSE 
values are 0.53 and 0.68, respectively. The median NSE stays between 0.59 and 0.78 for nine LCTs (Figure 3a). 
However, four EBF sites show even negative NSE values. The R values are overall high with median values larger 
than 0.85 for all LCTs (Figure 3b). In terms of RB, negative biases dominate in GRA, SAV, and CRO, while posi-
tive biases occur more frequently for sites within DBF, EBF, and MF (Figure 3c). While the ET rates vary greatly 
across different LCTs, the median RMSE value stays below 20 mm mo −1 for the majority of the LCTs. For all 129 
sites, the mean and median of RMSE are 19.5 and 18.5 mm mo −1, respectively (Figure 3d). Overall, the multi-bi-
ome validations against the FLUXNET2015 Database suggest that the CR model performance is satisfactory in 
a wide range of terrestrial ecosystems with diverse climates across the world even though (a) the PT-α value was 
derived without resorting to any (EC-measured or water-balance-derived) ET data; (b) there are large differences 
in the spatial representativeness of the 0.25° grid employed and the footprint of EC measurements, and; (c) the 
CR was driven by global reanalysis-based meteorological forcing rather than the measured ones from EC towers.

To further illustrate how the CR performs in different LCTs in comparison with other ET products, the median 
values of the four statistical metrics are also displayed in Figure S2 for the 12 mainstream ET products of Table 1. 
As seen, the performance of the different ET products varied significantly across the LCTs. No single ET prod-
uct could perform best for all land covers, including the FLUXCOM versions which were upscaled from these 
EC towers. In general, the CR performs better (notice the location of the black horizontal line over each LCT) 
than most ET products for the majority of land covers except EBF. The relatively poor performance of the CR 
in EBF remains unclear, but ERA5 ET rates also yield a similarly low NSE value there (Figure S2a), indicating 

Figure 3.  Box plots of the statistical metrics for validating the complementary relationship (CR)-simulated evapotranspiration rates against eddy-covariance-measured 
results of all 129 FLUXNET sites (ALL) and the sites grouped by land cover type. On each box, the central line is the median (t2), while the edges of the box are the 
25th (t1) and 75th (t3) percentiles, respectively. The whiskers extend to the most extreme data points [t3+1.5 × (t3−t1)] and [t1−1.5 × (t3−t1)] not considered outliers, 
while the outliers are plotted individually using crosses. The filled point is the mean value.
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that uncertainties in the ERA5 meteorological forcing may be responsible for their mutually poor performance 
in EBF.

3.2.  Validation Against Basin-Scale Multiyear Mean ETwb

The water-balance-derived multiyear mean annual ETwb rates of the 52 large river basins of the present study 
(Figure 4) suggest that the CR modeled such ET rates are particularly accurate: NSE = 0.93, R = 0.970, and 
RB = 3.4%, with a slope of regression almost identical to unity, and RMSE of only 76.7 mm yr −1 (Figure 4b). 
The relative errors are within ±10% for 31 basins out of the 52 (see the inset in Figure 4a). However, the CR 
overestimates ETwb by more than 60% over three Arctic basins in eastern Siberia including Yenisy (Basin #08), 
Lena (Basin #09), and Kolyma (Basin #10), while underestimates it by 23% over the Niger River basin (Basin 
#16) in West Africa. Such relatively larger errors in these basins may be attributed to accuracy issues in the grid-
ded model forcing because the ground meteorological stations that were assimilated into the ERA5 reanalysis are 
much sparser in the sub-Sahara and the sub-Arctic than in other regions of the world. Another source of uncer-
tainty in the ETwb values may also stem from the limited number of precipitation stations included in GPCC for 
these regions, leading to uncertain basin-wide P values.

Overall, the CR model's performance with the current meteorological forcing, primarily from ERA5, is compara-
ble with earlier country-scale results driven by PRISM and North American Regional Reanalysis (NARR) forcing 
over the CONUS (Ma & Szilagyi, 2019) as well as the China Meteorological Forcing Data set over China (Ma 
et al., 2019).

For a comparison against other mainstream approaches, Figure 5 displays the validation results of the 12 selected 
ET products against ETwb in a multiyear mean annual sense. Note that for each basin, the multiyear mean values 
of ET are specified for the period-overlap between ETwb and the corresponding ET product. It can be seen that 
FLUXCOM_GSWP3 yields the highest NSE (0.91) and the lowest RMSE (88.7 mm yr −1) values among the 12 
products (Figure 5e), followed closely by Noah_GL (Figure 5g) and PML_V2 (Figure 5l) with similar NSE (0.9 
and 0.89, respectively) and RMSE (93.7 and 94.5 mm yr −1, respectively) values. These latter two yield better RB 
values (3.1% and 4.5%, respectively) than FLUXCOM_GSWP3 (7.3%). FLUXCOM_WFDEI, PLSH, and ERA5 
are also satisfactory, as can be seen from their NSE values in excess of 0.85 (Figures 5a, 5d and 5k). VIC_GL 
significantly underestimates ET in most basins with NSE = 0.41, RMSE = 228.4 mm yr −1, and RB = −32.5%, 
while MERRA2 shows large positive biases over the majority of basins with an RB value of 22.3%.

By comparing the performance metrics in Figures 4b and 5 as well as Table 2, it can be stated that the current CR 
approach excels among the main-stream ET products in its regression slope, NSE, and RMSE values. Noah_GL 
produces the lowest RB value, while ERA5, FLUXCOM_WFDEI, and CR yield the highest R values (all around 
0.97).

Figure 4.  (a) Spatial distribution of the basin-averaged multi-year mean annual complementary relationship (CR) evapotranspiration (ET) rates relative to the ETwb of 
the 52 river basins, and; (b) the corresponding regression plot. Period of averaging follows that of the corresponding ETwb. The inset in panel (a) shows the number of 
basins with the specified relative error ranges. The length of the whiskers in panel (b) represents the standard deviation of the annual values of each basin. The strips 
around the least-squares-fitted red line with its slope specified denote the 95% confidence intervals. The root-mean-square-error (RMSE) is in mm yr −1.
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The spatial patterns of the ratio of basin-averaged multiyear mean ET to ETwb over the 52 basins are illustrated in 
Figure 6 for the 12 ET products. Note that validations of PML_V2 were made for only 49 basins as the remain-
ing three have no ETwb data before 2003. As seen, three atmospheric reanalysis products (ERA5, MERRA2, and 
JRA55; Figures 6a–6c) and FLUXCOM_CRUNCEP (Figure 6f) tend to overestimate ET in most basins, while 
VIC_GL (Figure 6i) performs oppositely with substantial negative biases. In addition to VIC_GL, a remarka-
ble underestimation of ET in the Niger River basin also occur in PLSH (−41%), GLEAM (−28%), Noah_GL 

Figure 5.  Regression plots of the basin-averaged multi-year mean annual evapotranspiration (ET) rates from the 12 ET products against ETwb of the 52 river basins. 
Averaging period follows the overlapping temporal coverage of the corresponding ET product and the ETwb. The length of the whiskers represents the standard deviation 
of the annual values in each basin. The strips around the least-squares-fitted red line with the slope specified denote the 95% confidence interval. The root-mean-square-
error (RMSE) is in mm yr −1.
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(−25%), and JRA55 (−35%), which is consistent with the performance of the CR in the same basin. It is also 
evident that all 12 products, similar to the CR, significantly overestimate ET over the three Arctic basins (i.e., 
Yenisy, Lena, and Kolyma) in eastern Siberia for reasons discussed above.

3.3.  Validation Against Basin-Scale Annual ETwb

Figure 7 presents the validation of the CR-simulated annual ET rates (1982–2016) against 1572 basin-year annual 
ETwb values of Equation 10. In comparison with the statistical metrics in Section 3.2, the performance of the CR 
deteriorates slightly with NSE = 0.88, RMSE = 88.3 mm yr −1, RB = 6.2%, and best-fit-line slope of 0.93. This is 
so because the current metrics come from temporal statistics of annual values from all 52 basins at once, while the 
same metrics in the previous multiyear mean sense represent spatial statistics (of the basin multiyear averages). In 
other words, spatial statistics may be perfect as long as the model is unbiased for each basin even when the annual 
predictions show absolutely no correlation with “measurements.”

Owing to the same reason, the statistical metrics also degrade for the 12 ET products on an annual basis (Figure S3 
and Table 2). Note again that for each basin the validations of the models' annual ET rates were performed only 
for the overlap period with ETwb, thus the sample size may vary by ET products in Figure S3. With annual values, 
FLUXCOM_GSWP3, Noah_GL, and PML_V2 continue to produce the highest NSE (all are 0.85) and lowest 
RMSE (∼100 mm yr −1) values. This is followed by GLEAM, ERA5, FLUXCOM_WFDEI, and PLSH, with 
NSE values around 0.80 and RMSE about 110–120 mm yr −1. Similar to the multiyear mean case, VIC_GL, and 
MERRA2 again exhibit the largest errors with NSE <0.5 and RMSE >180 mm yr −1.

For a better inter-comparison, the CR-simulated ET rates were again assessed for the different time-periods of 
the ET products (see Figures S3m–S3o and Table 2). It can be seen that the CR's NSE and RMSE values excel 
independent of the temporal coverage. ERA5 and FLUXCOM_WFDEI reach an R value (both 0.957) which is 

Models Period

Multiyear mean annual ET Annual ET

Slope (−) R (−) RMSE (mm yr −1) RB (%) NSE (−) Slope (−) R (−) RMSE (mm yr −1) RB (%) NSE (−)

CR 1982–2016 0.99 0.970 76.7 3.4 0.93 0.93 0.952 88.3 6.2 0.88

ERA5 1982–2016 0.97 0.976 106.7 14.4 0.87 0.93 0.957 117.1 18.0 0.80

MERRA2 1982–2016 1.10 0.933 184.9 22.3 0.61 1.03 0.901 189.5 28.8 0.47

JRA55 1982–2016 0.84 0.947 131.2 15.0 0.81 0.80 0.922 145.4 18.4 0.71

GLEAM 1982–2016 0.95 0.927 117.5 3.6 0.84 0.89 0.907 122.7 3.8 0.81

FLUXCOM_CRUNCEP 1982–2016 0.94 0.947 136.6 16.4 0.79 0.88 0.926 143.7 21.6 0.70

CR 1982–2014 0.99 0.970 76.9 3.6 0.93 0.93 0.953 88.9 6.2 0.88

FLUXCOM_GSWP3 1982–2014 0.88 0.967 88.7 7.3 0.91 0.83 0.950 101.2 12.0 0.85

Noah_GL 1982–2014 0.89 0.951 93.7 3.1 0.90 0.86 0.931 106.4 5.6 0.85

CLSM_GL 1982–2014 1.10 0.946 155.0 17.5 0.73 1.04 0.919 161.7 17.8 0.70

VIC_GL 1982–2014 0.64 0.941 228.4 −32.5 0.41 0.60 0.923 226.0 −32.4 0.37

CR 1982–2013 0.99 0.970 77.3 3.8 0.93 0.93 0.953 89.3 6.2 0.88

FLUXCOM_WFDEI 1982–2013 0.82 0.971 100.5 10.4 0.89 0.79 0.957 111.9 16.3 0.80

PLSH 1982–2013 0.92 0.951 104.7 8.4 0.88 0.88 0.933 114.5 8.3 0.79

CR 2003–2016 1.00 0.962 82.8 4.0 0.91 0.92 0.945 88.5 11.6 0.86

PML_V2 2003–2016 0.92 0.948 94.5 4.5 0.89 0.84 0.931 98.8 8.1 0.85

Note. Outstanding values in each category and model period (separated by horizontal lines) are in bold.
Abbreviations: CR, complementary relationship; CRUNCEP, Climate Research Unit and National Centers for Environmental Prediction; ET, evapotranspiration; JRA, 
Japanese reanalysis; GLEAM, Global Land Evaporation Amsterdam Model; GSWP, Global Soil Wetness Project; MERRA, Modern-Era Retrospective Analysis for 
Research and Applications; NSE, Nash-Sutcliffe efficiency; PLSH, Process-based Land Surface Evapotranspiration/Heat Fluxes Algorithm; PML, Penman-Monteith-
Leuning; R, correlation coefficient; RMSE, root mean square error; RB, relative bias; WFDEI, WATCH Forcing Data ERA-Interim.

Table 2 
Performance Statistics of the CR and the 12 Mainstream ET Products Over 52 River Basins of the Globe
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practically the same as that of the CR (0.952 and 0.953). Only MERRA2 and CLSM_GL have better regres-
sion-line slope values than the CR, while GLEAM, Noah_GL, and PML_V2 yield smaller RB values than the  CR.

In general, the annual validations against ETwb confirm again that the CR generally improves upon (or at least it 
is on a par with) the selected main-stream ET products in its performance metrics discussed.

3.4.  Spatial Variations in Global ET Rates

Figure 8 displays the global (and latitudinal) distribution of the multiyear (1982–2016) mean annual ET rates 
simulated by the CR. It can be seen that ET rates are high in the tropical regions (Amazon/Congo basins, and 
Southeast Asia) around the equator with values often exceeding 1200 mm yr −1, while intermediate ET rates 
occur in the mid-latitude forests and agricultural regions. Beside the permanently ice and snow-covered regions 
of Antarctica and Greenland, low ET rates occur in the arid regions of the continents (e.g., Sahara, Central Asia, 
southwestern United States), and the boreal (e.g., Northern Siberia and Northern Canada) regions of the world 
with values mostly below 200 mm yr −1. In general, the spatial pattern of the annual ET rates and the latitudi-
nal-averages from the CR are all consistent with those from the ensemble means of the main-stream ET products 
as well as the 20 CMIP6 models, as have been illustrated in Figure S4.

The multiyear mean annual global land ET rate from the CR is 500 ± 6 (mean ± standard deviation) mm yr −1, 
which equals to 72.3 ± 0.9 × 10 3 km 3 yr −1 for the total amount. This indicates that the annually evaporated 
water volume from the global land surface is about triple (∼3.2) the total water volume of the Great Lakes 
(22.8 × 10 3 km 3 according to NOAA Great Lakes Environmental Research Laboratory at https://www.glerl.noaa.

Figure 6.  Spatial distribution of the basin-averaged multi-year mean annual evapotranspiration (ET) rates from the 12 mainstream ET products relative to the ETwb of 
the 52 river basins. Averaging period follows the overlapping temporal coverage of the corresponding ET product and the ETwb.

https://www.glerl.noaa.gov/education/ourlakes/lakes.html
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gov/education/ourlakes/lakes.html). This annual volume is also close to that 
stored in the Caspian Sea (78.2 × 10 3 km 3), the largest inland water body on 
Earth in terms of area and volume.

Figure 9 compares the multiyear (for the common overlap period of 1982–
2013 for all models except PML_V2 with its original time-period kept) mean 
annual global land- and vegetated-surface ET rate among the models. See 
Figure S5 for the vegetated surface domain and Table 1 for the spatial cover-
age of each product. For the global land-averaged ET rate, the CR yields a 
somewhat larger value than GLEAM, but both are much smaller than those 
of the two reanalysis products, that is, ERA5 and JRA55 (Figure 9a). For the 
global vegetated surface-averaged ET rate, the CR ranks fifth (in increasing 
order) among them. Such an ET rate of the CR is very close to those of FLUX-
COM_GSWP3, PLSH, and PML_V2, the first one equaling the median of 
these 13 products. The largest two ET rates in Figure 9a come  from FLUX-
COM_CRUNCEP and MERRA2 (both in excess of 670  mm yr −1), both 
exhibiting obvious overestimations in Figures  5b and  5f; while VIC_GL, 
which significantly underestimates ET in Figure 5i, produces an unreason-
ably low value of 365 mm yr −1 for the global vegetated surface (Figure 9a).

In comparison with the 20 CMIP6 models, CR ranks eighth (in increasing 
order) for both global land- and vegetated-surface ET rates (Figure 9b). In 
general, not only the median and mean global land ET rates of CMIP6 but 
also their inter-model spread is larger than those from the other 13 ET prod-
ucts (compare the box-plots of Figures 9a and 9b).

3.5.  Continental and Land-Cover-Type ET Rates

Among the CR's continent-averaged values (Figure 10a and Table S4), the largest multiyear (1982–2016) mean 
annual ET rate occurs over South America with a value of 1023 ± 12 mm yr −1, which is almost twice the second 
largest value for Africa (565 ± 10 mm yr −1). With the exception of Antarctica where ET rates are, as expected, 

Figure 7.  Regression plots of the basin-averaged annual complementary 
relationship (CR) evapotranspiration (ET) rates against ETwb of the 52 river 
basins (1982–2016). For each basin, comparisons were possible only for 
years with annual ETwb available, yielding a total sample size (n) of 1572. 
The annual ET rates were binned first with a bin-length of 50 mm, followed 
by a 2-D spline-smoother of the bin counts (vertical bar). The statistical 
metrics displayed are for the original annual values. The root-mean-square-
error (RMSE) is in mm yr −1 and the least-squares-fitted (dashed) line is also 
displayed.

Figure 8.  Spatial pattern of the complementary relationship (CR)-modeled multiyear mean (1982–2016) annual terrestrial evapotranspiration (ET) rates across the 
globe and their latitudinal-averages.

https://www.glerl.noaa.gov/education/ourlakes/lakes.html
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particularly low, the other four continents exhibit similar annual ET rates 
ranging from 420 to 460  mm yr −1 (Table  S4). However, because of large 
differences in continental areas, the largest absolute ET amount is found over 
Asia with a value of 19.3 ± 0.4 × 10 3 km 3 yr −1, followed by South Amer-
ica (18.0 ± 0.2 × 10 3 km 3 yr −1), and Africa (16.8 ± 0.3 × 10 3 km 3 yr −1). 
These three continents contribute ∼75% of the total water evaporated from 
the global land surface, though their total area only accounts for ∼54% of 
the global land area. In general, the ET amounts estimated by the CR over 
the continents are comparable to previous results documented by Rodell 
et al. (2015, Figure 3 therein) and Jung et al. (2019, Figure 8 therein).

Among the IGBP land cover types (Figure  10b and Table  S4), evergreen 
broadleaf forests (EBF), mostly of the tropics (see Figure S6 for the full name 
and spatial distribution of each LCT), produce both the largest annual ET rate 
(1263 mm yr −1) and the largest total amount of ET (16.1 × 10 3 km 3 yr −1), 
whereas permanent snow and ice (PSI) and barren land (BAR) do the small-
est, which together contribute ∼3% to the total global terrestrial ET amount. 
Although the annual ET rate from grasslands (GRA) is only about 500 mm 
yr −1, the relatively large area of such a LCT makes it the second largest 
contributor (∼21%) to the total amount of global terrestrial ET with a value 
of 15.2 × 10 3 km 3 yr −1, which is slightly higher than the third largest contrib-
utor, savannas (SAV, 12.7 × 10 3 km 3 yr −1). With values of ∼7 × 10 3 km 3 yr −1, 
croplands (CRO), and woody savannas (WSA) contribute equally to the total 
amount of global terrestrial ET, while the remaining 12 LCTs have much 

Figure 9.  Comparison of the multi-year mean annual complementary relationship (CR) evapotranspiration (ET) estimate against those of (a) the 12 mainstream ET 
products, and; (b) 20 Coupled Model Inter-comparison Project Phase 6 (CMIP6) models for the global land and the global vegetated surface only. Averaging period is 
the 1982–2013 overlap for all models except PML_V2 (2003–2016). The error bar represents inter-annual variability of the modeled values. For each group's box plot, 
the central line is the median, while the edges of the box are the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points without 
considering outliers, while the outlier marked individually by a plus sign. The filled point is the mean value.

Figure 10.  Multiyear (1982–2016) mean annual evapotranspiration (ET) rates 
and the corresponding ET amount modeled by the complementary relationship 
(CR) for each (a) continent and (b) International Geosphere-Biosphere 
Program (IGBP) land cover type.
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smaller contributions, though cropland/natural vegetation mosaic (NVM) and deciduous broadleaf forests (DBF) 
produce annual ET rates in excess of 700 mm yr −1 (Table S4).

3.6.  Long-Term Tendencies in Global ET Rates During 1982–2016

Figure 11 displays the spatial pattern of the estimated linear trends in annual ET rates from CR across the world 
during 1982–2016. As seen, annual ET rates have generally increased in the Northern Hemisphere. This is espe-
cially true for parts of the east-coast of North America, central/eastern Europe, western Sahel, northern India, the 
Tibetan Plateau, and most parts of Siberia where the strongest, statistically significant increases in ET occurred. 
However, significant decreases in ET occurred in the western United States, West Asia, and the Sudan region 
of Africa. In the Southern Hemisphere, significant increases in ET occurred mainly in Amazonia, the northern 
Andes, the Congo River basin, and western Australia while significant decreases in ET could be found in Papua 
New Guinea, certain regions in southern Africa, and the central and southern parts of South America. In general, 
the Southern Hemisphere has a proportionally larger area with decreasing ET rates than the Northern Hemisphere 
over the studied 35 years. It should be noted that the trends in ET shown in Figure 11 might be subject to obvious 
decadal variability and also the magnitude and sign of trends depend heavily on the exact period considered.

At the global scale, more than 70% (Figure 11, inset a) of the land area displays an increasing trend in annual 
ET rates during 1982–2016. Globally, terrestrial ET increased significantly with a tendency of 0.31 mm yr −1 
(p < 0.01) over the last 35 years (Figure 11, inset b). The rate of increase in ET was stronger prior to 2000. During 
2001–2008, annual ET significantly dropped at a rate of −1.8 mm yr −1 (p < 0.01), but it recovered fast since 2009.

The annual anomalies in the modeled ET rates of the CR and 11 of the ET products in Table 1 (note that MERRA2 
was excluded from such a comparison because of its implausible inter-annual variability in ET, see Figure S7) 
plus the 20 CMIP6 models were further compared. Because eight ET products in Table 1 do not fully cover the 
global land (i.e., with no data in the deserts or Greenland/Antarctica), the comparison was made over vegetated 
surfaces only. As seen in Figure 12, inter-annual variations in the CR ET rates were overall within the range of 
the 11 main-stream ET products. For the global vegetated surface, the trend in annual ET during 1982–2016 from 
the CR (0.34 mm yr −1, p < 0.01) is close to the median (0.28 mm yr −1, p < 0.01) trend value of the main-stream 

Figure 11.  Spatial pattern of the trends (1982–2016) in annual evapotranspiration (ET) rates from the complementary 
relationship (CR) across the globe. The stippling indicates the trends that are statistically significant (p < 0.05). Inset (a) 
presents the land area fractions with different trends (and matching color) specified in the horizontal bar, while inset (b) 
displays the annual anomalies in global land-averaged ET rates during 1982–2016, with the dashed line denoting their least-
squares-fitted linear trend.
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ET products in Table 1. Other two commonly used ET products with a global coverage, ERA5, and GLEAM, 
produce a very slight decreasing (−0.13 mm yr −1, p > 0.1) and a much stronger significant increasing (0.99 mm 
yr −1, p < 0.01) rate, respectively, in comparison with the median of these typical ET products (Figure 12).

The historical simulation from the CMIP6 models, though ends in 2014, also yields an increasing trend of 
0.45 mm yr −1 (p < 0.01, Figure 12). For the same 1982–2014 period, the tendencies of the CR and the median of 
main-stream ET products in Table 1 are 0.35 and 0.27 mm yr −1 (p < 0.01 for both), respectively. The reason for 
the trend value discrepancy (i.e., 0.45 vs. 0.27 mm yr −1) between the CMIP6 and the mainstream ET products is 
not clear yet. CMIP6 makes considerations to the rising atmospheric greenhouse gas concentrations, likely not 
included in most widely used current ET products (except PML_V2). However, rising CO2 levels may also curtail 
rather than boost ET, via limiting stomata openings (Gedney et al., 2006; Xu et al., 2016), thus the loss of water 
from plants, thus making the larger ET trend value of CMIP6 somewhat uncertain. The CR with a trend value 
in between the median of CMIP6 and that of the main-stream ET products in Table 1, may correctly capture this 
possible ET reducing mechanism as it inherently accounts for the complex feedback mechanism that exists across 
the land-atmosphere interface.

4.  Discussions
4.1.  Advantages and Disadvantages of the CR Models in Large-Scale ET Estimation

As the CR employed in this study inherently builds upon the dynamic feedbacks between the land-atmosphere 
interface without the need of any soil and vegetation status or precipitation information while requiring only a 
minimal number of input variables (i.e., air temperature, air humidity, net radiation, and wind speed) in a calibra-
tion-free mode when applied on a global scale, it is probably the most versatile and simplest global ET estimation 
approach available today. From a spatial perspective, the value of its single, constant parameter, α, can be set inde-
pendently of the model with the help of the forcing data only, as described in Szilagyi et al. (2017) and Ma and 
Szilagyi (2019), circumventing the necessity of any ground-truth ET data for calibration purposes. From a tempo-
ral perspective, the CR is able to yield historical ET series that other, more data intensive LSMs and RS models 
may not match in their temporal coverage. Note that net radiation in the CR can also be estimated from incoming 
global radiation or even from sunshine duration data only (Allen et al., 1998; Kim et al., 2019; Morton, 1983).

While the CR has previously been considered as a merely heuristic approach (McNaughton & Spriggs, 1989), a 
recent study by Szilagyi (2021) derived the current version from thermodynamic considerations and thus setting 
it on a stronger physical footing. The success of this version of the CR lies in its tracking the state of an air parcel, 

Figure 12.  Annual anomalies in the global vegetated surface-averaged annual evapotranspiration (ET) rates from the 
complementary relationship (CR), ERA5, and Global Land Evaporation Amsterdam Model (GLEAM) during 1982–2016. 
The median value plus the range of the n ET products in Table 1 (excluding MERRA2) are also specified. Note the value 
of n here may vary by year according to the corresponding mutual overlap of the ET products, thus n = 10 (1982–2002), 11 
(2003–2013), 9 (2014), and 5 (2015–2016), respectively. The inter-quartile range and the median of the 20 Coupled Model 
Inter-comparison Project Phase 6 (CMIP6) models during 1982–2014 are also displayed.
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in contact with the surface, via adiabatic processes. It directly relates the surface latent heat flux averaged over 
appropriate spatial and temporal scales to the average state of the air overlying the land surface and not through a 
proxy such as soil moisture or a vegetation index (Ma & Szilagyi, 2019). This CR version has already been demon-
strated to outperform or match other available LSMs, RS models, atmospheric reanalysis and machine learning 
based-ET methods on a continental basis (e.g., Kim et al., 2019; Ma & Szilagyi, 2019; Ma et al., 2020, 2019).

It should be highlighted that the present CR-based ET model is substantially different from that of Brutsaert 
et al. (2020). The latter relies on global rainfall (not precipitation) data for a universal calibration of altogether 
seven model parameters, while the current CR model does not require such information, neither calibration. Also, 
the current CR version performs a dynamic scaling of the EwEp −1 term in Equation 2 by a dynamic (i.e., updated 
in each time step) wetness index (i.e., [Ep max – Ep] [Ep max – Ew]  −1), while a similar scaling of EwEp −1 in Brutsaert 
et al. (2020) is achieved through a temporally constant aridity index, containing the multiyear mean annual rain-
fall rate. This way, the current CR version was able to produce more reasonable trends in annual ET rates over the 
CONUS (Szilagyi et al., 2020) than that of Brutsaert et al. (2020).

Due to the temporal and spatial scale requirements for a fully developed dynamic equilibrium between the land 
and the overlying atmosphere, the present CR method is not recommended to be applied with an averaging period 
shorter than about five days (this latter to filter out the effect of any passing weather fronts (Morton, 1983)) and 
on a grid-resolution finer than about a kilometer-squared to allow for an adjustment of the atmospheric boundary 
layer to possible changes in land cover, land use or moisture status. For the same reason, the CR ET estimates need 
to be treated with caution near sudden jumps in surface wetness conditions, such as occur near land-sea bounda-
ries, especially in hot and dry desert/semi-desert climates, where the corresponding potentially strong sea-breezes 
partially or fully disconnect the moisture status of the atmospheric boundary layer from the underlying land surface.

4.2.  The Magnitudes of Global ET

The global multiyear (1982–2016) mean annual terrestrial ET rate from the CR is 500  ±  6  mm yr −1 (i.e., 
72.3 ± 0.9 × 10 3 km 3 yr −1). This value is within the range of the water-balance derived global land ET rate of 
1.2–1.5 mm d −1 or 438–548 mm yr −1 by Wang and Dickinson (2012). When the desert and permanent ice/snow 
regions are excluded, the global vegetated-surface-averaged ET rate from the CR becomes 611 ± 7 mm yr −1 (i.e., 
71.2 ± 0.7 × 10 3 km 3 yr −1), a value close to the ensemble average of 606 ± 69 mm yr −1 from multiple diagnostic 
ET products by Mueller et al. (2011, Figure 1 therein) for the same spatial domain.

It should be noted that numerous studies exclude the desert and/or permanent ice and snow regions (e.g., Antarc-
tica or Greenland) of the world where ET rates are usually very low. For this reason, a direct comparison of 
the global ET rate in the unit of millimeter without specifying the spatial domain of averaging may lead to 
significant confusions. Therefore, it is more reasonable to compare ET expressed in cubic kilometers because 
the deserts and permanent ice/snow regions of the world contribute little (less than 5%, according to Miralles 
et al., 2016) to the total amount of global terrestrial ET. With this in mind, the present CR-based ET amounts of 
72.3 and 71.2 ( × 10 3 km 3 yr −1) are very close to previous results (Table S5) expressed in 10 3 km 3 yr −1, for exam-
ple, FLUXCOM (Jung et al., 2019): 76.0 (RS_METEO) and 75.6 (RS) both for 2001–2013; PLSH (K. Zhang 
et al., 2015): 74.3 (1982–2013); the Simple Terrestrial Evaporation to Atmosphere Model (STEAM, Wang-Er-
landsson et al., 2014): 73.9 (2003–2017); GLEAM and the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL; 
Miralles et al., 2016): 72.9 (note this is not the latest version 3.3a of GLEAM used in the present study) and 72.5, 
respectively, both for 2005–2007; PML_V2 (Y. Zhang et al., 2019): 72.8 (2003–2017); and the Water Balance 
model with Model Tree Ensemble (WB-MTE, Zeng et al., 2014): 71.1 (1982–2009). From an energy balance 
perspective, the global terrestrial latent heat flux was estimated to be 38.5 W m −1 (2000–2004) by Trenberth 
et al. (2009) and 38 W m −1 (2000–2005) by Wild et al. (2015), which translate to 71.4 and 70.5 ( × 10 3 km 3 
yr −1), respectively. Note that, however, all above estimates are much higher than the results reported by (a) 
Oki and Kanae (2006): 65.5 × 10 3 km 3 yr −1 (period of averaging is not available), and; (b) Jung et al. (2010): 
65 ± 3 × 10 3 km 3 yr −1 (1982–2008).

The multiyear mean global land precipitation (P) was estimated to be about (a) 117.6 × 10 3 km 3 yr −1 (1951–2000) 
by Schneider et al. (2017) from the GPCC data (involving an estimate for Antarctica), or; (b) 116.5 × 10 3 km 3 
yr −1 (2000–2011) by Rodell et al. (2015) based on the Global Precipitation Climatology Project (GPCP) with 
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a global coverage. GRDC estimated the multiyear (1961–1990) mean annual terrestrial runoff (Q), without 
Antarctica, to be 41.9 × 10 3 km 3 yr −1 (Wilkinson et al., 2014). The global direct groundwater discharge to the 
oceans (Qgw) by Zektser et al. (2006) was specified as 2.2–2.4 × 10 3 km 3 yr −1. Although with differences in the 
averaging periods above for precipitation and discharge, the global multiyear mean water-balance (P − Q − Qgw) 
ET amount is ∼72.2–73.5 × 10 3 km 3 yr −1, which is on a par with the CR's estimated value of 72.3 × 10 3 km 3 yr −1 
in the present study.

When taking the above-mentioned global land precipitation estimates from GPCC (Schneider et al., 2017) or 
from GPCP (Rodell et al., 2015) as reference, the CR yields a value of 62% for the global multiyear mean terres-
trial ET ratio (i.e., ET/P). This result falls into the middle of the previously reported ET/P values: 58% by Alton 
et al. (2009) and Miralles et al. (2011); 59% by Oki and Kanae (2006); 62% by Müller Schmied et al. (2016); 
63% by Wang-Erlandsson et al. (2014); 65% by Trenberth et al. (2007) and Mueller et al. (2013), and; 67% by Y. 
Zhang et al. (2016). It should be emphasized again that the present calibration-free CR method does not require 
any precipitation information (except for the sea-shore desert regions of Figure S1 where the land-atmosphere 
coupling significantly weakens), making it a fairly robust ET estimation choice for potential use in future global 
hydrological and climatological studies.

4.3.  Temporal Variations in Global ET

The ongoing global warming due to increasing concentrations of greenhouse gases is expected to accelerate 
the hydrological cycle (Held & Soden,  2006; Huntington,  2006) because the atmospheric moisture holding 
capacity could increase by ∼7% when air warms by 1°C based on the Clausius–Clapeyron relation (Schneider 
et al., 2010). One direct evidence for this speculation is that global near-surface specific humidity has increased 
with a rate of 0.07 g kg −1 decade −1 during 1973–2002 (Willett et al., 2007). Since changes in ET are energetically 
constrained, climate simulations suggested that the global evaporation (including the oceans) may increase with 
the air temperature at a rate of 2%–3% °C −1 (Schneider et al., 2010). However, decreasing pan evaporation rates 
in spite of the observed significant warming over the last few decades, initially reported by Peterson et al. (1995) 
and being referred to as the “evaporation paradox,” were prevalent over most parts of the world (e.g., McVicar 
et al., 2012; Roderick & Farquhar, 2004; Y. Zhang et al., 2007). In this context, it was the CR that explained why 
the decrease in pan evaporation rates was in fact a signal of increasing land ET rates (Brutsaert & Parlange, 1998), 
though at that time (more than two decades ago) the variations in land ET remained lesser known owing to the 
dearth of global-scale ET products. The present CR ET estimates, in accordance with the available main-stream 
ET products and the coupled Earth System Models from CMIP6, suggest that the global terrestrial ET rate did 
increase from the early 1980s to the late 1990s (Figure 12).

However, the CR modeled global land ET rates started to decrease with 2001, which was especially apparent 
until 2008 (see the inset in Figure 11). In fact, the contrasting trends before and after the year 2000 are not only 
true for the CR but also for other available ET products, as illustrated by the multi-model synthesis of Mueller 
et al. (2013, Figure 3 therein). Jung et al. (2010) attributed the significant reduction in global terrestrial ET during 
1998–2008 to generally declining soil moisture conditions in the Southern Hemisphere. Although Figure 11 is for 
1982–2016, it is apparent that the Southern Hemisphere did have a higher percentage of regions with decreasing 
ET rates than the Northern Hemisphere, similar to the results reported by Jung et al. (2010, Figure 3a therein) for 
a relatively shorter period.

Miralles et al. (2014) further demonstrated that the multi-decadal variability of terrestrial ET is largely controlled 
by the dynamics of El Niño/Southern Oscillation (ENSO). They explained that the decline of ET in the first 
decade of the 21st century was mainly because El Niño led to reduced precipitation rates over Amazonia, Africa, 
Australia, and Indonesia, thereby resulting in lower soil water content and thus cutting back on ET. Interestingly, 
however, La Niña became dominant since 2009 (see Figure 1c in Miralles et al., 2014), bringing enhanced terres-
trial precipitation rates, thus bolstering ET again. These ENSO events perfectly explain the CR modeled annual 
ET rates post-2000 (Figure 11 inset b). A more recent study by Kim et al. (2019, Figure 5 therein) also found that 
the current CR model was able to capture the influences of ENSO on ET over the CONUS.

In addition to climatic controls on ET, the wide-spread greening of Earth over the past few decades (Piao 
et al., 2019; Zhu et al., 2016) may bolster global terrestrial ET rates since increased LAI could enhance not only 
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transpiration but also the evaporation of the canopy interception, as has been reported by multiple studies (e.g., 
Piao et al., 2019; Zeng, Peng, & Piao, 2018; K. Zhang et al., 2015; Y. Zhang et al., 2016). At the global scale, it 
has been found that a unit increase in LAI enlarged the latent heat flux by 3.66 ± 0.45 W m −2 during 1982–2016, 
but such an impact of the vegetation on ET appears less apparent in humid regions than in arid ones (Forzieri 
et al., 2020). Coupled climate modeling by Zeng, Piao, et al. (2018) proposed that the increase in LAI during 
1982–2011 may have led to an increase of 12 ± 2.4 mm yr −1 in global land ET rates. Interestingly, the present 
CR-simulated ET rates over the global vegetated surface also display an increasing trend through the modeled 
35 years (Figure 12), yielding an overall identical increase of 11.9 mm, even though it did not use any vegetation 
data as input. While the CR method does not explicitly account for the effects of vegetation change on ET, it 
indirectly takes it into consideration via the variations in temperature, humidity, wind speed, and net radiation, 
which are all impacted by changes in land surface properties.

4.4.  Potential Uncertainties in the Validations

While the water-balance-estimated annual ETwb rates from a great number of basins with varying climates and 
land covers have been used here to assess not only the CR but also another 12 main-stream ET products, such 
evaluations mainly concentrate on data rich areas where all of these models are constrained by generally high 
quality ground observations. For data scarce regions in the world, however, the accuracy of any ET products 
including the CR remains less studied. A similar concern holds also for the validations of the CR estimates by 
the FLUXNET data, as most EC towers are located in North America, Europe, and Australia, while much fewer 
are situated in Asia, Africa, and South America (see Figure 1a). Besides, most FLUXNET towers are for grass-
lands and forests that are located in mild climatic regions, while the number of EC towers for other LCTs and 
for extreme humid and arid regions is much lower (see Table S1). For example, only eight EBF sites were used 
to assess the CR's performance. While the median NSE value for this LCT is negative in Figure 2a, the valida-
tions using ETwb in the Amazon and Congo Basins, where most EBF are found, do not show significant bias (see 
Figure 4a for Basins #47, #48, #49, and #17). Therefore, the model validation results against FLUXNET EC 
measurements should be interpreted with some caution.

It should be emphasized that even for basins where measured runoff data are available, the accuracy of ETwb, as 
we described previously, depends strongly on the quality of precipitation data since the meteorological stations 
may have a poor spatial coverage in many parts of the world, for example, in high latitudes (see Figure 2 in 
Schneider et al., 2017), which may lead to a misrepresentation of basin-wide ETwb. This way the confidence of 
model evaluations against the water balance approach in this study may degrade to some extent for basins in 
boreal regions.

4.5.  Lessons Learned From the Present Multi-Model Evaluations

We note that poor validation results of any ET products (e.g., VIC_GL and MERRA2) by ETwb values do not 
necessarily mean that a given ET model is inferior to others. Instead, the reliability of the meteorological forcing 
and/or the parameter values determined by gridded vegetation and/or soil data also impact a model's ability to 
estimate ET. The sensitivity study by Badgley et al. (2015) suggested that the span of global annual ET rates in 
a typical year could reach 100 mm yr −1 when different forcing were used to drive the PT-JPL model of Fisher 
et al. (2008). Such a finding can also be partially evidenced by the diverse performances of the three FLUXCOM 
ET products displayed in Figures 5d–5f and S2d–S2f, which were driven by three different meteorological forcing 
(Jung et al., 2019).

Regarding the current calibration-free CR model, the sensitivity of the modeled ET rates to meteorological forc-
ing has been illustrated by Ma et al. (2019). While a wide range of evaluations suggested that the ERA5 forcing 
is indeed more accurate than other atmospheric reanalyzes with regard to radiation (e.g., He et al., 2021), air 
temperature (e.g., Martens et al., 2020; Tarek et al., 2020), wind speed and humidity (e.g., Graham et al., 2019), 
the potential error in this particular forcing is certainly not negligible, which may affect the accuracy of this new 
CR-based ET product. To illustrate the impact of different meteorological forcing on the current CR model, the 
modeled ET (driven mainly by ERA5) of this study are compared to previous ET estimates of the same CR model 
but driven by Ta and Td from PRISM as well as Rn and U10 from NARR (Ma & Szilagyi, 2019) for 18 basins cover-
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ing the CONUS (i.e., Basin #29–46 in Figure 1b). Note that PRISM and NARR were specifically designed for the 
CONUS, therefore may be more reliable there than ERA5 assembled for a global coverage. As seen in Figure S8, 
the R between the two modeled ET rates reaches 0.987 and the RMSE is less than 50 mm yr −1. Moreover, the 
inter-annual variability of the basin-averaged ET rates is almost identical (i.e., vertical and horizontal whiskers 
are close in length) between the two ET estimates driven by different meteorological forcing. This suggests that 
the ERA5 forcing may indeed be appropriate for the simulation of global terrestrial ET rates. Even so, we argue 
that a continued refinement of model forcing is a key step in reducing uncertainties in any future ET models, 
including the CR; though this is beyond the scope of the present study.

A final caveat for large-scale ET modeling, including the CR, is that the resulting ET rates should be further 
tested/verified by embedding them into different hydrological models (either physically based or conceptual 
spatially lumped/distributed parameter ones) to see whether they improve such modeling efforts by mitigating 
the non-closure of the water balance characteristic of these models, as has been documented by a wide range of 
studies (e.g., Sahoo et al., 2011; Sheffield et al., 2009). As the present CR model is calibration-free and avoids the 
uncertainties found in soil, vegetation, and precipitation inputs, it may offer a potential way forward to improve 
the water budget closure at basin-to-global scales when coupled to hydrological models, thus, deserving further 
study in the future.

5.  Conclusions
Having recognized the challenges in (a) explicitly resolving global-scale soil and vegetation data, and; (b) precip-
itation forcing, this study estimates global terrestrial ET rates over a 35-year period with a recently developed 
calibration-free CR model, which not only avoids the uncertainties mentioned above but also dispenses with the 
need of “prior” measured ET data for model calibration. While this CR model was forced by global reanalysis 
data and employed a temporally and spatially constant PT α value derived from the forcing data, the modeled ET 
rates show a good agreement with (a) locally measured EC data, as more than 70% of the 129 global FLUXNET 
sites display NSE values in excess of 0.5, and; (b) water balance-based ETwb of 52 river basins, encompassing 
diverse climates and land covers across the world producing an NSE value of 0.93 for multiyear averages and 
0.88 for annual values, and thus indicating that the model is able to accurately simulate land ET rates globally. 
Further evaluations of another 12 main-stream global ET products reveal that this new CR-based ET approach is 
on a par with the currently available ET products, as evidenced by typically improved statistical metrics at varying 
time scales. All in all, the present CR model is well-suited for facilitating terrestrial ET studies on a global scale.

The multiyear mean global land ET rate specified by the CR is 500 ± 6 mm yr −1 (72.3 ± 0.9 × 10 3 km 3 yr −1). 
During 1982–2016, more than 70% of the global land area exhibited increasing trends in the modeled ET, while 
significant decreases in ET rates occurred mainly in the western United States, central, and southern South Amer-
ica, in certain regions of Africa (especially the Sudan), Asia, and the majority of Papua New Guinea. Globally, 
the land-averaged ET increased significantly with a rate of 0.31 mm yr −1 over the 35 years modeled. This means 
that global land ET increased by 2.2% during 1982–2016. The increase in CR ET is more obvious prior to the 
year 2000, and was replaced by a decreasing one after that, which was then followed by global ET rates recovery 
since 2009. Model inter-comparisons suggest that, both climatology and trends in global ET rates produced by 
the CR, stay close to the median of not only the current main-stream ET products but also to those of 20 CMIP6 
models for a slightly different period. Although the present study only covers the 1982–2016 period because of 
the availability of inputs, regular annual updates of this global CR ET product are planned.

As the current CR model is calibration-free (when applied over a large enough region to encompass periodically 
or permanently wet land surfaces) and requires no precipitation (except in sea-shore deserts for an ET-value 
correction), vegetation, or soil characteristics information, while employs a very limited number of meteoro-
logical variables as input to a single, non-dimensional equation, it has the potential for users to estimate ET 
rates not only on a global scale but also over any large regions (with probably improved local forcing) and/or 
periods chosen (even as long as a century since the model's net radiation input may also be derived from more 
commonly recorded sunshine duration data). In addition, considering its highly parsimonious model structure, 
this CR model could easily be incorporated into more complex hydrological and/or climate models, leading to 
potentially improved large-scale hydrological and climate simulations.
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Data Availability Statement
All data used in this study can be accessed from the websites as following: FLUXNET2015 (https://
fluxnet.org/data/fluxnet2015-dataset/); GPCC precipitation (https://opendata.dwd.de/climate_
environment/GPCC/html/fulldata-monthly_v2018_doi_download.html); PRISM precipitation 
(http://prism.oregonstate.edu/); GRDC runoff (https://www.bafg.de/GRDC/EN/Home/homepage_node.html); 
USGS runoff (https://waterwatch.usgs.gov/?id=wwds_runoff); China Sediment Bulletin runoff (http://www.
mwr.gov.cn/sj/tjgb/zghlnsgb/); GRACE (https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/); GRACE-
REC (https://doi.org/10.6084/m9.figshare.7670849); ERA5 and ERA5-Land data (https://www.ecmwf.int/
en/forecasts/datasets/reanalysis-datasets/era5); CERES Rn (https://ceres.larc.nasa.gov/); GLASS albedo and 
emissivity (http://www.glass.umd.edu/Download.html); MODIS land cover type (https://lpdaac.usgs.gov/prod-
ucts/mcd12c1v006/); MERRA2 (https://disc.gsfc.nasa.gov/datasets/M2TMNXLND_5.12.4/summary?key-
words=MERRA-2); JRA55 (https://jra.kishou.go.jp/JRA-55/index_en.html#jra-55); FLUXCOM (https://
www.bgc-jena.mpg.de/geodb/projects/Home.php); Noah_GL (https://disc.gsfc.nasa.gov/datasets/GLDAS_
NOAH025_M_2.0/summary?keywords=GLDAS); CLSM_GL (https://disc.gsfc.nasa.gov/datasets/GLDAS_
CLSM10_M_2.0/summary?keywords=GLDAS); VIC_GL (https://disc.gsfc.nasa.gov/datasets/GLDAS_
VIC10_M_2.0/summary?keywords=GLDAS); GLEAM (https://www.gleam.eu/); PLSH (http://files.ntsg.umt.
edu/data/ET_global_monthly/Global_8kmResolution/); PML_V2 (https://code.earthengine.google.com/?as-
set=projects/pml_evapotranspiration/PML/OUTPUT/PML_V2_8day_v014); and CMIP6 historical simulations 
(https://esgf-node.llnl.gov/search/cmip6/). The newly developed ET product using the CR method is available at 
https://doi.org/10.6084/m9.figshare.13634552.
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Erratum
In the originally published version of this article, in Figure 12, the black line of the CR data was shifted backward 
by one year. The figure has been updated and this version may be considered the authoritative version of record.
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