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Abstract
Humans represent ecological super-spreaders in the dissemination and introduction of pathogens. 
These processes, consistent with the dynamics of the Stockholm paradigm, are exemplified in the origin 
and globalized distributions of SARS-CoV-2 since initial recognition in central Asia during 2019 and 
2020. SARS-like viruses are not widespread in mammals but appear widespread in chiropterans. Bats 
are isolated ecologically from most other assemblages of mammals in terrestrial systems. Humans may 
be the stepping-stone hosts for broad global dissemination and wider infection (given the opportunity) 
among diverse assemblages of mammals in which host and viral capacity are compatible. Human 
globalization mediated insertion in global ecosystems along primary and secondary pathways initially 
with localized to regional circulation across continents. Origins and persistence of cycles involving 
variants and viral transmission among other mammals and the potential for secondary exposure 
(retrocolonization) of people occurs on multidirectional pathways. Humans were responsible for 
the initial breakdown in ecological isolation of the virus that facilitated colonization events from 
chiropterans to other mammals. In the absence of these human drivers, environmental or ecological 
interfaces (boundary zones among habitats) limiting the distribution of SARS-CoV-2 are unlikely to 
have been crossed, leaving a diverse assemblage of SARS-like viruses (Sarbecovirus) remaining relatively 
hidden and isolated in southeast Asia.
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Introduction

Humans may be the ultimate ecological super-spreaders in 
the dissemination and introduction of pathogens (Boeger 
et al., 2022). In the case of COVID-19, humans are at the 
nexus of a dynamic stepping-stone that has mediated the 
distribution of the SARS-CoV-2 virus from focal interfaces 
(i.e., boundary zones among habitats) of localities and land-
scapes to eruptive expansion crossing the artificial bound-
aries that link regional and global scales of urban environ-
ments and terrestrial ecosystems in ecological time (Araujo 
et al., 2015; Morens and Fauci, 2020). Critically, there was 
limited opportunity for pathogen emergence in the ab-
sence of human hosts as facilitators in the disruption of 
ecological isolation and barriers among a diverse spectrum 
of potential mammalian host species and across geogra-
phy. Globalization and waves of human dispersal mediated 
the introduction, broad establishment, and circulation of 
the virus among assemblages of human and other mam-
malian hosts in wildland, agricultural, and urban environ-
ments (Rochman et al., 2021; Pekar et al., 2022).

In the highly fluid circumstances of a global pandemic, 
SARS-CoV-2 had already been documented in 200 coun-
tries, with +183 million human cases and nearly 4 million 
fatalities attributed to COVID-19 as of July 2021 (Lin et al., 
2021). Circulation in humans and a broadening diversity 
of mammalian hosts among the Carnivora (Canidae, Feli-
dae, Mustelidae), Cetartiodactyla, Primates, and Rodentia 
has been documented across all continents of the northern 
and southern hemisphere, excluding Antarctica (e.g., Gry-
seels et al., 2020; Mahdy et al., 2020; Chang, 2021; Jia et 
al., 2021; Lin et al., 2021; Wei et al., 2021; Hale et al., 2022; 
Kuchipudi et al., 2022; Martins et al., 2022; Padilla-Blanco 
et al., 2022; Pickering et al., 2022; Yen et al., 2022). High di-
versity and extensive distribution provide conditions for a 
complex mosaic of virus-host interactions and global per-
sistence through single and multiple events for introduction 
and establishment with recurrent expansion, isolation, and 
oscillations across geography and host range (Deng et al., 
2020; Rochman et al., 2021; Colson et al., 2022).

SARS-2 Variants and Stockholm Paradigm

Pathogen diversity, including the origins of SARS variants, 
is generated through repeated cycles (oscillations) of ex-
pansion and contraction of host and geographic ranges 

(Brooks et al., 2019; Boeger et al., 2022). Cycles of isolation 
occur both in people and assemblages of domestic; semi-
domestic; and wild, free-ranging mammals; subsequent ex-
pansion and dissemination of initially focal variants occur 
with relaxed isolation, secondary globalization, and increas-
ing connectivity (Rochman et al., 2021). These pathways de-
fine the outcomes of taxon-pulse and oscillation within the 
dynamics of the Stockholm paradigm (SP) at local, regional, 
and global scales consistent with a growing body of empir-
ical observations and modeling of the pathogen-host in-
terface (Hoberg and Brooks, 2008, 2015; Araujo et al., 2015; 
Brooks et al., 2019; Feronato et al., 2021). The history of the 
SARS-2 pandemic is powerfully predicted and documented 
by the SP dynamics. Events of colonization occur through 
ecological fitting (EF) in sloppy fitness space (SFS) (Agosta 
et al., 2010) in the context of broad capacity to access re-
sources in mammalian hosts, in this case the broad repre-
sentation of the functional ACE2 receptor across this class 
of vertebrates (e.g., Conceicao et al., 2020; Temmam et al., 
2022; Thakur et al., 2022). Continually shifting patterns for 
environmental interfaces drive opportunity for geographic 
and host expansion into an assemblage of potential and 
recognized reservoirs, including people, mediated by hu-
man activities in ecological time (Brooks et al., 2019; Ruiz-
Aravena et al., 2021).

Consequently, continuing emergence and reemer-
gence of an assemblage of Betacoronavirus (including Sar-
becovirus, which contains SARS-CoV and SARS-CoV-2) 
and Alphacoronavirus among vertebrates would be antic-
ipated (e.g., Boni et al., 2020; Damas et al., 2020; Latinne 
et al., 2020). There is a potential for widespread circulation 
among humans and animals within this assemblage of vi-
ruses but notably with human hosts as drivers of complex 
pathways for distribution and divergent trajectories for se-
lection and viral recombination following initial coloniza-
tion event(s) (Cai and Cai, 2021; Lin et al., 2021; Mallapaty, 
2021; Rochman et al., 2021; Wei et al., 2021; Boeger et al., 
2022; Pekar et al., 2022). Recurrent host colonization and 
geographic isolation, in conjunction with viral recombina-
tion, are considered central to diversification in SARS-like 
viruses (e.g., Anthony et al., 2017; Leopardi et al., 2018).

Succinctly, this suggests that the initial foundations for 
colonization as a precursor for epidemic and pandemic 
events can be predicted or anticipated, based on the in-
teraction of pathogen capacity and environmental oppor-
tunity (Brooks et al., 2014; Araujo et al., 2015; Brooks et 

Keywords: emerging pathogens, SARS-CoV-2, Stockholm paradigm, host colonization, ecological  
super-spreaders, geographic range expansion
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al., 2019; Boeger et al., 2022). In contrast, the outcomes 
of cyclic expansion and isolation in the accumulation of 
mutations and origins of an array of variants reflecting 
geography and hosts cannot be predicted. Thus, two dis-
tinct pathways in pre- and post-pandemic expansion can 
be recognized (e.g., Wei et al., 2021). Despite genetic re-
combination and the accumulation of mutations follow-
ing initial colonization, the evolutionarily conserved mech-
anism of infection (the interaction of spike proteins and 
ACE2 receptors) has not been substantially modified, and 
the potential remains for considerable and continuing in-
volvement of global mammalian diversity (Temmam et al., 
2022). Consequently, the basis for prediction is the period 
preceding initial colonization—signifying the critical im-
portance of DAMA (Document, Assess, Monitor, Act) tra-
jectories in revealing baselines for host and geographic 
distributions and connectivity for a diversity of pathogens 
and the identification of the probable interfaces and res-
ervoirs for circulation (Brooks et al., 2014, 2019; Trivel-
lone et al., 2022).

Although the focus has remained on chiropterans and 
Coronavirus (e.g., Latinne et al., 2020; Ruiz-Aravena et al., 
2021; Zhou et al., 2021; Holmes, 2022), the recognition 
of SP dynamics and the pervasive nature of colonization 
of new hosts (Hoberg and Brooks, 2008; Hoberg, 2010; 
Brooks et al., 2014, 2019; Boeger et al., 2022) suggests 
further explorations of diversity should occur at the in-
terfaces of connectivity among assemblages of potential 
mammalian hosts and reservoirs in sympatry. Invasion bi-
ology, a subset within these dynamics, would also con-
tribute to the changing landscape for colonization and 
emergence through opportunities originating from move-
ment and introduction of novel pathogen-host assem-
blages (Hoberg, 2010; Laaksonen et al., 2015; Malcicka et 
al., 2015; Zhang et al., 2022). Targeted, strategic biodiver-
sity inventory encompassing a broad array of mammalian 
species (e.g., in the context of coronaviruses and other 
pathogens), and more broadly among domestic and mi-
gratory avian species, along with accumulation of archi-
val resources of specimens and information, remain es-
sential (Hoberg, 2010; Hoberg et al., 2013; Brooks et al., 
2014; Dunnum et al., 2017; Brooks et al., 2019; Colella et 
al., 2021). Further, comprehensive sampling across arrays 
of potential vertebrate and invertebrate host species in in-
terface environments is inadequate and has focused pre-
dominantly on synanthropic/domesticated mammals and 
birds (e.g., Cleaveland et al., 2001), leaving an extensive 
minefield of hosts and pathogens that have yet to be sur-
veyed strategically (e.g., Brooks and Ferrao, 2005; Brooks 
et al., 2014, 2019).

Humans, Pathogens, and the Biosphere

Recognizing humans as mediators of expansion and intro-
duction for enzootic pathogens, including many viruses 
that threaten food security (e.g., African Swine Fever Vi-
rus, Rabbit Haemorrhagic Fever Virus, African Cassava Mo-
saic Virus) and the synanthropic assemblages associated 
with plague and cholera, is not especially remarkable (e.g., 
Daszak et al. 2000; Brooks et al., 2019; Ranawaka et al., 
2020; Huang et al., 2021; Stephens et al., 2021; Brooks et 
al., 2022; Fagre et al., 2022; Trivellone et al., 2022). Humans 
are also facilitators of environmental change and disrup-
tion, such as climate warming and anthropogenic forcing 
(e.g., Barnosky et al., 2012; Pecl et al., 2017), which drive 
and influence associations for assemblages of zoonotic 
and other pathogens across wildland and managed eco-
systems (e.g., Hoberg, 2010; Brooks and Hoberg, 2013; 
Kafle et al., 2020; Glidden et al., 2021; Brooks et al., 2022). 
Under most scenarios of perturbation and emergence, 
the prevailing impression has remained that novel ge-
netic change in a pathogen is most often the precursor for 
host colonization, or acquisition of novel hosts, and that 
such mutations are conveniently waiting in the wings for 
an opportunity (Parrish et al., 2008; discussed in Agosta et 
al., 2010; Brooks et al., 2019, Huang et al., 2021). Humans 
have historically driven epidemic and enzootic emergence 
and spread, including the 1918 influenza pandemic that 
originated from an avian source and subsequently swept 
around the globe (Worobey et al., 2014). Significantly, the 
generality of a stepping-stone pathway for some influ-
enza outbreaks has also been recognized, with transmis-
sion from avian hosts to humans and secondarily to swine 
(Nelson and Worobey, 2018). People appear to have fa-
cilitated the initial expansion of SARS-CoV-2 in conjunc-
tion with the cascade and crash of food resources in China 
emerging from the impact of African Swine Fever (Lytras 
et al., 2021; Xia et al., 2021; Brooks et al., 2022). The emer-
gence of SARS-CoV-2 is, so far, a singular but not unique 
event, with human hosts serving concurrently as reservoirs 
and stepping-stones (geographically and ecologically), 
leading to widespread introduction and establishment 
across ecosystems. People are mediators and facilitators 
on pathways with direct and indirect involvement. These 
circumstances can establish long-term pathogen pollu-
tion (Daszak et al., 2000; Gryseels et al., 2020; Mahdy et 
al., 2020) and a refuge and potential source for continued 
cycles of human infection and retrocolonization (Cai and 
Cai, 2021; Lytras et al., 2021; Mallapaty, 2022).

SARS-CoV-2 has been under intense focus as the ini-
tial pandemic during an era of rapid technology for which 
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resources for expeditious sequencing linked to science in-
frastructure provide essential tools to track the history of 
emergence and globalization (e.g., Chen et al., 2022). An 
increasingly robust toolkit for pathogen exploration may 
demonstrate generalities about past and future pandem-
ics. Notably, the behavior of Zika and Dengue viruses across 
environmental and host interfaces, although having greater 
complexity as arboviruses with arthropod vectors, may par-
allel the potential for emergence now recognized during the 
current pandemic (e.g., Brady and Hay, 2020; Regala-Nava 
et al., 2022). Further, with respect to colonization, stepping-
stone dynamics, and persistence under the SP, Zika has os-
cillated into animals such as water buffaloes, rats, hippo-
potamus, and many other species, including exploitation of 
new world monkeys (Vorou, 2016). A multihost, multivector 
pathway (for Zika) may involve acquisition of alternative ar-
thropod vectors that reflect expansion and movement, with 
ecological fitting, over extensive geographic space through 
introduction (Brady and Hay, 2019; Ryan et al., 2021), ex-
emplified by the temperate zone vector, Aedes albopictus 
(Oliveira et al., 2021). The implication for colonization across 
tropical, subtropical, and temperate biomes and increasingly 
higher-latitude landscapes under temperature warming and 
environmental change is notable.

The current focus for viral exploration has remained 
centered on chiropterans as primary sources of zoonotic 
pathogens (e.g., Li et al., 2005; Young and Olival, 2016; 
Latinne et al., 2020; Valitutto et al., 2020; Zhou et al. 2021). 
Bats are associated with a broad range of viral pathogens, 
causative agents of realized or potential zoonoses (Dob-
son, 2005; Olival et al., 2017; Streicker and Gilbert, 2020), 
but the frequency of focused encounters with people is low, 
and as a consequence, colonization directly to humans is 
rare (Holmes et al., 2022). Acquisition of human hosts by 
such zoonotic pathogens as Ebola virus, Marburg virus, and 
a diverse array of Coronavirus is relatively infrequent, de-
pending on heightened or focused propagule pressure in 
closed environments and restricted proximity (Feronato et 
al., 2021; Ruiz-Aravena et al., 2021). Coronaviruses are ubiq-
uitous in mammals but are generally restricted in distribu-
tion to particular mammalian taxa; there are now 7 known 
“human” coronaviruses, most with potential zoonotic ori-
gins or sources in wild or domestic mammalian hosts (Zhou 
et al., 2021). Colonization events represent the interface for 
pathogen capacity, environmental opportunity, and eco-
logical fitting in sloppy fitness space which facilitate host 
shifts in space and time (Brooks et al., 2019). Colonization 
requires a stepping-stone linkage from bats to humans, or 
from bats to other potential mammalian species, that may 
be synchronic and sympatric; ecological fitting and sloppy 
fitness space bridge the nexus for capacity and opportunity 

(Araujo et al., 2015; Morens and Fauci, 2020; Holmes, 2022). 
General concerns for pandemic expansion extend beyond 
SARS-like viruses, notably for such zoonotic pathogens as 
Ebola virus, which could become established in an enzo-
otic cycle from human sources and secondarily from as-
semblages in other mammals as a source for human in-
fection, following human introduction and dissemination. 
The arboviruses, such as Dengue, Yellow Fever, and Chikun
gunya, exhibit high propagule pressure but are temporally 
limited; although there is the potential for seasonally de-
fined global networks linking the southern and northern 
hemisphere with widespread translocation/introduction/
establishment of arthropod vectors, amplifying hosts and 
direct movement of infected people (Vorou, 2016). How-
ever, the context for introductions and establishment of 
Zika are further confounded by spread through associa-
tions with a broadening array of vectors and the potential 
sexual transmission among human hosts (e.g., Counotte et 
al., 2018; Mead et al., 2018; Apari et al., 2019).

Pathogens with complex life cycles involving multi-
ple hosts (including vectors and intermediates) need to 
be properly considered in multitrophic models to evaluate 
pathways for colonization and potential rates for dissemi-
nation. Pathogens that circulate among an assemblage of 
hosts and across trophic levels, although existing in con-
siderable SFS, may be temporally buffered with potentially 
slower rates of geographic colonization or spread, which 
is pertinent to arboviruses, plant pathogens, and most hel-
minths that circulate through arthropods, other inverte-
brates, and vertebrates. In this sense, and in contrast to 
viruses (and SARS-CoV-2, in this case) with direct trans-
mission, “enormous SFS plus special conditions” for com-
plex life cycles may be no more restrictive than “smaller SFS 
plus less special conditions” for simple life cycles, a gener-
ality that can benefit from deeper exploration (e.g., Brooks 
et al., 2006; Malcicka et al., 2015; Brooks et al., 2019; Agosta 
and Brooks, 2020).

Colonization requires focused circumstances at ecolog-
ical interfaces with considerable propagule (exploration) 
pressure to complete infection pathways to people. Con-
ditions of heightened propagule pressure, with an assem-
blage of Sarbecovirus, have been recognized in bat caves 
and among guano miners in Southeast Asia (Wacharaplue-
sadee et al., 2013; Joyjinda et al., 2019). Genetically diverse 
Sarbecovirus are most apparent in species-rich assemblages 
of chiropterans, especially species of rhinolophid bats, from 
southern China and borderland regions of Myanmar, Thai-
land, Laos, Cambodia, and Vietnam (e.g., Li et al., 2005; 
Latinne et al., 2020; Mallapaty, 2021; Zhou et al., 2021; Tem-
mam et al., 2022). A remarkable diversity of bat coronavi-
ruses is isolated at local/landscape scales in this region and 
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apparently lacks broader interaction with other terrestrial 
mammals in sympatry in cave habitats (Li et al., 2005; Vali-
tutto et al., 2020; Zhou et al., 2021). Extensive host switch-
ing among bats and recombination among viral popula-
tions at fine geographic scales are considered among the 
primary drivers of diversification among the lineages of 
Sarbecovirus including these SARS-like viruses (Huyhn et 
al., 2012; Werthheim et al., 2013; Corman et al., 2015; An-
thony et al., 2017; Leopardi et al., 2018; Latinne et al., 2020). 
Ecological isolation of chiropteran species in dispersed cave 
environments could drive partitions in this community that 
would limit direct human exposures. It has been estimated, 
however, that nearly 400,000 people in Southeast Asia are 
infected annually with SARS-related viruses originating in 
bats, with these infections largely being undetected and 
undiagnosed (McCarthy, 2021). But in general, casual in-
terfaces appear insufficient in facilitating a concurrent 
concentration or a focused interface of infective virus and 
susceptible potential human hosts. Thus, the particular cir-
cumstances represented by animal wet markets in Wuhan 
and other urban centers in China and Southeast Asia are of 
significance in providing initial stepping-stone pathways for 
amplification and dissemination of SARS-like and related vi-
ruses from bats through live wildlife food resources to hu-
mans (e.g., Huong et al., 2020; Lytras et al., 2021; Xia et al., 
2021; Pekar et al., 2022; Worobey et al., 2022).

Stepping-stone dynamics (Araujo et al., 2015) provided 
opportunity for SARS-like viruses to bridge relative ecolog-
ical isolation (of Betacoronavirus and Sarbecovirus circu-
lating in chiropterans), leading to colonization of humans 
and synanthropic environments based on preexisting ca-
pacities to use widespread resources in mammals. This has 
occurred minimally on 2 occasions involving betacorona-
viruses and food chains for people with SARS-CoV in 2003 
and most recently for SARS-CoV-2 in 2019 (Pekar et al., 
2022; Worobey et al., 2022), and possibly represented with 
emergence of MERS-CoV (Ruiz-Aravena et al., 2021; Zhou 
and Shi, 2021; Zhou et al., 2021). Closely related SARS-like 
coronaviruses are not common outside of bats in other 
mammalian groups in sympatry, although diversity of en-
teric and respiratory coronaviruses is well documented (e.g., 
Lin et al., 2021). With respect to SARS and SARS-2, these vi-
ruses would likely have remained limited in distribution by 
ecological isolation (and it appears diversifying in South-
east Asia—see Latinne et al., 2020; Holmes, 2022) in the 
absence of human activities.

Observations related to colonization indicate a funda-
mentally important interaction for capacity and opportu-
nity. As we have noted, although capacity is apparent for 
SARS-like viruses to utilize widespread host resources and 
thus a broad range of mammalian hosts, opportunity had 

been strongly limited by ecological context. In contrast, 
the fluid structure of interfaces, within common environ-
mental settings and with ecological connectivity, has been 
demonstrated for a diverse assemblage of viruses, show-
ing frequent patterns of colonization among giant panda 
(Ailuropoda melanoleuca) and associated mammalian hosts 
(Zhao et al., 2022). Interfaces and colonization thus reflect 
the degree of sympatry or synchrony relative to real expo-
sures and focused propagule pressure across potential host 
assemblages in shared environments (Guerrero-Sanchez 
et al., 2022).

Significantly, the origin of the Omicron variant of SARS-
CoV-2 was suggested to be associated with rodent hosts, 
with a source of original infection constituting an initial 
stepping-stone pathway facilitated by a human reservoir 
host in Africa during 2020 (Wei et al., 2021). The Omicron 
variant remained in relative isolation and on a divergent 
selection trajectory for a period of time preceding subse-
quent retrocolonization of humans and rapid geographic 
expansion globally (Sun et al., 2021; Wei et al., 2021; Boeger 
et al., 2022). The implications of ubiquitous rodent hosts 
for SARS-like viruses are considerable. The history for 
highly divergent variants, with emergence and expansion 
of SARS-2 among populations of white-tailed deer (in a 
stepping-stone dynamic of humans—semidomesticated 
captive deer on game farms—deer in wildland habitats and 
retrocolonization to humans), is another exemplar of re-
current opportunity meeting capacity mediated by human 
behaviors that facilitate focused propagule pressure nec-
essary to drive colonization (Hale et al., 2022; Kuchipudi et 
al., 2022; Mallapaty, 2022; Pickering et al., 2022; Roundy et 
al., 2022). Thus, the overall pathways for the pandemic are 
apparent, from its focal origins to the present juncture, with 
independent episodes of expansion, isolation, and diversi-
fication of viral variants among free-ranging wildlife, syn-
anthropic mammalian hosts, and humans (Figure 1). Such 
cascading events for pathogen dissemination among peo-
ple and across ecosystems are a component of the larger 
pervasive impact of humans in the biosphere.

Humans as Ecological Super-spreaders

Human activity and behavior (mobility, connectivity, inter-
faces) leads to breakdown in ecological isolation from and 
among other species, providing opportunity for host col-
onization. In the absence of human reservoirs, stepping-
stones, and mediators, the complex of SARS-like viruses 
would likely remain isolated. Human interactions changed 
the dynamic among these viruses from exploitation mode in 
isolation—where they use their inherited capacities to ex-
ploit the conditions (e.g., host-based resources and hosts) 
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as best they can—to exploration mode in expansion—where 
they use their inherited capacities to cope with changing 
conditions as best they can by exploring opportunities for 
EF in SFS, including colonizing new geographic areas and 
hosts (Brooks et al., 2019; Agosta and Brooks, 2020). Taxon 
pulse cycles (sensu Erwin, 1981) of isolation and expansion 
along with oscillations in host range (sensu Janz and Nylin, 
2008) and geographic distribution under the SP, continue to 
drive perpetuation of the pandemic and broadening expo-
sures on ecosystem scales (e.g., most recently among North 
American white-tailed deer and people).

In managing a pandemic, exploitation mode in isola-
tion is synonymous with “lockdown mode,” creating the 
ideal conditions for the accumulation of mutations and 
emergence of novel variants (Brooks et al., 2019; Agosta 

and Brooks, 2020). The “opening mode” after lockdown 
is synonymous with exploration mode during expansion, 
creating the ideal conditions for novel variants to expand 
their geographic and host ranges. The cycle of lockdown 
and open links fine-scale population dynamics and genetic 
structure to global distributions of pathogens, serving to 
demonstrate the signatures of taxon pulse and oscillation 
in shallow ecological time (Rochman et al., 2021; Boeger 
et al., 2022). New pathogen diversity is generated in iso-
lation, and propagule pressure at ecological interfaces fu-
els the exploration of new hosts during geographic expan-
sion (Feronato et al., 2021). Thus, events unfolding at local 
and landscape levels in conjunction with human behavior 
and incomplete biodiversity knowledge have global conse-
quences. We should be exploring these interfaces through 

Figure 1. The complex dynamics of a pandemic compatible with the Stockholm paradigm as revealed by COVID-19.  
A. A diagrammatic representation of circulation of a pathogen with humans as ecological super-spreaders, involving transmission 
among realms of urban, periurban, and wildlife species (circles and ovate spaces). Overlapping of each realm (darker gray) 
represents the zone of interface, where pathogen exchanges may occur between realms—a process which may vary spatially, 
temporally, and at local scales because of inherent characteristics of the mammalian assemblages (e.g., diversity, behavior of 
periurban species, environmental characteristics) and humans (e.g., culture, traditions, economics). B. Emergence of SARS-CoV-2 in 
Asia was likely associated with stepping-stone dynamics apparently involving a species of mammal (yet to be definitively identified) 
that bridged the ecological distance, providing the opportunity between the donor (bats) and the recipient species (humans). Initial 
stages of the pandemic were driven by human movements around the planet, spreading the virus across regions and continents 
(solid arrows). Connectivity mediated by humans disseminated or inserted SARS-CoV-2 into new systems of exploration, initially 
into urban and periurban realms and subsequently forming a complex network of transmission and emergence also involving 
the wildlife realm. Emergence across new realms, with distinct geographic and environmental contexts, resulted from multiple 
trajectories (events) of expansion and exploration over time, with subsequent potential for isolation and exploitation spatially 
and temporally, processes that have been demonstrated empirically. These dynamics are postulated in origins of novel variants 
(under different regimes of selection and isolation) of the pathogen. Given opportunity, such variants (including Delta, Omicron, 
and others) became disseminated among susceptible mammals, secondarily driving patterns of retrocolonization in humans. 
Continued expansions linked to globalized travel by humans (dashed arrows) during the course of the pandemic have resulted in 
subsequent spread of each successive new variant and are the basis for continued cycles of oscillation.
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targeted field-based sampling of potential and recognized 
host assemblages to reveal the signatures of genetic di-
versity and demographics associated with pathogen circu-
lation (e.g., Brooks et al., 2014; Colella et al., 2021; Padilla-
Blanco et al., 2022; Trivellone et al., 2022). The distribution 
of genetic diversity reveals viral origins, geographically in-
dependent events of host colonization, and multifaceted 
pathways for transmission during the course of the pan-
demic involving a considerable component of the global 
mammalian fauna (e.g., Oude Munnink et al., 2020; Cai and 
Cai, 2021; Rochman et al., 2021; Wei et al., 2021; Boeger et 
al., 2022; Pickering et al., 2022).

Humans represent a new epidemiological class that can 
be considered as ecological super-spreaders in the dissem-
ination and introduction of pathogens (Figure 1) (Boeger 
et al., 2022), contrasting with the recognition of super-
spreader events associated with human-human transmis-
sion (e.g., Koelle et al., 2022). SARS-like viruses are not wide-
spread in mammals but appear widespread in bats. Bats 
are isolated ecologically from most other assemblages of 
mammals in terrestrial systems. COVID-19 is just one ex-
ample of how humans may be the stepping-stone hosts for 
broad global dissemination and wider infection (opportu-
nity) among diverse assemblages of mammals in which host 
and viral capacity are concordant (Kuchipudi et al., 2022). 
Human globalization mediated insertion of SARS-CoV-2 in 
global ecosystems, with origins and persistence of cycles of 
viral transmission among other mammals and the poten-
tial for secondary exposure (retrocolonization) of people in 
multidirectional pathways (Oude Munnink et al., 2020; Cai 
and Cai, 2021; Lytras et al., 2021; Wei et al., 2021; Boeger et 
al., 2022; Mallapaty, 2022; Pickering et al., 2022). Although 
such events across a broad spectrum of potential pathogens 
involving colonization from humans and retrocolonization 
from wild and synanthropic hosts appear infrequently, such 
ecologically mediated colonization, as with SARS-CoV-2 is 
consequential (Fagre et al., 2022). Emphasized is the nexus 
for opportunity/capacity and fitness space, which effectively 
changes the narrative (from adaptation and special muta-
tion), indicating the subtle tipping points in distribution that 
can drive pandemic expansion across hosts, geography, and 
time (Audy, 1958; Brooks et al., 2019). Further, by provid-
ing an opportunity for colonization of new hosts in differ-
ent communities and across geography, we (humans) may 
further maximize the emergence of new variants with circu-
lation (oscillation) of the virus in wildlife networks at land-
scape scales with subsequent expansion globally. Connec-
tivity through environmental interfaces within this network, 
linking urban, periurban, agroscapes, and wildland habitats 
could create multiple pathways for retrocolonization back 
to humans (Colson et al., 2022).

The term “spillover” has been proposed as a general de-
scription for these events (Daszak et al., 2000), but it is not 
appropriate because rather than residing on the periphery 
of pathogen circulation, people are active reservoirs of in-
fection. Humans are at the center of dynamic (multidirec-
tional) expansion and diversification on ecosystem scales 
involving an increasing number of independent events for 
host and geographic colonization (Figure 1). Spillover and 
“spillback” are anachronistic terms that describe the dy-
namics of emergent pathogens. Both are tied conceptually 
to a considerable legacy of a standard model for “maxi-
mum coevolution and cospeciation” of parasite-host rela-
tionships that has codified often misleading assumptions 
about pathogen distribution and evolution (e.g., Hoberg 
and Brooks, 2008; Agosta et al., 2010; Brooks et al., 2015): 
spillover (and spillback) (1) assumes a primary or single 
host (one host–one pathogen) in which the pathogen is 
limited in distribution and circulation through a history of 
cospeciation and increasing specialization; (2) perpetuates 
the concept of emerging infectious disease (EID) as rare or 
unpredictable events because the potential is limited by 
cospeciation between pathogen and host; and (3) perpet-
uates the idea of EID requiring special adaptation, i.e., that 
variants represent specific adaptations that drive ongoing 
expansion events.

Spillover is simply another term for the broader concept 
of biotic expansion, which applies to changing patterns of 
host and geographic range. The SP provides a realistic pic-
ture of complexity in the biosphere with the potential and 
propensity for colonization events linking pathogens, hosts, 
time, and geography as drivers of continual episodes of EID. 
Clearly, “one host–one pathogen” has limited explanatory 
power when describing the dynamics of pathogen emer-
gence and spread. Further, the taxon pulse, a central dy-
namic of this pandemic, is a component of the Stockholm 
paradigm synthesis and the geographic form of the oscilla-
tion hypothesis. Thus, biotic expansions, common in Earth 
history, open up geographic fitness space, creating op-
portunities for host range expansion (Hoberg and Brooks, 
2008; Brooks et al., 2019; Agosta and Brooks, 2020).

The history surrounding the emergence of the Omi-
cron variants and the larger progression of the pandemic 
are consistent with SP dynamics, pre- and post-colonization 
(Boeger et al., 2022). Pre-colonization, the ability to have 
predicted this initial outbreak was substantial from the per-
spective of the SP, consistent with the evolutionarily con-
served nature of the ACE2 pathway for infection, creating a 
link between pathogen capacity and ecological conditions 
(opportunity) for colonization. Post-colonization dynamics, 
however, cannot be predicted, reflecting the outcomes of 
recurrent taxon pulse cycles and oscillations in host range 
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(and geography), producing a growing array of variants and 
their downstream circulation to new hosts. This recombina-
tion and accumulation of mutations over global geographic 
space greatly increases the unpredictability and complex-
ity of the problem. What does not change, however, is the 
conservative mechanism for infection (i.e., spike proteins 
and ACE2 receptors), ensuring that the capacity for host 
switching by EF in SFS among the entire assemblage of 
mammals is extensive and, as we have observed, is likely, if 
given the opportunity. The essential point is that the basis 
for prediction and prevention of EID is before the coloni-
zation event. This brings into focus the critical importance 
of protocols like DAMA, aimed at defining the distribution 
and connections for diversity of pathogens and their hosts 
with the identification of the probable interfaces (Brooks et 
al., 2019; Boeger et al., 2022; Brooks et al., 2022; Trivellone 
et al., 2022). SARS-CoV-2 and the proliferation of its vari-
ants is a powerful exemplar for the universality of patho-
gen circulation and EID, providing strong proof of concept 
and validation for the SP as a general framework for un-
derstanding their dynamics.
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