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HIGHLIGHTS 
 Multispectral sensors mounted on the center pivot lateral were able to capture differences between rainfed and irrigated 

crop. 
 Canopy temperature was strongly associated among stationary and pivot-mounted sensors with coefficient of determina-

tion ranging between 0.88 and 0.99. 
 A cooling effect of about 2°C was observed in canopy temperature data collected from pivot mounted sensors for irrigated 

soybean crop. 

ABSTRACT. Accurate knowledge of plant and field characteristics is crucial for irrigation management. Irrigation can po-
tentially be better managed by utilizing data collected from various sensors installed on different platforms. The accuracy 
and repeatability of each data source are important considerations when selecting a sensing system suitable for irrigation 
management. The objective of this study was to compare data from multispectral (red and near-infrared bands) and thermal 
(long wave thermal infrared band) sensors mounted on different platforms to investigate their comparative usability and 
accuracy. The different sensor platforms included stationary posts fixed on the ground, the lateral of a center pivot irrigation 
system, unmanned aircraft systems (UAS), and Planet (PlanetScope multispectral imager, Planet Labs, Inc., San Francisco, 
Calif.) satellites. The surface reflectance data from multispectral (MS) sensors were used to compute the Normalized Dif-
ference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI). The experimental plots were managed with 
rainfed and irrigated treatments. Irrigation was applied according to a spatial evapotranspiration model informed with 
Planet satellite imagery. The NDVI and SAVI curves computed from the different sensing systems exhibited similar patterns 
and were able to capture differences between the rainfed and irrigated treatments when the crops were approaching senes-
cence. Strong correlations were observed for canopy temperature measurements between the stationary and pivot-mounted 
infrared thermometer (IRT) sensors (p-value of less than 0.01 for the correlations) when canopy were scanned with no 
irrigation application (dry scans). The best correlation was obtained for the irrigated maize, which yielded r2 of 0.99, RMSE 
of 0.4°C, and MAE of 0.3°C. The correlation for the canopy temperature data collected during dry scan between UAS and 
pivot-mounted thermal sensors was weak with r2 = 0.26 to 0.28, larger RMSE values of 3.7°C and MAE values of 3.4°C. 
Secondary analysis between thermal data from stationary and pivot-mounted IRTs collected during wet scans (during an 
irrigation event) demonstrated reduced canopy temperature from pivot-mounted IRTs by approximately 2°C for irrigated 
soybean due to wetting of the canopy by the irrigation. Understanding the performance of these sensor systems is valuable 
in configuring practical design and operational considerations when using sensor feedback for irrigation management. 

Keywords. Center pivots, Irrigation, Multispectral, Remote sensing, Thermal, Unmanned aircraft systems. 

 
 

emote and proximal sensing can be important to 
acquiring data essential for precision agriculture. 
Precision agriculture constitutes the management 
of a field at a sub-field scale by applying manage-
ment that changes in space and time, which may 

require division of the field into management zones (Zhang 
et al., 2002; Daccache et al., 2015). The management zones 
should be continuously monitored by collecting spatiotem-
poral data using various sensing systems (Evans et al., 2013; 
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Higgins et al., 2016; Miller et al., 2018). These systems in-
clude sensors, sensor network systems, and the platforms 
used to mount or move the sensors. Sensors may include soil 
water sensors, MS sensors, or thermal sensors (infrared ther-
mometers and imagers), with the aim being to manage and 
avoid excessive water-related stress in the crop (Osroosh et 
al., 2016). The sensors used for irrigation management are 
mainly focused on maintaining appropriate levels of soil wa-
ter in the root zone. However, the soil water-based irrigation 
methods do not account for physiological characteristics of 
the crop and atmospheric aridity. The irrigation methods in-
cluding components of crop physiological characteristics, at-
mospheric aridity, and soil water availability, are important 
for sustainable irrigation schemes (Zhang et al., 2021). 
Therefore, soil water sensing should be used in conjunction 
with remote sensing of the crop canopy and weather data to 
better inform irrigation decisions. 

Sensor platforms could be either stationary or mobile and 
ground-based or aerial-based (Taghvaeian et al., 2020). It is 
common to install sensors at fixed locations in a research 
field using stationary posts. These fixed sensing systems are 
easy to install and provide a fine time-scale temporal trend 
of sensed data (Evett et al., 1996). However, the stationary 
systems can only capture characteristics of a limited area 
(~0.1 m2; DeJonge et al., 2015), which is less than optimal 
for site-specific management of large-scale fields. In con-
trast, sensors mounted on moving platforms are capable of 
collecting spatial data with fewer sensors but without a con-
tinuous time-scale data record at any one point in space, 
which could be crucial for water management. Common 
moving sensor platforms include aerial systems or any 
ground-based moving equipment. Aerial systems, such as 
UAS and satellites, have been widely used as moving plat-
forms for sensors that can inform remote sensing-based 
models for irrigation management (Cohen et al., 2015; Kim 
et al., 2018; Quebrajo et al., 2018; Barker et al., 2019; Bhatti 
et al., 2020; Ohana-Levi et al., 2020). An example is the Spa-
tial Evapotranspiration Modeling Interface (SETMI; Geli 
and Neale, 2012; Neale et al., 2012), a remote sensing-based 
model capable of informing irrigation decisions using im-
agery from different aerial systems. Energy balance models 
such as Soil Energy Balance for Land (SEBAL; 
Bastiaanssen et al., 1998), the Mapping EvapoTranspiration 
at high Resolution with Internalized Calibration (METRIC; 
Allen et al., 2007), and High Resolution Mapping of Evapo-
Transpiration (HRMET; Zipper and Loheide, 2014), are 
widely used to estimate evapotranspiration using remote 
sensing imagery. However, aerial and spaceborne systems 
may induce inaccuracies in sensor data due to atmospheric 
interference and sensor heating (Maguire et al., 2021). 

Ground-based moving platforms are a viable option for 
proximal sensing of crop canopy parameters including can-
opy temperature, NDVI, leaf area index, and fraction of 
cover. Center pivot irrigation systems and linear-move sys-
tems cover a large portion of the irrigated acreage in the U.S. 
(Evans et al., 2013; O’Shaughnessy et al., 2016; Evett et al., 
2020). IRT sensors and other imagers have been mounted on 
center pivot and linear-move irrigation systems to study dif-
ferent crop parameters and crop water stress 
(O’Shaughnessy et al., 2013; Colaizzi et al., 2019; Sui et al., 

2020). Center pivots are primarily designed to distribute wa-
ter across the field to meet crop water needs. However, cen-
ter pivots could also be used to mount sensors to estimate 
canopy cover, crop health, and soil interference (Evett et al., 
2020). Further, multispectral sensors mounted on the pivot 
can provide valuable spatial information on crop health and 
fraction of cover by estimating various vegetation indices 
(VIs). The two common VIs in agriculture are NDVI (Nor-
malized Difference Vegetation Index; Rouse et al., 1973) 
and Soil Adjusted Vegetation Index (SAVI; Huete, 1988), 
which are useful for estimation of evapotranspiration and ir-
rigation requirements (Campos et al., 2010). These VIs in-
corporate red and near infrared band reflectance values from 
the target surface and can be used to examine plant health. 
In addition to accounting for differences in reflectance 
among red and near infrared bands, SAVI also includes a 
correction factor that accounts for the influence of soil 
brightness. The vegetation indices are not solely used for ir-
rigation management, but are currently used in conjunction 
with other irrigation methods including soil water balance 
approach (Taghvaeian et al., 2020). The temporal trend in VI 
estimated from pivot-mounted MS sensors can detect long 
term physiological effects from crop water stress on the crop 
canopy (Zhang et al., 2019), but does not provide the real 
time information on crop water stress that can be obtained 
using thermal sensing. 

Important features of a successful sensing system for a 
commercial producer sized field are reliability and scalabil-
ity (O’Shaughnessy et al., 2013). With current advances in 
communication and sensor network systems, sensing sys-
tems are capable of connecting multiple sensors or nodes for 
expanding the sensing area of interest (O'Shaughnessy and 
Evett, 2010). However, it is vital to test the reliability and 
accuracy of these sensing systems for different watering con-
ditions in a field. While extensive research is being con-
ducted to study and compare sensors in a lab or controlled 
environment, more research is needed to compare sensors on 
different platforms and to compare their ability to sense im-
portant crop physiological parameters at a management scale 
typical for an agricultural field. The data from these sensing 
systems should also have an acceptable accuracy to correctly 
inform the irrigation models. 

This study aimed at comparing different sensors mounted 
on various platforms in the context of irrigation management 
for maize and soybean in the sub-humid climate of eastern 
Nebraska. The objectives of this study were to compare and 
evaluate the 1) SAVI and NDVI data computed from the 
pivot, UAS and Planet sensing systems; 2) canopy tempera-
ture data from the stationary, pivot, and UAS thermal sens-
ing systems; and 3) irrigation effects on canopy temperature 
sensed by IRTs mounted on the center pivot. 

MATERIALS AND METHODS 
This study was conducted at the University of Nebraska’s 

Eastern Nebraska Research, Extension and Education Center 
(ENREEC) situated near Mead, Nebraska, during the 2020 
growing season. The 58-ha field (centered at 41.172445°N, 
96.478248°W; 14T 711538.71 mE, 4560966.1 mN) was 
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equipped with a center pivot irrigation system, model Valley 
Irrigation 8000 (Valmont, Valley, Neb.) and fitted with high-
speed X-Tec center drive motor. The north and south halves 
were planted to soybean and maize, respectively. The plant-
ing dates were 24 April and 2 May for maize and soybean, 
respectively. The soils in the field site were primarily classi-
fied as silt loam and silty clay loam (gSSURGO, Soil Survey 
Staff, 2018). The specific soils included Yutan silty clay, Fil-
bert silt loam, Tomek silt loam and Fillmore silt loam. 

The field was divided into eight radial zones and 24 arc-
wise plot boundaries defining 192 plots, which were managed 
using rainfed or irrigated methods (fig. 1). The north and south 
halves had a total of 96 plots each. The plots used in this study 
were from the outer radial zones and thus were approximately 
rectangular shaped with an area ranging between 1870 and 
2630 m2. The length of the plots varied between 65 and 90 m. 
The width of the plots was 28 m. The plots selected for anal-
ysis were located in spans 6 and 7 of the center pivot. This 
study was part of a larger study with a complex experimental 
design comprised of multiple irrigation treatments. The 

irrigation scheduling for the plots used in this study was man-
aged by the Spatial EvapoTranspiration Modeling Interface 
(SETMI; Geli and Neale, 2012; Neale et al., 2012). The rain-
fed plots received no irrigation during the growing season. A 
6.1 m inner buffer around the four edges of each plot was used 
to remove boundary effects from neighboring plots in data 
collection and irrigation management. 

DATA COLLECTION 
Three different MS sensing systems were used in this 

study (table 1). Spectral reflectance sensors (SRS; model 
SRS-NDVI, Meter Group, Inc., Pullman, Wash.) were 
mounted at a height of 3.6 m at four different locations on 
span 6 of the pivot lateral (fig. 2). A downlooking SRS was 
installed on the pivot lateral over the rainfed and irrigated 
treatments each. Only one uplooking sensor was used for 
both treatments since the incoming radiant flux was similar 
for both treatments. The downlooking SRS sensor had a field 
of view of 36° and was aimed at an angle of about 45° from 
the horizontal to measure reflected radiation from the target 
surface in the red (650 ± 10 nm) and near infrared (810 ± 10 
nm) bands (area of surface sensed without any canopy cover 
was approximately 5 m2). The uplooking sensor had a view 
angle of 180° and sensed downwelling radiation. These sen-
sors were mounted at distance of about 3 m in the for-
ward/clockwise direction from the sprinklers on the pivot 
lateral using extension arms (fig. 2). The SRS sensed data at 
a frequency of five minutes. The data were collected using a 
model ZL-6 datalogger (Meter Group, Inc., Pullman, Wash.) 
mounted on the pivot lateral. The center pivot GPS data were 
used to geolocate the SRS data collected by the datalogger. 
The data were retrieved from the datalogger using ZENTRA 
Cloud (Meter Group, Inc., Pullman, Wash.). The second 
source of MS remote sensing was the PlanetScope MS im-
ager from the Planet satellite (Planet Labs, Inc., San Fran-
cisco, Calif.). It captured MS imagery at 3 m spatial 
resolution and temporal resolution of approximately one 
day. There were 20 Planet images for maize and 18 Planet 
images for soybean that were used to inform SETMI for 
computing the VIs. The MS imagery from Planet were ac-
quired over the field between 10:30 A.M. and 11:30 A.M. The 
third source was the RedEdge MicaSense camera mounted 
on the UAS (DJI Matrice 600, Los Angeles, Calif.), which 
captured imagery at a spatial resolution of 0.08 m. The UAS 
imagery was acquired at an altitude of approximately 122 m 
above ground level with imagery collected only over the 
northeastern quarter of the field planted with soybean. The 
UAS data were acquired between 11 A.M. and 3 P.M. 

Canopy temperature data were taken using three sensing 
systems (table 1). The first sensing system consisted of IRT 
sensors (SAPIP-IRT, Dynamax, Inc., Houston, Tex.) mounted 
on stationary posts. These sensors had a field of view (FOV) 
of 20° and a spectral range of 5.5 to 14 µm (Colaizzi et al., 
2018). For each crop, a single stationary IRT sensor was in-
stalled in an irrigated plot and another in a rainfed plot. The 
IRT sensors on the stationary posts were installed with a nadir 
view angle. The height of the IRT sensors was adjusted 
throughout the growing season at least once a month to main-
tain an approximate height of 1 m above the crop canopy. At 
full canopy height, the height of the stationary IRT from the 

Figure 1. Experimental plots used for the study. The north half shown
in light green color was planted to soybean and south half shown in
mustard color was planted to maize. The plots with grey color were not
irrigated and plots with blue color were irrigated. The plots shown in
light green or mustard color were not included in the analyses. The let-
ters ‘M’, ‘P’, and ‘U’ were used to denote type of analysis conducted on
a particular plot: M stands for multispectral analysis, P stands for anal-
ysis including data from center pivot-mounted IRTs and stationary
IRTs, and U stands for analysis including data from center pivot-
mounted IRTs and UAS. The windrose diagram shown in the center of
the figure was taken from the High Plains Regional Climate Center da-
tabase. The windrose diagram represents wind from a nearby weather
station called Memphis 5N (about 5 km away from the study site) on an
annual time scale. 
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soil surface was about 3 m for maize and about 2.2 m for soy-
bean. The spacing between the sensor and crop canopy for 
maize could not be maintained at full canopy height since the 
sensor post had to be kept below the center pivot. The station-
ary post was installed in between two rows and the stationary 
IRT was positioned directly above a crop row. 

The second sensing system consisted of four IRT sensors 
mounted on the center pivot lateral with a pair of IRTs 
mounted over the rainfed and irrigated plots each. Pivot-
mounted IRTs were installed at a spacing of 6.1 m from the 
edge of the plot borders along the lateral (fig. 2). The height 
of pivot-mounted sensors was about 3.6 m from the ground 
surface. The paired IRT sensors were pointed inwards from 
the opposite sides of a plot toward the center of the plot at an 
azimuthal angle of about 45°. The IRTs were also adjusted 
at an oblique angle downward from the horizontal to max-
imize viewing of vegetation and minimize soil background 
effects (Colaizzi et al., 2019). Similar to pivot-mounted SRS, 
IRTs on the pivot were also installed about 3 m ahead of the 
pivot lateral in the forward/clockwise direction of travel us-
ing extension arms (fig. 2). The pivot sensors were mounted 
in forward direction to minimize the interference of water 
from the sprinklers during an irrigation event on the sensor 
reporting. Data taken from both paired IRTs over a manage-
ment zone were averaged at every timestamp to reduce the 
effects of the changing sun angle with respect to the view 
angles of the moving pivot-mounted IRTs. The IRTs sensed 
canopy temperature with a frequency of five seconds and av-
eraged readings over 1 min. The wireless IRT sensing sys-
tem involved transmission of sensor data through a 
coordinator (model SAP-IP-Coordinator, Dynamax, Hou-
ston, Tex.), which passed data on to an embedded computer 

installed at the pivot point, which was used to collect, georef-
erence, timestamp, and store the data from the IRTs. 

The UAS imagery included thermal infrared data col-
lected using a FLIR Duo Pro R (Flir Systems Inc., Wilson-
ville, Ore.), which captured imagery at a spatial resolution of 
0.15 m. The UAS data were acquired between 11 A.M. and 
3 P.M. with a flight duration of about 17 min and altitude of 
approximately 122 m. The procedure used to acquire thermal 
UAS data was similar to Maguire et al. (2021) and more 
details about data collection and processing can be found in 
Kashyap (2021). The thermal camera was warmed up at least 
for an hour before the data collection. During the flight, flat 
field corrections were performed periodically to compensate 
for different errors produced by the thermal camera. These 
corrections were used to re-calibrate the sensor array by ac-
counting for changes in camera body temperature and indi-
vidual pixel drift (Maguire et al., 2021). Thermal imagery 
data were not corrected for atmospheric interference. The 
thermal imagery taken from an adjacent field (south of the 
study site) with similar soils using the same systems and 
same altitude were applied with atmospheric corrections 
(Maguire et al., 2021). It was found that the corrected data 
were similar to the raw thermal data. As discussed earlier, 
thermal infrared imagery was only collected for the north-
eastern quarter of the field, which was in soybean. The aerial 
imagery allowed spatial patterns in thermal imagery of the 
crop canopy to be characterized at a finer scale. 

IRRIGATION MANAGEMENT 
Irrigation was managed using the SETMI model with sat-

ellite imagery from Planet Labs. Satellite imagery with cloud 
cover near the field area was not used in the model. The wa-
ter balance component of the model was used along with 

Table 1. Different sensors and corresponding platforms used for data collection. 
Sensor Platform Data Collected 
Spectral reflectance sensors Pivot lateral Multispectral 
MicaSense Unmanned aircraft systems Multispectral 
PlanetScope imager Planet satellite Multispectral 
Dynamax infrared thermometers Stationary post Thermal 
Dynamax infrared thermometers Pivot lateral Thermal  
Flir Duo Pro R Unmanned aircraft systems Thermal 

 

Figure 2. Orientation of sensors mounted on the pivot with A) top view and B) side view. The top view shows rainfed and irrigated plots in span 6 
of the pivot. The 6.1 m buffer around the edges of rainfed and irrigated plots is also shown in the top view. Two IRT sensors and one SRS were 
used for each management zone. The ‘Angle to Horizontal’ label illustrates the angle at which the sensor was mounted from the horizontal. The 
SRS and IRT sensors were positioned such that their corresponding field of view was directed towards the center of the plot. The tilt of the pivot
structure was also observed due to weight of the mounting equipment. 
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occasional updates from soil water data from the neutron 
probe, model 503 Elite Hydroprobe (CPN, Concord, Calif.). 
The field calibration from a nearby field (within 3 km) with 
similar soils was used for the neutron probe to obtain volu-
metric soil water content from neutron count data. The neu-
tron probe was used to acquire soil water data at depths of 
15, 45, 76, and 107 cm. The data were taken once every three 
weeks during the growing season. Soil water data from three 
locations for each crop were used to update the model. The 
model had the capability of forecasting irrigation needs 
based on the historic long term weather data. The model was 
used in a manner similar to Bhatti et al. (2020), which can 
be referred to for more details about the irrigation manage-
ment. The field capacity and wilting point used for this study 
were 0.40 and 0.20 m3 m-3, respectively. These values were 
obtained by averaging estimated field capacity and wilting 
point measurements in a nearby field (Bhatti et al., 2020) 
with similar soils. 

The sprinklers on the center pivot were spinners model 
S3030 (Nelson Irrigation, Walla Walla, Wash.) with yellow 
spray plate installed on drops at a height of 2.4 m from the 
ground surface and with sprinkler spacing of 2.7 m. The ra-
dius of throw (wetted radius) for the sprinklers in the last 
span was about 7.6 m, which meant that the canopy would 
be wetted by irrigation within the area viewed by the pivot-
mounted IRTs. The irrigation was applied between 16 July 
and 3 September for soybean and between 2 July and 5 Sep-
tember for maize. There were 8 irrigation events applied in 
soybean with a total seasonal application depth between 
16 and 20 cm. There were 11 irrigation events applied in 
maize with a total seasonal application depth between 22 and 
25 cm. 

DRY SCANNING USING SENSORS ON THE PIVOT LATERAL 
The center pivot was run without water application (dry) 

on 16 days for data collection using the IRT and MS sensors 
during the 2020 growing season (table 2). The high-speed 
center pivot completed a revolution in about 4.1 and 5.5 h at 
percent timer settings of 100 and 75, respectively. The fast 
speed of the center pivot allowed for IRT and MS data col-
lection across the entire field during optimal daylight hours 

(10:30 A.M.-4:30 P.M.). Data were collected using the dry 
scanning method at least once every week after the occur-
rence of full canopy cover. Data from the pivot-mounted 
sensing system could not be collected during early growth 
stages of the crop due to logistical reasons. In addition to dry 
revolutions, data from moving sensors on the pivot lateral 
were also collected during irrigation events. 

DATA ANALYSIS 
The NDVI and SAVI data acquired during the 16 dry 

scans were compared among the different MS sensing sys-
tems for both maize and soybean. The red and near infrared 
bands of MS imagery from the UAS were used to compute 
NDVI and SAVI. The soil brightness correction factor for 
SAVI was used as 0.5 for each sensing system. For the UAS 
and SRS, the VIs were estimated after 21 July 2020, when 
the crops had reached their peak vegetative stage (100% can-
opy cover for maize and greater than 85% of the maximum 
canopy cover for soybean). For maize, there were no VI data 
from the UAS. The VIs were estimated throughout the grow-
ing season for the Planet sensing system. The Planet MS im-
agery was used with the SETMI model to compute daily VIs 
for both crops for the entire growing season from the respec-
tive planting date to the respective harvesting date for each 
crop. This was achieved using an exponential interpolation 
method (Campos et al., 2017) between the days with remote 
sensing inputs from Planet satellite (Neale et al., 2012). 
Therefore, the Planet sensing system had a daily estimation 
of VIs throughout the growing season. The NDVI and SAVI 
values estimated from the three sensing systems were com-
pared from two rainfed and two irrigated plots for each crop. 
These plots were representative of the irrigated and rainfed 
plots in the field. 

The crop water requirements for the irrigated plots were 
computed using the SETMI model. Since SETMI is a remote 
sensing-based model, a water balance was run individually for 
each pixel in the remote sensing input fed to the model. The 
pixel size used for the SETMI model was 3 m. For selecting a 
representative pixel in SETMI for comparison of the VIs, five 
random pixels from each selected plot were analyzed. The me-
dian VI value of these five pixels from that plot was used for 
the Planet system. For the SRS data within a plot, values from 
the same plot were analyzed, and the median value of the VI 
was used to represent the plot. Usually, three SRS measure-
ments were recorded in a dry scan for each plot. Standard de-
viation was also computed for SRS data. For the UAS, the 
values of VI for pixels lying within the selected pixel for the 
Planet sensing system were averaged. 

Further analysis was conducted on the thermal data col-
lected on the 16 dry scan days from the different sensing sys-
tems. The IRT data for the stationary IRTs in a plot were 
averaged for the time period when the moving IRTs were 
collecting data inside that plot during a dry scan. The IRT 
data collected from the moving IRTs within a plot were also 
averaged. Statistical methods were applied to study if the 
correlation between stationary and moving IRTs was signif-
icant. The thermal data collected using UAS were averaged 
for each plot by averaging temperature values of the pixels 
lying within the plot (excluding the 6.1 m inner buffer 
around the edge of the plot). 

Table 2. Days when dry scans were run for data collection in 2020.[a]  
Date Start Time End Time Speed % Cloud Cover[b] 

21 July 12:25 P.M. 4:34 P P.M. 100 Partly cloudy 
04 Aug. 12:26 P.M. 4:31 P.M. 100 Mostly cloudy 
09 Aug.  10:36 A.M. 2:43 P.M. 100 Scattered 
10 Aug.  1:13 P.M. 5:20 P.M. 100 Scattered 
11 Aug.  1:02 P.M. 5:08 P.M. 100 Partly cloudy 
12 Aug. 10:06 A.M. 2:12 P.M. 100 Mostly cloudy 
17 Aug. 9:56 A.M. 3:22 P.M. 75 Clear 
18 Aug.  9:50 A.M. 3:16 P.M. 75 Mostly cloudy 
19 Aug.  11:58 A.M. 5:23 P.M. 75 Partly cloudy 
20 Aug.  12:16 P.M. 4:23 P.M. 100 Mostly cloudy 
26 Aug.  10:29 A.M. 2:35 P.M. 100 Clear 
27 Aug.  1:16 P.M. 5:22 P.M. 100 Clear 
08 Sept. 10:01 A.M. 2:07 P.M. 100 Overcast 
14 Sept. 10:24 A.M. 3:50 P.M. 75 Clear 
15 Sept. 10:30 A.M. 3:56 P.M. 75 Scattered 
16 Sept.  11:10 A.M. 4:37 P.M. 75 Partly cloudy 

[a] The start and end times of each dry scan are mentioned along with the 
 speed of the pivot in percent.  
[b] The cloud cover increases in the order of clear, scattered, partly  
 cloudy, mostly cloudy and overcast. 
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The second comparison for thermal data was conducted 
between the UAS thermal imagery and the pivot-mounted 
IRTs in soybean. This comparison was also made on a plot 
scale basis, which could be considered a suitable scale for 
irrigation management of a field. These comparisons were 
completed to evaluate the sensing systems in providing can-
opy temperature information useful for irrigation scheduling 
methods. 

An additional analysis was focused on studying the im-
pact of irrigation water on the pivot-mounted IRTs. Data 
from a dry scan day and a wet scan day were considered for 
this evaluation. The data from the stationary IRTs in the field 
and the moving IRTs on the center pivot from one irrigated 
and one rainfed plot in soybean were compared. The analysis 
focused on the temperature gradient between stationary and 
pivot IRT sensors over the rainfed and irrigated plots to de-
termine the effects of irrigation on the pivot-mounted IRTs. 

Data for each analysis in the study were used from the 
plot after excluding a 6.1 m inner buffer (fig. 2) from all four 
sides of the plot. This buffer was used to ensure that there 
were no boundary effects from the neighboring plots with 
different irrigation treatments. Statistical metrics such as co-
efficient of determination (r2), root mean square error 
(RMSE), mean absolute error (MAE), mean bias error 
(MBE), and regression equations, were computed for linear 
regression analyses on thermal data. These metrics were 

computed using Microsoft Excel (Microsoft Corporation, 
Redmond, Wash.). The method of least squares was used to 
select the linear regression model and compute the intercept 
and slope of each correlation. The RMSE, MAE and MBE 
were computed using the following equations: 
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where Si are predicted values, Oi are observations, and n are 
number of observations. 

RESULTS AND DISCUSSION 
COMPARISON OF VEGETATION INDICES 

NDVI for both crops was plotted for the different sensing 
systems (fig. 3). It was observed that these sensing systems 
were able to capture differences in NDVI between irrigated 

 

Figure 3. Normalized difference vegetation index (NDVI) computed using different sensing systems for (A) maize, and (B) soybean. The vegetation 
indices were computed for two irrigated and two rainfed plots for each crop. The abbreviation used to denote each data source included naming 
of sensing system with the irrigation type, and the plot number. The sensing systems were denoted as ‘P’ for Planet sensing system, ‘SRS’ for
pivot mounted VI sensors, and ‘UAS’ for unmanned aircraft systems. The irrigation type was denoted using ‘I’ for irrigated and ‘R’ for rainfed 
followed by plot number (1 or 2). 
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and rainfed plots when the crops were approaching senes-
cence. The data from all sensing systems were similar in 
magnitude during the peak vegetative growth for both crops. 
The VI data from pivot SRS were able to capture more vari-
ability among the rainfed and irrigated plots as compared 
with Planet when the crop approached senescence. In case of 
Planet data, the exponential interpolation method used for 
the crop VIs may have attributed to the smaller difference in 
crop VI values between rainfed and irrigated crop. The 
NDVI computed from UAS was similar in magnitude to 
other sensing systems for soybean during peak vegetative 
growth. The standard deviations of NDVI data for irrigated 
maize and rainfed maize were 0.06 and 0.18, respectively. 
The standard deviations of NDVI data for irrigated soybean 
and rainfed soybean were 0.09 and 0.19, respectively. The 
maximum value of NDVI was observed in irrigated maize 
(NDVI = 0.93) and minimum value was observed in rainfed 
maize (NDVI = 0.39). 

SAVI for maize and soybean was also compared among 
the different data sources (fig. 4). For maize, the Planet and 
pivot SRS sensing systems were able to identify differences 
among the rainfed and irrigated crops. The standard devia-
tions of SAVI data for irrigated maize and rainfed maize 
were 0.07 and 0.15, respectively. The standard deviations of 
SAVI data for irrigated soybean and rainfed soybean were 
0.09 and 0.17, respectively. SAVI was closer in magnitude 
between the two data sources for rainfed as compared to the 
irrigated plots when the crop approached senescence. For 

soybean, data from UAS and Planet sensing systems were 
similar during the peak of the growing season. The SAVI 
data from pivot SRS were considerably smaller than those 
from Planet during the peak of canopy development and 
early senescence. The pivot SRS SAVI data had lower peak 
values during the full canopy height in soybean with an av-
erage difference of 0.1. During senescence, SAVI values 
from the pivot SRS and Planet were similar in magnitude. 
The differences in SAVI among the rainfed and irrigated 
plots could be identified using both pivot SRS and Planet 
late in the season. 

The differences in VIs observed during senescence 
among rainfed and irrigated plots for both crops demon-
strated the long-term effects of water-induced stress on phys-
iology and canopy cover. The effects of water-induced stress 
resulted in lower average dry yield for rainfed maize and 
soybean. The average dry yield for soybean over the VI 
sensed area was 3.74 Mg ha-1 for rainfed and 4.22 Mg ha-1 
for irrigated. The average dry yield for maize over the VI 
sensed area was 10.6 Mg ha-1 for rainfed plots and 13 Mg ha-1 
for irrigated plots. Seasonal irrigation applied for maize was 
224 mm (8.8 in.) and for soybean was 188 mm (7.4 in.). As 
mentioned previously, no irrigation was applied to the rain-
fed plots. The first irrigation was applied on 2 July for maize 
and 16 July for soybean. An evident difference in NDVI was 
noted for both crops after 26 August using the SRS mounted 
on the center pivot, which was more than a month after the 
first irrigation had occurred for both crops. This indicated 

 

Figure 4. Soil adjusted vegetation index (SAVI) computed using different sensing systems for (A) maize, and (B) soybean. The abbreviations used 
to denote each data source included naming of sensing system with the irrigation type, and the plot number. The sensing systems were denoted as
‘P’ for Planet sensing system, ‘SRS’ for pivot mounted VI sensors, and ‘UAS’ for unmanned aircraft systems. The irrigation type was denoted 
using ‘I’ for irrigated and ‘R’ for rainfed followed by plot number (1 or 2). 
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that differences in crop physiology caused by varying levels 
of crop water stress among rainfed and irrigation plots were 
sensed by VI data with substantial time lag and may not be 
useful to predict real time crop water stress. 

COMPARISON OF THERMAL DATA 
The canopy temperature data collected (21 July-16 Sep-

tember) using IRTs were compared among stationary and 
pivot sensing systems. For this comparison, the stationary 
IRT data were plotted on the x-axis and the data from the 
moving IRTs on the center pivot were plotted on the y-axis. 
It was found that there was a significant relationship between 
stationary and moving IRTs for all four crop-treatment com-
binations since the p-value was less than 0.01 (table 3). The 
intercept was not found to be significantly different from 
zero (p-value > 0.25) for any case at 5% level. For maize, a 
strong relationship was found between the two sensing sys-
tems for the irrigated plots. This relationship yielded an r2 
value of 0.99, RMSE value of 0.4°C, MAE of 0.3°C, and 
MBE of 0°C. These error values in the case of irrigated 
maize were smaller than observed by Colaizzi et al. (2019) 
in a maize crop (r2 value of 0.96, RMSE value of 0.9°C, 
MAE of 0.7°C, and MBE of 0.5°C). They applied three def-
icit irrigation treatments to a maize crop and found a strong 
relation between data from stationary and moving IRTs 
(RMSE ranged from 0.65 to 1.76). The relationship between 
data from stationary and moving IRTs for the rainfed plots 
in maize yielded a r2 value of 0.88, a higher RMSE value of 
2.3°C, MAE of 1.4°C, and MBE of -1.2°C, which implied a 
weaker relation than found by Colaizzi et al. (2019) in irri-
gated maize. There were three data points for the rainfed 
maize case, which were the main reason for the high RMSE 
obtained. These three data points corresponded to 12, 20, and 
26 August. If these data points were excluded, the RMSE 
decreased from 2.3°C to 0.7°C. The data points for irrigated 

maize were consistently closer to the 1:1 line as compared to 
the rainfed maize (fig. 5). Additionally, it was found that 
81% of the data taken over rainfed maize from the pivot-
mounted IRTs were within ±1.5°C of the respective data ob-
tained from stationary sensors. For the irrigated maize, all 
data from moving IRTs mounted on the pivot lateral were 
within ±1°C of the data obtained from the respective station-
ary IRTs. The average ambient temperature on 8 September 
dropped to 8°C, due to which the canopy temperature rec-
orded by IRTs was also low and can be seen by lower tem-
perature values for both rainfed and irrigated plots in 
figure 5. 

The relationship for the thermal data between the station-
ary and pivot-mounted moving IRTs for soybean was 
stronger for rainfed than for the irrigated treatment (table 3). 
The r2 and RMSE obtained for rainfed soybean was 0.98 and 
1.5°C, respectively as compared to 0.93°C and 2.1°C, re-
spectively for the irrigated soybean. The MAE and MBE for 
rainfed soybean (1.3°C and 1.1°C, respectively) were 
smaller than for irrigated soybean (1.6°C and 1.4°C, respec-
tively). Overall, a larger RMSE value was obtained for soy-
bean as compared with maize except for three days when 
rainfed maize RMSE was large. For both rainfed and irri-
gated soybean, more than 80% of the total data obtained 
from pivot IRTs were within ±2.5°C of the respective data 
taken from the stationary IRTs. Since the correlation be-
tween stationary and moving IRT data in the case of irrigated 
maize is stronger than in the other three cases (table 3), it can 
be concluded that more accurate plant water stress was esti-
mated using moving IRTs in irrigated maize during the pe-
riod of the present study. 

The pivot IRT sensor data were compared with data from 
the UAS thermal camera on two days during the season. The 
two days used for the comparison were 26 and 29 August, 
which were a dry scan and a wet scan day, respectively. Data 

Table 3. Performance coefficients for the relation of canopy temperature between stationary and pivot  
infrared thermometer sensors over rainfed and irrigated plots for maize and soybean.[a]  

Crop Treatment r2 RMSE (°C) MAE (°C) MBE (°C) Equation P-value 
Maize Irrigated 0.99 0.4 0.3 0.0 y = 1.0267x - 0.651 2e-16 
Maize Rainfed 0.88 2.3 1.4 -1.2 y = 0.9226x + 0.8727 9.3e-8 

Soybean Irrigated 0.93 2.1 1.6 1.4 y = 1.1202x - 1.532 1.6e-9 
Soybean Rainfed 0.98 1.5 1.3 1.1 y = 1.0677x - 0.6482 9.2e-13 

[a] The sample size or value of N for each case was 16. P-values were given for the correlation, which were significant for all three cases. 

 

Figure 5. Comparison of canopy temperature data from infrared thermometer sensors mounted on stationary posts and the pivot lateral for 
(A) maize and (B) soybean. These data were collected using 16 dry scans of the pivot between 21 July-16 September. 
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from both sensing systems were collected during similar 
timestamps, which were within an hour from each other at 
the most. The data from both sensing systems were collected 
during the same time period on 29 August. About 70% of 
thermal data for the pivot sensing system were taken within 
30 min after the UAS flight on 26 August. There were fewer 
data points used for the wet scan since the irrigating pivot 
moved slowly during the irrigation event. These two days 
had sunny and clear weather with reasonably consistent 
weather during the data collection used in the comparison. It 
was observed that the UAS thermal camera was reporting 
consistently smaller temperatures as compared with pivot 
IRTs for the dry scan day (fig. 6). However, the two data 
sources were similar in magnitude of temperature measure-
ments when an irrigation was being applied, except for one 
data point. Additionally, this data point was in a rainfed plot 
where sprinklers were manually turned to the off position 
and were not irrigating. Hence, this data point could be seen 
as a dry scan datum and the trend was similar to the data 
points observed on the other dry scan day. 

The UAS thermal data were within ±5°C of data from the 
pivot-mounted IRTs for 86% of the total measurements used 
in the comparison. The r2, RMSE, MAE and MBE obtained 
during the dry scan day were 0.28, 3.7°C, 3.3°C, and -3.3°C 
respectively. The r2, RMSE, MAE, and MBE obtained dur-
ing the wet scan day were 0.26, 2.0°C, 1.4°C, and -0.6°C 
respectively. It was found that the UAS thermal values were 

consistently smaller than the pivot IRT values since the 
MAE and MBE were equal for the comparison using dry 
scan data. This result was consistent with the results found 
by Maguire et al. (2021). 

IMPACT OF IRRIGATION ON DATA FROM PIVOT-MOUNTED 

SENSORS 
The impact of irrigation water on the canopy temperature 

data from the pivot-mounted sensors was determined. Data 
were used from the stationary IRTs and from the pivot-
mounted moving IRTs over the rainfed and irrigated plots in 
soybean. A dry scan day (20 August) and an irrigation event 
(22 August) were used for this analysis. The IRT sensors 
over the rainfed and irrigated plots for both the stationary 
and pivot-mounted moving IRTs were sensing temperature 
from a dry canopy on the dry scan day. This could be seen 
in figure 7A, where IRT data from all sensing systems con-
sistently followed a similar trend except for two timestamps 
(1:18 P.M. and 1:19 P.M.). During these two timestamps, a 
sudden increase in canopy temperature was observed for the 
pivot-mounted IRTs. This could be attributed to an increase 
in solar radiation around these two timestamps. The recorded 
incoming solar radiation at 1:14 P.M. was 800 W m-2, which 
increased to a value of 826 W m-2 at 1:16 P.M., and then de-
creased to ~668 W m-2 at 1:24 P.M.. 

The IRT sensors on the pivot lateral moving over the rain-
fed plots were viewing a dry canopy since the sprinklers in 
these plots were manually turned off for the entire season. Fur-
ther, the stationary IRTs in the rainfed crop was viewing a dry 
canopy throughout the measurement period. On the contrary, 
the stationary IRT in the irrigated crop viewed a dry canopy 
until the irrigation reached the canopy within its FOV. The 
stationary and moving IRTs over the rainfed crop recorded 
similar increases in temperature due to increases in solar radi-
ation from 8:40 A.M.-11 A.M. (fig. 7B). Both sensing systems 
over the rainfed crop were quite similar in measurements. 
However, the stationary and pivot-mounted IRTs in the irri-
gated plot were inconsistent in measurements between time 
8:40 A.M.-9:30 A.M. The pivot IRTs over the irrigated crop 
consistently recorded smaller temperature values as compared 
with other data sources throughout the measurement period. 
At around 9:30 A.M., the pivot lateral passed over the 

 

Figure 6. Relation between canopy temperature measurements from
pivot IRT and UAS thermal camera on a dry scan day (26 August) and
a wet scan day (29 August) from both irrigated and rainfed plots for
soybean. 

 

Figure 7. Canopy temperature measurements from stationary and pivot IRT sensors over rainfed and irrigated plots for (A) a dry scan day 
(20 August) and (B) a wet scan day (22 August). The data collected only during the time when the pivot was going over the plot with stationary 
sensors was used in this figure. 
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stationary IRT in the irrigated plot, wetting the canopy and 
leading to a sudden decrease in canopy temperature of 1.5°C 
(22°C to 20.5°C). During this period, data from the stationary 
and pivot-mounted IRTs in the irrigated crop were very simi-
lar, with an average difference of about 0.4C. After the sprin-
kler was no longer wetting the canopy below the stationary 
IRT, the temperature recorded using the stationary IRT in the 
irrigated crop increased at a faster rate than did data from the 
pivot-mounted IRTs in the irrigated crop. These data indicate 
that the pivot-mounted IRTs were viewing a wet canopy dur-
ing irrigation events, which was also visually observed in the 
field during catch can tests conducted on the pivot. This result 
was expected since the wetted radius of throw for nozzles in 
span 6 were in the range of 7.6 m. 

PRACTICAL CONSIDERATIONS 
Running a dry scan just before irrigating is the best time to 

sense stress signals from crop canopy. It was also investigated 
whether the canopy temperature data collected during an irri-
gation event could potentially inform the subsequent irrigation 
event. Since the temperature data from the moving IRTs 
mounted on the center pivot were substantially cooled by irri-
gation water, it is not recommended to use these data to detect 
crop water stress when the FOV of the IRTs is within the range 
of the wetted diameter of the sprinklers. The wetted radius and 
height of sprinklers are important considerations when design-
ing the spacing of pivot-mounted IRTs ahead of the pivot lat-
eral. For IRTs mounted on center pivot laterals to view a dry 
canopy with the sprinkler configuration used in this study, the 
IRTs should be mounted at least 7 m ahead of the pivot lateral 
such that the oblique FOV of the sensor is sensing a dry can-
opy. Depending on the design and materials of the IRT mount-
ing hardware, increasing the spacing of IRTs away from the 
pivot lateral could add additional off-center weight that might 
require counterbalance weights on the other side of the lateral 
to maintain the proper balance. The second option to collect 
canopy temperature using pivot-mounted sensors over a large-
scale field is to use dry scans. A third option is to use an irri-
gation application system that does not wet the canopy or min-
imally wets the canopy such as a low elevation sprinkler 
application (LESA) system. 

The travel speed of a center pivot can be varied while run-
ning dry scans for data collection. In this study, the center 
pivot was run at travel time speeds of 75% and 100% for dry 
scan data collection. For the center pivot in this study, it was 
determined that the 75% speed takes about 5.5 h to complete 
a revolution as compared to 4 h using 100% speed. Conse-
quently, the moving IRTs could collect about 13 data points 
at 75% speed and about 10 data points at 100% speed from 
each plot. The slower speed of the pivot could be beneficial 
for more representative data collection on a day with more 
variable weather. The slower speed during a dry scan is a 
good option for small sized plots since it will provide more 
time for the moving IRTs to collect data within a treatment 
plot or management zone. 

The center pivot consumed about 61 Amp-hours to make 
a complete revolution at 100% speed. The power consumed 
at 480 V was about 30 kWh. Assuming the rate of electricity 
is 12 cents per kWh, the cost of energy used during a dry 
scan was about $3.60. Running a dry scan will increase the 

sprinkler downtime, therefore in addition to determining the 
optimal travel speed of the sprinkler to acquire adequate 
temperature data, it is necessary to determine the frequency 
of dry scans during the irrigation season. Downtime refers to 
the time when the irrigation system is not available for ap-
plying water to the field. This ultimately has a direct impact 
on the gross system capacity, which is the capacity of the 
system required to meet crop water needs. An increase in the 
system downtime will increase the required gross system ca-
pacity. It can be assumed that a center pivot has a downtime 
of 2% for maintenance and repair. The dry scan at 100% 
speed will increase this downtime by about 4% if a dry scan 
is conducted every four days (increase in downtime = 4 h/ 
4 days). Hence, the downtime for this sprinkler system due 
to dry scans increases from 2% to 7%. This increase leads to 
an increase in gross system capacity requirement by 5% 
(Equation 4; Eisenhauer et al., 2021). A system that takes 
longer to complete a dry scan will require a greater gross 
system capacity. This is because of the relative increase in 
downtime due to slower dry scans and more reduction in sys-
tem capacity. The reduced system capacity could become a 
problem if the crop water needs were to exceed the system 
capacity, specifically in times of peak water demand. 
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where 
Cg  =  gross system capacity, 
Cn  =  net system capacity, 
ELQ =  application efficiency of low quarter (%), 
Dt  =  irrigation system downtime (%). 

Further, it is important to schedule the dry scan events 
strategically during the week to catch the stress signal. It is 
advised to wait for a minimum of two days after a significant 
wetting event (rainfall or irrigation) to detect incipient water 
stress in the crop. It can be convenient to run dry scans once 
every week, but it may not be sufficient to detect stress dur-
ing peak crop water demand. Based on the experience from 
this study, weekly dry scans were sufficient during most of 
the irrigation season for the sub-humid location. It is ex-
pected that more arid locations will require more frequent 
scans to detect water stress on a regular basis. The dry scans 
should be conducted two times in a week during the critical 
crop growth period. Daily monitoring of crop water stress 
using dry scans would be valuable and provides confidence 
in irrigation decision making, but may not be practical for 
producer fields. 

CONCLUSIONS 
The study compared different VIs and canopy tempera-

ture measurements estimated using different sensing sys-
tems. The thermal sensing systems used for data collection 
included stationary IRTs, pivot-mounted IRTs and UAS. 
The center pivot used in this study was a high-speed ma-
chine, capable of completing a revolution in about 4.1 h. The 
dry scan data from the pivot-mounted IRTs were collected 
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on 16 days in 2020 for both maize and soybean. The sensing 
systems used to compute VIs were able to capture differ-
ences between rainfed and irrigated plots when the crops 
were approaching senescence. The estimated VIs had a sim-
ilar trend for each sensing system. The NDVI and SAVI es-
timated for maize using different sensing systems had 
similar trend and peak values among the irrigated and rain-
fed crop. The SAVI estimated for soybean using pivot-
mounted sensors had a smaller peak value compared to that 
for SAVI estimated using aerial sensing systems. The com-
parison for canopy temperature between stationary and 
pivot-mounted sensors during dry scans yielded a strong cor-
relation for a maize irrigated (r2 = 0.99, RMSE = 0.4°C, 
MAE = 0.3°C) and a soybean rainfed crop (r2 = 0.98, RMSE 
= 1.5°C, MAE = 1.3°C). The correlation between UAS and 
pivot-mounted sensors for canopy temperature was not 
strong with r2 = 0.26 to 0.28. The correlation between the 
pivot and UAS sensing systems using the dry scan data 
yielded an RMSE of 3.7°C, and an MAE of 3.3°C. Canopy 
temperature measurements from dry scans can be used for 
crop water stress computations. Stationary and pivot-
mounted sensors over the rainfed and irrigated plots were 
compared on a dry scan day and during an irrigation event. 
It was found that the irrigation event had a consistent cooling 
effect of approximately 2°C on the temperature data from the 
pivot-mounted sensors in the irrigated plots when irrigation 
was occurring from sprinklers installed at a height of 2.4 m 
from the ground and with sensors mounted at a distance of 
only 3 m forward of the pivot lateral. It was concluded that 
when sprinklers are installed such that the canopy is cooled 
by wetting within the field of view (FOV) of pivot-mounted 
sensors, then either the sensor mounting should be moved 
further from the lateral so that the FOV does not include wet-
ted canopy, or the temperature data should only be collected 
when the center pivot is not irrigating. Future research could 
focus on using more advanced thermal imagers and multi-
spectral cameras mounted on the pivot. These imagers could 
be used with machine learning and computer vision tech-
niques to differentiate soil and canopy signal, which would 
be helpful early in the season or for crops with low vegeta-
tion cover. 
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