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Abstract 
Droughts can cause devastating impacts on water and land resources and therefore 
monitoring these events forms an integral part of planning. The most common ap-
proach for detecting drought events and assessing their intensity is use of the Stan-
dardized Precipitation Index (SPI), which requires abundant precipitation records at 
good spatial distribution. This may restrict SPI usage in many regions around the 
world, particularly in areas with limited numbers of ground meteorological stations. 
Therefore, the use of remotely sensed derived data of precipitation can contribute 
to drought monitoring. In this study, remotely sensed precipitation estimates from 
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the POWER/Agroclimatology archive of NASA and their derived SPI for different 
time intervals were evaluated against gauged observations of precipitation from 13 
different stations in arid and semiarid locations in Jordan. Results showed signifi-
cant correlations between remotely sensed and ground data with relatively high R 
values (0.67–0.91), particularly where seasonal precipitation exceeded 50 mm/year. 
For evaluation of remotely sensed data in SPI calculation, several objective func-
tions were used; the results showed that SPI based on satellite estimates (SAT-SPI) 
showed good performance in detecting extreme droughts and indicating wet/dry 
conditions. However, SAT-SPI showed high tendency to overestimate drought inten-
sity. Based on these findings, remotely sensed precipitation from the POWER/Agro-
climatology archive showed good potential for use in detecting extreme meteoro-
logical drought with the provision of careful interpretation of the data. These types 
of studies are essential for evaluating the applicability of new drought monitoring 
information and tools to support decision-making at relevant scales.  

Keywords: Remote sensing, SPI, Meteorological drought, NASA POWER project, 
Agroclimatology  

1 Introduction  

Drought can be described as a natural, reoccurring and disastrous 
phenomenon that is an implication of a marked water deficit of var-
ious forms (Azimi et al. 2019; Moravec et al. 2019; Wu et al. 2019; 
Naumann et al. 2018). This phenomenon has accounted for signifi-
cant financial losses, and remains a main barrier to global food se-
curity (Hamal et al. 2020; Kim et al. 2019; Lu et al. 2017; Lesk et al. 
2016; Ziolkowska 2016). Therefore, management plans that include 
preparedness, monitoring and assessment of drought are required 
to minimize the impacts of drought. Failure of risk evaluation and in-
adequate management could lead to drought-related disastrous im-
pacts (Wilhite 2000). 

Monitoring and assessment of drought require the use of indices 
(WMO and GWP 2016). Among these indices, the Standardized Precip-
itation Index (SPI) (McKee et al. 1993) remains the most recommended 
and popular index for monitoring droughts worldwide because of its 
reliance on precipitation data only, while many other indices require 
data on various moisture-related variables (Bayissa et al. 2018; Zhang 
et al. 2017; Hayes et al., 2011). The SPI simply represents the deviation 
of precipitation from a long record (usually 30 years) average, and is 
particularly helpful in that it is standardized; allowing evaluation of 
drought over different time scales and between different locations (An 
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et al. 2020; Livada and Assimakopoulos 2007). The SPI is frequently 
used by researchers for assessment and forecast of drought in Jor-
dan, (Mohammad et al. 2018; Shatanawi et al. 2013; Al-Qinna et al. 
2011), as well as various regions around the world (e.g., Mengistu et 
al. 2020; Vicente‐Serrano et al. 2020; Cunha et al. 2018; Gidey et al. 
2018; Merabti et al. 2018; Yan et al. 2017). 

Despite reliance on only precipitation data, using the SPI for 
drought evaluation may be difficult in many regions due to poor spa-
tial distribution, faulty records or extreme topographic variability, and 
unreliability resulting from gaps and technical problems (Boluwade 
2020; Zhao et al. 2018; Yassin et al. 2016; Overeem et al. 2013). There-
fore, researchers have investigated the reliability of satellite remote 
sensing as an alternative source of meteorological data which, while 
having its own limitations, provides readily available high-resolution 
data for the entire globe, and generally for minimal or no cost to the 
end user. The satellite-based rainfall estimates are acquired by sat-
ellites detecting cloud-top properties by visible or infrared imaging. 
Satellites can also detect the effect of scattering from raindrops on 
microwave radiation (Sapiano and Arkin 2009). After processing and 
calibration, the data are interpreted and stored in databases as rain-
fall estimates (Stackhouse et al. 2017; Sorooshian et al. 2000). The 
resulting databases are generally termed ‘satellite rainfall products’. 
These products can be available as open access resources. Examples 
include: the Tropical Rainfall Measuring Mission (TRMM) (Huffman et 
al. 2007), Precipitation Estimation from Remotely Sensed Information 
using Artificial Neural Networks (PERSIANN) (Sorooshian et al. 2000), 
Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) 
(Funk et al. 2014), and African Rainfall Climatology and Time-series 
(TAR CAT ) (Maidment et al. 2014). 

Validation of such rainfall products is necessary to ensure its re-
liability for various applications. TRMM was reasonably correlated 
with ground precipitation gauges from different locations in China 
(Zhao et al. 2018; Yang et al. 2017). Bayissa et al. (2017) assessed spa-
tial and temporal drought pattern in Ethiopia by comparing precip-
itation data from 10 different weather stations with corresponding 
rainfall estimates from CHIRPS and TAR CAT v2.0. The latter study 
reported that precipitation data from the rainfall products showed 
good correlation with gauge observations in general, but this was 
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not the case for the PERSIANN rainfall product. TRMM and CHIRPS 
was also tested for application in hydrological modeling (Abdelmo-
neim et al. 2020). 

Another database for satellite-based estimates of precipitation 
is NASA’s Prediction of Worldwide Energy Resource (POWER) proj-
ect. The POWER project is gaining popularity as a source for weather 
data input (Duarte and Sentelhas 2020; Monteiro et al. 2018; Bai et 
al. 2010). It contains precipitation estimates since 1981, which is suf-
ficient for analysis of drought, provided that the source data is val-
idated. Previous works validated the agreement between precipita-
tion estimates and ground truth values (Adler et al. 2003; McPhee and 
Margulis 2005). However, at the time of these validations the data-
base had not accumulated enough data for SPI determination. Also, 
the mentioned validations were based not on drought monitoring 
but on the error and agreement with ground truth. A more recent re-
search study that examined climatic data from NASA’s POWER data-
base was conducted by de Aguiar and Junior (2020); the study com-
pared it with data from various ground stations in Brazil and reported 
that remotely sensed rainfall showed good correlation (0.75–0.95) with 
ground measured values for most locations. However, the reliability 
of SPI determined from the POWER platform is yet to be evaluated. 

The objective of this study is to examine the use of remotely sensed 
precipitation estimates from NASA’s POWER/Agroclimatology archive 
for detecting meteorological drought, using gauge observations from 
various stations in Jordan as reference. This study specifically aims to 
determine the extent of usefulness of this data source for determin-
ing the SPI subject to several objective functions. The main criteria for 
evaluating this data are based on its ability to help achieve one of the 
following levels of accuracy; (1) correctly determining SPI category (as 
an indicator to correct detection of drought intensity), (2) detecting 
extremely wet or dry conditions, and (3) detecting wet and dry con-
ditions regardless of category or intensity. The selection of Jordan as 
the study area stems from the fact that it suffers from water scarcity 
and increased frequency of drought that affects the Middle East and 
North Africa (MENA) region (Cook et al. 2016). In Jordan, droughts se-
verity increased during 1970–2005 from normal to extreme levels with 
frequent non-uniform drought periods in an irregular repetitive man-
ner (Al-Qinna et al. 2011; Al-Bakri et al. 2017; Shatanawi et al. 2013). 
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Future climate projections showed that adverse and extreme climate 
changes would occur on the form of declined precipitation and in-
creased air temperature (Al-Bakri et al. 2021). Therefore, the use of ac-
curate data for monitoring and assessment of drought will contribute 
to Jordan’s effort in managing its scarce water resources (MWI 2018). 
Furthermore, the heterogeneity of topography and rainfall distribu-
tion in Jordan makes it advantageous for validating remotely sensed 
rainfall estimates against gauged observations. 

2 Methodology 

2.1 Study Area and Selected Gauged Observations 

Jordan is located to the east of the Mediterranean between 29.18° 
and 33.37° N latitude and between 34.32° and 39.30° E longitude 
(Fig. 1). Most of the country’s area (89.5 thousand km2) is arid and 
receives less than 200 mm annual rainfall, while potential evapora-
tion exceeds 2000 mm. Precipitation varies by latitude, longitude 
and altitude where it decreases from north to south, west to east 
and from higher altitudes to lower ones. Average rainfall ranges from 
600 mm/year in the northwest to less than 50 mm/year in the south 
and the east. The rainy season is between October and May with 
80% of the annual rainfall occurring between December and March. 
During the rainy season, most of the precipitation is orographic re-
sulting from the passage of frontal depressions across the Mediter-
ranean near Cyprus.  

Drought is a serious threat to food and water resources in Jordan. 
Frequent droughts in the last three decades resulted in the failure 
of rainfed agriculture during dry seasons (Mohammad et al. 2018). 
The main rainfed crops that are impacted by droughts include ol-
ives and wheat in the high rainfall zones and barley in the low rainfall 
zones. In addition to rainfed agriculture, droughts have serious im-
pacts on the already scarce surface and groundwater resources uti-
lized for both municipal and irrigation purposes. Therefore, detection 
of droughts in the different rainfall zones is important for agricul-
tural, water and environmental sectors. Subsequently, the study in-
cluded different stations representing the different rainfall zones in the 
country. Gauged observations, acquired from Jordan Meteorological 
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Fig. 1 Locations of ground stations that provided precipitation observations in-
cluded in the study. *QAIA Queen Alia International Airport, UJ University of Jor-
dan. (Map created using ArcGIS)
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Department (JMD), included 13 different stations characterized by 
data continuity among the 26 operating stations of the JMD. The sta-
tions were characterized by variations in monthly and annual rainfall, 
reflecting the different agro-climatological zones in Jordan. Satellite 
estimations of precipitation were acquired specifically for the coor-
dinates of those stations. Precipitation records analyzed in this study 
were obtained for the period Jan 1981–Jan 2019 for both ground sta-
tions and satellite estimations. 

For the purposes of this study, gauged observations were used as 
a ground truth determination of actual precipitation, and SPI values 
calculated from these data, hereafter referred to as GO-SPI, were re-
garded as true representation of meteorological drought events for 
each location, for which satellite estimations and their SPI values (SAT-
SPI) were compared against. This is common practice in similar studies 
despite uncertainty from gauged observations’ representativeness of 
actual precipitation (Mossad and Alazba 2018; Tapiador et al. 2012). 

2.2 Satellite‑Based Estimations 

The methodology behind estimating and validating the precipita-
tion data provided in the POWER/Agroclimatology archive can be 
summarized as follows: precipitation data is obtained from the satel-
lite-gauge product of The Global Precipitation Climate Project (GPCP 
v2.1), this source relies on a special sensor/microwave imager (0.5° 
by 0.5°) which provides the precipitation fractional occurrence, and 
GPCP satellite-gauge combination data which provide monthly pre-
cipitation accumulations as scaling constraints. The latter is applied 
to algorithms used in estimating values of precipitation from several 
resources including a geosynchronous- orbit IR, a low-orbit IR, and 
an atmospheric infrared sounder (Stackhouse et al. 2015, 2017). The 
POWER/Agroclimatology archive can be accessed from https://power.
larc.nasa.gov/ using the platform’s data access viewer. 

2.3 Data Analysis 

In this study, the SPI values were calculated based on ground obser-
vations and satellite estimates and compared to evaluate the reliabil-
ity of the latter for detecting meteorological drought at different time 

https://power.larc.nasa.gov/
https://power.larc.nasa.gov/
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scales. The most common approach for calculating the SPI is by fit-
ting the precipitation frequency distribution to the gamma probabil-
ity density function (Suliman et al. 2020; Hajar et al. 2019). To calculate 
SPI for a specific duration (e.g., Jan, Jan–March, Oct–May), the incom-
plete gamma cumulative probability should be determined for that 
event, which can be done using the GAMMA. DIST function (cumula-
tive) in Microsoft Excel. To use this function, the shape (α) and scale 
(β) parameters need to be estimated for a preceding record, prefera-
bly ≥ 30 years, which can be done using Eqs. 1, 2 and 3 (McKee et al. 
1993; Thom 1958): 

α =  1  ( 1 + √ 1 + 4A )                                        (1)
                               4A                        3

A = ln (x̄) −  ∑ ln(x)                                         (2)
                                                          n 

β =   ̅x                                                                        (3)
                                                        α

where  ̅x is the arithmetic mean for the precipitation data series, x is 
the precipitation data point (e.g., January rainfall of a given year for 
a 1-month Jan SPI) and n is the number of precipitation data points. 

When x = 0, the gamma function G(x) is not defined, and so Eq. (4) 
is used to calculate the cumulative probability function H(x) that ac-
counts for zero precipitation probability (q) (Hajar et al. 2019; Rah-
man and Dawood 2018; Chang et al. 2016). The value of (q) represents 
the probability of having zero precipitation in the preceding record. 

H(x) = q + (1 − q) ∗ G(x)                                    (4)

Finally, H(x) values can be converted to an SPI value using the 
NORM.INV function in MS Excel. The mathematical formulas for 
computation of the SPI can be found in Lloyd‐Hughes and Saunders 
(2002). Drought categories assigned based on SPI ranges in this study 
are described in Table 1.     

Standardized precipitation index in this study was calculated at 
1-month (1SPI), 3-month (3SPI), 6-month (6SPI), and 12-month (12SPI) 
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scales. The 6SPIs were calculated in the ranges of Oct–Mar (6SPIOct) 
and Nov–Apr (6SPINov), and their analysis is presented separately in the 
following sections. The SPI values were calculated for the period 2011–
2019, based on precipitation records extending from Jan 1981 until 
the time for which the SPI was determined; for example, the 12SPI for 
2015 was based on annual precipitation for the years 1981–2015, the 
same approach was followed for both SAT-SPI and GO-SPI values. The 
reason why SPI was not determined for 2010 and earlier is because 
each SPI value requires at least 30 years of previous records, and the 
NASA platform only provides data starting from 1981. 

The correlation between observed precipitation and satellite esti-
mates was determined using the PEARSON function in MS Excel, and 
to gain insight on the difference between SAT-SPI and GO-SPI, Mean 
Absolute Error (MAE) was used (Eq. 5). 
                                                                              n

MAE = 1  ∑   | yi − xi |                                        (5)
                                          

n
  i=1

where yi is the gauged precipitation and xi is the satellite estimation 
for the same location and time i. 

The objective functions used to evaluate SAT-SPI against GO-SPI in 
this study included: (1) correct detection of drought category (CDC), 
which represents the percentage of events at which both SPIs showed 
values that fall within the same SPI category (a proxy for correct de-
tection of drought intensity), (2) correct detection of extreme wet/
dry conditions, which specifically evaluates the ability of SAT-SPI to 

Table 1 Categories assigned to SPI values in this study (Zhang et al. 2009; McKee 
et al. 1993) 

	 SPI value 	 Category 

	 ≥ 2 	 Extremely wet 
	 1.5 to 1.99 	 Severely wet 
	 1 to 1.49 	 Moderately wet 
	 0.99 to −0.99* 	 Near normal 
	 −1 to −1.49 	 Moderate drought 
	 −1.5 to −1.99 	 Severe drought 
	 ≤ −2 	 Extreme drought 

*Some sources interpret values within this range as mildly wet or mild drought depending 
on the sign (Lloyd‐Hughes and Saunders 2002)
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report extremely wet or dry conditions (SPI < −2 or SPI > 2), and (3) 
correct detection of wet/dry conditions regardless of category (cor-
rect detection of intensity is ignored), this test only shows the  per-
centage of times that both SPIs showed the same sign ( ±), or when 
both were close to zero. 

3 Results 

3.1 Agreement Between Precipitation Sources 

A summary of precipitation records reported by ground gauges and 
the satellite estimations between 1981 and 2019 is presented in Table 
2. The summary only includes data for the period Oct–Apr as outside 
this period the records are dominated by zero precipitation events. Ex-
cluding non-rainy periods from examination is not uncommon in pre-
cipitation analysis (Driouech et al. 2009). An overview on analysis of 
zero inflated continuous data series can be found in Liu et al. (2019). 

Table 2 shows that there exists high precipitation variability in the 
study area, both spatially and temporally, which was both reflected 
by ground observations and satellite estimations. The correlation be-
tween gauged observations and satellite estimations was generally 
high (0.67–0.91), except for three locations (Aqaba, Jafr, and Maan), 
which is most likely due to very low seasonal precipitation in those 
locations (< 50 mm/year). Low seasonal precipitation contributes to 
error not only from satellite source, but also from rain gauges (Tapi-
ador et al. 2012). When excluding locations where seasonal rainfall is 
below 50 mm, the overall average correlation would be 0.84. These 
locations are excluded from further analysis because when precipita-
tion is very low even the driest of conditions will be recorded as ‘Near 
Normal’, due to the long term average precipitation being close to 
zero. This is why some researchers may describe it as unreliable at 
short scale in very arid climates (Saada and Abu-Romman 2017; Svo-
boda et al. 2012). 
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3.2 Detection of Drought Category 

While satellite precipitation estimates correlated well with gauged ob-
servations, this does not mean that it would be perfectly useful for 
SPI determination. For example, Fig. 2 shows that GO-SPI and SAT-
SPI can be consistently coherent, yet at various points the SAT-SPI 
falls within a different category from that of GO-SPI (see Table 1). This 
means that these data would not always reflect the correct drought 
intensity. Therefore, due to the nature of the way the SPI values are 
interpreted, the CDC test was devised to evaluate the SAT-SPI reliabil-
ity for detecting the correct drought intensity. 

Analytical results from the CDC test (Fig. 3) show that satellite pre-
cipitation estimates generally had a 50–80% chance of detecting the 
correct SPI category, and thus had a considerable chance of reflect-
ing the true drought intensity. However, there seems to be high vari-
ability between different time scales and different locations. 

Table 2 Summary statistics for precipitation records from ground stations- and the satellite-based POWER/
Agroclimatology archive 

	 Annual 				            
Monthly precipitation (mm)b 		   Correlation 

Location/	 average  			   Altitude  	       Ground gauges       	Satellite estimates 	  coefficient   
station 	 (mm)a	 Lat 	 Lon 	 (m)	 Mean 	 SD 	 Mean 	 SD 	 Rc	 RMSEc

Marka 	 249.4 	 31.97 	 35.99 	 790 	 34.84 	 37.04 	 31.92 	 29.26 	 0.91 	 16.48 
Deir Alla 	 279.2 	 32.20 	 35.62 	 −224 	 38.37 	 39.59 	 41.30 	 36.67 	 0.89 	 18.18 
Ruwayshid-H4 	 80.4 	 32.54 	 38.20 	 683 	 10.88 	 13.16 	 8.88 	 9.48 	 0.85 	 7.43 
Irbid 	 458.9 	 32.55 	 35.85 	 616 	 60.12 	 61.52 	 46.12 	 40.56 	 0.91 	 33.00 
Jafr 	 32.4 	 30.28 	 36.15 	 865 	 4.25 	 8.96 	 8.80 	 9.27 	 0.30 	 11.72 
Maan 	 41.7 	 30.12 	 35.75 	 1069 	 5.50 	 8.18 	 13.90 	 13.98 	 0.50 	 14.77 
Mafraq 	 150.6 	 32.36 	 36.25 	 686 	 20.87 	 20.46 	 26.95 	 23.44 	 0.86 	 13.24 
Aqaba 	 25.8 	 29.55 	 35.00 	 51 	 3.42 	 6.64 	 8.84 	 11.07 	 0.48 	 11.17 
QAIAd 	 153.4 	 31.73 	 36.01 	 722 	 21.19 	 22.89 	 24.18 	 22.50 	 0.88 	 11.35 
Rabbah 	 330.8 	 31.27 	 35.75 	 920 	 45.74 	 50.36 	 26.21 	 25.06 	 0.82 	 38.53 
Safawi-H5 	 69.2 	 32.20 	 37.13 	 674 	 9.49 	 11.52 	 11.27 	 9.81 	 0.72 	 8.36 
Shoubak 	 250.4 	 30.52 	 35.53 	 1365 	 34.50 	 40.62 	 21.98 	 22.60 	 0.67 	 32.83 
UJe 	 479.8 	 32.01 	 35.87 	 992 	 66.23 	 72.22 	 41.30 	 36.67 	 0.90 	 49.18   

a. Based on record coverage 1981–2019 
b. Analysis excluded months that were dominated by zero precipitation events (May–Sep) 
c. Based on analysis of monthly precipitation from ground- and remote sensing-based sources 
d. Queen Alia International Airport 
e. University of Jordan
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In some cases CDC was high, for example, SAT-SPI at QAIA showed 
high CDC values (~ 89%) at 3-, 6- and 12-month scales, and showed 
moderate success in other locations such as Marka (55–82%), Mafraq 
(63–78%) and Safawi (56–78%). Further details on analytical results 
obtained at different stations are provided in the supplementary data. 

As mentioned previously, the SAT-SPI could only deviate slightly 
from GO-SPI and yet fall within a different category. Therefore, to 

Fig. 2 Agreement between ground- (GO) and satellite- (SAT) based SPI at different 
time scales and locations. (This is discrete data; lines between data points are only 
intended to clarify trends)  
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have a better understanding of just how far the SAT-SPI deviates from 
GO-SPI, MAE (Eq. 5) was determined for all stations at different time 
scales (Fig. 4). 

Analysis of MAE shows that a shorter-scale SPI (1 month) gener-
ally showed less error and less variability, thus theoretically has a bet-
ter chance of predicting the correct drought intensity; but this is not 
clearly reflected by analysis of CDC (Fig. 3).   

Fig. 3 Percentages of events for which the satellite-based SPI detected the correct 
SPI category between 2011 and 2019 in Jordan at 1-, 3-, 6- and 12-month scales 
(each data point in a box plot represents an average for the entire period at a given 
location) 

Fig. 4 The Mean Absolute Error (MAE) between satellite-based and ground-based 
SPI values between 2011 and 2019 in Jordan at 1-, 3-, 6- and 12-month scales (each 
data point in a box plot represents MAE for the entire period at a given location)  
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3.3 Detection of Extreme Wet/Dry Conditions 

Extremely wet and extreme drought conditions are terms assigned to 
events at which SPI values deviate by over two standard deviations 
from normal conditions (0 SPI) either to the positive (extremely wet: 
SPI ≥ 2) or to the negative (extreme drought: SPI ≤ − 2). In this sec-
tion, we evaluate the reliability of SAT-SPI to report extreme wetness 
(SPI ≥ 2) or extreme drought (SPI ≤ − 2) when such intensities are re-
ported by the GO-SPI, disregarding events with lesser intensities. The 
purpose behind this approach is to not dismiss the precipitation es-
timates data based only on CDC analysis, i.e., if the error was mostly 
generated from moderate events, but the satellite precipitation esti-
mates could help detect extreme events, then this gives it merit for 
potential usefulness where no direct measurements exist. These par-
ticular intensities (extremely wet and extreme drought) were analyzed 
specifically as they would have the most impact on agriculture, ground 
water, reservoir levels, stream flow, among other factors that are of 
great importance in planning (Dikici 2020; Zhao et al. 2018; Khan et 
al. 2008). 

Table 3 shows the extreme droughts detected at 1-, 3-, 6- and 
12-month scales. As shown in Table 3, the majority of extreme 
droughts were detected at 1- and 3-month scales in the study 
area; this was reflected by both GO-SPI and SAT-SPI..At 1-, 6-, and 
12-month scales, the SAT-SPI reported 100% of all extreme droughts 
detected by the GO-SPI for the corresponding time scales. However, 
at the 3-month scale, there were two extreme droughts detected by 

Table 3 Performance of satellite-based (SAT) SPI in reporting extreme drought events detected by 
ground-based (GO) SPI at 1-, 3-, 6- and 12-month scales 

Time scale 	 1SPI 	 3SPI 	 6SPIOct 	 6SPINov 	 12SPI 	 Overall 

Number of extreme droughts detected by GO-SPI 	 18.00	  4.00 	 1.00 	 1.00	  1.00 	 25.00 
Number of extreme droughts reported by SAT-SPI	  45.00 	 6.00 	 2.00	  4.00	  1.00 	 58.00 
Valid detections of extreme droughts by SAT-SPI 	 18.00	  2.00 	 1.00	  1.00 	 1.00 	 23.00 
Extreme droughts missed by SAT-SPI 	 0.00 	 2.00 	 0.00	  0.00	  0.00 	 2.00 
Invalid detection of extreme droughts by SAT-SPI 	 27.00	  4.00	  1.00 	 3.00 	 0.00	  35.00 
Percentage of valid extreme droughts detected by SAT-SPI 	 100.00% 	 50.00% 	 100.00% 	 100.00% 	 100.00% 	 92.00% 
Percentage of false extreme droughts reported by SAT-SPI 	 60.00% 	 66.67% 	 50.00% 	 75.00% 	 0.00% 	 60.34% 
Percentage of missed extreme droughts by SAT-SPI 	 0.00% 	 50.00% 	 0.00%	  0.00%	  0.00%	  8.00%   
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GO-SPI, but reported as mild or severe droughts by SAT-SPI, these 
both took place in the same location which was at the H4 station. 
This station is located in Ruwayshid, Northern Jordan and receives 
minimal precipitation compared to the other stations examined in 
this analysis (Table 2), which can explain this error. Percentage sum-
maries shown in Table 3, such as percentages for valid and false de-
tections of extreme events by SAT-SPI, were calculated using Eqs. 
(6, 7 and 8): 

SAT-VEED% =  Valid detections of extreme events by SAT SPI 
Number of extreme events detected by GO SPI 

× 100%  (6) 

SAT-FEED% =  Invalid detection of extreme events by SAT SPI 
Total number of extreme events reported by SAT SPI  

× 100%  (7) 

SAT-MEED% =   Number of extreme events missed by SAT SPI 
Number of extreme events detected by GO SPI 

× 100% (8)   

where ‘SAT-VEED%’ is percentage of valid extreme events detected by 
SAT-SPI, SAT-FEED% is percentage of false extreme events reported 
by SAT-SPI, and SAT-MEED% is percentage of missed extreme events 
by SAT-SPI. 

Table 4 shows the detection of extremely wet conditions. Out of 8 
extremely wet events detected by GO-1SPI, only 2 were correctly de-
tected by SAT-1SPI, which also reported 8 other extremely wet events 
that were overestimated (detected between 0 and 1.99 by GO-SPI).  

Longer time scales generally detected no extremely wet events, 
except for a single event detected by GO-6SPI, which was missed by 
the SAT-6SPI. Generally, there was an underestimation of extremely 
wet events, or overestimations of events within the 0–1.99 SPI range. 
The percentage summaries shown in Table 4 were also calculated us-
ing Eqs. (6, 7 and 8). 

The general performance of SAT-SPI for detecting extreme me-
teorological droughts and wet events in this study is summarized in 
Fig. 5.   
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3.4 Detection of Wet and Dry Conditions 

This analysis focuses only on the agreement between signs of SAT-SPI 
and GO-SPI. A correct detection in this analysis is reported in the fol-
lowing situations: (1) when both SAT-SPI and GO-SPI report positive 
values for the same event, (2) when both report a negative value for 
the same event, or when both values are close to zero (±0.5) regard-
less of sign. While if SAT-SPI and GO-SPI report different signs, this 
is considered a false detection, unless both values are close to zero. 

Table 4 Performance of satellite-based (SAT) SPI in reporting extremely wet events detected by ground-
based (GO) SPI at 1-, 3-, 6- and 12-month scales 

Time scale 	 1SPI	  3SPI 	 6SPIOct 	 6SPINov 	 12SPI 	 Overall 

Number of extremely wet events based on GO-SPI 	 8 	 0.00 	 1.00 	 0.00 	 0.00	  9.00 
Number of extreme wet events reported by SAT-SPI 	 10	  0.00 	 1.00 	 1.00 	 2.00 	 14.00 
Valid detections of extremely wet events by SAT-SPI 	 2	  0.00 	 0.00 	 0.00 	 0.00 	 2.00 
Extremely wet events missed by SAT-SPI	 6 	 0.00 	 1.00	  0.00 	 0.00	  7.00 
Invalid detection of extreme wet events by SAT-SPI	  8	  0.00 	 1.00 	 1.00 	 2.00	  12.00 
Percentage of valid extreme wet events detected by SAT-SPI 	 25.00% 	 NA 	 0.00% 	 NA 	 NA 	 22.22% 
Percentage of false extreme wet events reported by SAT-SPI	  80.00% 	 NA	  100.00%	  100.00% 	 100.00% 	 85.71% 
Percent of missed extreme wet events by SAT-SPI 	 75.00%	  NA	  100.00%	  NA 	 NA 	 77.78% 

Fig. 5 Extreme meteorological events detected by ground-based (GO) and satel-
lite-based (SAT) SPI values  
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The logic behind considering near-zero events as correct detections 
regardless of sign, is that when SAT-SPI can correctly indicate that a 
condition is very close to normal (zero), then this is a good predictor 
of the general condition, and the sign of the SPI should not matter in 
this particular case. The logic structure for evaluating general wet/dry 
conditions is described in Eq. 9: 

 	 |SAT SPI |  AND  |GO SPI | < 0.5,   TRUE 

      IF   {	 SAT SPI  AND  GO SPI > 0,    TRUE 

	 SAT SPI  AND  GO SPI < 0,    TRUE 

ELSE,    FALSE.                                                                 (9) 

The purpose of this test is to determine the reliability of satellite 
precipitation estimates in detecting the general meteorological con-
dition, more specifically to which direction the precipitation deviates 
from normal conditions. 

The results of analysis for this objective function (Fig. 6) show that 
SAT-SPI generally showed good accuracy in reporting the correct wet/
dry condition. 

Fig. 6 Percentages of events for which the satellite-based SPI showed correct de-
tection of wet/dry conditions between 2011 and 2019 in Jordan at 1-, 3-, 6- and 
12-month scales (each data point in a box plot represents an average for the en-
tire period at a given location)
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4 Discussion 

4.1 Reliability of Detection 

Correlation values reported in this study are within range of those 
reported for locations with much higher seasonal precipitation by 
previous researchers that evaluated the NASA/POWER project (de 
Aguiar and Junior 2020). This could be attributed to the platform’s re-
cords being calibrated and validated based on data from different re-
gions with different climatic conditions (Stackhouse et al. 2015, 2017; 
McPhee and Margulis 2005; Adler et al. 2003). However, validating 
the derived SPI values is still needed in similarly different climatic and 
topographic regions.  

It is possible to consider MAE analysis to be more suitable for as-
sessment, since SAT-SPI and GO-SPI values reporting near normal 
conditions (−1 < SPI < 1) for the same events could reflect high er-
ror, yet show correct detection of category (e.g., SAT-SPI = −0.9 and 
GO-SPI = 0.9), this can be common in arid regions (Fig. 2). And thus, 
based on MAE, it is suggested that satellite estimations of precipita-
tion had a better chance of detecting drought intensity at shorter time 
scales rather than longer time scales in this study. 

These findings are very relevant to the applications of remotely 
sensed precipitation; a shorter time scale SPI is more relevant for ag-
ricultural applications and reflects soil moisture changes, while lon-
ger scales are more relevant to hydrological impacts such as changes 
in ground water levels and stream flows (Zhao et al. 2018). Although 
it could be argued that better accuracy at shorter time scales can be 
problematic since SPI could be less reliable at shorter time scales in 
arid regions (Saada and Abu-Romman 2017; Svoboda et al. 2012), but 
not necessarily if we are only interested in impacts of drought on ag-
riculture (Hazaymeh 2016; Labudova et al. 2017).   

Based on the findings reported, it is suggested that while SAT-SPI 
has a considerable chance in reporting the correct drought category, 
it is not highly reliable for general use in detecting drought intensity. 
The results indicated that the 1-month scale showed less variability and 
higher ability to detect general meteorological conditions; thus, corre-
lation between satellite estimates and gauged precipitation does not 
necessarily reflect their reliability for detecting meteorological drought. 
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It is noteworthy that the majority of extreme droughts were de-
tected at 1- and 3-month scale. A higher frequency of droughts at 
shorter time scales in Jordan was previously reported by Mustafa and 
Rahman (2018). There seems to be a clear advantage and a disad-
vantage with regards to detecting extreme droughts by SAT-SPI; as it 
showed high accuracy in reporting extreme droughts that were de-
tected by GO-SPI, but showed high tendency for invalid detections 
or “false alarms” (60% of droughts reported as ‘extreme’ by SAT-SPI, 
were detected as mild or severe droughts by GO-SPI). Despite a high 
probability of falsely detecting extreme droughts, and inability to de-
tect extreme wetness, it can be argued that the minimal risk of miss-
ing extreme droughts gives merit to satellite estimates’ usefulness 
where gauged meteorological data is insufficient. 

With regard to detection of extremely wet conditions, the SAT-SPI 
was found to be unreliable in this study. This finding could relate to re-
sults reported by McPhee and Margulis (2005) who attempted to val-
idate the GPCP data (source of precipitation estimates in the POWER/ 
Agroclimatology archive). They reported less agreement between the 
satellite estimations and ground truth values in areas of humid con-
ditions. 

4.2 Future Prospects 

The objective functions used in this study for evaluating satellite esti-
mations showed considerable insight on its potential usefulness. Due 
to the spatial and temporal abundance of satellite precipitation esti-
mates, we should not only use basic analysis, as this would result in 
dismissing a possibly valuable source of data or overstating its po-
tential usefulness. For example, CDC analysis showed that SAT-SPI 
was not very reliable for indicating drought intensity; however, fur-
ther analysis showed that it may be useful for indicating other infor-
mation. For example, results showed that extreme droughts can be 
detected using the satellite estimations, but with a high risk of false 
warnings. Also, the general wet/ dry conditions may also be indicated 
but without intensity. 

However, there are reasons to be cautious in generalizing these 
findings to other regions, such as the possible error in gauged mea-
surements (Tapiador et al. 2012), the region-specific effects that may 
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contribute to errors in satellite estimations (Sun et al. 2018), and the 
limited number of long-scale major events in the analyzed record in 
this study (i.e., long-scale extreme wetness and extreme droughts). 
Due to these sources of uncertainty, analysis on longer records and 
wider ranges of climatic and topographic regions may show different 
outcomes or provide a more holistic understanding. Such research ef-
forts are valuable and should be pursued in the future. This has po-
tential future prospects, not only where direct measurements are lack-
ing, but also for many other regions; the API provided in the NASA/
POWER platform could allow for many utilizations such as internet of 
things (IOT) applications, online warning systems and decision sup-
port tools, at almost no cost. This justifies further research for evalu-
ating this platform on wider temporal and spatial scales. 

Also, the findings in this study focus only on the precipitation com-
ponent of drought; this can be highly relevant to surrounding regions 
where decreased precipitation is projected, such as Syria (Homsi et al. 
2020). However, recent studies from surrounding areas also reported 
that crop water availability in general is showing a decreasing trend 
(Salman et al. 2020); this highlights the importance of accounting 
for other components of water availability, such as evapotranspira-
tion (ET). The significance of incorporating other climatic parameters 
is also evident from research works such as Shiru et al. (2020), which 
showed that, along with precipitation, changes in temperature would 
also have a considerable effect on drought patterns. These findings 
highlight an important future aspect in this research area, which is 
evaluation of the NASA/POWER archive for indices that account for 
ET, such as the standardized precipitation evapotranspiration index 
(SPEI). This is quite possible due to an abundance of weather variables 
available in the NASA/POWER archive, including those that relate to 
components of atmospheric ET demand. However, this would require 
an in-depth evaluation of the individual components of ET supplied 
by the platform (e.g., temperature, wind speed, solar radiation, etc.), 
and the availability of high quality estimations or measurements of 
ET. Such efforts are particularly justified in arid regions where ET is a 
major component of drought. 

For future research efforts on the NASA/POWER platform, we rec-
ommend adopting approaches that also evaluate the extent of useful-
ness, rather than simple correlation and validation studies. As shown in 
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this study, simply because remotely sensed data shows good “agree-
ment” with gauged observations, this does not necessarily mean that 
such data should be used liberally as an alternative source for SPI de-
termination, but it is important to understand the extent of useful-
ness of such data, and the restrictions on interpreting its results. This is 
more of a concern because software products are commonly used for 
SPI calculation and interpretation. For example, some R studio pack-
ages for SPI calculation show colored indicators for different SPI cat-
egories, making it more of qualitative rather than a quantitative de-
scription of meteorological drought intensity, such approaches may 
not be suitable when working with alternative sources that estimate 
precipitation rather than directly measure it. To make the best of the 
spatial and temporal abundance of satellite precipitation estimates, it 
is important to interpret results from such data with caution and un-
derstand its limitations. 

5 Conclusions 

Monitoring of meteorological drought is a crucial task, for which the 
SPI is most commonly used. This requires access to spatially and tem-
porally abundant precipitation records. Remotely sensed precipitation 
from the POWER/ Agroclimatology archive by NASA provides such 
data for the entire globe. In this study, the reliability of this data source 
for detecting meteorological drought in Jordan using the SPI was eval-
uated. The evaluation was based on a framework that includes three 
criteria: prediction of correct SPI category, detection of extreme wet 
or dry conditions, and detection of wet/dry conditions regardless of 
intensity. The findings of this study strongly suggest that the POWER/ 
Agroclimatology archive can be useful in detecting extreme droughts 
but tends to overestimate the intensity of moderate, mild and severe 
droughts, and showed good performance in detecting general mete-
orological conditions (wet/dry regardless of intensity). However, the 
evaluated data source was not found very efficient in detecting the 
correct SPI category, and showed very poor performance in detect-
ing extremely wet conditions. It was further noted that at the 1-month 
scale, SAT-SPI generally showed better agreement with GO-SPI than 
at longer timescales, suggesting better usability in agricultural rather 
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than hydrological applications. The proposed framework shows good 
potential for determining the extent of usefulness of the remotely 
sensed precipitation record in drought monitoring, but further work 
in a wider range of climatic and topographic regions is needed to con-
firm the platform’s robustness.   

Supplementary Information — Appendix 1: Analytical results for agreement be-
tween Satellite based and ground measured SPIs at specific stations examined in 
this study is presented following the References.  
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Supplementary material 

Appendix 1: Analytical results for agreement between Satellite based and ground measured SPIs at specific stations examined in this study 

Scale Obj.Func* Marka Deir Alla H4 Irbid Mafraq QAIA Rabbah Safawi Shoubak UJ 

1
M

o
n

th
 

S
P

I 

MAE 0.48 0.51 0.55 0.41 0.50 0.47 0.51 0.54 0.75 0.51 

CDC 66.9% 58.9% 59.5% 65.3% 68.3% 70.6% 58.9% 61.9% 44.0% 55.4% 

wet/dry 91.7% 89.3% 86.7% 100.0% 90.0% 96.7% 91.7% 90.0% 86.7% 89.3% 

3
M

o
n

th
 

S
P

I 

MAE 0.48 0.51 0.86 0.54 0.55 0.48 0.57 0.59 1.26 0.42 

CDC 81.5% 75.0% 59.3% 76.2% 63.0% 85.2% 59.3% 74.1% 37.0% 79.2% 

wet/dry 87.5% 93.3% 75.0% 69.2% 81.3% 87.5% 87.5% 68.8% 75.0% 100.0% 

6
 m

o
n

th
 

S
P

I 
O

ct
 MAE 0.50 0.63 0.89 0.54 0.59 0.46 0.73 0.69 1.21 0.45 

CDC 55.6% 50.0% 33.3% 57.1% 66.7% 88.9% 66.7% 77.8% 33.3% 62.5% 

wet/dry 100.0% 100.0% 55.6% 100.0% 88.9% 88.9% 66.7% 77.8% 66.7% 87.5% 

6
M

o
n

th
 

S
P

I 
N

o
v
 MAE 0.57 0.66 0.78 0.54 0.62 0.51 0.76 0.85 1.30 0.58 

CDC 77.8% 75.0% 77.8% 57.1% 77.8% 88.9% 66.7% 66.7% 33.3% 75.0% 

wet/dry 88.9% 75.0% 55.6% 85.7% 88.9% 77.8% 88.9% 77.8% 66.7% 75.0% 

1
2

M
o

n
th

 

S
P

I 

MAE 0.55 0.66 0.71 0.54 0.61 0.50 0.77 0.73 1.22 0.50 

CDC 55.6% 62.5% 66.7% 57.1% 77.8% 88.9% 55.6% 55.6% 33.3% 75.0% 

wet/dry 77.8% 75.0% 55.6% 100.0% 100.0% 77.8% 88.9% 77.8% 66.7% 75.0% 
*MAE: Mean Absolute Error, CDC: Correct detection of drought category, wet/dry: correct detection of wet/dry conditions regardless of category 
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