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Abstract: The development of new tools that provide timely, detailed-spatial-resolu-
tion drought information is essential for improving drought preparedness and
response. This paper presents a new method for monitoring drought-induced vegeta-
tion stress called the Vegetation Drought Response Index (VegDRI). VegDRI inte-
grates traditional climate-based drought indicators and satellite-derived vegetation
index metrics with other biophysical information to produce a 1 km map of drought
conditions that can be produced in near-real time. The initial VegDRI map results for
a 2002 case study conducted across seven states in the north-central United States
illustrates the utility of VegDRI for improved large-area drought monitoring.

INTRODUCTION

Droughts are normal, recurring climatic events that frequently trigger negative
impacts on many sectors of society, including agriculture, energy, recreation, tourism,
and transportation (Rosenberg, 1978; Wilhite, 2000). During the past century, virtu-
ally all regions of the United States have experienced several extended severe drought
episodes, as well as many short-term droughts, resulting in considerable impacts and
economic losses (Wilhite, 2000). In comparison to other natural hazards, droughts
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frequently have larger associated costs because of the serious economic, environmen-
tal, and social consequences that often result from prolonged and widespread drought
events (Wilhite, 1997; NCDC, 2007). Cutter and Emrich (2005) found that droughts
accounted for 8 percent of the total costs (that is, direct losses of crops and property)
of all natural hazards in the United States from 1960 to 2003. Ross and Lott (2003)
also pointed out that the 11 major droughts experienced in the United States between
1980 and 2003 caused the largest percentage (42 percent) of weather-related mone-
tary losses during that period. In 1995, the Federal Emergency Management Agency
(FEMA) reported that $6–8 billion in losses on average were caused by drought
events in the United States each year, more than for any other weather-related disaster
at that time (FEMA, 1995). As a result of the major impacts that result from drought
events, the development of improved drought monitoring tools is vital for providing
decision makers with accurate and timely information that is needed for effective
drought planning, mitigation, and response activities (WGA, 2004).

Drought monitoring is challenging because of the immense spatial and temporal
variability exhibited by each drought event. The term drought also lacks a single tech-
nical definition because the characteristics that define a drought event may vary by
both location and sector. Therefore, no single method can be used to adequately char-
acterize and monitor drought. Monitoring techniques have to be adapted to capture
the time-, location-, and sector-specific characteristics of drought. Improvements in
drought monitoring techniques and products, such as higher spatial resolution and the
timely delivery of information in a variety of accessible formats (for example, maps,
descriptive text, and statistics), increase the value and relevancy of the information
available to decision makers, and thereby enhance and support drought response and
mitigation activities. A recent report by the United States Western Governors’ Associ-
ation (WGA), describing the vision of a National Integrated Drought Information
System (NIDIS), identified these types of improvements as a top priority for enhanc-
ing the nation’s drought monitoring capabilities (WGA, 2004).

Over the past decade, significant progress has been made in drought monitoring
worldwide. The accuracy and spatial precision of climate-based indicators have
improved with technological advances in meteorological instrumentation and the
expansion of weather station networks. This has improved both the spatial and tempo-
ral resolution of the climate data available for drought monitoring. However, climate-
based monitoring approaches still have a restricted level of spatial precision for
monitoring drought patterns because they use discrete, point-based meteorological
measurements collected at weather station locations. As a result, climate-based moni-
toring tools characterize relatively broad-scale drought patterns and the level of accu-
racy and spatial detail in the information they provide depends on the density and
geographic placement of stations across the landscape. Since the 1980s, many studies
have capitalized on the synoptic, timely, and spatially continuous characteristics of
remotely sensed data gathered by satellites to analyze and monitor vegetation condi-
tions over large areas (Goward et al., 1985; Malingreau, 1986; Di et al., 1994; Goetz
and Prince, 1996; Reed et al., 1996; Jakubauskas et al., 2002). Satellite-based obser-
vations have proven very useful for detecting vegetation condition anomalies (that is,
apparent declines in vegetation health), but the specific cause or causes for the vege-
tation stress may not always be determined solely from the remotely sensed data. A
number of natural (for example, drought, flooding, fire, pest infestation, and hail
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damage) and anthropogenic (for example, land cover/land use conversion) events can
produce these anomalies (Kogan, 1990; 1997; Asner et al., 2000; Breshears et al.,
2005; Domenikiotis et al., 2003; Franke and Menz, 2007; Goetz et al., 2006; Henebry
and Ratcliffe, 2003; Peters et al., 2000; Wang et al., 2003). Thus, remote sensing data
provides a means to monitor detailed spatial patterns of vegetation conditions, but it is
often difficult to distinguish drought-related vegetation stress from vegetation
changes caused by these other drivers without additional information. As a result, the
integration of coarser-resolution climate data and higher-resolution, satellite-based
vegetation observations provides an alternative approach to better monitor and char-
acterize the spatial extent, intensity, and local variability of drought’s affect on vege-
tation conditions. 

The goal of this paper is to introduce a new drought monitoring methodology
called the Vegetation Drought Response Index (VegDRI), which integrates historical
climate data and satellite-based earth observations with other biophysical information
(for example, land cover, land use, and soils) to produce a 1 km–resolution indicator
of the geographic extent and intensity of drought stress on vegetation. This approach
builds on the traditions from both the climate and remote sensing communities for
drought monitoring and utilizes new data mining analysis techniques to identify
historical climate-vegetation relationships related to the drought phenomenon. This
paper provides a review of existing methods and data used for drought monitoring to
support the scientific basis for the VegDRI methodology. We present the specific
inputs and methods used for VegDRI and then show initial VegDRI results from a
pilot study conducted over a seven-state region of the central United States (Fig. 1)
for 2002. The pilot study and following discussion highlights the strengths of this
index over more traditional drought indicators and illustrates the potential utility of
this tool for improved drought monitoring. 

BACKGROUND

Monitoring with Climate-Based Drought Indices

Traditionally, climate and meteorological data have been the primary sources for
drought information. Climate-based drought indices are often used to support drought
planning decisions and to trigger mitigating actions in different parts of the world
(Hayes, 2003; Keyantash and Dracup, 2002). These indices typically characterize the
intensity of dryness as compared to the long-term average or normal condition and are
usually calculated from one or more of the following variables: rainfall, temperature,
snow pack, stream flow, soil water holding capacity, and other water supply indica-
tors. As discussed earlier, climate-based indicators are traditionally calculated from
point-based measurements collected at meteorological stations and climate data are
not available in between stations. Statistical estimation methods such as kriging must
be used to estimate the values of specific climate parameters between stations and
obtain a continuous spatial coverage of general climate patterns. In addition, the
weather stations within an observing network can be unevenly distributed and are
often limited in number, particularly at higher elevations and in sparsely populated
areas. This further limits the spatial accuracy and detail in the climate patterns that
can extrapolated from station-based measurements.
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Two climate-based drought indices, the Standardized Precipitation Index (SPI)
and the Palmer Drought Severity Index (PDSI), were selected for incorporation into
VegDRI because they are among the most commonly used indicators for drought
monitoring in the United States and are key indices analyzed during the construction
of the widely accepted USDM (Svoboda et al., 2002).

Standardized Precipitation Index (SPI). The SPI was designed to quantify the
precipitation anomaly for a specified time period (for example, previous 1, 3, 5, or 12
months) for a location (for example, weather station) based on the long-term precipi-
tation record over that specific time interval (McKee et al., 1995). The SPI is calcu-
lated by fitting the long-term record of precipitation over a specific time step to a
probability distribution, which is then transformed into a gamma distribution so that
the mean SPI for a specific location and time period is zero (Edwards and McKee,
1997). The SPI value is positive if the precipitation over a particular time period is
greater than the historical mean precipitation and is negative if the precipitation is less
than the historical mean precipitation. SPI provides the temporal flexibility to assess
conditions over multiple time intervals, allowing the index to be used to monitor both
shorter-term agricultural drought and longer-term hydrologic drought.

Fig. 1. The seven-state study area in the north-central United States and the geographic
locations of the 776 weather stations used for VegDRI model development.
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Palmer Drought Severity Index (PDSI). The PDSI has been a very prominent
climate-based drought index used in the United States (Keyantash and Dracup, 2002).
The PDSI calculation is based on a simple supply-and-demand model of a water
balance equation that builds on both the precipitation and temperature history for a
location so that a calculated PDSI value represents a combination of the current con-
ditions and previous PDSI values (Palmer, 1965). Several parameters are used in the
PDSI calculation, including precipitation, temperature, and soil properties (that is,
available water-holding capacity). The response of PDSI to an emerging drought
event may lag by weeks or months compared to a quicker response index such as
SPI (Hayes et al., 1999), but PDSI is a still useful indicator of longer-term drought
conditions. 

A new self-calibrated PDSI was recently developed by Wells et al. (2004). In the
self-calibrated PDSI, empirical constants and duration factors in the PDSI computa-
tion are dynamically calibrated to the local characteristics of each weather station.
This adjustment was designed to keep the original intentions of Palmer’s (1965)
drought index intact, while improving the spatial comparability of PDSI values and
calibrating the index so that extreme dry and wet events would occur approximately
two percent of the time at any location, as recommended in the literature (Guttman et
al., 1992; Hayes et al., 1999).

U.S Drought Monitor (USDM). The USDM (Svoboda et al., 2002) is a state-of-
the-art drought monitoring tool used in the United States. The USDM, operational
since 1999, is developed using a hybrid approach that considers a number of variables
such as short- and long-term climate-based drought indicators, hydrologic indices,
and remote sensing information. The USDM map provides a general assessment of
drought conditions (both agricultural and hydrologic) across the nation. The USDM
map is updated weekly and has a spatial resolution at the approximate scale of a
climate division (Svoboda et al., 2002). Climate divisions are an administrative
construct of the National Oceanic and Atmospheric Administration (NOAA) that can
vary in area from tens to hundreds of km2 across the conterminous United States
(Lackey et al., 2007). In all, there are 344 climate divisions. The spatial resolution of
the USDM has been adequate for national- and state-level policy makers and the
media, and it has been used as a trigger for federal drought relief programs (for exam-
ple, USDA’s Livestock Assistance Grant Program in 2006; Svoboda et al., 2002).
However, the coarse spatial resolution of the USDM limits its utility for drought
response and mitigation at a more localized level, and the development of new, higher
resolution tools that provide more localized monitoring across the country has been
identified as a priority (WGA, 2004).

Satellite-Based Monitoring of Vegetation Conditions

Satellite observations provide a valuable source of timely, spatially continuous
information for monitoring vegetation dynamics (for example, physiological stages)
and conditions across large areas. In particular, time-series Advanced Very High
Resolution Radiometer (AVHRR) normalized difference vegetation index (NDVI)
data have been widely used to monitor vegetation at regional to global scales (Tucker
et al., 1985; Malingreau, 1986; Townshend et al., 1987; Reed et al., 1994; Myneni et
al., 1997; Jakabauskas, 2002; DeBeurs and Henebry, 2004) and have inherently
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higher spatial resolution (ranging from 1 km2 to 16 km2) than traditional climate-
based indicators such as the USDM. The NDVI (Rouse et al., 1974; Tucker, 1979) is a
numerical transform of the visible red (red) and near infrared (NIR) spectral bands,
which takes the form: 

NDVI = NIR – red/NIR + red. (1)

NDVI represents a dimensionless, radiometric measure that capitalizes on the
differential response of the incident visible red (absorbed by chlorophyll) and NIR
(reflected by the spongy mesophyll layer of leaves) radiation with the vegetation
canopy and has been found to be correlated with the relative abundance and condition
of green vegetation (Asrar et al., 1989; Baret and Guyot, 1991). As a result, time-
series NDVI observations from AVHRR have proven useful for the quantification of
seasonal events (Reed et al., 1994; Reed et al., 1996; Yang et al., 1998; Schwartz,
1992) and biophysical vegetation characteristics (for example, leaf area index and
biomass) (Hoff et al., 1995; Sannier et al., 2002; Wang et al., 2005; Gonzalez-Alonso
et al., 2006; Wessels et al., 2006), the classification of land cover types (Loveland et
al., 1991, 1995, 2000; DeFries and Townshend, 1994; DeFries et al., 1998, Hansen et
al., 2000), and the characterization of vegetation conditions (Reed et al., 1996; Yang
et al., 1998; Jakubauskas et al., 2002). This large body of research has shown that
time-series NDVI observations from AVHRR (and other instruments aboard global
polar-orbiting satellites) provide the required information for monitoring vegetation
patterns and conditions at 1 km2 to 16 km2 scales across large geographic areas. 

A strong relationship between climate- and satellite-derived vegetation indices
(VIs) has been established (Di et al., 1994; Yang et al., 1998; Rundquist and
Harrington, 2000; McVicar and Bierwirth, 2001; Ji and Peters, 2003), which indicates
that VIs are an effective measure for monitoring climate-related changes in vegetation
conditions. McVicar and Bierwirth (2001) found a strong correlation (r2 = 0.81)
between accumulated rainfall and integrated NDVI and surface temperature in their
investigation of AVHRR data for drought assessment. Yang et al. (1998) also found a
significant positive correlation between time-integrated NDVI and summer and
spring precipitation over the grasslands of the central United States. Significant corre-
lations between monthly NDVI and SPI during the growing season were also reported
by Ji and Peters (2003) in the central Great Plains. They found NDVI to be an effec-
tive indicator of “vegetation moisture condition” and found the relationship between
NDVI and SPI to be the strongest in areas with low soil-water holding capacity.

The utility of time-series VI derivative measurements (primarily from the 16 km2

AVHRR Global Vegetation Index; Kidwell, 1990) for drought monitoring in the
United States and internationally has been demonstrated since the early 1990s
(Kogan, 1990; Kogan, 1995; Liu and Kogan, 1996; Hayes and Decker, 1996; Kogan,
1997; Unganai and Kogan, 1998). Most of this research was based on a transforma-
tion of the NDVI data to an indicator called the Vegetation Condition Index (VCI)
(Kogan, 1990, 1997). The VCI and TCI (an index calculated from AVHRR thermal
channel data) were found to have good correlation (ranging from 0.45 to 0.97) with a
corn yield ratio (percent of 1986–1994 mean yield) at the district level in Zimbabwe,
but the timing of the occurrence of the highest correlation varied by district (Unganai
and Kogan, 1998). Similar to the NDVI, the VCI can also be sensitive to other envi-
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ronmental phenomena (for example, flooding, wildfire, pest infestation, hail, etc.),
and this may result in an incorrect interpretation or identification of a drought-like
signal. 

The value of multi-temporal, satellite-based VI observations for characterizing
vegetation conditions and patterns is clear from this previous body of research, but
identifying the specific cause(s) of significant anomalies in the dynamic vegetation
patterns exhibited in the VI data is difficult without the use of additional ancillary
information. A number of environmental factors (for example, flooding, hail, plant
disease, pest infestation, fire, and human-induced land changes) can degrade vegeta-
tion conditions and produce a similar multi-temporal VI signal, as seen in areas expe-
riencing drought stress (Asnar et al., 2000; Peters et al., 2000; Domenikiotis et al.,
2003; Henebry and Ratcliffe, 2003; Wang et al., 2003; Breshears et al., 2005; Goetz et
al., 2006; Franke and Menz, 2007). As a result, satellite VI data may decline, but
without the integration of ancillary information such as climate data, there is uncer-
tainty as to the specific cause(s) of the vegetation stress. Therefore, an effective
drought monitoring approach should consider both climate- and satellite-based infor-
mation, as well as other environmental parameters that may influence the effects of
drought and its severity on vegetation, such as soil properties or land cover type.

Data Mining Techniques for Integrating Complex Environmental Information

Data mining techniques, which were originally developed in the machine learn-
ing community, are increasingly being used for variety of environmental applications
(Bell, 1999; De’ath and Fabricus, 2000; Zhang et al., 2005; Wylie et al., 2007) and
have shown considerable potential for drought monitoring (Harms et al., 2002;
Tadesse et al., 2005). The term data mining refers to a set of analysis tools and tech-
niques that incorporate methods from machine learning, pattern recognition, statistics,
and visualization and are designed to identify complex patterns and relationships
in large numbers of variables (Two Crows Corporation, 1999). This approach has
several advantages over traditional analysis techniques, including the flexibility to
handle a variety of data types (for example, nominal, interval, and ratio); the ability to
handle data without a normal distribution (non-parametric) and hierarchical relation-
ships among variables; efficient processing of large data volumes; and transparent,
interpretable model outputs (De’ath and Fabricus, 2000). As a result, a data mining
approach was appropriate for VegDRI given the complexities in measuring and moni-
toring drought discussed earlier, as well as the large number of variables and consid-
erable volume of climate, satellite, and biophysical information analyzed in this
approach.

DATA AND METHODS

Overview of VegDRI Methodology

The VegDRI methodology represents a new approach to drought monitoring by
integrating traditional climate-based drought index information and satellite-based
NDVI measures of vegetation conditions with several biophysical characteristics.
This index, by design, specifically targets the effects of drought on vegetation by
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considering the general vegetation conditions as observed by satellite and the level of
dryness experienced for a given location. Additional environmental characteristics
are also represented in this approach given the different climate-vegetation response
relationships that can occur for different land cover types, soil types, and land use
practices. 

The VegDRI methodology consists of three primary steps. The first step was to
process, summarize, and organize the data for the eight variables (Table 1) used in
VegDRI into a database (Section 3.2). A 16-year historical record (1989–2005) of
climate-based drought index and satellite-derived VI observations and information
from four temporally static biophysical variables were included in the training data-
base. For each variable, information was summarized for 776 weather station loca-
tions across the seven-state study area (Fig. 1), entered and sequentially ordered in the
database, and then subdivided into three seasonal phases (Table 2) for model develop-
ment. The second step was to generate an empirically derived model for each phase
by applying a supervised classification and regression-tree (CART) analysis tech-
nique to information in the database (section 3.3). The third step was to apply the sea-
sonal models to the geospatial data to produce a 1 km resolution VegDRI map for the
study area (section 3.4). The VegDRI map contains seven categories of varying levels
of drought-induced vegetation stress, based on the PDSI drought classification
scheme (Palmer, 1965). The seasonal models were applied at a two-week time-step to
the geospatial data to produce a map for each bi-week within their respective phase. 

Climate Data Inputs for VegDRI

The SPI and self-calibrated PDSI were calculated from the National Agricultural
Decision Support System (NADSS) (http://nadss.unl.edu/), which collects, processes,
and formats historical climate data provided from the Applied Climate Information
System (ACIS) (http://rcc-acis.org) (Hubbard et al., 2004). Rigorous quality control
was used to remove any meteorological stations with any or all of the following char-
acteristics: (1) an insufficient historical record (less than 30 years); (2) too many
missing observations (greater than 10 percent of the station record missing); and (3)
spurious PDSI or SPI results. A total of 776 meteorological stations were retained
across the study area (Fig. 1) and a 17-year time series of SPI and self-calibrated
PDSI values were calculated on a bi-weekly (14-day) time-step for these locations. 

SPI Data. Because the SPI has the inherent flexibility to be calculated over vari-
ous time spans, an optimal SPI interval had to be selected for each seasonal phase. A
single SPI interval was used in VegDRI rather than multiple intervals because there is
some temporal overlap in the precipitation observations used in the different SPI cal-
culations (for example, 4 weeks of the same precipitation data would be used for the
4- and 8-week SPI), which would result in a high degree of intercorrelation among the
SPI data values calculated for a given date. Station-based SPI data were calculated for
14 time intervals ranging from 1 to 52 weeks, and each SPI was tested in separately in
the seasonal VegDRI models to determine the specific SPI interval that provided the
best predictive accuracy for each phase. Table 3 presents the results from this testing.
A 52-week SPI was selected for the spring and summer models and a 40-week SPI for
the fall model. 
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Self-Calibrated PDSI Data. The PDSI indicates how the soil moisture compares
with normal conditions and is calculated based on parameters including precipitation,
temperature, and soil moisture conditions. This index provides a measure of the long-
term intensity and duration of drought conditions derived from the precipitation and
temperature anomalies and their combined effects on soil water availability to plants.
In this study, self-calibrated PDSI historical records for each weather station in the
study area were calculated across the 17-year period using the new self-calibrated
PDSI algorithm developed by Wells et al. (2004). The PDSI data had a value range
from –8.0 to +8.0, and served as the dependent variable in the VegDRI models.

The PDSI was selected as the dependent variable for the VegDRI model for two
primary reasons. First, unlike other climate-based drought indices (such as the SPI)
that are solely based on precipitation observations, the PDSI accounts for the effect of
both precipitation and temperature on drought conditions. Second, the PDSI scale has

Table 2. Three seasonal modeling phases for VegDRI

Phase Start date End date Phenological stage

Spring 39561 39615 Emergence, early growth
Summer 39616 39685 Maturity, peak growth
Fall 39686 39727 Senescence, harvest

Table 3. Results (correlation coefficients) of the SPI Testing for the Three Seasonal 
VegDRI Models

SPI used in the model
Correlation coefficient 

for Phase 1
Correlation coefficient 

for Phase 2
Correlation coefficient 

for Phase 3

1-week SPI 0.45 0.54 0.5
2-week SPI 0.47 0.56 0.51
4-week SPI 0.57 0.65 0.61
8-week SPI 0.64 0.74 0.72
12-week SPI 0.67 0.79 0.79
16-week SPI 0.7 0.82 0.81
20-week SPI 0.71 0.83 0.84
24-week SPI 0.72 0.84 0.86
28-week SPI 0.74 0.84 0.87
32-week SPI 0.76 0.85 0.88
36-week SPI 0.78 0.85 0.88
40-week SPI 0.79 0.85 0.89
44-week SPI 0.8 0.86 0.88
48-week SPI 0.81 0.86 0.88
52-week SPI 0.81 0.87 0.88
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sufficient resolution to identify multiple levels of drought severity (for example,
moderate, severe, and extreme). Lastly, the PDSI is well recognized and, as a result,
the PDSI-like drought scale used for VegDRI is familiar to the drought research
community.

Satellite Data Inputs

Time-Series AVHRR NDVI Data. A 17-year time series (1989–2005) of bi-
weekly, composited 1 km AVHRR NDVI data (Eidenshink, 2006) was used to calcu-
late the two vegetation-related metrics, percent average seasonal greenness (PASG)
and start of season anomaly (SOSA) that were included in the VegDRI model. Prior to
the calculation of these metrics, a weighted least squares regression technique (Swets
et al., 1999) was applied to the NDVI time series to minimize noise and other artifacts
(for example, clouds and variable illumination and viewing angles) that are com-
monly found in the 14-day NDVI composites (Los et al., 1994) and lead to non-vege-
tation–related changes in the NDVI data over the year. This smoothing technique
enabled the non-vegetation related change in the NDVI data to be eliminated while
maintaining a NDVI time series that tracks closely with the original NDVI data set
and retains the vegetation’s seasonal responses over the 17-year period.

Percent of Average Seasonal Greenness (PASG). PASG provides a measure of
how the general vegetation conditions for a specific period during the growing season
compare to historical average conditions for that same period over the 17-year
AVHRR historical record. In order to calculate the PASG, the median start and end of
the growing season (SOST and EOST) had to be determined at the pixel level in order
to define the growing season length across which the PASG should be calculated. The
median SOST and EOST day of year (DOY) were identified using a delayed or mov-
ing-window averaging technique (Reed et al., 1994). The next step was to calculate
the seasonal greenness (SG) metric for each bi-weekly period of the growing season
for all 17 years in the time series. SG represents the accumulated NDVI above a base-
line (that is, latent or background NDVI) across the 14 days within a bi-weekly
period. NDVI values (minus the latent NDVI) were integrated across the period on a
daily interval based on NDVI values that were linearly interpolated between the
observed NDVI in consecutive 14-day composites. Daily NDVI integration began on
each pixel’s SOST DOY and an accumulated SG (or NDVI) was calculated at the end
of the 14-day compositing period. Daily integration of the NDVI continued for the
subsequent bi-weekly periods where the daily NDVI values were summed across the
14-day period and added to the accumulated NDVI from the prior periods for that
year, which continued until the median EOST was reached for each pixel as shown in
Equation 2:

(2)SG NDVI

P1 SOS=

Pn EOS=

∫ NDVI NDVIb–( )
P1

P2

∫

NDVI NDVIb–( )
P2

P3

∫ … NDVI NDVIb–( )
pn 1–( )

Pn

∫

+

+ +

= =
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where P1, P2, P3, …Pn refer to the 14-day periods; P1 is the period for the median
SOST and Pn is the period for the median EOST. NDVI is the observed value in the
AVHRR composited data and NDVIb is the latent (or baseline) NDVI value defined at
the SOST for each pixel. For pixels with a median SOST later than the median EOST
(for example, fallow cropland planted to winter wheat in the fall), the integration still
started at the median SOST but continued past day 365 into the next year. Period-
specific SG values were calculated for each individual year, as well as the average,
period-by-period SG over the 17-year record. 

PASG was then calculated by dividing the SG for a bi-weekly period by the
historical mean SG for the same time period using Equation 3:

PASGPnYn = (SGPnYn / xSGPn) * 100, (3)

where SGPnYn refers to the SG for a bi-weekly period (Pn) of a specific year (Yn) and
xSGPn is the historical average SG (x) for the same bi-weekly period (Pn). PASG
values less than 100 percent occur when the accumulated SG for a period is less than
the historical average, with extremely low PASG values indicative of poor vegetation
conditions. PASG values greater than 100 percent occur when the accumulated SG is
greater than the historical average and reflect vegetation conditions that are better
than those typically found at that time.

Start of Season Anomaly (SOSA). The SOSA metric represents the departure in
the SOST for a specific year from the average historical SOST for a given pixel. The
SOSA was calculated at the pixel level for each year in the time series using Equation
4: 

SOSAi = SOSTi – SOSTmed, (4)

where SOSAi is the SOSA (in number of days) for year i, SOSTi is the start of season
DOY for year I, and SOSTmed is the median start of season DOY from 1989 to 2005.
The SOSA was included in the VegDRI model to account for the different timings of
emergence of various natural and agricultural vegetation types, as well as land cover
change—all of which can influence seasonal vegetation performance (and thus
PASG) recorded in the satellite observations. The SOSA allows a key distinction to be
made between areas that have a comparable SOST to the historical median data and
are experiencing low PASG values due to some form of stress versus areas that expe-
rience an unusually late SOST due to non-drought–related environmental factors (for
example, cold or wet spring conditions) and/or management practices (for example,
planting of a spring vs. summer crop), which would result in low PASG values that
are unrelated to drought stress.

Biophysical Data

National Land Cover Data (NLCD). A 1 km land cover map was generated
from the U.S. Geological Survey’s (USGS) 30 m National Land Cover Dataset
(NLCD) circa 1992 (Vogelmann et al., 2000).2 The majority land cover class of the
30-m NLCD map contained within each 1 km AVHRR pixel footprint was calculated
and assigned to each pixel in a 1 km land cover map. This variable was included in
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the VegDRI model to reflect the different seasonal NDVI signals and climate-vegeta-
tion responses that are exhibited by different land cover types (for example, decidu-
ous vs. evergreen forest). 

Soil Available Water Capacity (AWC). Soil available water capacity (AWC) was
extracted from the STATSGO soils database (item AW35S8M from the 1997 version)
(USDA, 1994) for each STATSGO soil map unit over the study area and converted to
a 1 km raster grid. The AWC variable was included in the VegDRI model because it
represents the potential of the soil to hold moisture and make it available to plants,
which in turn exerts control over vegetation growth (Churkina et al., 1999) and influ-
ences the sensitivity and response of vegetation to drought.

Irrigated Agriculture. A 1 km irrigated agriculture map was derived using 1997
Census of Agriculture data (USDA, 1999) and the 1 km land cover map (the NLCD
described above). The percentage of farmland under irrigation for each county in the
study area was calculated by dividing the area of irrigated land in a county by the total
farmland area reported in the USDA Census data. This percent irrigated value (rang-
ing from 0 to 100 percent) was then assigned to all pixels within the county that were
classified as either cropland or hay/pasture in the 1 km land cover map. The areas of
the county with non-crop cover types were assigned a constant background value and
assumed to contain no irrigation. The representation of irrigation in VegDRI is critical
because rainfed vegetation has much greater sensitivity and response to drought than
irrigated vegetation. 

Ecoregions (ECO). A 1 km ecoregion grid was generated from the Omernik
Level III ecoregion data (Omernik, 1987). The study area comprised 21 ecoregions
that divide the regional landscape into a series of geographic areas with similar eco-
systems and environmental resources, which were identified using both abiotic (for
example, climate, geology, hydrology, land use, and physiography) and biotic (for
example, vegetation and wildlife) criteria (Omernik, 1995). Many environmental
characteristics (for example, growing season length and plant species) exhibit consid-
erable variability across the seven-state study area, which can influence the sensitivity
of vegetation to drought. The ECO variable provided a geographic framework to help
account for variability across the study area due to basic climatic conditions and
the solar energy budget that varies with latitude, elevation, and time of year in the
VegDRI models.

VegDRI Training Database Development

A training database of all the aforementioned climate, satellite, and biophysical
data was assembled for the 776 weather station locations. The historical SPI and self-
calibrated PDSI data for each station were entered into the database and sequentially
ordered. Summarized statistics had to be calculated for each station for all the vari-
ables that were in a raster, gridded format. For each variable, information from a 3 × 3
pixel window centered on each station location was considered and the average value
from the window was calculated for continuous variables (for example, PASG, SOSA,

2The NLCD 2001 (Homer et al., 2004) will be tested as a biophysical input variable in the planned
expansion of the VegDRI models covering the western United States during 2008. 
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AWC, and percent irrigation) and the dominant (or majority) class for categorical
variables (for example, NLCD and ecoregion). The historical time series of PASG
data were sequentially ordered for each station in the same manner as the climate
data. For the SOSA, a single value was used for each year. The other biophysical vari-
ables were considered static and their values remained constant across time in the
database. As discussed earlier, the records in the database were also temporally sub-
divided into three seasonal subdivisions (Table 2) to accommodate the development
of seasonal VegDRI models. 

VegDRI Model Derivation 

A commercial CART algorithm called Cubist (Quinlan, 1993; Rulequest, 2007)
was used to analyze the historical data in the training database and generate the three
seasonal, rule-based, piecewise linear regression VegDRI models. The rules and
instances option available in Cubist were utilized for model development. The Cubist
models are composed of an unordered set of rules, with each rule having the syntax,
“if x conditions are met then use the associated linear regression model.” The follow-
ing rule provides an example of the rules generated by the Cubist algorithm for
VegDRI: 

Rule 1: 
if: 52weekSPI <= 1.4

LandCover in {Grassland, Pasture/Hay, Row Crops}
AWC <= 5.46
Percent_Irrigation <= 6
then: VegDRI = –4.9 + 1.48 (52weekSPI) + 3.2 (Percent_Irrigation) – 
0.14 AWC.

If the data associated with a case met the threshold criteria for the three continu-
ous variables (that is, SPI, AWC, and Irrigated Agriculture) and were represented by
one of the three land cover classes (that is, grassland, hay/pasture, and row crops)
identified by Cubist, then a following multivariate linear regression equation was
applied to calculate a VegDRI value. If two or more rules applied to a case, then the
individual predictions from each regression equation were averaged to arrive at the
final, predicted VegDRI value. In this study, the total number of 31, 26, and 29 rules
were generated for the spring, summer, and fall phases, respectively. 

VegDRI Model Implementation

The rules from the appropriate seasonal Cubist model were then applied to the
gridded image input data (as listed in Table 1) for each bi-weekly period using
MapCubist software developed at the USGS Center for Earth Resources Observation
and Science (EROS) to produce the series of 1 km VegDRI maps across the 2002
growing season. For the SPI variable, which was acquired as point-based data from
weather station locations, a 1 km raster image was generated for each bi-weekly
period using an inverse distance weighting (IDW) interpolation method. During
the implementation of the model to the image data, the values of all the input vari-
ables for each pixel were considered to determine which rule(s) applied and the



30 BROWN ET AL.

corresponding linear regression equation(s) associated with the rule(s) was (were)
applied to input data values to calculate the VegDRI value for each pixel across the
study area. A total of 12 VegDRI maps spanning the May 2 to October 3, 2002 bi-
weekly periods were produced.

RESULTS AND DISCUSSION

Several different methods were used in this study to evaluate the VegDRI results
for the 2002 growing season in the central United States and illustrate the utility of
this new approach for large-area drought monitoring. A cross-validation technique
was used to quantitatively assess the predictive (or estimation) accuracy of the three
seasonal VegDRI models. The spatial patterns in the VegDRI maps were then
compared to the widely used USDM maps to illustrate the strengths of VegDRI.
Lastly, a time-series of VegDRI maps were presented at the county level to demon-
strate the local-scale monitoring capabilities of this tool. 

Cross-Validation Using Holdout Method

A k-fold cross-validation (by year) approach (Kohavi, 1995) was used to deter-
mine the statistical accuracy of the three seasonal VegDRI models. The cross-valida-
tion results provide an indicator of the model stability and errors (Rulequest, 2007).
By withholding years, the stability of each seasonal model’s predictive accuracy over
the 17-year study period could be assessed. For the three seasons, model errors were
also accumulated across multiple iterations to yield an average absolute error mea-
sure, which was also evaluated for each seasonal model. 

The cross-validation involves an iterative process. In each iteration (or fold), 16
years of data were used to train a seasonal VegDRI model that is subsequently tested
on data for a single holdout year to determine its predictive accuracy. A different
holdout year was selected as the test data set in each iteration until every year in the
17-year database was withheld for testing. Thus, a 17-fold cross-validation was per-
formed for each seasonal model by replacing the test year at each iteration. 

At each iteration, the correlation coefficient (r) and the average and relative
errors of the VegDRI model were calculated and the mean (± 1 standard deviation)
coefficient and error values across the 17 years were reported for the three seasonal
models (Table 4). The average error measure, expressed in PDSI units (that is, the
dependent variable) that range from –8.0 to +8.0, represents the average of the indi-
vidual model error terms calculated for the each iteration or fold in the cross valida-
tion process. The relative error measure is the ratio of the average error term to the
error magnitude that would result if the mean VegDRI value was always estimated by
the model. 

The correlation coefficient values revealed that all three seasonal models had a
relatively high predictive accuracy (r > 0.80). For the individual holdout year results,
the r values ranged from 0.79 (spring 1999) to 0.92 (fall 2004). The average and rela-
tive errors of the models were also relatively low for all three seasonal phases, rang-
ing from 0.63 to 0.83 and 0.32 to 0.52, respectively. The VegDRI performance was
relatively stable across the 17-year study period, with extremely low variability in the
r values (1r < 0.03) and both error measures (1r < 0.03). This stable multi-year
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response of VegDRI indicates that this index was relatively uninfluenced by inter-
annual climate variability. However, subtle seasonal differences were found among
the models, with the VegDRI consistently having higher r values and lower average
and relative errors during the summer and fall phases of the growing season. The
slightly lower predictive accuracy of the spring VegDRI model may be influenced by
the highly variable NDVI response that vegetation can exhibit in the early growing
season from year to year as a result of the limited amount of green vegetation (for
example, low NDVI values) that can be remotely sensed by satellite. A subtle change
in vegetation conditions early in the year when there is low green biomass can result
in greater fluctuations in the low NDVI values as compared to later in the growing
season when slight changes in vegetation with higher biomass result in less change in
the NDVI value between years. As a result, the VegDRI model results for the spring
phase have more uncertainty compared to the other seasonal phases.

Regional Monitoring Capabilities: A Comparison of VegDRI and USDM 
for the 2002 Drought

A regional-scale comparison of the VegDRI and USDM maps for late July 2002
is provided to illustrate the large-area monitoring capabilities of VegDRI relative to
the widely used USDM. The summer of 2002 was an ideal case study because below-
average precipitation and abnormally high temperatures during the spring and sum-
mer months (April through August) resulted in pronounced drought conditions across
much of the country (NCDC, 2003). By late July, more than 50 percent of the United
States was experiencing “moderate” to “extreme” drought conditions (NCDC, 2003)
and the geographic extent was significant, with all 50 states exhibiting some type of
dryness (as shown in the USDM map; http://drought.unl.edu/dm/archive/2002/
drmon0723.htm). Drought conditions across the seven-state study area were particu-
larly extreme, with several states (Colorado, Nebraska, and Wyoming) receiving total
precipitation amounts in 2002 that ranked among the seven driest on record, dating
back to 1895 (NCDC, 2003; USDA, 2003). 

Table 4. Summary of k-fold Cross-validation Results for Three-Phase VegDRI 
Models Using Holdout Year for Testinga

Season

Evaluation on test data, mean ± standard deviation

Average |error| ±
1 STD

Relative |error| ±
1 STD

Correlation coefficient ± 
1 STD

Phase 1 (spring) 0.83 ± 0.05 0.49 ± 0.03 0.81 ± 0.02

Phase 2 (summer) 0.70 ± 0.01 0.40 ± 0.01 0.86 ± 0.01

Phase 3 (fall) 0.63 ± 0.05 0.36 ± 0.03 0.88 ± 0.01

aThe table shows the mean of the average error, relative error, and correlation coefficient 
(± 1 standard deviation) for the three seasonal VegDRI models.
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Figure 2 shows the VegDRI (A) and USDM (B) maps over the study area for July
25 and July 23, respectively. A visual examination of Figures 2A and 2B shows that
the general spatial patterns and intensity of drought depicted in the two maps were

Fig. 2. The VegDRI map (A) for July 25, 2002 and the USDM map (B) for July 23, 2002 over
the seven-state study area. The Roman numerals (i.e., I, II, III, and IV) highlight areas for
which local differences between VegDRI and USDM maps were further examined and
discussed in the study.



VEGETATION DROUGHT RESPONSE INDEX 33

similar. This was particularly true over the most seriously affected drought areas
across the states of Colorado and Wyoming, as well as the western parts of Kansas,
Nebraska, and South Dakota and central and southeastern Montana. However, the
improved 1 km spatial resolution of VegDRI is readily apparent, showing consider-
ably higher detail at a local scale than in the USDM. The VegDRI map characterizes
detailed drought patterns within individual counties, whereas the USDM portrays
much broader scale patterns with multiple counties and often large portions of a
state(s) assigned to the same drought category. Several local-scale differences in the
drought patterns characterized in the VegDRI and USDM maps in Figure 2 illustrate
the strengths of the 1-km VegDRI as a drought monitoring tool and also highlight
some of the inherent differences between these two indicators.

The first example occurs in north-central Montana (indicated by Roman numeral
I in Fig. 2A). The VegDRI map shows generally normal conditions across this area
while the USDM map has classified moderate, severe, and extreme conditions for the
same location. This pronounced difference reflects the different nature of these two
map products and provides an example of an instance when the patterns between the
maps would not be expected to be the same. As discussed earlier, the USDM map is
produced from a subjective assimilation of meteorological, hydrological, and numer-
ous other indicators to determine the level of overall drought conditions across a
region (Svoboda et al., 2002). As a result, the USDM reflects both agricultural and
hydrological drought events. In contrast, the VegDRI represents a single aspect of
drought stress on vegetation (that is, agricultural). In north-central Montana, the
USDM classified this area in hydrological drought (indicated by the “W” label in
Fig. 2B) but not experiencing agricultural drought, which would be consistent with
the preponderance of normal vegetation condition shown on the VegDRI map. This
difference can be attributed to a major early June storm that provided 2–6 inches of
precipitation over this area, which allowed vegetation conditions to recover to normal
conditions but did not ease the longer-term hydrological drought impacts that were
occurring (LeComte, 2002). 

Western South Dakota and North Dakota represent a second example of interest,
where the VegDRI map (indicated by the Roman numeral II in Fig. 2A) depicted
more extreme drought stress on vegetation than in the USDM map (Fig. 2B). The
spatial drought depictions in the VegDRI map for July 25 looked very similar to the
patterns in the late July PDSI maps (NCDC, 2002), which suggests that drought pat-
terns for these two areas were underemphasized in the USDM map. In addition, many
specific drought impacts were being reported in western South Dakota, confirming
the severe to extreme drought in that part of the state (Miller, 2002a, 2002b, 2002c,
2002d; Velder, 2002). These omissions and/or underestimates of drought in the
USDM map were likely due to a lack of ground truth information for these areas in
the USDM map development process. The creation of the USDM map depends on
input from local and regional experts (for example, state climatologists), who
describe dryness conditions and specific impacts for their areas. In 2002, expert feed-
back was not available for South and North Dakota (Svoboda, pers. commun.), which
resulted in the USDM map under-representing the severity of drought for these loca-
tions. The drought depictions on the USDM map eventually evolved over the latter
part of 2002 to represent the drought (D3, extreme drought) over western South
Dakota and show some dryness over northern North Dakota (D0, abnormally dry) by
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January 2003 (as shown in the USDM for January 7, 2003; http://drought.unl.edu/dm/
archive/2003/drmon0107.htm). This example illustrates the valuable, objective infor-
mation that VegDRI can provide, not only to decision makers, but also to USDM
authors who can utilize the VegDRI as an additional indicator in the development of
their maps. 

Another area that warrants examination is the western panhandle of Nebraska
(indicated by the Roman numeral III in Fig. 2A), where the VegDRI tool indicates
that drought impact on vegetation is more extreme than the conditions represented in
the USDM. This is particularly true for the area stretching from northwest to north-
central Nebraska and appears to be an extension of the underestimation of drought
conditions in the USDM map that was observed for western South Dakota. A prime
example of VegDRI’s local-scale monitoring capabilities is also seen in southwest
Nebraska, where the VegDRI map shows normal conditions over a two- to three-
county area while the USDM map has depicted extreme drought (D3). This area
experienced heavy rainfall and a flash flood event (on July 6, 2002) (Nebraska
Department of Roads, 2002) several weeks before the late July dates of the two maps;
this allowed the vegetation conditions to recover from the early summer drought
stress. This was reflected in the VegDRI map on July 25. This event was too localized
for the USDM and could not be resolved at the map’s coarse, climate-division spatial
resolution. This specific example shows how the VegDRI would be valuable for
local-scale applications and interests and can provide complimentary information to
the USDM maps. 

Local-Scale VegDRI Results: An Example from Perkins County, South Dakota

A case study for Perkins County, South Dakota is also presented to further illus-
trate the improved spatial resolution and more localized drought monitoring capabili-
ties that are provided by VegDRI. Although this example is limited to a specific
county, the drought conditions and patterns characterized by VegDRI for this area
were fairly representative of those depicted across the larger seven-state study area in
2002 and demonstrate the potential of this new tool to acquire county to sub-county
drought information. Perkins County has an agriculturally based economy with a
landscape dominated by a mosaic of grassland and cropland. In 2002, the county
experienced severe to extreme drought conditions that resulted in significant agricul-
tural losses. This was reflected by the county’s considerably lower wheat yields in
2002 (Fig. 3) (USDA, 2002) and the large percentage of crops that remained unhar-
vested after the 2002 growing season due to drought-induced crop failures. USDA
(2002) reported that less than 20 percent of the county’s three major crops (wheat,
sorghum, and corn) were harvested in 2002. 

The development and intensification of drought conditions for the Perkins
County area was also reflected in the large number of drought impacts (31 total)
reported in the National Drought Mitigation Center’s (NDMC) Drought Impact
Reporter (http://droughtreporter.unl.edu/, last accessed on August 28, 2007) from
April 1 to October 30, 2002, for South Dakota. In addition, many drought impacts for
western/northwestern South Dakota (for example, county drought disaster declara-
tions, increased cattle sales, businesses closings and food drives in local communities,
and the release of Conservation and Reserve Program lands for emergency grazing)
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were documented in state and federal agency reports and by the media in the region
(Miller, 2002a, 2002b, 2002c; Velder, 2002).

The spatial patterns and temporal behavior of the time series of VegDRI maps for
Perkins County and the surrounding area (Fig. 4) show the expansion and intensifica-
tion of drought conditions in 2002. On May 16, the majority of Perkins County had
normal conditions according to the VegDRI, with some grassland primarily in the
southern part of the county showing moderate drought conditions. By June 13, a
moderate drought signal had expanded across most of the county’s grassland and
some cropland, with isolated areas of severe drought. Drought conditions continued
to expand and intensify by July 11 and by the late-summer August 8 and September 5
dates, the majority of Perkins County was classified as experiencing severe to
extreme drought in the VegDRI maps. The trend and relative changes in drought con-
ditions depicted by VegDRI across the growing season had strong agreement with the
observed drought conditions for weather stations located within or near Perkins
County, as shown in Figure 5. The behavior of the VegDRI for the county’s two
dominant land cover types—grassland (64 percent of county area) and cropland (27
percent of county area)—track well with the PDSI values calculated for the three
local weather stations. From early May to mid July, the average VegDRI response for
both cover types and the PDSI values for the three stations showed a gradual down-
trend as the severity of the drought conditions across Perkins County intensified. By
late July, the station-based PDSI values reached their minimum, ranging from approx-
imately –2.0 (moderate to severe drought) at Bison to –4.0 (severe to extreme
drought) at Glad Valley. The average VegDRI response from both cover types contin-
ued to gradually decline until reaching minimum VegDRI values of approximately

Fig. 4. Reported county wheat yields for Perkins County, South Dakota from 1989 through
2006 (USDA, 2002). In 2002, the extreme drought conditions led to substantial declines in
yield compared to other years in this 18-year period.
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–4.0 (extreme drought). This increasing severity of drought conditions can be seen in
the series of VegDRI maps from July 11 to September 5, when the total area with
severe to extreme drought conditions substantially increased. Also, the VegDRI maps
on August 8 and September 5 reflect the more severe drought conditions at Glad
Valley (compared to Bison) that were shown in the observed PDSI values for both
station locations. These results indicate that the VegDRI monitored similar drought
conditions to those observed at weather station locations over this small case study
area and depicted sub-county–level spatial variations in drought conditions. 

The improved geospatial drought information provided in the VegDRI maps
could be used by agricultural producers, policy makers, and other stakeholders to
make more informed decisions at the county to sub-county levels. Examples include
sub-county drought declarations for financial assistance and emergency grazing of
CRP lands, the identification of locations with poor and/or good rangeland and hay
conditions for livestock grazing and feed purchases, and triggers for drought response
mitigation and response activities.

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The VegDRI represents a new large-area drought monitoring approach that inte-
grates climate data, satellite-based observations of vegetation, and other biophysical

Fig. 5. Average VegDRI response calculated for grassland and small grains within Perkins
County, South Dakota for 14-day periods in 2002 and the self-calibrated PSDI calculated at
three weather stations located within and near the county. The time-series responses of
VegDRI for both land cover types and the PDSI for all three stations are similar and reflect the
intensification of drought conditions across the 2002 growing season.
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characteristics of the environment. The 1 km spatial resolution of the satellite obser-
vations enables monitoring drought events at a finer spatial scale than with traditional
climate-based drought indicators. Climate data, when used in combinations with these
observations, allows drought-affected areas of stressed vegetation to be discerned
from stressed areas resulting from other environmental factors. This cannot be
achieved by the traditional remote sensing-based approaches that rely solely on satel-
lite VI information. 

The aim of VegDRI was to address the need for a tool that could map and moni-
tor spatially detailed drought patterns across large geographic areas and provide local-
scale drought information required for more effective planning, mitigation, and
response activities. The results from this study demonstrate that more spatially
detailed drought patterns can be characterized and monitored in the 1 km VegDRI
maps, compared to the commonly used USDM map. This provides more localized
drought information, which is currently at a county to sub-county scale. In addition,
VegDRI represents an objective and repeatable approach to drought monitoring that
can be implemented in a near real-time fashion and geographically expanded to
provide coverage across the United States. 

The intent of this pilot study was to present this new drought monitoring method-
ology and demonstrate the VegDRI’s capabilities over a limited seven-state region for
a single drought year. This research should be viewed as an initial step in the evalua-
tion and development of VegDRI. A limited number of qualitative and quantitative
assessments of VegDRI were presented in this paper, which constitutes a stage 1 vali-
dation (as defined by Morisette et al., 2006) of this index where the accuracy of the
results have been estimated from a limited number of observations from selected
locations and times. A validation of VegDRI, like many other large-area drought and
land cover monitoring products, is challenging because of the extensive ground truth
data that is required to adequate assess the index’s performance across both space and
time. A complete validation of VegDRI will require multi-year observations of vege-
tation characteristics (for example, green biomass, LAI, and turgidity) collected
across the growing season for a considerable number of sample locations. Currently,
few data sets with these characteristics exist, and most of them have only been col-
lected over a limited number of sites and years. 

Plans are under way to perform a more comprehensive validation of the VegDRI
using multiple sources of the “best available” information in an effort to better under-
stand the accuracy and performance of this index for drought monitoring. A compre-
hensive spatial cross-validation of VegDRI is planned by partitioning the model
training data in space for model calibration and testing. County-level USDA crop
yield information will be compared with the VegDRI response over cropland for
multiple years to determine if change in VegDRI is consistent with inter-annual crop
production fluctuations. Multi-year, multi-seasonal clip plot data for several biophys-
ical vegetation characteristics (for example, green LAI and biomass) will be also be
compared to intra- and interannual VegDRI trends to determine the strength of their
relationship. Time-series soil moisture observations from Mesonets will also be eval-
uated in relation to the VegDRI’s multi-temporal response. In addition, a network of
scientific experts (for example, state climatologists, rangeland scientists, and USDM
authors), policy makers, and agricultural producers has been established to provide
periodic feedback on the accuracy of the VegDRI for their local area. Collectively,
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this diverse set of information will be used to determine the accuracy of VegDRI and
characterize the index’s strengths and weaknesses. This “convergence of evidence”
evaluation approach will provide a more objective, quantifiable assessment approach
for VegDRI until data sets become available for stage 2 and 3 validation (as defined
by Morisette et al., 2006), which will require a standard set of measurements that can
be collected over a widely distributed set of locations and time periods.

Further research and development of the VegDRI is also being undertaken. The
area of coverage for VegDRI is currently being expanded beyond the initial seven-
state study region and will cover the conterminous United States in several years. In
addition, a process to produce near real-time VegDRI maps has been established to
provide operational and timely information to users. New variables such as elevation
and evapotranspiration will also be tested in VegDRI models. Alternative data mining
algorithms and ensemble techniques are also being evaluated. Lastly, comparable
time-series VI data sets from other current and future satellite-based sensors—such as
the Moderate Resolution Imaging Spectroradiometer (MODIS), Medium Resolution
Imaging Spectrometer (MERIS), and the planned Visible/Infrared Imager/Radiometer
Suite (VIIRS)—will also be investigated to ensure the temporal continuity of opera-
tional VegDRI production in the future.
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