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Abstract

Droughts are normal climate episodes, yet they are among the most expensive natural disasters in the world. Knowledge

about the timing, severity, and pattern of droughts on the landscape can be incorporated into effective planning and decision-

making. In this study, we present a data mining approach to modeling vegetation stress due to drought and mapping its spatial

extent during the growing season. Rule-based regression tree models were generated that identify relationships between

satellite-derived vegetation conditions, climatic drought indices, and biophysical data, including land-cover type, available soil

water capacity, percent of irrigated farm land, and ecological type. The data mining method builds numerical rule-based models

that find relationships among the input variables. Because the models can be applied iteratively with input data from previous

time periods, the method enables to provide predictions of vegetation conditions farther into the growing season based on earlier

conditions. Visualizing the model outputs as mapped information (called VegPredict) provides a means to evaluate the model.

We present prototype maps for the 2002 drought year for Nebraska and South Dakota and discuss potential uses for these maps.

D 2005 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Drought is a natural hazard that impacts economic,

social, and environmental aspects of society. In the

agricultural sector, it is one of the dominant causes of

crop loss in USA (Wilhite, 2002). In many cases,

agricultural losses are increased by reductions in

livestock production and disruptions in the food

supply chain (Goddard et al., 2003). In recent years,

droughts caused billions of dollars in damages/losses

in many states. For example, in 2002, the estimated

agricultural losses exceeded US$1 billion in each of
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the states of Nebraska, Colorado, Kansas, and South

Dakota (Hayes et al., 2004). The United States Federal

Emergency Management Agency (FEMA) has esti-

mated that drought events are responsible for annual

economic losses of US$6–8 billion (FEMA, 1995).

Given the seriousness of these losses and the

severity of recent droughts across the country, policy-

makers in the USA have significant interest in

monitoring and predicting drought events. To monitor

drought, decision-makers at the administrative and

grass-roots levels need timely and accurate informa-

tion about the spatial and temporal dimensions of

droughts. This information helps officials and farmers

to be more proactive in managing drought risk

(Wilhite, 2002). Furthermore, drought impacts can

be reduced through better understanding of drought

and identifying the appropriate drought indicators for

an early warning system. This includes providing

decision-makers with timely drought products (e.g.,

maps and data) that identify the frequency, severity,

and spatial extent of drought.

In the past, climate and meteorological data have

been the primary sources for drought information used

to support decision-making. However, more recently

satellite observations have proved to be a valuable

source of timely, spatially continuous data with

improved detail for monitoring vegetation dynamics

over large areas. Many prior studies of vegetation

conditions base analyses on numerical transforms

known as vegetation indices (VI). These indices have

been used for studying vegetation characteristics over

large areas since the 1970s (Rouse et al., 1974;

Tucker, 1979). The advantages of using VIs rather

than strictly spectral observations include minimizing

soil and other background effects, reducing data

dimensionality, providing a degree of standardization

for comparison, and enhancing the vegetation signal

(Curran, 1981; Goward, 1989; Malingreau, 1989).

One of the more commonly used VIs, the Normalized

Difference Vegetation Index (NDVI), takes advantage

of the reflective and absorptive characteristics of

plants in the red and near-infrared portions of the

electromagnetic spectrum.

Various studies have demonstrated the utility of

satellite measurements for observing and monitoring

drought and provide analyses of the relationships

between climate variables (e.g., precipitation) and

satellite-derived VIs (Di et al., 1994; Yang et al.,

1998; Ji and Peters, 2003). McVicar and Bierwirth

(2001) investigated the utility of satellite data as a

drought assessment tool for the 1997 drought in Papua

New Guinea. They found a strong correlation

(r2=0.809) between accumulated rainfall and an

integrated measurement of surface temperature (Ts)

and NDVI over meteorological stations. In another

study, Yang et al. (1998) investigated the relationships

among several climate parameters (including growing

season precipitation) and an annual integration (or

summation) of NDVI over grasslands in the U.S.

Great Plains. When examined over all grasslands in

the analysis, model results showed a significant

positive correlation between the time-integrated

NDVI and spring and summer precipitation. Ji and

Peters (2003) showed significant correlations between

monthly NDVI and the SPI during the growing season

over four states in the U.S. central plains. Even though

this study was based on spatially averaged NDVI and

SPI data (calculated over climate divisions), they

found NDVI to be an affective indicator of moisture

and vegetation condition.

Additional studies have presented analyses of

droughts in the USA, Africa, South America, and Asia

illustrate how derivatives of the NDVI can improve

the ability to observe drought in time-series satellite

data (Kogan, 1995; Liu and Kogan, 1996; Unganai and

Kogan, 1998). The Vegetation Condition Index (VCI),

a ratio of NDVI collected in a given period compared

to its historical range (maximum minus minimum) for

the same period during multiple years of record, is used

to map drought patterns (Kogan, 1995). Peters et al.

(2002) demonstrated the potential of a measure called

the Standardized Vegetation Index for drought mon-

itoring over the U.S. Great Plains and presented six

monthly maps for the year 2000.

In this paper, we introduce a prototype vegetation

stress map called VegPredict that depicts vegetation

conditions several weeks in advance. This map

product is created using data mining techniques that

integrate satellite, climate, and other environmental

data sets. The data mining technique maximizes the

information contained in traditional drought indicators

and integrates it with satellite-based greenness meas-

ures from the Advanced Very High Resolution

Radiometer (AVHRR) processed at the USGS EROS

Data Center (Eidenshink, 1992). This paper demon-

strates the potential use of data mining for drought
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research and presents map outputs over the central

states of Nebraska and South Dakota for the 2002

drought year.

2. Using data mining for drought mapping and

prediction

Data mining is a technique that uses a variety of

data analysis tools to discover patterns and relation-

ships of physical variables. This technique has shown

promise for analysis and prediction in multiple

disciplines bringing together techniques from machine

learning, pattern recognition, statistics, databases, and

visualization to address the issue of information

extraction from large databases (Cabena et al., 1998;

Groth, 1998).

Studies in ecological research have also introduced

data mining techniques and found that it is a powerful

tool in addressing complex ecological problems

handling both numeric and categorical data (De’ath

and Fabricius, 2000). Recent studies have shown that,

although drought effects on vegetation result from

complex atmospheric and biophysical phenomena,

data mining provides mechanisms for understanding

drought characteristics in space and time (Tadesse et

al., 2004; Harms et al., 2002). These studies illustrate

the potential of data mining for drought analysis and

prediction.

2.1. Rule-based predictive regression-tree model

In this study, Cubist1 data mining software was

used to generate models from a combination of

satellite, climate, and biophysical data. The technique

is generally referred to as regression-tree modeling.

Cubist analyzes data and generates rule-based linear

models that are a collection of rules, each of which is

associated with a linear expression for computing a

target value. The user determines the dependent and

independent variables. To get a more reliable estimate

of accuracy, the data are automatically divided into a

number of folds to validate the rules. In this study, the

data are divided into five blocks of almost equal size

and target value distribution. For each block, Cubist

constructs a model from the cases in the remaining

blocks and tests on the cases in the hold-out block. In

this way, each case is used once as a test case. The

accuracy of a model produced from all the cases is

estimated by averaging results on the hold-out cases

(Rulequest Research, 2003). The final output includes

a summary of the average error of the prediction and

correlation coefficient values. The correlation coef-

ficient (r) measures the statistical agreement between

the cases’ actual values of the target attribute and

those values predicted by the model.

2.2. Satellite, climate, and biophysical data

To predict future vegetation condition, we used

data from a satellite source, climate-based drought

indices, and biophysical variables For the climate

data, drought indicators were calculated for weather

station locations. These became the model generation

locations. The satellite data, and many of the

biophysical variables, were extracted using GIS

techniques for the same weather station locations.

2.2.1. Climatic indices

The Standardized Precipitation Index (SPI) and the

Palmer Drought Severity Index (PDSI) were selected

to define and quantify precipitation deficits (McKee et

al., 1994; Palmer, 1965). The SPI and PDSI were

calculated at 14-day intervals to match the temporal

resolution of the satellite data. For this study, we used

the Self-Calibrated PDSI that provided improvement

as it accounts for climate and soil characteristics of

each weather station that was not the part of the

original PDSI algorithm (Wells et al., 2004).

2.2.2. Satellite data

Satellite-derived measure of vegetation stress, the

Percent Average Seasonal Greenness (PASG) was

calculated based on smoothed temporal NDVI curve

characteristics. For this project, our source is AVHRR

NDVI calculated on a 14-day time step. The start of

the season (SOS) and end of season are used in the

calculations for seasonal greenness (SG). To identify

the SOS, we discover a well-defined trend change in

the NDVI vector using a delayed or backward-looking

moving average (Reed et al., 1994). This method

1 Any use of trade, product, or firm names is for descriptive

purposes only and does not imply endorsement by the USA

Government.
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identifies a well-defined trend change in the NDVI

(and vegetation vigor). The SG is calculated as a daily

integration of the NDVI (interpolated from 14-day

NDVI) above the NDVI baseline between the median

SOS day and all other periods in the growing season.

For vegetation monitoring, the SG at each pixel for

any given period is compared to the mean of the same

time period from the historical (from 1989 to 2002)

database. The measure is expressed as a percentage by

the formula: PASG=(current SG/mean SG)*100.

2.2.3. Biophysical variables

A set of additional biophysical variables was

chosen based on assumptions underlying vegetation

behavior. For all variables listed in Table 1, the

dominant (or mean) value was calculated for a 9-km2

window surrounding each weather station. Land-

cover type is used in our model to identify the

influence of the vegetation cover and its impact on

drought. The soil available water capacity indicates

how well the soil can hold moisture based on soil

type. The percent of land in farms in irrigation

indicates sensitivity to drought. The ecoregions

designation provides the responsiveness of ecological

resources to drought conditions. These variables

were chosen because they influence vegetation

response to climate condition; however, the list is

not exhaustive.

Finally, the above described climate, satellite, and

biophysical data variables were combined to generate

rules that show the relationships among the variables.

After generating regression tree models from data

generated at weather station locations, we converted

the models into map output. The rule-based models

estimate a value of the dependent variable for each

station (or pixel) depending on the independent

variables. After the rules are generated, the map is

produced based on the value for each station (pixel).

The rule for each station (pixel) is selected if the case

satisfies all the conditions of the rule for that specific

station. Consider the following two rules to illustrate

the process to determine the value for each pixel.

Rule 1: If PDSIb�1.5, land-cover is grassland and

percent irrigation (Pirrg) is less than 10%, then

VegPredict=46.51+3.9spi�1.14pdsi�0.077Pirrg;

and

Rule 2: If PDSIV�2.5, land-cover is pasture,

available water capacity (awc) of soil is 68, then

VegPredict=20.5875�0.038awc+0.031Pirrg+0.13

pdsi.

The coefficient (weight) for each variable in the

regression tree model rule is determined by the

regression tree algorithm based on the historical data.

Moreover, all of the variables at a given time and place

are not used in a single rule. The number of rules that

are generated can be automatically determined by the

data mining algorithm or can also be determined by the

user. For example, 40 rules may be generated for the

predictive models. For each pixel, the decision rules

are chosen automatically when the conditions are

satisfied in calculating the predictive values. Fig. 1

shows the flow chart used to model and produce the

output maps. These output maps (VegPredict maps)

are produced using research code developed at the

EROS Data Center. This code converts the Cubist-

derived rules and applies them to each pixel in binary

geospatial imagery. The following section demon-

strates the process, modeling and production of the

time-dependent VegPredict maps as a case study in the

central plains for the 2002 drought year.

3. Modeling and predicting drought related

vegetation stress for the central plains: a case study

of the 2002 drought

Data mining can be used for prediction using the

time lag relationships of the variables. In this case

Table 1

Biophysical data sets

Data Source Date Reference

Land-cover National Land Cover Database 1990–1992 Vogelmann et al. (2000)

Soil available water capacity State Soil Geographic Data Base NA USDA (1994)

Percent of land in farms in irrigation Census of Agriculture 1997 USDA (1997)

Ecoregions Environmental Protection Agency 1987 (revision, 3/2000) Omernik (1987)
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study, we predict drought impact on vegetation stress

based on the values of the PASG using climate and

other biophysical data as independent variables. The

PASG is selected as the dependent variable mainly

because vegetation stress typically occurs after a

precipitation (water supply) deficit affects plant

growth. The predictive regression-tree models were

developed based on historical data from 224 weather

stations in South Dakota and Nebraska for 14 years

(i.e., from 1989 to 2002).

Regression tree models were built for each of three

phases described in Table 2. First rule-based models

were generated to identify relationships between the

vegetation condition during the growing season and

the other climatic and biophysical variables using no

(zero) time lag. In this step, we predict current

vegetation condition without the PASG as an input

variable. Next, we generated rules that showed

relationships between climate data and satellite vege-

tation data (i.e., PASG) observed after 2, 4, and 6

weeks to investigate the prediction capabilities. These

rule-based models serve as predictive mechanisms for

the respective time lags (e.g., 2, 4, and 6 weeks).

After generating the predictive rules, we applied

the models to the 2002 drought year to demonstrate its

application in assessing and predicting the seasonal

vegetation stress for Nebraska and South Dakota. The

inputs for generating these maps included SPI, PDSI,

and PASG data in raster formats for 12 periods in the

growing season defined from April 19th to October

3rd, 2002. For each period, geospatial raster maps that

show the predicted severity and spatial extent of

vegetation stress were generated. Fig. 2(a) shows the

VegPredict map generated for the period ending

August 22nd, 2002. This period was selected as an

example to demonstrate the impact of drought in the

middle of the growing season.

Table 3 summarizes the results of the iterative

process of the model runs for different time lags (i.e.,

prediction periods), which include corresponding

correlation (r2) and average error values. Model

results showed strong relationships between the

Table 2

Three phases of the growing season

Phase Phenological stage Period

Phase I Greenup, early growth Spring (April 19 to June 13)

Phase II Maturity, peak growth Summer (June 14 to August 22)

Phase III Senescence, harvest Fall (August 23 to October 3)

Fig. 1. Flow-chart of the process used to produce the VegPredict maps for decision-making.
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Fig. 2. (a) The VegPredict map that was predicted 6 weeks earlier for the biweekly period ending 22nd August 2002; (b) drought monitor map for 27 August 2002. This map is for

Nebraska and South Dakota and was extracted from the U.S. Drought Monitor (NDMC, USDA, and NOAA, http://www.drought.unl.edu/dm/); (c) the Percent Average Seasonal

Greenness (PASG) derived from the actual satellite data for the biweekly period ending 22nd August 2002.
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vegetation condition and the climatic and biophysical

parameters.

The relationship of the climate data with the

vegetation stress showed very low values of r2 (0.44)

for the early phenological phase. This may be due to

instability in the PASG close to the start of the growing

season. However, the relationship is stronger during the

periods of maturity and senescence (period prior to

harvest and leaf-drop) since vegetation activity is more

stable and predictable during these periods if the

climatic conditions are known. This was evident by

the r2 values of 0.81 and 0.72 for the summer and fall

periods, respectively. The authors duly note that these

model results bear the influence of spatial and temporal

autocorrelation. For example, stations with close

distance to each other may increase the r2 values

because of their proximity observing similar climatic

data. Efforts to account for these effects are in progress.

We have examined various techniques for the

validation and evaluation of the VegPredict maps.

One of the methods used is comparing the geospatial

output with the U.S. Drought Monitor (USDM),

currently used by many Federal, State, and local

agencies to monitor drought (Svoboda et al., 2002).

Other methods include comparing VegPredict with

PASG derived from actual satellite data for the same

periods, and validating the extent of the vegetation

stress with the crop yield data.

3.1. Comparing VegPredict with the USDM and the

actual satellite-derived PASG

In a comparison between the VegPredict map for

period ending August 22, 2002 and the USDM for the

same period (Fig. 2(b)), we see both significant

similarities as well as differences in the spatial

drought patterns. Because of relatively higher spatial

resolution (1 km2), more detailed patterns of vegeta-

tion stress are identified in the VegPredict compared

to the USDM. The main difference between VegPre-

dict and the USDM for this period is that the USDM

delineated eastern South Dakota as an area showing

no drought. We do not have a definitive answer for

this difference; however, it may be due to the high

intensity rain events that occurred in late July and

early August in this area influenced the USDM

depiction to miss the vegetation stress. The other

discrepancies between the USDM and the VegPredict

map are in most areas of eastern Nebraska. These

differences may result from a considerable amount of

irrigated agriculture that influences the decision rules

generated for these areas.

Fig. 2(a) and (c) show many similarities between

the VegPredict and the actual satellite-derived PASG.

However, we observed some differences in the

intensity of the vegetation stress in the eastern parts

of Nebraska and South Dakota. One possible explan-

ation for these differences could be that the heavy

thunderstorms, which brought drought-easing rain for

these areas, were not anticipated in the predictive rules

and data in early August 2002. Generally, the strong

similarity of the two figures indicates how well the

VegPredict maps can predict vegetation stress. This

may be helpful to the agricultural sector, especially in

assessing and predicting pasture and rangeland con-

ditions during the growing season.

3.2. Comparison with detrended crop yields for

selected counties

One source for evaluation of VegPredict involves

using the National Agricultural Statistics Service

(NASS) county-level crop yield data for conformation

of drought conditions (NASS, 2004). Detrending and

normalization of crop yield data is necessary to

minimize the effects of technological advancement

on increasing production through the years. After

detrending and normalizing, we can make more

realistic comparisons with crop yield data through

time. In this study, we selected Brown and Beadle

counties in eastern South Dakota where we observed

differences in drought patterns between the USDM

Table 3

Errors (unitless) and correlation coefficients of rule-based models

for VegPredict for different time-lag periods

Time lags For period Average

|error|

r2

Zero lag 19th April to 13th June 15.53 0.44

14th June to 22nd August 5.75 0.81

23rd August to 3rd October 5.07 0.72

Two-week

prediction

3rd May to 27th June 8.58 0.67

28th June to 5th September 1.99 0.96

Four-week

prediction

16th May to 11th July 8.61 0.66

12th July to 19th September 3.48 0.85

Six-week prediction 31st May to 25th July 8.14 0.66

26th July to 3rd October 3.91 0.85
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and VegPredict. The USDM depicted these counties in

eastern South Dakota as areas having no drought

impacts (Fig. 2(b)). In contrast, VegPredict indicated

that these counties were undergoing vegetation stress

because of drought (Fig. 2(a)).

Based on the 1997 Census of Agriculture data, the

crops that have the largest acreage in Brown and

Beadle counties are corn and wheat, respectively

(NASS, 2004). Fig. 3(a) and (b) show the detrended

and normalized corn and wheat production of Brown

and Beadle counties. Both figures show 2002 as the

lowest crop yields in both counties. This was

confirmed by patterns in the VegPredict map but not

in the USDM. The actual satellite data (PASG) for the

same period confirmed vegetation stress within these

counties (Fig. 2(c)).

4. Future challenges and directions

At this point, we are faced with the challenge of

objectively validating model output across the study

Fig. 3. (a) Detrended normalized corn production of Beadle County, South Dakota; (b) detrended normalized corn production of Brown County,

South Dakota.
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area. This task is challenging because VegPredict

delivers continuous spatial coverage and is inherently

finer in spatial detail than other commonly available

drought indicators. Thus, we are pursuing data

evaluation through several avenues.

The first method is comparing the drought patterns

within agricultural areas utilizing county-level agri-

cultural production statistics for additional counties

instead of only selected counties, which were com-

pleted for the purpose of this study. The second

approach is focused on determining the best way to

deliver drought information to the public. This

approach centered on holding several citizen panels

where potential users will be asked to provide input

on VegPredict and a web-enabled map application

tool. Through citizen panels, we will assemble

recommendations from the participants, which may

include farmers, ranchers, extension agents, and

experts from land management agencies. This infor-

mation will then become a component in future

development for both web-mapping tools and the

content and effectiveness of the near-real time drought

information.

5. Conclusions

In this study, we have introduced a new drought

prediction product that (a) has finer spatial detail than

previously available, (b) provides current drought

status and predicts future drought (vegetation) con-

ditions, and (c) utilizes data mining and image

processing techniques. The techniques appear to have

wide applicability, and have potential for other areas,

both in the USA and internationally. At this stage,

evaluation and validation of model products are the

highest priority. Because most existing drought

information is much coarser in spatial and temporal

detail, appropriate for only a subset of land-cover

types (e.g., county-based agricultural statistics), and

usually surrogate, validating these results remains a

challenge.

The ultimate value of this kind of drought

vegetation stress prediction is yet to be realized;

however, the improved spatial resolution of this map

product has the potential to provide detailed informa-

tion up to 6 weeks earlier, providing information for

decisions made at county and even community level.
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