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ABSTRACT. This article describes current and likely near-term future frameworks for calculating evapotranspiration. 

These include structures for estimating crop coefficients (Kc) primarily centered on the FAO-56 dual Kc approach, with 
example applications. Emphasis is placed on estimation of parameters and special cases to be considered. Newer, and often 
preferred, bases for establishing Kcb curves include thermal units and vegetation indices. Also described and discussed are 
the application of reference ET calculations using hourly vs. 24-hour timesteps, the use of and conditioning of gridded 
weather data sets, and the likelihood of movement toward multi-layer and multi-source resistance models for ET estimation. 
Complementing this is satellite-based determination of ET using both vegetation indices and surface energy balance. 
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INTRODUCTION 
Estimation of evapotranspiration is under continual development and evolution, with significant developments and 

standardizations made during the past three decades for both reference ET (ETref) and for crop coefficients (Kc). These 
standardizations provide consistency and reproducibility in estimating ETref and a consistent basis for determining and 
expressing Kc curves, especially at the local scale. The application of the dual Kc procedure is growing, and has strong 
potential for improving accuracy of ET estimates as compared to the single Kc approach. 

This article describes current structures for estimating crop coefficients including the standardized FAO-56 dual Kc 
approach, with example applications. Emphasis is placed on estimation of parameters and special cases to be considered. 
Newer bases for establishing Kcb curves include thermal units and vegetation indices.  

Background 

The crop coefficient (Kc) times reference ET (ETref) method is a consistent, robust calculation procedure for estimating 
evapotranspiration (ET), where the ETref component represents the ET from a hypothetical reference surface (Allen et al., 
1998; ASCE, 2005, 2016). ETref is generally calculated using a physically based equation such as the Penman-Monteith 
(ASCE 1990; 2005; 2016). The crop coefficient component encapsulates the major differences between the ET behavior of 
the crop and ET behavior of the reference crop, including differences caused by incomplete ground cover, different leaf area, 
different bulk stomatal conductance or aerodynamic roughness and wetness of exposed soil. The Kc ETref procedure strikes 
a pragmatic compromise between using a completely physical basis where a number of crop specific parameters must be 
presented that may vary with crop variety and location and that do change over time, and a simple, bulked crop coefficient 
relationship. The calculation of ETref is straightforward and standardized and incorporates the primary impacts of weather 
on the ET rate (ASCE 2005; 2016). The Kc, in turn, can be expressed as a relatively simple, continuous function over the 
growing season and is readily visualized by all levels of users.  

The Kc ETref relation was proposed in the 1960’s, clarified by Jensen (1968), and first used in a computerized irrigation 
scheduling program by Jensen (1969; Jensen et al. 1970, 1971). Those first applications utilized a single Kc approach. Prior 
to that, Kc curves, such as those associated with the SCS TR-21 Blaney-Criddle method, largely had a nonreference crop 
basis (Hargreaves, 1948; Veihmeyer and Hendrickson, 1955; Erie et al., 1965, 1982, USDA, 1967). The more dependable 
reference-based Kc curves were often developed based on daily ET measured with lysimeters that were then related to a 
grass or alfalfa reference ET. Some Kc curves were refined for conditions of a dry surface soil, or when the soil visually 
appeared to be dry, and were called basal crop coefficients (Wright, 1982). More accurate ET estimates could be obtained 
using basal coefficients with subsequent adjustment for the wetness of the surface soil for several days following rains or 
irrigation. This process is referred to as the dual Kc approach (Wright, 1982; Allen et al., 1998). 

The primary factor causing an increase in the crop coefficient is an increase in plant cover or leaf area per unit ground 
area (LAI) as the crop develops. Increased leaf area results in a decrease in bulk surface resistance and an increase in captured 
solar radiation and aerodynamic exchange. Most publications on crop coefficient curves have presented Kc as a function of 
some form of an absolute or scaled time basis. Other studies have related the rate of increases in LAI and therefore Kc for 
various crops as a function of accumulated daily weather such as cumulative degree days. 

An upper limit on Kc 
One of the benefits of the Kc ETref approach is that ETref represents a near maximum on expected ET based on atmospheric 

demands and the definition of the reference surface. Therefore, one should expect to find an upper physical limit on Kc. 
When applying the standardized Penman-Monteith (PM) reference ET equation under humid conditions, where a majority 
of energy for the ET process is from net radiation, the Kc for large expanses of similar vegetation does not exceed about 1.0 
to 1.1 when used with the alfalfa reference and about 1.2 when used with the grass reference. In dry climates, where 
additional advection of warm dry air can occur to increase ET from irrigated surfaces, the Kc still does not exceed about 1.0 
to 1.1 for the alfalfa reference but can reach maximum values of about 1.3 to 1.4 when used with the aerodynamically 
smoother grass reference. The reason for the near-constant 1.0 to 1.1 crop coefficients for the alfalfa reference is that the 
alfalfa reference crop has about the same albedo, LAI, and roughness as most agricultural crops at full cover and therefore 
converts similar amounts of radiant energy and sensible heat to vapor transfer, including impacts of advection. An expanse 
of reference crop (especially alfalfa) will approach the maximum conversion of available energy into total latent energy, λE, 
representing ET, so that the ratio of λE for any other tall, leafy, well-watered crop to alfalfa λE will be near 1.0. This 
observation is born out in viewing the maximum values for Kcb reported by Wright (1982) shown in Figure 1, where none 
of Wright's Kcbs, based on the alfalfa reference, exceeded 1.03 when averaged over weekly or longer periods. In the case of 
the grass reference, where the vegetation is shorter and LAI may be less, values for Kcb may approach 1.3 for tall, dense 
crops under arid and semiarid conditions (Doorenbos and Pruitt, 1977; Allen et al., 1998). Values reported for Kc that exceed 
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about 1.1 for use with ETr and about 1.3 to 1.4 for use with ETo should give cause for questioning the reported Kc values in 
terms of accuracy or bias in the experimental or environmental basis (Allen et al., 2011a; 2001b; ASCE, 2016). 

 

 
Figure 1. Basal crop coefficients, Kcb, developed by Wright (1982) for irrigated crops common to southern Idaho. The values are plotted relative 
to the fraction of cumulative growing degree days (GDD) since planting that is normalized to time of attaining full cover so that the normalized 

cumulative GDD (NCGDD) is 1.0 at attainment of effective full cover (Allen and Wright, 2006) 

  
General crop coefficient curves 

Generalized crop coefficient curves for estimating crop ETc for crops or other vegetation are shown in Fig.2. The Kcb 
curve represents a “basal” crop coefficient for conditions where the soil surface is visually dry, so that evaporation from soil 
is minimal, but where the availability of soil water does not limit plant growth or transpiration. This curve represents a 
minimum ETc situation for adequate soil water. The “spikes” in Fig. 2 represent occurrences of precipitation or irrigation 
that wet the soil surface and temporarily increase total ETc for one to five days. The spikes decay to the Kcb curve as the soil 
surface dries. The spikes generally approach a maximum value of 0.8 to 1.0 for an alfalfa ETr basis (Wright, 1982) and 1.0 
to 1.2 for a grass ETo basis (Allen et al. 1998). The Kcm curve in Fig. 2 represents a so-called “mean” crop coefficient that 
includes averaged effects of the wet soil spikes under specific rainfall and irrigation frequencies. Sometimes the Kcm is 
referred to as the “single” Kc. The final, “limited soil water” curve in the figure represents the decrease in ETc when plant 
water uptake and ET is limited by available soil water. 
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Figure 2. Generalized cover coefficient curves showing the effects of growth stage, wet surface soil and limited available soil water. Source: 
Wright (1982); Jensen et al. (1990). 

PROCEDURE 
The use of Kcb curves requires adjustment for wet soil effects after rain or irrigation. This results in more accurate 

estimates of ETc on a daily basis for use in soil water modeling and irrigation scheduling than using mean coefficients in 
which the effects of local rainfall or irrigation frequencies are included. The total crop coefficient, Kc is computed from Kcb 
in the dual Kc procedure (Allen et al., 1998) as 

 ecbsc KKKK +=  (1) 
where Ks is a dimensionless coefficient dependent on available soil water, and Ke is a coefficient to adjust for increased 
evaporation from wet soil immediately after rain or irrigation. The value for Ks is 1.0 unless available soil water limits 
transpiration, in which case it has a value less than 1.0. A potential ETc is estimated as ETc = Kc ETref when Ks in Eq. (1) is 
set to 1.0. Actual ET, ETa,  is estimated as ETa = Kc ETref where Ks in Eq. (1) might be less than 1.0. The values for Ke 
represent the “spikes” shown in Fig. 2. Estimation of Ke for bare soil conditions is described in detail in Allen et al. (1998), 
Allen (2011) and Jensen and Allen (2016). Most current practices estimate Ke by conducting an hourly or daily water balance 
of a surface soil slab and proportioning Ke according to moisture remaining in the slab during stage 2 drying (Allen et al., 
1998; Allen 2011). 

In basin-wide water balance studies or irrigation system planning, use of mean, or single, crop coefficients may be more 
useful and convenient than computing a daily Kc based on a combination of Kcb, Ks and Ke as used in the dual Kc method of 
Eq. (1). The mean crop curve, Kcm, shown in Fig. 2, lies above the basal curve by an amount that depends on the frequency 
of soil wetting. When a mean coefficient is used, usually no additional adjustment is possible for the effects of surface soil 
wetness. Adjustments can be made for the effects of limited soil water as 

 cmsc KKK =  (2)  
Values for Kcm during partial crop cover are dependent on precipitation frequency and irrigation practices that wet all or 

part of the soil surface. Therefore, published values for Kcm do not have high accuracy when transferred among climates or 
irrigation practices. More accurate and representative Kcm curves can be generated using Kcb curves and the dual Kc procedure 
for known or simulated precipitation or irrigation frequencies. They can also be determined by sampling ETc from 
populations of fields using satellite-based remote sensing (Tasumi et al., 2005; Tasumi and Allen, 2007; Singh and Kilic-
Irmak, 2009). 

Linear FAO Kc model 
Although several crop coefficient models have used a curvilinear curve shape, the linear segment model proposed by the 

FAO is widely used and is easy to formulate. A side-by-side comparison of daily Kc calculated using the dual Kc method 
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with a curvilinear Kcb curve and the linear segment model is shown in Fig. 3 for a sweet corn crop in southern Idaho. Daily 
measurements by precision weighing lysimeter by J.L.Wright, USDA-ARS (ret.) are shown. Agreement with measurements 
is relatively good for both curvilinear and piece-wise linear Kcb models, including increases during periods following wetting 
events. Ks in the Kimberly application was assumed to be 1.0, although the sweet corn crop may have experienced some 
stress around day of year 230. The crop also experienced hail damage near that date. 

  
Figure 3.  Daily Kc estimated with the dual Kc method for a sweet corn crop near Kimberly, Idaho during 1976 using a curvilinear Kcb curve with 

alfalfa reference ETr basis (left) and using a linear segment Kcb curve with clipped grass reference ETo basis (right). Black symbols represent 
daily measurement by precision weighing lysimeter by J.L.Wright, USDA-ARS (ret.) (personal communication). The thick line is Kcb and the 

thin line is Kcb + Ke.  Ks was assumed to be 1.0. 

The procedure for constructing the linear-segment Kc curve was presented in FAO 24 (Doorenbos and Pruitt 1977) and 
FAO 56 (Allen et al. 1998). In the FAO procedure, a Kc or Kcb curve such as that shown in Fig. 3 is constructed. Only three 
tabularized values for Kc are required to describe and construct the curve. Kc mid or Kcb mid represents the average value for Kc 

or Kcb expected during the total midseason period, rather than an absolute peak daily value reached by the crop. The four 
crop growth stages are generally characterized in terms of benchmark crop growth stages or cultivation practices. Values for 
Kc or Kcb during the initial, midseason and end of growing season periods, denoted as Kc ini , Kc mid, and Kc end and Kcb ini , Kcb 

mid , and Kcb end are provided in Allen et al. (1998) and in Appendix B and D of ASCE (2016). 
The straight-line Kcb curve method of FAO method is generally appropriate for most applications. Hunsaker (1999) 

developed and compared Kcb curves for a cotton crop in Arizona using the straight-line method of FAO and curvilinear 
curves based on days after planting and based on cumulative growing degree days. He concluded that any of the three Kcb 
curve construction methods can result in good estimates of daily ETc for the early-maturity cotton measured, when grown 
under climatic conditions similar to those of the study and when using appropriate starting dates. 

 
Estimating time-bases for Kc models 

FAO 24 (Doorenbos and Pruitt 197) and FAO 56 (Allen et al. 1998) provided general lengths for growth (development) 
stages for various types of climates and locations. Appendix C of ASCE (2016) summarized this information. The rate of 
vegetative development and attainment of effective full cover is affected by weather conditions, especially by mean daily 
air temperature (Ritchie and NeSmith 1991). Therefore, the length in time between planting or plant emergence and effective 
full cover for various crops or other vegetation will vary with climate, latitude, elevation, and planting date (if cultivated) 
and with species and cultivar (variety). Generally, once effective full cover for a plant canopy has been reached, the rate of 
phenological development (flowering, seed development, ripening, and senescence or death of leaf tissue) often proceeds at 
a rate that depends on plant genotype rather than weather (Wright 1982).  

In many situations, the emergence of vegetation, greenup, and attainment of effective full cover can be estimated using 
cumulative degree-based regression equations or plant growth models (Sinclair, 1984; Sammis, 1985; Snyder, 1985; Flesch 
and Dale, 1987; Ritchie and NeSmith, 1991; Ritchie, 1991; Slack et al., 1996; Snyder et al., 1999; Cesaraccio et al., 2001; 
Spano et al., 2002; Sammis et al., 2004; Allen and Robison, 2007; Allen et al., 2020a). The use of cumulative growing degree 
days provides an automated and quantitative stretching or shrinkage of the generated Kc curves for years or growing seasons 
that run cooler or warmer than average. That year-to-year variation in the time base increases accuracy of ET estimation.  

Wright (2001) and Allen and Wright (2006) converted the Wright (1982) Kcb curves shown in Figure 1 into cumulative 
growing-degree-day (CGDD)-based curves where the Kcb values for the growing season were expressed as a ratio of the 
CGDD required for the crop to develop from the date of planting or greenup until effective full cover. The winter wheat 
curve of Allen and Wright (2006) was applied by Allen and Robison (2007) during the Idaho winter by beginning the curve 
in October, with reductions in CGDD applied when Tmin fell below threshold values during cold winter periods (Allen et al., 
2020a). The reductions in CGDD during cold periods effectively reset CGDD and estimated phenological development by 
a few days to a few weeks.  

Appendix F of ASCE (2016) provides Kc curves traceable to Wright (1981, 1982) for Kimberly, Idaho, that were 
converted to a normalized cumulative growing degree day basis. Normalization of CGDD was pioneered by Wright (2001) 
and is accomplished by dividing CGDD on any day by the CGDD required to reach effective full cover. That results in a 
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NCGDD equal to 1.0 at attainment of effective full cover and produces scaled Kcb such as shown in Figure 1. Those scaled 
Kcb curves are apt to be more transferable to other climates and years than straight time-based curves due to their thermal 
basis. Values for CGDD at effective full cover were reported by Wright (2001) and Allen and Wright (2006), Allen and 
Robison (2007), ASCE (2016) and Allen et al., (2020a). Those values for CGDD can be adjusted for different crop varieties 
or for different regions of the US, similar to what was done by Huntington et al. (2015; 2016) and Allen et al. (2020a) in a 
western US study on climate change effects on irrigation demands. An expected outcome of the use of normalized NCGDD 
is that the evolution of the Kcb curve vs. NCGDD for the period from planting (when NCGDD = 0.0) to effective full cover 
(when NCGDD = 1.0) follows a similar shape for many agricultural crops, as illustrated in Figure 1. This outcome is due to 
similar development of leaf area and ground cover and, therefore, Kcb, in proportion to the relative accumulation of thermal 
units. 

Establishing Kcb curves using fraction of cover and vegetation indices.  
In the absence of Kcb information for specific crops or for vegetation types having unusual row spacings or planting 

densities, estimates for Kcb may best be derived using observations or estimates of fraction of ground covered by vegetation. 
In general, Kcb mid is less when plant densities or leaf areas are less than those for full ground cover. In those situations, 
conversion of net radiation to transpiration is less and more sensible heat, H, is produced. The estimation of Kcb from fraction 
of ground covered by vegetation (Allen and Pereira, 2009) is gaining use (Pereira et al., 2020) due to the strong and generally 
consistent relationships between fraction of ground cover and transpiration from agricultural vegetation. Estimates for ETc 
using fraction of ground covered can provide more specific estimates than using a generalized Kcb from a published table. 
Full ground cover is often associated with the leaf area index, LAI, being more than about 3.0 (Ritchie and NeSmith, 1991).  

To construct a Kcb curve from observed fraction of ground cover, the Kcb at midseason, Kcb mid, can be used to define the 
maximum Kcb value. The Kcb mid value can be expressed as a linear proportion of the range between Kc min and Kcb full according 
to a density coefficient, Kd, (Allen and Pereira, 2009):  

 ( )min ull mincbmid c d cb f cK  = K  + K K K−  (3)  

where Kcb mid is the approximation for Kcb during the midseason period, Kcb full is the expected basal Kcb during peak plant 
growth under conditions of nearly full ground cover (or LAI > 3). Kc min is the minimum Kcb for bare soil (Kc min ~ 0.15 under 
typical agricultural conditions and Kc min ~ 0.0 to 0.15 for native vegetation, depending on rainfall frequency). The density 
coefficient Kd represents the relative and effective fraction of ground surface covered or shaded by vegetation. Kd can be 
estimated as a function of measured or estimated leaf area index (LAI) or as a function of fraction of ground covered by 
vegetation, adjusted according to plant height.  

For tree crops that have grass or some other ground cover that can increase the overall Kcb, Eq. (3) can be modified to: 

         
cb full cover

 cover d full covermax ,
2

cb
cb mid cb cb cb

K K
K K K K K

 − 
= + −  

  
 (4) 

where Kcb cover is the Kcb of any ground cover in the absence of overhead foliage. The second term of the max function reduces 
the estimate for Kcb mid by half the difference between Kcb full and Kcb cover when this difference is negative. This accounts for 
impacts of shading of the surface by vegetation having a Kcb that is lower than that of the surface cover, due to differences 
in stomatal conductance. Eq. (3) and (4) can be applied to estimate Kcb during other periods besides the midseason. 

Eq. (4) can similarly be applied to estimate a mean Kcm for any period with less than full vegetative cover by accounting 
for the effect of evaporation from predominately exposed areas of soil among the vegetation, similar to what is done in the 
dual Kcb + Ke approach: 

               
full soil

 soil d full soilmax ,
2

cb
cm cb

K K
K K K K K

 − 
= + −  

  
 (5) 

where Ksoil represents the average Kc from the nonvegetated (exposed) portion of the surface. The value for Ksoil reflects the 
effect of wetting frequency, soil type, and relative ET rate (i.e., ETref) during the same period as Kd and Kcb full. The Kcm 
represents an average Kc value that considers the mean impact of evaporation from soil. Kcm can be used to represent the 
midseason or other period as defined by Kd, Kcm, and Kcb full. 

For large areas of vegetation (greater than about 500 m2), Kcb full for use with ETo can be approximated as a function of 
mean plant height and adjusted for climate similar to the Kcb mid parameter, following Allen et al. (1998): 

 ( ) [ ]
0.3

full 2 min(for ) ....... min 1.0 0.1 , 1.20 0.04( 2) 0.004( 45)
3o cb
hET K h u RH  = + + − − −  

 
(6) 

where h is mean maximum plant height in m, u2 is the mean value for wind speed at 2-m height during the mid-season in m 
s-1, and RHmin is the mean value for minimum daily relative humidity during the mid-season in %. For use with alfalfa 
reference ETr, Kcb full can be approximated for crops as 
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 ( )full(for ) ....... min 0.8 0.1 , 1.0r cbET K h= +   (7) 

The climatic correction is not required for Kcb full for use with ETr because the aerodynamic and canopy characteristics of 
the alfalfa reference crop cause ETr to approximate near maximum ET under a broad range of climates. 

The value Kcb full represents a general upper limit on Kcb mid for tall vegetation having full ground cover and LAI > 3 under 
full water supply. Eqs. (6) and (7) produce general approximations for the increase in Kcb full with plant height and climate. 
The estimate may need adjustment downward if the vegetation exhibits more stomatal control on transpiration than is typical 
for agricultural crops, for example, for some types of trees or natural vegetation (Allen et al., 1998; Allen and Pereira, 2009). 

When LAI is measured or can be approximated, Kd can be approximated (Allen et al. 1998) as 

 [ ]( )      e = K LAI.
d

701 −−  (8)  
LAI is defined as the area of leaves per area of ground surface averaged over a large area with units of m2 m-2. Only one 

side of green healthy leaves that are active in vapor transfer is considered. The relationship in Eq. (8) is similar to one used 
by Ritchie (1974). 

When the fraction of ground surface covered by vegetation is observed or estimated, the Kd can be estimated as a function 
of fc eff and vegetation height (Allen and Pereira, 2009): 

 
1

1min 1, , h
d L ceff ceffK M f f

 
 + 

 
=  

  
 (9)  

where ML is a multiplier on fc eff describing the effect of canopy conductance on maximum relative ET per fraction of ground 
shaded (1.5–-2.0), fc eff is the effective fraction of ground covered or shaded by vegetation (0.01–1) near solar noon, and h is 
the mean height of the vegetation in m. The ML multiplier on fc eff in Eq. (9) imposes an upper limit on the relative magnitude 
of transpiration per unit of ground area as represented by fc eff (Allen et al. 1998) and is expected to range from 1.5 to 2.0, 
depending on the canopy density, thickness, and maximum conductance. Parameter ML is an attempt to simulate the physical 
limits imposed on water flux through the plant root, stem, and leaf systems (Allen and Pereira, 2009). The value for ML can 
be modified to fit the specific vegetation. Equations 3-7 and 9 have been adopted in the SIMS model by Melton et al. (2012) 
and Johnson et al. (2016) to provide spatial estimation of Kcb at 30 m Landsat satellite scale by estimating fc from normalized 
difference vegetation index (NDVI). The height parameter, h, increases the estimate for Kd and therefore Kcb to account for 
the influence of taller vegetation height on intercepting solar radiation and on increasing aerodynamic roughness of 
vegetation and therefore vapor exchange into the boundary layer.   

The use of a skin evaporation layer for Ke from light wetting events 
A recent development in the dual Kcb methodology has been the improvement in estimation of Ke by including immediate 

stage 1 evaporation from the soil “skin” following light wetting events. The FAO-56 model for evaporation from bare soil, 
expressed as Ke, has become widely applied for both bare soil conditions and as a part of the dual Kc method via Eq. 1. The 
dual methodology has had more than 450 citations in Google Scholar (https://scholar.google.com). The Ke model conducts 
an hourly or daily soil water balance for a 100 to 150 mm thick ‘slab’ and divides the evaporation process into stage 1 (wet) 
and stage 2 (drying surface) processes. As illustrated in Figure 3, the Ke model can be effective in simulating evaporation 
associated with soil wetting events associated with precipitation and irrigation. The “skin” enhancement to the FAO-56 Ke 
model (Allen, 2011; ASCE 2016) conducts an additional water balance for the upper soil ‘skin’ so that small additions of 
water from sprinkling or precipitation are evaporated off relatively quickly as flash events, rather than mixed into the entire 
slab as assumed in the original 1998 model. The skin enhancement provides good agreement with measured evaporation 
and with simulations of Ke by the Hydrus model (Šimunek et al. 2005; Allen, 2011). 

Ranade (2010) constructed an ArcMAP based Ke model that created gridded precipitation and reference ET data from 
point weather measurements and then applied the FAO-56 Ke model to produce gridded Ke that was used to adjust Landsat-
based ET maps from METRIC (Kjaersgaard et al., 2011). Kilic and Kamble applied the FAO-56 Ke model on the Google 
Earth Engine to produce gridded Ke maps on a monthly basis for the continental United States (Kilic et al., 2015). 

Winter time Kc and importance to hydrologic studies 
Nongrowing periods are defined as periods during which no agricultural crop has been planted. In temperate climates, 

nongrowing periods may include periods of frost and continuously frozen conditions. Traditionally, ET during nongrowing 
periods has been ignored during determination of irrigation water requirements and ET for water rights. However, estimation 
of ET during nongrowing periods can be important in annual water balances used in hydrologic studies and for estimation 
of accruals to soil water from precipitation during nongrowing seasons. Procedures for estimating ET during nongrowing 
periods have evolved over the past 25 years to the point of providing relatively dependable estimates for ET that incorporate 
a practical combination of physically based and empirical relationships. 

The type and condition of the ground surface during nongrowing periods dictate the range expected for Kc. Current 
constructs for applying crop coefficient procedures during nongrowing periods are described in ASCE (2016). The constructs 
use Eq. (3)-(9) with relatively straightforward recommendations on their employment. When the surface is bare soil, then 
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Kc will be similar to values estimated for Ksoil or Ke. When dead or dormant vegetation, or some type of organic mulch or 
crop residue, cover the surface, then Kc will be similar to that for agriculture having a surface mulch. When weed growth or 
“volunteer” plants cover the surface, then Kc will vary according to the green leaf area or fraction of ground covered by the 
vegetation, as estimated by Eq. (5) using Kd from Eq. (8) or (9), and by the availability of soil water. When the surface is 
snow covered or frozen, then Kc is difficult to estimate and a low, constant value for Kc may have to be assumed (Allen et 
al., 2020a). 

Bare Soil. When the ground is mostly bare following harvest or removal of vegetation, the frequency and amount of 
precipitation will strongly influence Kc. In the single Kc procedure, the Kcm for bare soil can be calculated as Kcm = Ksoil. 
Martin and Gilley (1993) and Allen et al. (1998) recommended this approach, and Snyder and Eching (2005) used a similar 
approach in their LIMP software (http://biomet.ucdavis.edu/irrigation_scheduling/LIMP/LIMP.htm) to estimate a Kcm during 
winter that is then melded with a Kcm curve for the growing season. When a daily soil water balance can be applied, the user 
may elect to apply the dual or basal Kcb approach as recommended by Allen et al. (1998) and ASCE (2016).  

Surface Covered with Dead Vegetation. Stubbles and mulches reduce soil evaporation by providing a mechanical barrier 
to aerodynamic forces and shielding the soil surface from solar radiation. Mulches also reduce the connection between liquid 
or vapor in the soil and the air above (Burt et al., 2005a). Burt et al. (2005a) described studies of evaporation experiments 
from organically mulched soil covers and reported a 20% reduction in E from a no-till standing wheat stubble as compared 
with conventional tillage in North Dakota, a 40% reduction in E from standing wheat stubble in cotton in Texas, and a nearly 
50% reduction in E from soil covered with spread straw relative to bare soil in Nebraska. They noted that soil surface 
mulches are less effective at reducing soil evaporation under dryland conditions where longer periods for drying between 
wetting events can slowly deplete soil water as compared with conditions under more frequent wetting with irrigation. Allen 
et al. (1998) suggested reducing the value for Ksoil by about 5% for each 10% of soil surface that is effectively covered by 
organic mulch.  

Surface Covered with Live Vegetation. During frost-free periods following harvest, weeds may germinate and grow. This 
vegetation extracts water from storage within the soil profile and from any rainfall. In addition, crop seed lost during harvest 
may germinate following rainfall events and add to the ground cover. The amount of ground surface covered by vegetation 
will depend on the severity of weed infestation, the density of the volunteer crop, the frequency and extent of soil tillage, 
the availability of soil water or rain, and any damage by frost. The value for Kcb during the nongrowing period can be 
estimated over time according to the amount of vegetation covering the surface using Eqs. (5)–(9) or from remote sensing 
images by way of a vegetation index (Melton et al., 2012; Johnson et al., 2016).  

The Kc or Kcb for vegetation during the nongrowing period should be limited by the amount of soil water available to 
supply evapotranspiration to satisfy the law of conservation of mass. Under all conditions, the integration of Kc times ETref 
over the course of the nongrowing period should not exceed the sum of precipitation occurring during the period plus any 
residual soil water remaining in the root zone after harvest that can be subsequently depleted by vegetation plus any upward 
flow from a shallow saturated system. The root zone in this case is the root zone of the weeds or volunteer crop. An hourly 
or daily soil water balance may provide the best estimate of soil water–induced stress and associated reductions in Kc and 
ETc. due to its ability to account for sequencing of wetting and drying events and intervals and any movement of water to 
below the root zone or evaporating layer. 

Tasumi et al. (2005) and Allen et al. (2007a) sampled populations of Kc in south central Idaho for major crop types using 
a Landsat satellite-based surface energy balance. Large variances in distributions of Kc occurred during March and April and 
reflected the large variation in development of and wetness of winter wheat fields coming out of winter dormancy. Additional 
variation in Kc among fields of wheat occurred following harvest of the crops, where variation averaged about 0.20. Causes 
for the variation included the timing of senescence of the wheat field or variety, the amount of post-harvest vegetation present 
in the form of weeds, nursed alfalfa, or volunteer wheat, and variation in irrigation of fields following harvest, coupled with 
cultivation. Variances of distributions of Kc during the period of peak Kc were small because nearly all fields were at or near 
effective full cover so that Kc values clustered closely about 1.0 when used with the alfalfa reference ETr. 

Frozen and Snow-Covered Surfaces. When the ground surface is snow covered or frozen, any vegetation will be largely 
nonresponsive and will not contribute directly to ETc. In these situations, ETc will be closely related to the availability of 
free water at the surface and to the albedo of the surface. The albedo of snow-covered surfaces can range from 0.40 for old, 
dirty snow cover to 0.90 for fresh, dry snow. Therefore, the ETc for snow cover will be less than ETref, as 25-85% less 
shortwave energy is available. In addition, some energy must be used to melt the snow before evaporation, besides energy 
consumed in melting snow that seeps into the snowpack. Under conditions of snow cover where the surface of the snow 
does not have a liquid film, the saturation vapor pressure at air temperature used in the vapor pressure deficit calculation in 
the Penman-Monteith reference equation should be computed for over ice rather than water (ASCE, 2016).  

The use of ETref under winter conditions is of limited value, as the assumption of conditions sustaining a green grass or 
alfalfa cover during frozen periods is violated. It is even possible to obtain negative values for ETref on some winter days 
when the longwave radiation from the surface is large and the vapor pressure deficit is small. Under these conditions, net 
condensation of water from the atmosphere is possible, which corresponds to negative evaporation. Given the limited utility 

http://biomet.ucdavis.edu/irrigation_scheduling/LIMP/LIMP.htm
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of using ETref under snow-covered or frozen conditions, use of a single average value may be justified to estimate ETc. 
Wright (1993) measured ETc averaging 1 mm d-1 over nongrowing season periods at Kimberly, Idaho that were six months 
long (1 October to 30 March). The latitude of Kimberly is 42°N, and the elevation is about 1,200 m. Over the six-year study 
period, the ground was at least 50% covered by snow for 25% of the time from 1 October to 30 March. The ground, when 
exposed, was frozen about 50% of the time. The Kc averaged 0.25 during periods when the soil was not frozen but where 
frosts occurred (October and early November). When the ground had 50% or greater snow cover, ETc averaged only 0.4 mm 
d-1. Wright found that over the six-month nongrowing period, total cumulative ETc exceeded precipitation by about 50 mm, 
indicating a drying soil condition. 

The Kcm measured by Wright (1993) and converted to the standardized Penman-Monteith alfalfa reference ET (ETr) basis 
averaged about 0.45 during the October-December period over years 1985-1991 for dormant fescue grass cover and for 
nongrass covers including tilled soil. Even though these values for Kcm are high due to the relative wetness of the surface 
during the nongrowing periods, the total ET rates were low due to low values for ETr during these periods. Allen (1996b), 
found ETc to vary widely with soil surface wetness and air temperature during winter months near Logan, UT for grass 
pasture. The average Kc from November to March was 0.5 for days having no snow cover. For days with snow cover, ETc 
ranged from 0 to 1.5 mm d-1.  

A daily soil water balance using the dual crop coefficient approach may improve accuracy in estimating ETc under 
freezing and snow-covered conditions. For example, Allen et al., (2020a) applied a daily model for evaporation during winter 
that included a snow melt estimate. In their implementation of a dual crop coefficient, a daily water balance was conducted 
for the top soil slab that contributes to evaporation (Allen et al., 1998; Allen, 2011). The daily estimate for Kc was reduced 
according to available soil water. In addition to the limited validity of the concept of ETref under frozen or snow-covered 
conditions, the evaporation coefficient, Ke, may have low values when the ground surface is frozen, as the water in a frozen 
state is less available. When the basis for Kc during nongrowing periods is the ASCE PM alfalfa reference ETr, where the 
crop is a hypothetical potential reference representing 0.5-m tall green alfalfa, under even wet conditions, the Kc during 
winter time is not expected to reach 1.0 over extended periods of time because vegetation may be frozen, cold stressed, or 
dormant.  

Somewhat complex models for estimating ETc under nongrowing season conditions, snow cover, and freezing are 
available in the literature and can be consulted and perhaps applied when precise estimates for ETc are required, for example 
in Flerchinger (1991), Flerchinger et al. (1996), and Saxton and Willey (2005). Allen and Robison (2007) and Allen et al., 
(2020a; ASCE, 2016) applied the concepts described in the previous section to estimate daily ET for all days of the year 
including winter. They defined the nongrowing season period as beginning when a Kcb curve representing the growing cycle 
for a specific crop ended or when a killing frost occurred. They defined the nongrowing season as ending at greenup or 
planting of the same crop the following year (or October 1 in the case of winter wheat). A basal Kcb of 0.1 was used for bare 
soil conditions during nongrowing season periods, for surfaces covered with some amount of mulch, and for dormant turf/sod 
systems. Kcb represented conditions when these surfaces had a dry soil surface but had sufficient moisture at depth to supply 
some diffusive evaporation. The evaporation (Ke) component was estimated separately in the daily soil water balance, where 
Kc max during the nongrowing period was 0.9 for bare soil, 0.85 for mulched surfaces, and 0.8 for dormant grass cover. The 
lower value for grass accounted for the insulative effects of grass and its higher albedo. An effective “rooting zone” of 0.10 
m was used during the nongrowing season for the fraction of surface under a cover. For all surfaces, a daily soil water 
balance was calculated and a stress coefficient was applied when soil water content of the upper 0.10 m dropped below a 
critical value. This caused actual Kc to fall below Kcb when both the ground surface and subsurface soil were dry. All land 
use types, including agricultural, landscape, horticultural, and natural vegetation, were assigned one of the three winter cover 
conditions (dormant grass, bare soil, or mulch classes) for estimating evaporation losses during winter. Allen and Robison 
(2007) and Allen et al., (2020a) described functions for estimating sublimation from snow. 

The use of alfalfa vs. grass references and 24-hour vs. hourly calculation timesteps  
The standardized PM method, applied daily, is considered by ASCE (2005; 2016) to be accurate and dependable for 

application during growing periods. The 24-hour calculation timestep was, in fact, used during the ASCE standardization 
work to guide the selection of surface resistance values for hourly time step applications. The daily time step, however, may 
not accurately estimate reference ET during freezing winter and other nongrowing season periods, where conditions 
represented by the reference crop do not physically exist (surface resistance of 45 s m-1 for ETrs and 70 s m-1 for ETos over 
a 24-h period). The hourly calculation time step, because it keeps radiation and aerodynamic parameters synchronized in 
time, is considered to be more dependable and accurate in simulating the ET conditions represented by the standardized 
definitions, especially under conditions where wind speed, solar radiation, and vapor pressure deficit are not in proximate 
time synchronization during the day, such as during winter. The use of hourly time steps enables a more accurate energy 
balance process calculation than 24-h time steps during times of the year when day length is short. During these times, some 
of the compensating assumptions in the procedures for applying the combination method on a 24-h time step may break 
down. For example, in the 24-h net radiation calculation, the short wave component may occur over an eight-hour period, 
whereas the incoming and outgoing long-wave radiation component occurs over the entire 24-hour interval. As a result, 
hourly calculations of reference ET are encouraged by ASCE (2005; 2016), especially during winter. In addition, the grass 
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reference ETo may be preferred over alfalfa ETr during wintertime, especially if 24-hour calculation timesteps are employed, 
since ETo is a somewhat ‘softer’ reference and more likely mimics surface conditions found during winter than does alfalfa. 

Application of ET equations over only daytime periods (i.e., ignoring calculations during nighttime) is discouraged. This 
practice ignores any ET that may occur during nighttime, which can be as much as 15% of 24-h ET during the growing 
season in arid and semiarid climates (Tolk et al., 2006). In addition, application of the combination or energy balance 
equation solely for a daytime period requires estimation of soil heat flux, G, which cannot be assumed to be zero as it 
generally can for 24-h calculation time steps. 

Current Directions 

Use of gridded weather data 
Over the past 10 to 20 years, the advent of gridded historical weather data derived from sophisticated land data 

assimilation systems (LDAS) operated by NOAA’s National Centers for Environmental Prediction (NCEP) and the National 
Science Foundation sponsored National Center for Atmospheric Research (NCAR) has provided an alternative data source 
to the traditional use of point-based weather station data for estimating reference ET. LDAS systems are operated for 
purposes of weather research and weather and climate forecasting. The LDAS systems assimilate electronically available 
weather data from point weather sites around the globe and couple those data with land process (soil and vegetation water 
balance) models and with atmospheric models to extend the point data and create weather circulation patterns and associated 
gridded weather data sets that are traceable to the original point measurements. Data products include the 30+ year (1979-
present) North American Land Data Assimilation System (NLDAS) retrospective forcings (Mitchell et al., 2004) having 1/8 
degree resolution (~ 12 km x 12 km), the Climate Forecast System version 2 (CFSV2) of NOAA 
(https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2), hourly from 
2011 to present at 45 km; and Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) by 
NASA (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/) at about 50 km resolution. 

NLDAS phase 2 retrospective forcings (NDAS-2) contain daily precipitation, solar radiation, and 2m reference height 
temperature and humidity, and 10m reference height windspeed (http://www.emc.ncep.noaa.gov/mmb/nldas/). Model-based 
NLDAS forcings of temperature, humidity, and windspeed are derived from spatially and temporally interpolated NCEP 
North American Regional Reanalysis (NARR) data. Observation-based NLDAS forcings include GOES based solar 
radiation, and gauge- and NEXRAD-based precipitation.   

Other nonforecast data bases include the 24-hour PRISM data set of Oregon State University 
(http://www.prism.oregonstate.edu/) that, in addition to containing lapse-adjusted precipitation at 1 and 4 km scales, now 
includes gridded air temperature and humidity data, and the DAYMET daily gridded data at 1 km resolution containing 
surfaces of minimum and maximum temperature, precipitation, vapor pressure, radiation, snow water equivalent, and day 
length (https://daymet.ornl.gov/overview). The GridMET system (http://www.climatologylab.org/gridmet.html) has become 
a popular gridded daily weather system that provides high spatial resolution (~4-km) daily surface fields of temperature, 
precipitation, winds, humidity and radiation across the contiguous United States from 1979 to present. GridMET blends the 
high-resolution spatial data from PRISM with the high temporal resolution data from the National Land Data Assimilation 
System (NLDAS) to produce spatially and temporally continuous fields that lend themselves to additional land surface 
modeling (Abatzoglou, 2013). 

Most of the gridded weather data sets can be downloaded automatically from sources using Python-style scripts, brought 
into geospatial processing structures such as ArcMAP or Python-GDAL scripts and processed to reference ET. Some grids 
including GridMET, NLDAS and CFSV2 are available in near-real time on the Google Earth Engine. 

Some previous applications of reference ET computations made with gridded LDAS types of data systems include Senay 
et al. (2008), who applied the FAO-56 based PM reference ET method to 1.0-degree LDAS data for the globe. They 
compared against ETref derived from the California Irrigation Water Management Information System (CIMIS) by matching 
grid points and found relatively good correspondence. Similar studies were done by Hidalgo et al. (2005) for California, and 
in Florida by Said et al., (2006). The National Weather Service produces an Experimental Forecast Reference 
Evapotranspiration (FRET) grid for much of the USA via regional weather forecast centers 
(https://www.weather.gov/cae/fretinfo.html). The grass reference ETo from FRET is available in real time and as a six day 
forecast. The forecast data are useful in guiding irrigation scheduling. 

The ETref applications in the preceding paragraph do not tend to evaluate nor mitigate for the impacts of dryness of 
weather sites assimilated into the LDAS data sets on reference ET calculated from those data sets. Causes of dryness of 
LDAS data sets include the usual lack of irrigation inputs into their soil water balances and subsequent under-simulation of 
ET and humidification of the near-surface boundary layer. The resulting dryness of the LDAS data sets can have a substantial 
impact on subsequent reference ET estimates. This impact is discussed in the next section. The impact can overstate 
computed ETref by as much as 20 to 30%, (Blankenau et al., 2020), substantially reducing the value and adequacy of the 
LDAS-based ETref estimates for irrigation planning, design and management and hydrologic studies.   

Biases in gridded data 
The gridded data sets typically represent ‘ambient’ environments, which in the western US are largely dry, nonirrigated 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/climate-forecast-system-version2-cfsv2
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
http://www.emc.ncep.noaa.gov/mmb/nldas/
http://www.prism.oregonstate.edu/
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environments. As a result, the simulated near surface weather data, although valuable for describing the natural, ambient 
conditions in the absence of human-caused irrigation, can cause irrigation water requirements and ET to be overestimated 
by as much as 20 to 30% (Blankenau et al., 2020). In the past, empirical methods have been developed to adjust arid air 
temperature downward and, in some cases, adjust arid vapor pressure upward (Jensen et al., 1997; Allen et al., 1998; 
Temesgen et al., 1999). Recently research has developed theoretical boundary layer procedures to “condition” gridded data 
sets to better reflect weather data that would have been collected in an area under well-watered (irrigated, or ‘reference’) 
conditions (Allen et al., 2020b). Those adjustments modify profiles for T, humidity and wind speed in the near surface 
atmospheric boundary-layer by establishing the ambient boundary layer profiles for air temperature, humidity and wind 
speed, and then replacing dry surfaces with well-watered reference surfaces and re-extrapolating those profiles using energy-
balance equations to a blending layer at 50 m height. The boundary layer method transforms gridded (hourly, 3-hourly and 
daily) NARR and NLDAS weather data into ‘conditioned’ weather data series that reflect properties of the near surface 
boundary layer when that boundary layer were to exist over an extensive well-watered reference type of vegetation. The 
resulting conditioned data are generally cooler and more humid than the original data set, assuming that the original data 
were collected over, and are representative of, extensive, dry surfaces representing the original ambient conditions. The 
conditioned weather data are more suitable to use to compute gridded reference evapotranspiration representing the special 
and specific equilibrium conditions that are experienced over irrigated surfaces. The conditioned ETref estimates incorporate 
the dampening feedback brought into the near surface atmospheric boundary layer by the presence of vapor flux supported 
by irrigation and that provides a negative, dampening feedback to the ET process. 

Figures 4 and 5 show 3-hourly air temperature and 3-hourly vapor pressure for a North America Regional ReAnalysis 
(NARR) data set, which is similar to the NLDAS data set, for a grid cell located near Twin Falls, Idaho during a period 
during May, 2008. The data are compared against measured air temperature and vapor pressure from the Twin Falls Agrimet 
station that is an electronic, automated weather station that is located in an irrigated agricultural location. While there is 
close correspondence between the two data sets, which is a very positive indication of good assimilation of general weather 
data on a local scale, the NARR temperature overstated the Agrimet air temperature by up to 5 oC, and the vapor pressure 
(i.e., near surface water vapor content) was understated by one-half, due to the impact of assimilation of weather data in the 
NARR (and NLDAS) gridded data sets from dry (airport, etc.) stations. These types of outcomes are common, and again, 
cause overestimation of ETref by as much as 20 to 25% by ignoring the influence of conditioning of the equilibrium boundary 
layer (EBL) by evaporative cooling that occurs over irrigated agriculture (Jacobs and deBruin 1992, Brown, 2001; ASCE, 
2005; Allen, et al., 2020b; Blankenau et al., 2020). 
 

 
Figure 4. Three-hourly air temperature data from the North American Regional Reanalysis data set for a grid cell over Kimberly, Idaho, during 

May 2008, compared with measured air temperature collected at the USBR Agrimet weather station (TWFI) located near Kimberly. The 
Agrimet station is located over irrigated grass and generally runs cooler than the NARR data that is impacted by using ambient data from 

nonirrigated weather sources.   
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Figure 5. Three-hourly vapor pressure data from NARR over Kimberly, ID, during May 2008, compared with measurements at the USBR 

Agrimet weather station (TWFI) near Kimberly. The Agrimet station is over irrigated grass and has double the humidity than the NARR data 
that is impacted by ambient data from nonirrigated weather sources.   

Figure 6 shows daily values for daily maximum air temperature for the ‘reference’ Tmax at Kimberly, ID (over irrigated 
alfalfa) and original desert Tmax (‘Desert”) as measured (ambient) during July and August 2009, and showing the results 
where the ‘Desert’ data were conditioned (adjusted) to ‘reference’ Tmax using the boundary-layer based adjustment by Allen 
et al. (2020b). The adjustments are, on average, good in matching Kimberly data, with some variation in the effectiveness 
of the conditioning from day to day. Average adjustment to the temperature data was about 2oC. Very low values were caused 
by numerical instability in Monin-Obhukov computations. 

 

 
Figure 6. ‘Reference’ Tmax at Kimberly, ID (over irrigated alfalfa) and original desert Tmax 80 km west of Kimberly as measured (ambient), and 

the results after conditioning the desert data to a ‘reference’ Tmax.   

Vapor pressure measured at the Kimberly and Desert locations and the Desert data conditioned into an equilibrium, 

0.0

1.0

2.0

3.0

7/13/2008 7/18/2008 7/23/2008 7/28/2008 8/2/2008

Date

A
ct

ua
l V

ap
or

 P
re

ss
ur

e 
(e

a)
   

ea, Agrimet - Twin Falls ea, NARR-Twin Falls

 

10

15

20

25

30

35

40

19
0

19
5

20
0

20
5

21
0

21
5

22
0

22
5

23
0

23
5

24
0

24
5

25
0

25
5

26
0

26
5

27
0

DoY 2009

Tm
ax

, C

Tmax, Irrigated, meas.
Tmax, Desert, meas.
Tmax, Desert, Conditioned



6th Decennial National Irrigation Symposium Page 12 

reference condition is shown in Figure 7. Similar to the previous comparison against NARR data in Figure 5, vapor content 
over the irrigated Kimberly site was nearly double that measured over the measurements in desert, which represents an 
ambient condition for the southern Idaho region. The conditioning of the ambient data brought the vapor content (expressed 
as vapor pressure) close to that measured over the irrigated surface. 

Wind speed measured at the Kimberly and Desert locations is shown in Figure 8, along with wind speed based on the 
conditioned Desert data. Wind speed was about 20% stronger over the desert site than over the irrigated site due to lower 
aerodynamic roughness at the desert and due to impacts of large sensible heat flux and buoyancy over the desert that fostered 
downward entrainment of higher velocity air from aloft toward the warmer surface. The entrainment process, which also 
produces advection of energy to irrigated fields, was moderated over the irrigated site by the lower sensible heat flux and 
reduced buoyancy at Kimberly. The conditioning process tended to reduce the wind speed observed at the Desert site by 
nearly 20%.  
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Figure 7. ‘Reference’ vapor pressure at Kimberly (over alfalfa) and original Desert vapor pressure as measured (ambient), and results from 

conditioning data measured at 2 pm. The adjustments are, on average, good in matching Kimberly data, but vary from day to day in accuracy.   

 

Figure 8. Wind speed measured at the southern Idaho Desert site vs. that measured at the Kimberly, Idaho irrigated site and vs. conditioned 
Desert data. The conditioning brought ambient Desert wind speed towards that measured at the irrigated site for a majority of days, with 

dampening of wind speed by about 20%. 

 
All three weather parameters (air temperature, humidity, wind speed) impacted by the conditioning process were adjusted 

in directions that reduced the estimates for grass reference ETo. Figure 9 shows reference ET estimated for midafternoon 
using the Desert weather data before and after conditioning. The ET fluxes, expressed as latent energy, reduced by about 
10% following the conditioning. Figure 10 shows 24-hour (daily) grass reference ETo in mm d-1 computed from the weather 
data collected at the Desert site using ambient measured Tmax, Tmin, vapor pressure, solar radiation and wind speed, and as 
also calculated from conditioned ‘reference’ Tmax, vapor pressure, and wind speed. The calculations are compared to ETo 
calculated from weather data measured 80 km east near Kimberly, Idaho over alfalfa. The impact of the adjustments on a 
daily basis was substantial, averaging 10 to 20% reduction in estimated ETo, and the conditioned ETo were in good agreement 
with the ‘target’ ETo computed from the Kimberly data. 
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Figure 9.  Grass reference ETo in Wm-2, computed at 2 pm at the Desert (Balanced Rock – amb.) site using original desert Tmax, v.p. and wind 

speed as measured (ambient), and results from computing ETo after conditioning the weather data to a reference (Bal. Rock, 2 pm ETo ref.). The 
impact of the adjustments was moderate, averaging about 10% reduction in estimated midafternoon ETo. 

 

 
Figure 10. 24-hour (daily) grass reference ETo in mm d-1 computed from weather data collected at the Desert site using ambient measured Tmax, 
Tmin, v.p., solar radiation and wind speed, and calculated from conditioned Tmax, v.p., and wind speed from the Desert site. The ETo calculations 

are compared to ETo calculated from weather data measured 80 km east near Kimberly over alfalfa.    

In summary, the conditioning of gridded weather data to remove artifacts of aridity using theoretical boundary layer 
theory (Allen et al., 2020b) tends to remove a majority of aridty biases in the original data. It is possible that future gridded 
weather data sets as well as weather data measured at arid ground locations such as at western USA airports can be run 
through a conditioning process prior to their use to estimate reference ET that represents ET from the reference crop in a 
relatively well-watered (irrigated) setting. The result will be more accurate estimates of ET expected from irrigated 
environments. 

Use of remote sensing of ET by energy balance to determine ET and crop coefficients 

Spatial maps of ET at high resolution are of interest to agriculture, water resources and national security as an indicator 
of crop water deficits and depletions on scales of human activities and individual land holdings. Satellite-based ET products 
are now being used in water transfers, to enforce water regulations, to improve development and calibration of ground-water 
models, where ET is a needed input for estimating recharge, to manage streamflow for endangered species management, to 
estimate water consumption by invasive riparian and desert species, to estimate ground-water consumption from at-risk 
aquifers, for quantification of native American water rights, to assess impacts of land-use change on wetland health, and to 
monitor changes in water consumption as agricultural land is transformed into residential uses (Bastiaanssen et al., 2005; 
Allen et al., 2005; Tasumi et al., 2005; Allen et al. 2007b; Kalma et al., 2008; Singh and Kilic-Irmak, 2009; Kilic et al., 2012; 
French et al., 2015; Karimi and Bastiaanssen, 2015; Kilic et al., 2015). Spatial estimates of ET are essential components of 
general circulation and hydrologic models (Wigmosta et al., 1994; Betts et al., 1997; Overgaard et al., 2006) and spatial ET 
is used to infer soil moisture, a valuable input to weather and flood forecast models.   

Most satellite-based methods for ET employ the energy balance equation because ET, comprised of the flux of 
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vapor molecules into the air stream, is not readily visible by satellites, whereas, Rn, G and H, being radiative and 
thermal processes, can be detected or surmised from shortwave (solar) and thermal imagery. Once the latent heat 
flux, λE, is computed, the ET rate, expressed as a depth of water evaporated per unit time, for example, over a day, is 
calculated by dividing λE by the latent heat of vaporization, λ. λ represents that amount of energy required to 
complete the ET process. Remote sensing surface energy balance (RSSEB) methods take advantage of the physical fact 
that conversion of liquid water to the vapor form requires substantial amounts of energy. This conversion of liquid to vapor 
during the evaporation process involves the same physical requirements whether the process is transpiration of water from 
inside a plant leaf or evaporation of water from a wet soil surface. Approximately 2.4 million Joules (megajoules) of energy 
are required to evaporate one kilogram of water at room temperature. The energy source can be in the form of heat energy 
from the surrounding air (this is often termed “sensible heat” since it can be sensed with a thermometer) and the source can 
be the radiant energy from the sun and atmosphere in the form of photons contacting the evaporating surface. Energy from 
photons frees water molecules from a liquid to vapor state.  

Satellite imagery has been found to provide a dependable basis for estimating ET (Allen et al., 2005; 2007b; Kalma et 
al., 2008; Kilic et al., 2012; French et al., 2015; Karimi and Bastiaanssen, 2015). The strong benefit of satellite-based models 
is the quantification of spatially variable ET over large areas. Remotely sensed ET can be transformed into Kc. Conversely, 
the Kc and reference ET concepts are useful for establishing upper limits on ET during application of energy balance 
methods. In addition, the fraction of reference ET, ETrF, which is essentially equivalent to Kc, is often used to interpolate 
ET estimates between satellite over pass times (Allen et al., 2007a). 

Figure 11 shows a sampling of three cropped fields near Boise, Idaho during year 2015 in the form of ETrF computed for 
each date of a Landsat overpass. ETrF was produced by the METRIC surface energy balance model (Allen et al., 2007a) and 
was interpolated between overpass dates using a dampened cubic spline to mimic expected phenological evolution with 
time. The alfalfa reference was used as the basis for calculating ETrF. Effects of late season ET following harvest of winter 
wheat due to rain events illustrates the utility of thermal-based remote sensing in detecting off-season ET related to 
precipitation. 

 

 

 

 
Figure 11.  Sampled ETrF (equivalent to actual Kc) for three cropped fields near Boise, Idaho during 2015 as produced by the METRIC remote 

sensing energy balance model, shown as symbols. The curved line represents splined interpolation of daily ETrF between Landsat satellite 
overpass dates. X and Y locations are in meters for the Idaho Trans-Mercator. ‘CDL’ is the cropland data layer identification. 

Satellite-based remote sensing has enabled the estimation of ET from large populations of individual fields (Tasumi et al. 



6th Decennial National Irrigation Symposium Page 16 

2005) and has supported field-specific management of water systems and water rights as well as mitigation efforts under 
water scarcity. Figure 12 shows Kc values sampled from hundreds of winter wheat fields in south central Idaho, where each 
vertical line represents a Landsat overpass date and each symbol represents a sampled field. The large black symbols 
represent a mean Kc averaged over all fields. High values early in the year represent fields that were more mature coming 
out of winter or were wet by irrigation. Sampled Kc during the middle of the year when most fields were at full cover had 
much lower variance about a mean. This type of sampling can be effective in producing actual Kc curves that best represent 
actual conditions for an area or for a year. 

 
Figure 12.  Kc values sampled from hundreds of winter wheat fields in south central Idaho, where each vertical line represents a Landsat 

overpass date and each symbol represents a sampled field. The large black symbols represent a mean Kc averaged over all fields. 

Comparisons between remote sensing-based ET and traditional Kc ETref. 
Figure 13 shows comparisons made between growing season ETc calculated by METRIC and growing season ET using 

the Kc ETref method by the USBR AgriMet system for 2000, where AgriMet ETc estimates were based on mean (single) Kc 
values traceable to Wright (1981). Kc ETref estimates were made for weather stations located near Twin Falls and Jerome, 
Idaho, which are 30 km apart.   

The values shown for METRIC in Figure 13 were sampled from large numbers of fields in the Jerome and Twin falls 
counties from METRIC images of ET and Kc between the dates of March 15 and October 17 (Tasumi et al., 2005, Tasumi 
and Allen, 2007). The METRIC derived images were integrated monthly and over the March 1 – October 31 period. The 
‘Allen-Robison (2007)’ entries in Figure 9 represent ETc determined made using a dual crop coefficient x reference ETr 
procedure and point weather data.   
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Figure 13.  Growing season evapotranspiration during year 2000 for major crops grown in the Twin Falls – Jerome area of Magic Valley, Idaho 
from four sources (1. METRIC satellite-based energy balance; 2. Dual Kc x ETref (Allen-Robison 2007) for Twin Falls 7E and Jerome NWS 

stations; 3. USBR AgriMet ET reports based on Kcm x ETref.  

 
Growing season ETc from the dual Kc-based computations (averaged over Twin Falls and Jerome stations) were within 

7% of METRIC estimates for alfalfa hay, sugar beets and spring grain and were within 16% of METRIC ETc for all crops. 
The dual Kc-based estimates averaged about 16% above METRIC estimates for dry beans and 15-16% below METRIC 
estimates for winter grain and potatoes.   

The lower ETc estimation by Allen-Robison (2007) for corn and potatoes, relative to METRIC, stem partly from the 
assumption of relatively low-frequency irrigation scheduling when simulating irrigation schedules during estimation of soil 
evaporation. Corn crops tend to be irrigated by center pivot systems and potato crops by center pivots or by solid set sprinkler. 
Both of these system types tend to be operated so that irrigations are spaced more closely together in time than for wheel-
line or gravity systems. The consequence of this is more frequent wetting of the soil surface and somewhat higher total ETc. 
This may explain some of the 10 to 15% difference between the two estimating approaches. The 16% lower estimation for 
ETc of winter wheat as compared to METRIC-produced ETc appears to stem primarily from estimation of earlier crop 
development during early spring and earlier maturity and harvest estimated by the dual Kc process than observed by 
METRIC. An additional reason for the lower seasonal ETc estimates by AgriMet is that their Kc and ETc calculations do not 
begin until emergence (or greenup) and are discontinued at estimated harvest for annual crops. Therefore, evaporation from 
precipitation prior to and following the specific growing periods is neglected.   

Future trends 

Multilayer models  
Future ET calculation may involve the use of multilayer ET models as cloud-based computing and intelligent simulation 

of vegetation over a growing season are developed, and include growth and fractions of ground cover. Multilayer ET models 
provide for separate parameterization of vegetation canopy and soil surfaces either as multiple sources of energy exchange 
or as inter-canopy blending formulations. The models generally employ aerodynamic and surface resistance formulations. 
Early derivations of multilayer models include Shuttleworth and Wallace (1985), Shuttleworth and Gurney (1990), and 
Dolman (1993). Those models have been widely tested and parameterized in research applications, but have not been widely 
used operationally due to the difficulty of establishing parameterizations for some of the internal resistances, which can 
change markedly with vegetation type and density and with time of year. Other challenges for the model include errors 
associated with impacts of unknown or unresolved surface temperature, Ts, on the slope of the saturation vapor pressure 
curve, Δ, outgoing long wave radiation, and within- and above-canopy aerodynamic stability correction. A highly 
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recommended article on resistance model types is Daamen and McNaughton (2000), which describes and contrasts common 
formulations of model types and compares their estimated ET rates under several surface conditions. 

Complexity in models can bring complexity in parameterization of the models. This can definitely be the case with 
multilayer and patch models where the characterization of heat and vapor transport within a canopy have, as a necessity, a 
degree of speculation and empiricism. If not formulated properly, these characterizations can induce more inaccuracy than 
accuracy (Were et al., 2008), especially if key factors such as buoyancy correction or penetration of air into the canopy by 
random eddy movement are not accounted for. For example, the required form and structure of formulations for internal 
resistances, rh, may change with plant density, leaf area, vegetation patch size, wind speed, and buoyancy. For example, 
standard K theory (de Bruin et al., 1993) establishes nearly logarithmic wind speed and T and e profiles above some zero 
plane displacement height assuming expansive, open areas with well-established equilibrium boundary layers. However, the 
formulations may not be strictly applicable within canopies and along sudden patch boundaries. Also difficult to accurately 
account for is the horizontal transfer of sensible heat (and vapor deficit) from understory into canopy and vice versa. 

Brenner and Incoll (1997) and Were et al., (2008) suggested a two-layer/three-source model with vegetation canopy, 
shaded soil, and exposed soil sources. One of the serious challenges in applying the multilayer or patch models to sparse 
vegetation systems is in the parameterization of rh, which is the aerodynamic resistance within and across the canopy or 
near-surface boundary layers, and in the validity of applying the Penman-Monteith (PM) equation over this region. The 
traditional equations for aerodynamic resistances across T and e gradients assume that the T, e, and u profiles follow 
semilogarithmic shaped vertical profiles, the shapes of which are governed by surface roughness and density-induced 
buoyancies. However, within vegetation canopies, turbulent diffusion theory (K theory) (de Bruin et al., 1993) has been 
shown to be inadequate to describe convective transfer where even countergradient fluxes can exist (Raupach 1989; van den 
Hurk and McNaughton 1995; McNaughton and van den Hurk, 1995; Daamen and McNaughton, 2000). Therefore, empirical 
formulations have to be applied. The nature and structure of buoyancy correction within a sparse canopy is uncertain, even 
though it can constitute a very effective mechanism for transport of sensible heat and vapor upward within tall canopies such 
as trees, where mechanical mixing from wind is low due to sheltering. This increases uncertainty in applying multisource 
and multilayer models as formulated here. 

Examples of patch models where the total surface is split into vegetation and exposed soil include the Energy-Water-
Balance (ENWATBAL) model (Evett and Lascano, 1993; Lascano, 2000); a three-patch model by Brenner and Incoll (1997); 
and, using explicit equations for LE and H fluxes, the Two-Source-Energy-Balance (TSEB) model of Kustas (1990) and 
Kustas and Norman (1999) that is applied in a surface energy balance mode using thermal imagery, and a two-source patch 
model by Dhungel et al., (2016a; 2016b; 2019). The patch model was developed for simplicity (Delogu et al., 2018). 
However, because direct interchange between surface types is ignored, defining appropriate resistance values is often 
challenging. When vegetation patches are extensive in size, such that the microclimate of one patch does not affect the 
microclimate of another, then the aerodynamics and resistances of different surface types can be characterized by different 
roughness lengths and with quite different ra values (Daamen and McNaughton, 2000).  

Daamen and McNaughton (2000) show the patch and interactive models to have best agreement as canopy sparsity and 
patch size increase, for example with a lemon orchard, and agreement decreases with plant density and increasing ratios of 
aerodynamic resistance for momentum to aerodynamic resistance for sensible heat flux, ram to rh. They found higher 
evaporation estimated by the interactive model than by the patch model under some conditions due to interactions of fluxes 
between the component surfaces. As expected, the flux interactions are largest when the surface resistances for the soil and 
vegetation components are most different (for example, dry soil surface and well-watered canopy) and when ram is larger 
than rh and fractions of exposed soil and canopy are similar. When flux interactions are largest, differences between the 
single-layer and interactive (multilayer) models are the smallest.  

In summary, this section describes some of the challenges with using the more complex multi-layer or multi-source ET 
models as compared to using the more empirical, but robust, crop coefficient models. However, in time, intelligent multi-
layer modeling systems run on cloud-based computing systems may replace locally computed crop coefficient based 
calculation, with more accurate results. Implementation will require intelligence-based estimation of internal parameters via 
description of vegetation characteristics and environments. These types of models may also play a role, when coupled with 
gridded weather data, to interpolation of ET in between satellite image dates (Dhungel et al., 2016b). 

Satellite-based remote sensing 
Satellite-based remote sensing of ET will continue to evolve and find its way into common, operational water 

management. Satellite-based remote sensing has the advantage of ‘seeing’ actual ET under water short conditions and the 
ability to construct a historical database of actual ET. One impediment to satellite-based remote sensing that employs surface 
energy balance is the sparsity of high-resolution satellite systems such as Landsat that include a thermal sensor. More 
Landsat-class satellites are needed, with ideally a one-day revisit time, as compared to the current 8- or 16-day revisit time, 
to provide continuous assessment of thermal surface properties for creating near continuous snapshots of ET. This is 
especially important in the cloudier parts of the globe where a location may go weeks between clear days. 
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SUMMARY 
The crop coefficient (Kc) and reference ET procedure for estimating ET has been very successful over the past 50 years 

due to its simplicity coupled with consistency and robustness. Much of this success has centered on the energy constraints 
represented in the reference ET. Modern applications are primarily centered on the FAO-56 dual Kc approach. Newer, and 
often preferred, bases for establishing Kcb curves include use of thermal units and vegetation-indices. Discussion is directed 
toward the application of reference ET calculation using hourly rather than 24-hour timesteps. The use of gridded weather 
data sets is becoming more widespread, but requires the conditioning of gridded weather data prior to calculation of reference 
ET. Future trends include the movement toward multi-layer and multi-source resistance models for ET estimation coupled 
with satellite-based determination of ET using both vegetation indices and surface energy balance. 
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