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Abstract 
A novel ArcGIS toolbox that applies the Mapping Evapotranspiration with Internal-
ized Calibration model was developed and tested in a semi-arid environment. The 
tool, named METRIC-GIS, facilitates the pre-processing operations and the automatic 
identification of potential calibration and pixels review. The energy balance compo-
nents obtained from METRIC-GIS were contrasted with those from the original MET-
RIC version (R2 = 1; RMSE = 0 W m–2 or mm day–1 for ETc) Additionally, an irrigated 
scheme located at southern Spain was considered for assessing Kc variability in the 
maize fields with METRIC-GIS. The identified spatial variability was mainly due to dif-
ferences in irrigation regimes, crop management practices, and planting and harvest-
ing dates. This information is critical for developing irrigation advisory strategies that 
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contribute to the area sustainability. The developed tool facilitates data input introduc-
tion and reduces computational time by up to 50%, providing a more user-friendly al-
ternative to other existing platforms that use METRIC. 

Keywords: crop coefficient, evapotranspiration, modelling, remote sensing, satellite, 
water requirements  

1. Introduction 

Water is becoming a scarcer resource in many parts of the world due to 
the increase of human demand and the intensification of competition be-
tween water-using sectors (FAO, 2012). In the near future, agriculture 
will be one of the most affected sectors since it will continue to domi-
nate the withdrawal of water (FAO, 2012). Therefore, a strategic man-
agement plan is crucial to preserve and sustain this resource. A prime 
example is the use of deficit irrigation strategies that have been devel-
oped with success in semi-arid environments, reducing the volume of 
water applied and consumed without affecting the production (Fereres 
and Soriano, 2007). 

In most cases, proper irrigation management is based on the accurate 
knowledge of the crop evapotranspiration (ETc) (Wigmosta et al., 1994; 
Betts et al., 1997) which expresses the amount of water consumed from 
a cropped surface in units of water depth (Allen et al., 1998). However, 
ETc assessment is not straightforward, and complex procedures and ac-
curate weather data need to be considered to obtain accurate measures 
or estimation (Allen et al., 1998; Thorp et al., 2019). Numerous authors 
have highlighted the advantages of the use of models rather than using 
field measurements, especially when information over extensive areas 
is needed (Rana and Katerji, 2000; Drexler et al., 2004; Courault et al., 
2005; Senay et al., 2011; Jovanovic and Israel, 2012). In these cases, the 
FAO56 reference evapotranspiration (ET0)–crop coefficient approach 
(Allen et al., 1998) is one of the most widely used models due to its sim-
plicity. However, these types of models provide point estimates that do 
not account for ETc spatial variability caused by agronomical practices 
and that are challenged to estimate accurately reductions in ETc caused 
by water shortage. To address this limitation, some authors have inte-
grated the FAO-56 approach with remote sensing technologies in order 
to create spatially distributed ET maps (Ramírez-Cuesta et al., 2019a). 

Crop evapotranspiration maps are generally the basis for irrigation 
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scheduling provided by irrigation advisory services. These irrigation 
schedules require the consideration of several factors, including the crop 
water requirements and yield responses to water, the constraints spe-
cific to each irrigation method and irrigation equipment, the crop sen-
sitivity to salinity when water of lesser quality is used, the limitations 
imposed by the water supply and delivery system, and the financial and 
economic implications of the irrigation practice (Pereira et al., 2007). 

Several tools for improving irrigation water management have been 
developed during the past two decades. Some of these tools have de-
veloped user-friendly interfaces for assessing spatially distributed ET 
maps (Liu, 2009; Raes et al., 2009; Bhattarai and Liu, 2019; Silva et al., 
2019) while others have preferred to minimize user interactions to re-
duce possible human errors by giving options of running multiple sim-
ulations (FAO, 2012) or automating the creation of the input and the 
project files (Lorite et al., 2013). Overall, it is crucial to support the dif-
fusion of technology and improved practices among farmers and tech-
nician so that the integration of the tools and internet plays an essential 
role (Mendicino and Versace, 2007). 

Over the last three decades, various remote sensing-based ETc models 
have been developed. These models include the Simplified Surface En-
ergy Balance Index (Roerink et al., 2000), Surface Energy Balance System 
(Su, 2002), Surface Temperature versus Vegetation Index Triangle/Trap-
ezoid Space (Goward et al., 1985; Moran et al., 1994), Surface Energy Bal-
ance Algorithm for Land (Bastiaanssen, 1995; Bastiaanssen et al., 1998), 
Mapping Evapotranspiration with Internalized Calibration (METRIC) 
(Allen et al., 2007a, b), Two-source N95 model (Norman et al., 1995), and 
Atmosphere-Land Exchange Inverse model (Anderson et al., 1997). The 
suitability of these models for ETc estimation has been demonstrated 
under different climatic and crop conditions around the world (Nemani 
and Running, 1989; Kustas et al., 2003; Allen et al., 2005a, 2007b; Bas-
tiaanssen et al., 2005; Poblete-Echeverría and Ortega-Farias, 2012; San-
tos et al., 2012; Ramírez-Cuesta et al., 2019b). The applicability of these 
models has been supported by the technological advances in both com-
puter capabilities and algorithm development and automation that have 
taken place in recent years. There are several software where energy bal-
ance models have been incorporated, as the cases of MATLAB (e.g. Eva-
Mapper, Atasever et al., 2013; and LandMOD, Bhattarai and Liu, 2019); 
R software (e.g. Owusu, 2016) and python environment (e.g. pySEBAL, 
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Hessels et al., 2017). However, despite the undoubted value for users 
experienced with these type of software, often they are too complex for 
general application due to the difficulties and tedious algorithms needed 
to produce estimations (requiring, for instance, programming skills). 
Therefore, there is an advantage for making these models as accessible 
and user-friendly as possible by programming them in a common soft-
ware package to facilitate and optimize ET estimation by any possible 
user (Lagos et al., 2011). 

One of the most widely used ET models is METRIC, which determines 
ET via a surface energy balance that is based on satellite images con-
taining both short wave and thermal information. METRIC, similar to the 
SEBAL model, uses hot and cold anchor pixels selected from the satel-
lite image for conditions where a value for sensible heat flux, H, can be 
reliably estimated (Allen et al., 2007a). Specifically, for METRIC, some 
tools have been developed to facilitate the selection of the anchor pixels 
(Kjaersgaard et al., 2009; Allen et al., 2013a). The current, primary MET-
RIC version is implemented in the ERDAS Imagine modelmaker environ-
ment (ERDAS Imagine, 2014) that employs an external excel spreadsheet 
to organize, calculate and assign the parameter values for each specific 
execution of the model. The modelmaker/spreadsheet combination re-
quires manual control and manual collection of some data, which can 
result in relatively long processing times, especially when the number 
of images to be processed is large and/or the areas to be covered are 
extensive. 

Therefore, the main objective of this study was to develop a METRIC 
remote image-processing model version in the ArcGIS environment that 
solves some of the main constraints associated with other platforms 
implementing METRIC model, especially those related to the usability 
and computational time. This tool provides a faster and a more user-
friendly and automated interface for ease in estimating ET for large ar-
eas at Landsat satellites spatial resolution. In addition, use of ArcGIS 
is more common than is the use of the ERDAS system. The new ArcGIS 
METRIC tool is demonstrated here for a semi-arid agricultural environ-
ment located at Cordoba (Spain), and the results are compared with ET 
estimates derived using the FAO-56 approach. Several model data man-
agement screens are shown to illustrate the model operation. 
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2. Materials and methods 

2.1. METRIC Theoretical Framework 

Mapping EvapoTranspiration at high Resolution with Internalized Cali-
bration (METRIC) is a remote sensing-based model that determines ET 
from satellite imagery by performing a surface energy balance, comput-
ing the energy involved in the ET process as a residual of the surface en-
ergy equation (Allen et al., 2007a) 

LE  = Rn – G – H                                               (1) 

where LE is the latent heat flux (W m–2); Rn the net radiation flux (W 
m–2); G is the sensible heat flux conducted into the soil (W m–2); and H 
is the sensible heat flux being convected to the air (W m–2). The terms 
on the right-hand side of equation (1) are generally readily estimated 
using a combination of thermal and short-wave imagery. 

The net radiation flux (Rn) represents the radiant energy available for 
the other energy balance components and is determined based on the 
balance between the incoming and the outgoing radiant fluxes 

Rn   = RS↓ – αRS↓ + RL↓ – RL↑ – (1 – ε0 )RL↓                    (2) 

where; RS↓ and RL↓ are the incoming shortwave and longwave radiation 
components, respectively (W m–2), α is the surface albedo (dimension-
less) i.e. the ratio of the reflected to the incident radiant flux over the so-
lar spectrum, RL↑ is the emitted outgoing longwave radiation (W m–2), 
and ε0 is the surface thermal emissivity (dimensionless). Procedures 
for estimating these components are described in Allen et al. (2007a). 

The soil heat flux (G) considers the amount of energy conducted into 
ground and is computed in METRIC by employing the empirical equa-
tion developed by Tasumi (2003). 

G  = Rn ( 0.05 + 0.18e–0.521LAI )    LAI ≥ 0.5                (3a) 

G = Rn ( 1.80(Ts – 273.16) 
+ 0:084)  LAI < 0.5           (3b) 

                                                        Rn
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where Ts is the temperature of the surface in Kelvin obtained from a 
thermal band and LAI is the Leaf Area Index. 

Sensible heat flux (H) represents the conductive heat flux from the 
surface to the atmosphere caused by the difference in air temperature 
between two near-surface reference heights (Brutsaert, 1982) 

H  = ρCp
  dT                                                    (4) 

                                                                          rah

where ρ is the air density (kg m–3); Cp is the specific heat of air at a con-
stant pressure (1004 J kg–1 K–1), rah is the aerodynamic resistance to heat 
transport (s m–1), and dT is the temperature difference (K) between the 
two near surface heights (normally 0.1 and 2 m above the zero plane 
displacement height). dT is calculated as a linear function of Ts as pro-
posed by Bastiaanssen (1995). 

dT   = a + bTs datum                                          (5) 

where a and b are empirical coefficients for a given satellite product de-
termined through the two anchor pixels (i.e. cold and hot pixels) where 
a value for H can be faithfully estimated, and Ts datum is the land sur-
face temperature adjusted to a standard elevation datum per pixel of 
the satellite image (Allen et al., 2007a). The ‘delapsing’ of Ts is done 
to remove artifacts in surface temperature that are caused by differ-
ences in air pressure, rather than to differences in surface energy bal-
ance characteristics.  

Once all components of Eq. (1) are determined, ET at the satellite 
 image acquisition time (ETinst, mm h–1) is calculated at pixel level by di-
viding LE from Eq. (1) by water density (ρw = 1000 kg m–3) and by the 
latent heat of vaporization (λ, J kg–1) 

ETinst  = 3,600  LE                                                   (6) 
                                                                          λρw

The primary METRIC version was developed in ERDAS (hereafter 
termed METRICerdas), requiring manual processing of up to ten submod-
els and the use of a data-handling and management spreadsheet to as-
sign the image metafile folder, define the structure of the weather data 
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document (length of weather time period, flag for weather reporting 
time and to account for daylight savings time, among others), the values 
for soil-dependent parameters (e.g. soil type, field capacity and wilting 
point, among others), and other parameters, including the surface rough-
ness of the weather station, the delapsing rate, and various toggles and 
parameter settings. The ERDAS-version spreadsheet uses Visual Basic 
Assistant macros to transfer parameter settings from the spreadsheet 
into the ERDAS modelmaker code (Allen et al., 2005b). 

A variety of settings and adjustments can be enabled or disabled in 
the ERDAS-based spreadsheet. These corrections include:
(i) an α adjustment to account for the biased lowering of α for deep vege-

tation when viewed from nadir, as opposed to the full hemispherical 
α that should be used when computing the surface energy balance; 

(ii) an adjustment to account for the interception of solar radiation (Rso) 
by microdepressions, and trees (especially for correcting Rso on 
north-facing slopes); 

(iii) an adjustment to compensate the temperature in those areas where 
the shadows within the canopy that are viewed from nadir decrease 
the bulk Ts; 

(iv) a reducer to diminish the slope of the dT versus Ts function when Ts 
is beyond the Ts of a dry, bare tilled field threshold; 

(v) an adjustment to consider the effects from the orthographic drain-
age of air caused by cooling, the acceleration of air streams passing 
over mountains due to the Venturi effect, and the impacts of drag 
due to undulating topography; 

(vi) an adjustment to reduce wind levels on leeward slopes; 
(vii) an adjustment to add an extra resistance to diminish the sensible 

heat flux as consequence of the influence of sage brush and tall grass 
vegetation in desert areas that effectively protects the land surface 
from mechanical heat transport, but is sparse enough to permit the 
penetration of incoming Rso that heats the soil surface; 

(viii) a toggle to adjust the G function to be adjusted during application 
to desert soils to account for effects of delamination and differences 
in porosity, structure and other effects that may reduce the thermal 
conductivities of the soils and cause the soils to deviate from their 
agricultural counterparts; and 

(ix) an adjustment to take into account the energy that may be invested 
in thawing and warming the soil when soil may have been frozen 
the previous night. 
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These adjustments and algorithms have been described by Allen et al. 
(2007a, 2011; 2013b), Irmak et al. (2011) and Kilic et al. (2016). 

2.2. METRIC-GIS implementation 

In this study, the METRICerdas and supporting METRIC spreadsheet al-
gorithms were integrated into an ArcGIS toolbox environment using Ar-
cPy language to produce a site-package that performs geographic data 
analysis, data conversion, data management, and map automation with 
Python. ArcPy provides access to ArcGIS geoprocessing tools as well as 
to existing functions, modules, and classes. This allows the development 
of powerful scripts thanks to its code-completion function and the func-
tion-specific reference documentation. Moreover, the use of Python lan-
guage permits benefiting from the development of additional modules 
by GIS professionals and programmers. 

The METRIC version that was used as a basis was the 2014 version 
of METRIC that computes ET for flat areas. This version is valid for most 
agricultural areas due to its generally flat topography and has provided 
accurate ET estimations similar to those obtained with METRIC ver-
sions including Mountain model (Healey, 2011). Hereafter, the METRIC 
model integrated into ArcGIS will be denoted as METRIC-GIS in order 
to distinguish it from METRICerdas. The tool (together with a sample da-
taset) will be freely distributed to interested readers by contacting the 
corresponding author. 

The model has been divided into four sub-models, which were cre-
ated with ArcPy and imbedded into an ArcGIS (v10.2; Esri, Redlands, CA, 
USA) toolbox, providing a user-friendly and explanative interface to ex-
ecute the model, where the user only needs to select or provide the val-
ues for the required inputs. The first sub-model, “1. Data formulation” 
(Fig. 1a and b), computes parameters needed to identify candidates for 
the selection of the ‘anchor’ pixels. The inputs required to run this sub-
model are the Landsat folder path description for the Landsat Scene Im-
age downloaded from EROS; a Digital Elevation Model (DEM) image for 
the Landsat Scene; a raster image describing the land use for the area 
using the United States Geological Survey (USGS) National Land Cover 
Database (NLCD) definitions (if another land-use source is used, e.g. CO-
RINE land cover, a previous recoding process is required for matching 
the NLCD codes); a mask (in shapefile format) that outlines the study 
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area to be processed (optional); a weather data file containing hourly (or 
shorter) data (see section 2.3.2. Meteorological Data); the folder where 
the resulting rasters and the text file with the summary of the data prep-
aration script will be stored; a folder where an anchor pixel point shape-
file will be created if it does not exist; a toggle to enable/disable the α ad-
justment for tall vegetation and/or tall crops that was explained in the 
previous section; a toggle used to identify tall vegetation for adjustment 
of α and partitioning of Ts into canopy and shaded components for for-
est, trees, and vines; the atmospheric clearness coefficient; a minimum 
value of α when using a nadir-viewing satellite such as Landsat; the flat 
and mountain lapse rates and the terrain elevation considered for the 
lapse rate change; the path radiance for the thermal band; the narrow 

Fig. 1a. Section one of toolbox interface of sub-model 1, “1. Data formulation”, imple-
mented in ArcGIS, showing the different input parameters and standard default pa-
rameter values. Readers are referred to the main text for definitions of the abbrevia-
tions used in the figure. 
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band downward thermal radiation from a clear sky; the narrow band air 
transmissivity in the thermal band spectral range; soil water balance-re-
lated parameters; a folder containing recommended symbols for output 
files (optional); and a binary mask for identifying the presence of clouds 
or shadows (optional). All raster images must have the same raster size 
and coordinate system as the Landsat images (i.e. Universal Transverse 
Mercator - World Geodetic System 1984 coordinate system). 

Many of these parameters have standard, default values automatically 
entered into the input menu to expedite data entry. The output raster 
resulting from this sub-model are ε0, transmittance, Rso, α, Normalized 
Difference Vegetation Index (NDVI), Normalized Difference Water In-
dex (NDWI), Normalized Difference Snow Index (NDSI), LAI, Ts and a G 
multiplier to account for organic matter (GxOM). Each parameter entry 

Fig. 1b. Section two of toolbox interface of sub-model 1, “1. Data formulation”, imple-
mented in ArcGIS, showing the different input parameters and standard default pa-
rameter values. Readers are referred to the main text for definitions of the abbrevia-
tions used in the figure. 
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box has an associated description of the parameter that appears on the 
help screen to explain the parameter and to recommend common val-
ues or ranges of values. 

The second sub-model, comprising “2a. Sample Pixel Identification” 
and “2b. Identified Pixels Sampling” (Fig. 2a & b and Fig. 3), is intended 
for identifying potential pixels/points for calibration sampling from 
uniform areas and for sampling the DEM, NLCD, transmissivity, Rso, α, 
NDVI, LAI, Ts, and GxOM rasters from the identified/modified sample 
pixel point shapefile. The inputs required in this sub-model are a sum-
mary/ log file (text) generated when the data preparation model was 
run; the anchor pixels shapefile created by the flat model preparation 
script or generated by the user; a point shapefile with existing pixel sam-
pling points (optional); the distance from the weather station location 
used in showing “identified pixels” close to the weather station in the 
map and graph; the neighborhood in which to evaluate the uniformity 
of the neighborhood surrounding a pixel; The NLCD classes to consider 

Fig. 2a. Section one of toolbox interface of sub-model 2, “2a. Sample Pixel Identifica-
tion”, implemented in ArcGIS, showing the different input parameters. For definitions 
of the abbreviations used in the figure, readers are referred to the main text. 
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as potential pixels/points for calibration sampling; uniformity ranges 
for elevation, NDVI, Ts, α and GxOM; minimum and maximum thresh-
olds for α and GxOM; and a folder containing recommended symbols for 
output files (optional). 

Third sub-model, “3. Final Computations” (Fig. 4a & b), calculates the 
different energy balance components using selected hot and cold pixel 
locations. Sub-model 3 reads most of its inputs from a text file automat-
ically generated when the first and second sub-models are run. This 
text file contains the pathnames and other parameters. Sub-model 3 re-
quests entry of information describing a point shapefile indicating the 
hot and the cold pixel locations; the folder where the resulting raster 
will be stored; a clump factor; a shape factor and the ratio between the 

Fig. 2b. Section two of toolbox interface of sub-model 2, “2a. Sample Pixel Identifica-
tion”, implemented in ArcGIS, showing the different input parameters. For definitions 
of the abbreviations used in the figure, readers are referred to the main text. 
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height of the tree and its width used in the three-source partitioning of 
surface temperature for trees (Allen and Kjaersgaard, 2010); the fraction 
of tree height from the ground to the lower edge of the tree foliage; the 
Perrier canopy shape factor for sparse vegetation (Perrier, 1982; Santos 
et al., 2012); a scaling factor for compensating the temperature in those 
areas where the shadows within the canopy that are viewed from nadir 
decrease the bulk surface temperature; a divisor to reduce the slope of 
the dT versus Ts function when Ts is beyond the Ts of a dry, bare tilled 
field threshold; a multiplier for adding an extra resistance to diminish 
the sensible heat flux as consequence of the influence of sage brush and 
tall grass vegetation in desert areas; a multiplier to adjust momentum 
roughness length for tall crops or low α; toggles to enable or disable the 
adjustments described in section “2.1. METRIC Theoretical Framework”; 
the temperature used to identify a surface that may have frozen the pre-
vious night; a multiplier for adjusting G when soil has been frozen the 
previous night; the fitting coefficients used to estimate sunlit and shaded 
Ts in the three-source model for trees; the values of ETrF for the hot and 
cold pixel; the surface roughness of the weather station; the folder con-
taining recommended symbology for output files map layers; and the 
point shapefile with points (pixels) to sample the various sub-model 1 
output rasters at. The output rasters resulting from this sub-model are 
Rn, G, H, Kc (referred to ET0) and ETc. 

Fig. 3. Toolbox interface of sub-model 2, “2b. Identified Pixels Sampling”, implemented 
in ArcGIS, showing the different input parameters. For definitions of the abbreviations 
used in the figure, readers are referred to the main text.
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Finally, the forth sub-model, “4. EF Adjustment” (Fig. 5), performs an 
Evaporative Fraction (EF) adjustment using as inputs a summary/log 
file (text) generated when the final computations model was run; the 
folder where the resulting rasters and the text file with the summary of 
the adjustment script will be saved; the cold and hot surface Slob coef-
ficients for daytime and for 24 h periods (Allen et al., 2005b); a coeffi-
cient for weighting effective day length; the weight to give to the 24 h 
EF component; and the folder containing recommended symbology for 
output files map layers. 

Fig. 4a. Section one of toolbox interface of sub-model 3, “3. Final Computations”, im-
plemented in ArcGIS, showing the different input parameters. For definitions of the 
abbreviations used in the figure, readers are referred to the main text.    
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Fig. 4b. Section two of toolbox interface of sub-model 3, “3. Final Computations”, im-
plemented in ArcGIS, showing the different input parameters. For definitions of the 
abbreviations used in the figure, readers are referred to the main text. 

Fig. 5. Toolbox interface of sub-model 4, “4. EF Adjustment”, implemented in ArcGIS, 
showing the different input parameters. For definitions of the abbreviations used in 
the figure, readers are referred to the main text.
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2.3. Toolbox performance 

In order to ensure that METRIC-GIS was successfully programmed and 
no transcription errors existed, the energy balance components (Rn, G, 
H and ET) derived from the toolbox were compared with those obtained 
with METRICerdas. This comparison was performed on a pixel-by-pixel 
basis, selecting 100,000 randomly distributed pixels within a Landsat 8 
scene (path 201 row 34) corresponding to the DOY 188 (July 7th, 2015). 
This date was selected due to its high ET0 (7.87 mm day–1) which al-
lowed evaluation over a wide range of values for all energy balance com-
ponents, especially for ETc, whose range can vary from 0 mm day–1, on 
dry bare soil surfaces, to close to 10 mm day–1 in maize fields. 

2.4. Practical application 

2.4.1. Study area 
In order to show the potentiality of the developed tool, METRIC-GIS was 
tested in a semi-arid environment. The selected area is part of the Ge-
nil-Cabra Irrigation Scheme located in Cordoba, Andalusia, in southern 
Spain (37° 32.930 N, 4° 49.30’ W; Fig. 6). The climate is Mediterranean 
continental and for the September 2014–September 2015 annual pe-
riod, the average air temperature and relative humidity were 18.2 °C and 
64.7%, respectively. Average wind speed was 1.7 m s–1, Rso was 17.6 MJ 
m–2 d–1, and cumulative ET0 and precipitation were 1443 and 411 mm, 
respectively. The predominant soils in the district are loamy soils. Pri-
mary crops in the area are wheat, cotton, olive, maize, sugar beet, beans, 
garlic, sunflower, and other vegetables. Irrigation water is provided us-
ing a modern pressurized irrigation network where users are able to 
control the frequency, rate and duration of water delivery. The irrigation 
system generally depends on the crop type, varying from manually op-
erated sprinkler for wheat or sunflower to drip systems for maize, hor-
ticultural crops and olives. 

In total, 25 maize fields, with an average area of 12 ha, were selected 
(Fig. 6) for comparisons against the FAO-56 Kc ET0 method, occupying 
a total area of 290 ha approximately. Regarding the irrigation system, 
80% of the fields were irrigated using drip systems whereas the other 
20% were irrigated using sprinklers. The planting date ranged from late 
February to early April.  
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2.4.2. Remotely sensed data 
The METRIC model requires a satellite image that includes thermal 

(Ts) information so Landsat satellites (Landsat 7 ETM+ and Landsat 8 
OLI/TIRS) were utilized in this study. Landsat 7 bands 1–5 and 7; and 
Landsat 8 bands 2–7 refer to the visible and near-short wave infrared 
regions with 30 m spatial resolution, while Landsat 7 band 6 and Land-
sat 8 band 10 provide data for longwave (thermal) radiation. The spa-
tial resolution of these thermal bands is 60 m for Landsat 7 and 100 m 
for Landsat 8 (Landsat Project Science Office (LPSO) 2006; 2015). The 
temporal resolution between Landsat overpasses is 16 days for each sat-
ellite, so a theoretical temporal resolution of 8 days was obtained in this 
study under clear sky conditions since the data provided by both Land-
sat 7 and 8 satellites were combined. However, the absence of clouds in 
the area of interest in the satellite scene is a requirement for applying 

Fig. 6. Location of the Genil-Cabra Irrigation Scheme and the 25 maize fields (in yel-
low) used for METRIC-GIS performance evaluation and demonstration. The red colors 
in the Landsat false color image indicate dense green vegetation.   
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the METRIC model. Additionally, since 2003 Landsat 7 Scan Line Correc-
tor is not working, resulting in data gaps in the image that sometimes in-
cluded the experimental plots. Therefore, a significant number of avail-
able images containing clouds or affected by Scan Line Corrector failure 
over the study area had to be discarded, especially from April to June, re-
ducing the final temporal resolution for the study. For the final analyses, 
ten clear sky images were used for the 2015 irrigation season (March–
September 2015). Table 1 shows the Landsat scenes considered in this 
study (path 201 row 34). 

2.4.3. Meteorological data 
Semi-hourly air temperature, relative humidity, wind speed and di-

rection, Rso and precipitation data was required for the 2015 irrigation 
season to run METRIC-GIS. These data were obtained from the Santaella 
weather station (37° 31.330 N, 4° 53.120 W) and were supplied by the 
Agroclimatic Information Network of Andalusia (Red de Información 
Agroclimática de Andalucía, RIA; Gavilán et al., 2006). For this study, a 
Quality Analysis/Quality Control (QA/QC) was conducted on the semi-
hourly values collected from the Santaella weather station. This analy-
sis was performed using the QA/QC module v.2.0 of the RefET software 
v.4.1 (Allen, 2015; Li and Allen, 2015). The QA/QC process involved the 
visual analysis of reported Rso versus a theoretical clear sky estimate, vi-
sual comparison of air temperature with computed dewpoint tempera-
ture, and visual scanning of semi-hourly RH and wind speed data. Addi-
tionally, the RefET software (Allen, 2015) was used to calculate reference 

Table 1 Date and satellite of the Landsat scenes used in the study. 

Date  DOY  Satellite 

March 9th, 2015  68  Landsat 7 
April 2nd, 2015  92  Landsat 8 
June 29th, 2015  180  Landsat 7 
July 7th, 2015  188  Landsat 8 
July 15th, 2015  196  Landsat 7 
July 23rd, 2015  204  Landsat 8 
July 31st, 2015  212  Landsat 7 
August 16th, 2015  228  Landsat 7 
September 1st, 2015  244  Landsat 7 
September 25th, 2015  268  Landsat 8
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evapotranspiration using the FAO-56 Penman-Monteith equation ap-
plied to the alfalfa reference crop. The alfalfa reference is needed to es-
tablish maximum ET values in the image and to compute an hourly and 
daily soil water balance in METRIC that is used to assign an ET value to 
a bare soil condition in the vicinity of the weather station. The alfalfa 
reference ET is generally 20–40% higher than the clipped grass refer-
ence ET (ASCE-EWRI, 2005).  

Additionally, a theoretical crop coefficient curve for maize with Kc 
values tabulated from the FAO-56 document (Allen et al., 1998) for the 
different maize crop stages was built and compared with the Kc curve 
obtained by sampling fields for ET produced by the METRIC-GIS appli-
cation. A grass-reference-based Kc was computed from METRIC-GIS by 
dividing sampled ET by the grass reference ET. Due to the planting date 
variability among the 25 considered maize field, crop stages length used 
to build the theoretical Kc curve were determined by maintaining the 
proportion of each crop stage in relation to the total crop development 
stage length. The Kc values for initial (Kc, ini), mid (Kc, mid) and late-sea-
son (Kc, late) crop stages were 0.30, 1.20 and 0.50, respectively (Allen et 
al., 1998). Due to average climatic conditions in the study area for the 
considered period did not differ greatly from those indicated by Allen 
et al. (1998), no specific climatic adjustment was applied. 

2.5. Statistical analysis 

METRIC-GIS versus METRICerdas comparisons were assessed using mean 
bias error (ME; eq. (7)), root mean squared error (RMSE, eq. (8)), and 
coefficient of determination (R2). Additionally, besides the abovemen-
tioned statistical indicators, for the comparison between Kc curves de-
rived from METRIC-GIS and from FAO56, the intercept and slope terms 
of the obtained relationships were considered (a and b terms in a typi-
cal linear function, y   =  a + bx, respectively). 

ME  =  ∑n
i=1 Si – Mi                                          (7) 

                                                                                  
n

RMSE  =  √ ∑n
i=1 (Si – Mi )2                                   (8) 

                                                                               n
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3. Results 

3.1. Practical validation 

Fig. 7 shows the comparison between the energy balance components 
derived from METRICerdas and from METRIC-GIS. The performance of 
both versions was identical, with relationships for all major energy bal-
ance components coinciding with the 1:1 line (intercept and slope terms 
equal to 0.00 and 1.00, respectively), R2 values equal to 1.00 and RMSE 
equal to 0.00 W m–2 (or mm day–1 for ETc). Additionally, the different 
components derived from METRIC-GIS were unbiased, since ME was 

Fig. 7. Relationship between Rn, G, H and ETc obtained from METRICerdas and MET-
RIC-GIS for the Landsat 8 scene of the DOY 188 of 2015 (Path 201 Row 34). Grey lines 
represent the 1:1 relationships.
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equal to 0 W m–2 (or mm day–1 for ETc). Computationally, the time spent 
in the simulation using METRIC-GIS was 50% lower than when using 
METRICerdas. 

3.2. Crop coefficients curves and variability analysis 

Using METRIC-GIS, the energy balance components and Kc for each date 
were produced and sampled for the 25 maize fields evaluated. Averag-
ing all plots during the irrigation season, Rn ranged from 404 to 631 W 
m–2 over the irrigation season; G from 43 to 100 W m–2; and H from 55 
to 291 W m–2. These values resulted in ETc ranging from 0.88 (at the be-
ginning of the season) to 9.55 mm day–1 (at the end of July; DOY 204), 
and Kc ranging from 0.34 to 1.20, respectively. The spatial distribution of 
Kc for the days when clear-sky satellite images were available is shown 
in Fig. 8.   

Fig. 9 shows the temporal evolution of mean, minimum and maxi-
mum Kc values for the 25 maize fields during the irrigation season and 
the variability among fields. It is observed that the variation among fields 
was higher during the crop development stage and the late season stage 
due to differences in irrigation scheduling, crop development rates and 
spatial distribution of rainfall, whereas this variability was reduced dur-
ing the mid-season stage when nearly all fields were at full ground cover. 
Variation among fields is represented by the different thicknesses of the 
grey areas (Fig. 9). 

A RMSE value of 0.18 was obtained when comparing the mean Kc 
curve with the theoretical one proposed by Allen et al. (1998) over the 
ten image dates. Additionally, most of the time (56%), the theoretical Kc 
curve was included within the range of the observed Kc values (Fig. 9), 
experiencing a small underestimation during the initial and crop devel-
opment stages (from DOY 83 to DOY 116; ME equal to –0.26) and a slight 
overestimation mainly during the mid-season stage (from DOY 155 to 
185 and from DOY 210 to 240; ME equal to 0.21). 

Additionally, an example of the intra-field variability is shown in Fig. 
9, where the Kc values within the maize plot ranged from 0.15, coincid-
ing with an area within the plot that was not cultivated; to values close 
to 1.08 in areas where the maize biomass was highest. 
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Fig. 8. Crop coefficient (Kc) image 
for a grass reference ET basis ob-
tained from METRIC-GIS for each 
day considered in the study. Red 
outlines refer to the maize fields 
selected for comparison to the tra-
ditional FAO56 Kc method. 
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4. Discussion 

METRIC-GIS has been able to reproduce traditional METRICerdas energy 
balance and ET estimates with lower computing time and using a sim-
plified data entry and handling procedure for reducing potential user 
errors in the application of METRIC model. 

METRIC-GIS has been able to assess the temporal evolution of Kc in 
accordance with the phenological development of maize. Low Kc val-
ues were obtained during the initial stage (≈0.6), increasing progres-
sively during the development phase reaching its maximum value during 
the mid-stage (≈1.0) and experiencing a decrease during the late phase. 
The maize Kc values derived from METRIC-GIS agreed with those pro-
posed by Allen et al. (1998). Higher estimation observed during the crop 

Fig. 9. Temporal evolution of the mean (solid black line), range (grey area), and stan-
dard deviation (whiskers) for Kc over the 25 maize fields evaluated obtained from 
METRIC-GIS, and precipitation (vertical blue bars). The red line represents the theo-
retical FAO-56-based curve for maize adjusted for the observed growth stages length. 
Ini, dev, mid and late refer to initial, development, mid and late-season crop stages, re-
spectively. White dots represent DOY when a clear-sky satellite image was available. 
The raster in the Figure corresponds with an example of Kc map in a single maize field 
for the DOY 188.   
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development stages than with standard FAO56 approach may have been 
due to the occurrence of more rainfall during that period or more sur-
face wetting from drip irrigation than is assumed in the standard FAO-
56 single Kc value for the initial period. The period of maximum Kc from 
METRIC-GIS was much shorter than that estimated from FAO-56, where 
the peak period lasted only about 15 days (between two image dates) 
with METRIC-GIS as compared to about 70 days from FAO-56. 

In addition, whereas METRIC-GIS determines the actual ET and there-
fore can be employed to identify non-optimal field conditions, the FAO-
56 methodology assumes a pristine crop condition when developing 
crop coefficients and is not based on individual field observations. Pre-
vious studies in the area integrating field measurements, remote sens-
ing and modelling have confirmed that maize is often not cultivated un-
der optimal and full irrigation conditions in all the fields (Santos et al., 
2008; García-Vila et al., 2008; Lorite et al., 2012). Thus, for fields culti-
vated with maize in the Genil-Cabra Irrigation Scheme, the average ra-
tio between irrigation supply and optimal irrigation supply ranged be-
tween 0.8 and 1.0, but around 35% of the maize fields were irrigated 
under deficit irrigation strategies. The causes associated with farmer 
behavior are described in Lorite et al. (2012) and are mainly related to 
poor irrigation management carried out by the farmers. Thus, although 
a significant number of fields were managed under optimal conditions, 
a number of fields were managed under deficit irrigation strategies. This 
behavior is confirmed in our study. The elevated number of fields prac-
ticing deficit irrigation generated an averaged crop coefficient during 
mid-season that was below the values indicated in FAO56.   

Another difference between METRIC-GIS and FAO56 methodologies 
lies in the way these approaches are extended to other regions with sim-
ilar or different climates. Thus, whereas METRIC-GIS intrinsically con-
siders the spatial/climate variability since it calibrates itself accordingly 
to the hot and cold pixel conditions (that change from place to place), 
the FAO56 approach needs to adjust Kc according to the specific mete-
orological conditions and local crop management and phenology (as 
indicated Allen et al. (1998)). Moreover, using METRIC-GIS allows the 
consideration of the spatial variability component, which is generally 
neglected when applying only numerical methods (Allen et al., 1998) 
without field observations. This issue has been previously highlighted 
by other authors who have incorporated a spatial component into the 
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FAO-56 approach by the utilization of remote sensing and GIS technolo-
gies (Gonzalez-Dugo et al., 2009; Campos et al., 2010; Santos et al., 2010; 
Ramírez-Cuesta et al., 2019a). The variability observed in Kc determined 
from METRIC-GIS among the analyzed maize fields was mainly due to 
differences in the irrigation amount, crop management practices, plant-
ing and harvesting dates, and soil characteristics; which influenced the 
crop development status of the different maize fields for each satellite 
date. The identification of this variability is uniquely possible consider-
ing tools as remote sensing, that evaluate huge areas at the same time 
with the same sensors. 

The results obtained from the METRIC-GIS toolbox were the same 
as those from METRICerdas. The use of METRIC-GIS removes the need 
for using an external spreadsheet and lets the user introduce more 
easily the required inputs, using a user-friendly interface. Addition-
ally, in models performing internalized calibrations, as METRIC-GIS, 
the proper selection of the anchor pixels results critical. Thus, the iden-
tification of potential calibration and pixels review as facilitated with 
the new tool provides a useful alternative to ensure that selected pix-
els meet the established requirements (Kjaersgaard et al., 2009; Al-
len et al., 2013a). In addition, ArcGIS licenses and software are more 
commonly in use than ERDAS. METRICerdas follows the perspective of 
many models developed for research purposes, which do not pay as 
much special attention to the model usability, being more focused on 
the model background and development (Jones et al., 2016). However, 
visualization and user-friendliness of output products are critical for 
end-users, including new users (Antle et al., 2017; Huang et al., 2018). 
METRIC-GIS pays special attention to this need, with outputs automati-
cally added with an appropriate symbology and using a common raster 
format (Tagged Image File Format; TIF) to the viewer window of Arc-
GIS. This results in easier interpretation and analysis of the outputs for 
a non-specialized user. Additionally, this format allow managing MET-
RIC-GIS outputs in other image processing software (eCognition, ENVI, 
ERDAS Imagine, IDRISI or PCI Geomatica), which favors the interoper-
ability of the results obtained. Future improvements will include the 
automation of the satellite image downloading, and the adaptation of 
the model to be used with high-resolution images obtained from air-
craft or drone. This will reduce user-intervention requirements, facili-
tating the use of METRIC-GIS by less experienced operators. Regarding 
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the METRIC algorithm itself, this model was originally developed for 
being applied over relatively homogeneous crops having full-vegetated 
ground cover. However, more research is needed in relation to the char-
acterization of heterogeneous systems where the energy balance is 
more complex (Santos et al., 2012; Jimenez-Bello et al., 2015), espe-
cially when coarse pixel sizes are used, not being possible to quantify 
within tree canopy variability. In this regard, the enhancement of the 
spatial resolution resulting from using aircraft or drones will allow 
identifying multiple pure pixel within a single tree canopy (Gonzalez-
Dugo et al., 2012; Conesa et al., 2019). 

Under mountain terrain conditions, components of sensible heat 
transfer such as roughness length, showed higher variability, and then, 
higher uncertainties in the outputs model were identified (Allen and 
Trezza, 2011). Moreover, most of the agricultural areas located at moun-
tain areas are impacted by additional uncertainties such as the study of 
woody crops considering energy balance approaches based on satellite 
images (Santos et al., 2012). Due to these limitations, the METRIC ver-
sion for flat areas, a more validated and simpler version, was consid-
ered in this study for facilitating the widespread use of METRIC in ag-
ricultural areas.  

The analysis of large irrigation districts considering simulation mod-
els often requires long processing times, especially for complex mod-
els. This issue has been pointed out as an important limitation in the 
use of many other models (Jones et al., 2016; Longo et al., 2016; Ding et 
al., 2018). The incorporation of METRIC into a geographic information 
system (GIS) as METRIC-GIS reduced computational time by up to 50% 
when compared with METRICerdas, providing an additional advantage in 
the use of the proposed tool. Currently, METRIC-GIS is implemented in 
ArcGIS because this software is one of the most used GIS worldwide for 
environmental modelling processes (Zeng et al., 2007; Maguire, 2008; 
Roberts et al., 2010; Panda et al., 2019; Feng et al., 2020). Nonetheless, 
since ArcGIS uses python as a programming language, METRIC-GIS can 
be migrated to other platforms using the same language (e.g. open-soft-
ware systems such as Quantum Geographical Information System; QGIS), 
expanding the operational possibilities of the tool. 

The developed tool aims to be an alternative to the already existing 
platforms that use METRIC, as the case of the Earth Engine Evapotrans-
piration Flux, EEFlux, on the Google Earth Engine (Allen et al., 2015; 
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Foolad et al., 2018). One of the major differences between EEFlux or 
other solutions able to process hundreds of satellite images at once 
(Cunha et al., 2020) and the METRIC-GIS tool developed in this man-
uscript lies in the way the extreme pixels are determined. In the MET-
RIC-GIS tool, “2a. Sample Pixel Identification” and “2b. Identified Pixels 
Sampling” sub-models are used for the identification of potential cali-
bration and review pixels (Kjaersgaard et al., 2009; Allen et al., 2013a). 
The manual anchor pixel selection approach is also allowed in order to 
avoid possible uncertainties derived from automatic selection and also 
to provide the users more flexibility when running the model (for ex-
ample, modifying the Kc values assigned to the extreme pixels). Addi-
tionally, METRIC-GIS allows expanding or refining the user-selected op-
tions in case reanalysis of the current images is required. In addition, 
neither internet connection (if the satellite images has been previously 
downloaded) nor license agreements (other than the software ArcGIS 
license) are required. 

5. Conclusion 

In this study, a novel ArcGIS toolbox implementing the METRIC energy 
balance model, named METRIC-GIS, was developed and tested in a 
semi-arid environment (Cordoba, Spain). The energy balance compo-
nents obtained from METRIC-GIS were validated with values derived 
from the original METRICerdas version and resultant Kc values were 
compared with those proposed by the FAO-56 approach. The main 
keypoints to be drawn from this study are: 

•  Energy balance components simulated with METRIC-GIS were iden-
tical to values obtained when using METRICerdas, eliminating the 
need for the ERDAS modelmaker system and the use of an exter-
nal spreadsheet. The METRIC-GIS implementation also facilitates 
the input introduction reducing potential user errors. 

•  Computational time was reduced by up to 50% using METRIC-GIS 
when compared with METRICerdas. 

•  The identification of potential calibration and pixels review as fa-
cilitated with the new tool provides a useful alternative to ensure 
that selected pixels meet the stablished requirements. 
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•  Maize Kc values derived from METRIC-GIS agreed statistically with 
those tabulated in the FAO-56 document, with the advantage of 
providing information regarding the spatial component related to 
irrigation/agronomical management at field scale. 
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