
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Papers in Natural Resources Natural Resources, School of 

2015 

Fitting measured evapotranspiration data to the FAO56 dual crop Fitting measured evapotranspiration data to the FAO56 dual crop 

coefficient method coefficient method 

R G. Allen 
University of Idaho, RAllen@kimberly.uidaho.edu 

Ayse Kilic 
University of Nebraska-Lincoln, akilic@unl.edu 

Andrew Suyker 
University of Nebraska - Lincoln, asuyker1@unl.edu 

Jane A. Okalebo 
University of Nebraska-Lincoln, JANE.OKALEBO@GMAIL.COM 

Follow this and additional works at: https://digitalcommons.unl.edu/natrespapers 

 Part of the Natural Resources and Conservation Commons, Natural Resources Management and 

Policy Commons, and the Other Environmental Sciences Commons 

Allen, R G.; Kilic, Ayse; Suyker, Andrew; and Okalebo, Jane A., "Fitting measured evapotranspiration data to 
the FAO56 dual crop coefficient method" (2015). Papers in Natural Resources. 1483. 
https://digitalcommons.unl.edu/natrespapers/1483 

This Article is brought to you for free and open access by the Natural Resources, School of at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural 
Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/natrespapers
https://digitalcommons.unl.edu/natres
https://digitalcommons.unl.edu/natrespapers?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1483&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/168?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1483&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1483&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1483&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1483&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/natrespapers/1483?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F1483&utm_medium=PDF&utm_campaign=PDFCoverPages


2015 ASABE Irrigation Symposium 

An ASABE Meeting Presentation 

 

Paper Number: 152143520 

Fitting measured evapotranspiration data to the FAO56 dual crop 
coefficient method 

 
Richard G. Allen1, Ayse Kilic2, Andy Suyker3 and Jane Okalebo4 

1University of Idaho, 3793 N 3600 E., Kimberly, ID 83341 
2University of Nebraska-Lincoln, 311 Hardin Hall, Lincoln, NE 68583-0973 
3University of Nebraska-Lincoln, 806 Hardin Hall, Lincoln, NE 68583-0973 
4University of Nebraska-Lincoln, 702 Hardin Hall, Lincoln, NE 68583-0973 

 

 

Written for presentation at the 

Emerging Technologies for Sustainable Irrigation 

A joint ASABE / IA Irrigation Symposium 

Long Beach, California 

November 10 – 12, 2015 

 

Abstract. The FAO-56 publication of the UN Food and Agriculture Organization contains guidelines on constructing 
and applying a ‘dual crop coefficient’ method to characterize the behavior of evapotranspiration (ET) on a day to day 
basis.  The dual crop coefficient (Kc) method substantially improves the ability to fit simulated with measured data, 
as compared to the ‘single’ Kc method, by partitioning evaporation from soil (Es) from transpiration from vegetation.  
This permits the separate estimation of Es when there are known wetting events from precipitation and irrigation and 
assists in explaining behavior of measured data.  The application of the dual Kc method is relatively straight forward, 
especially when applied using the straight-line segment method for the basal Kc curve, Kcb.  Illustrations are given on 
fitting the dual Kc method and Kcb curve to daily ET data for irrigated and rainfed corn crops near Mead, Nebraska 
measured by eddy covariance and sensitivity to various soil and root zone parameters.  Assessment of transferring Kcb 
curve parameters to other fields and years indicates that soil and root zone parameters are relatively transferrable with 
little modification, whereas lengths of the four crop growth stages do vary from year to year due to differences in 
cultivar type and possibly differences in weather. 
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Introduction 

The crop coefficient x reference ET method has proven to be a successful and practical method for estimating daily 

evapotranspiration (ET) for irrigated and rainfed crops.  The crop coefficient (Kc) having a basis of reference crop 

ETref was clarified in 1968 (Jensen 1968) and was first used in a computerized irrigation scheduling program (Jensen 

1969; Jensen et al. 1970; Jensen et al. 1971).  Numerous publications over the past decades have focused on measuring 

ET and calculating associated crop coefficients.  Various ET measurement methods have been used, including eddy 

covariance, Bowen ratio, lysimeters and remote sensing. The primary factor causing an increase in the crop coefficient 

is an increase in plant cover or leaf-area per unit area (LAI) as the crop develops, resulting in a decrease in bulk surface 

resistance.  Most publications on crop coefficient ‘curves’ have presented the Kc as a function of some form of absolute 

or scaled time-basis.   

When applying the standardized reference ET equation under humid conditions, where a majority of energy for the 

ET process is from net radiation, the Kc for large expanses of similar vegetation does not usually exceed about 1.0 to 

1.1 relative to the alfalfa reference and about 1.2 relative to the grass reference.  In dry climates, where additional 

advection of warm dry air can occur to increase ET from irrigated surfaces, the Kc still does not exceed about 1.0 to 

1.1 relative to the alfalfa reference but can reach maximum values of about 1.3 to 1.4 relative to the grass reference. 

The reason for the near constant 1.0 to 1.1 crop coefficients for the alfalfa reference is that the alfalfa reference crop 

has about the same albedo, leaf-area-index (LAI) and roughness as most agricultural crops at full cover and therefore 

converts similar amounts of radiant energy and sensible heat to vapor transfer.  An expanse of reference crop 

(especially alfalfa) will approach the maximum conversion of available energy into latent heat, λE, so that the ratio of 

λE for any other tall, leafy crop to alfalfa λE will be near 1.0.  This observation is born out in viewing the maximum 

values for Kc reported by Wright (1982), where none of Wright's Kc's, based on the alfalfa reference, exceed 1.05 when 

averaged over weekly or longer periods.  In the case of the grass reference, where the vegetation is shorter and LAI 

may be less, values for Kc may approach 1.3 for tall, dense crops under arid and semiarid conditions (Doorenbos and 

Pruitt 1977; Allen et al. 1998).  

The dual Kc method (Wright 1982, Allen et al., 1998) parses the Kc into a basal Kcb value that represents primarily the 

transpiration component of ET plus a small evaporation component from soil that is visually dry at the surface and a 

soil evaporation value, Ke,that represents primarily evaporation from exposed soil.   The application of the dual Kc 

procedure requires adjustment for wet soil effects after rain or irrigation, but results in more accurate estimates of ETc 

on a daily basis for use in soil water modeling and irrigation scheduling than using mean coefficients in which the 

effects of local rainfall or irrigation frequencies must be implicitly included.  The total crop coefficient, Kc is computed 

from Kcb as: 

  ecbsc KKKK   (1) 

where Ks is a dimensionless coefficient dependent on available soil water and Ke is a coefficient to adjust for increased 

evaporation from wet soil immediately after rain or irrigation.  The value for Ks is 1 unless available soil water limits 

transpiration, in which case it has a value less than 1. Potential ETc is estimated as ETc = Kc ETref when Ks in eq. 1 
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equals 1. The values for Ke represent the "spikes" shown in fig. 1.  Estimation of Ke for bare soil conditions is described 

in Allen et al., (1998, 2005) and Allen (2011) via the FAO-56 Ke model: 
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where Ke is the soil evaporation coefficient, Kcb is the basal crop coefficient, Kc max is the maximum value of Kc 

following rain or irrigation, Ks is a reduction coefficient to account for reduced transpiration under soil water shortage, 

Kr is a dimensionless evaporation reduction coefficient [0-1] and Ks is a dimensionless soil water stress factor [0-1].  

few is the fraction of soil wetted by an irrigation or precipitation event [0-1]. During the falling rate stage, where De > 

REW, the evaporation rate is estimated in proportion to the amount of water remaining in the surface soil layer, and 

Kr is calculated as: 
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where De(i-1) is the cumulative depth of evaporation at the end of timestep (i – 1), representing the previous timestep 

and Fstage 1 is the fraction of the time step (day or hour) that resides in stage 1 evaporation.  1- Fstage 1 of the 

timestep resides in stage 2.  The use of Fstage 1 is an extension to the original FAO-56 model (Allen et al. 2011) to 

provide better definition of the transition from stage 1 to stage 2 drying during a timestep and provides a more accurate, 

averaged value for Kr during that transition timestep.  TEW is total evaporable water, mm, from the top soil ‘slab’ and 

REW is readily evaporable water, mm from the same slab, as defined in Allen et al., (1998) and Allen (2011). 

 

Figure 1.  Schematic of the FAO-56 style dual Kc procedure showing the basal Kcb curve, evaporation (Ke) spikes over 
time. 
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Kc max is used in eq. 2 to estimate the maximum value for Kc following rain or irrigation, under conditions of either 

bare soil or some degree of vegetation cover.  The value for Kc max is governed by the amount of energy available for 

evaporation of water, which is largely encapsulated by reference ETref.  Because Kc is the ratio of ET to ETref , the 

value for Kc max is not expected to exceed 1.0 to 1.3.  Kc max for the tall reference ETr is estimated as (Allen et al., 2011): 

    Kc max r = max (Kc max bare, {Kcbr + 0.05})    (4) 

where Kcbr denotes a basal Kcb used with the tall reference, ETr. and Kc max bare is the maximum Kc expected for bare, 

wet soil.  That value is often set to 1.0 for use with the tall reference.  Eq. 4 requires that Kc max is greater than or equal 

to the sum Kcb + 0.05, suggesting that wet soil increases the Kc value over Kcb by about 0.05 following complete 

wetting of the soil surface, even during periods of full ground cover.  In the analyses of this paper, the value for Kc max 

bare was varied to evaluate sensitivity. 

The purpose of this paper is threefold: 1) Illustrate the capability of the dual Kc method to simulate measured daily 

ET for corn crops in eastern Nebraska in a relatively consistent, accurate and straight forward manner; 2) illustrate the 

process of fitting basal Kcb curves and soil parameters relevant to the dual Kc procedure to measured data and the 

relative sensitivity of estimates to these parameters; 3) recommend dual Kc settings for midwestern corn crops based 

on the ASCE Penman-Monteith tall reference crop. 

Materials and Methods 

Daily ET measurements were obtained for three field sites near Mead, Nebraska operated by the University of 

Nebraska as part of long term ET, energy balance and carbon sequestration studies (Suyker and Verma 2008).  The 

fields are located within 1.6 km of one another at the University of Nebraska Agricultural Research and Development 

Center and are instrumented with eddy covariance systems and other support equipment (Suyker and Verma 2008). 

Two 64 ha fields (sites 1 and 2) are irrigated with center pivot systems and the third 64 ha field (site 3) relies on 

rainfall, only.  The fields employ minimum tillage operations, where a disking was done in 2001 to homogenize the 

top 0.1 m of soil, incorporate P and K fertilizers and previously accumulated surface residues. Between 2001 and 

2005, the sites were under no-till management (Suyker and Verma 2008).  Additional tillage was conducted in 2005 

to incorporate excess organic mulch.   The crops in the fields are under a corn and soybean rotation for two sites and 

a continuous corn rotation for a third field.  Years 2003, 2005 and 2007 had corn grown in all three fields, and were 

therefore selected for analysis. 

The soil type of the area is a deep silty clay loam comprised of Yutan (fine-silty), Tomek (fine), Filbert (fine) and 

Filmore (fine) (http://ameriflux.ornl.gov/fullsiteinfo.php?sid=74).  The fields have gentle slopes, with general location 

of 41.18o N, 96.44o W, and elevation of 360 m.  The area is relatively windy during April and May, with wind speed 

at 3 m averaging 3-5 m s-1, and is relatively calm during June – August with wind speeds averaging 2 m s-1 or less. 

Eddy covariance systems were used to determine measurements of latent heat (LE), sensible heat (H), and momentum 

fluxes using an omnidirectional three dimensional sonic anemometer (Model R3: Gill Instruments Ltd., Lymington, 
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UK) and an open-path infrared CO2/H2O gas analyzing system (Model LI7500: Li-Cor Inc., Lincoln, NE) (Suyker 

and Verma 2008).  The eddy covariance sensors were mounted 3 m above the ground when the crop canopy was 

shorter than 1 m, and later moved to a height of 6 m until harvest when over maize taller than 1 m. Soil heat flux was 

measured using REBS HFT3 plates buried at 0.06 m, with measurements adjusted to the surface. Fluxes were corrected 

for inadequate sensor frequency response (Moore, 1986; Massman, 1991; Suyker and Verma, 1993) in conjunction 

with cospectra. Fluxes were adjusted for the variation in air density due to the transfer of water vapor and sensible 

heat (e.g., Webb et al., 1980).  More details of the measurements and calculations are given in Suyker et al., (2003).  

Suyker and Verma (2008) described the filling of missing data gaps, primarily using regression of H and LE against 

available energy. 

Prior to use, eddy covariance data were assessed for closure of the energy balance by computing ratios of (λE + H) to 

(Rn – G) on a 24-hour timestep, where H is sensible heat flux determined from the EC system, Rn is net radiation and 

G is soil heat flux density.  λE was then adjusted by multiplying by (Rn – G) /(λE + H) for each day.  The adjustments 

averaged about 10 to 18% upward adjustment for all three sites and years, similar to that found by Suyker and Verma 

(2008). 

In 2003, maize Pioneer variety 33B51 was planted May 13, 14, 15 on sites 1, 2 and 3, and harvested October 27, 23 

and October 13 for sites 1, 2 and 3.  Planting populations were 77,000, 78,000 and 58,000 plants ha-1 for sites 1, 2 and 

3 and nitrogen applications were 233, 169 and 90 kg N ha-1. Grain yields were 12, 14 and 8 MG ha-1 (Suyker and 

Verma 2008).  Measured leaf area index, LAI, reached 3 m2 m-2 on about June 30, 2003, and reached 5 on about July 

7, with a peak of 5.5 for the two irrigated sites.  LAI began declining about August 20 and declined to 1 on about 

October 5, 2003.  Maximum LAI was 4.3 for the rainfed site. Planting dates and densities were similar in 2005 and 

2007. In 2005, LAI reached a maximum of about 5 for the two irrigated sites and 4.3 for the rainfed site. Planting 

dates in 2005 were May 4, May 2 and April 26 for sites 1, 2 and 3. Harvests were October 12, 17 and 17. Planting 

dates in 2007 were May 1, 2 and 2. 

Eddy covariance data from the three Mead sites were downloaded from the Mead Ameriflux sites maintained by the 

University of Nebraska in conjunction with the Oak Ridge National Labs and Ameriflux system, for example, 

ftp://cdiac.ornl.gov//pub/ameriflux/data/Level1/Sites_ByName//Mead_Irrigated_Rotation/.  Daily weather data for 

computing reference ET were downloaded from the Univ. Nebraska High Plains Regional Climate Center (HPRCC).  

Those data were quality assessed using standard screening procedures of ASCE (2005) and daily solar radiation, Rs, 

was adjusted using a theoretical clear sky curve as a basis.  Adjustments to Rs required as much as 10% upward 

adjustment, which impacted calculations for ETr.  Reference ETr was calculated using daily timesteps using the ASCE 

Penman-Monteith method for a tall reference crop (alfalfa).  Because the HPRCC does not report daily mean vapor 

pressure or dewpoint temperature, but rather daily mean relative humidity, daily mean vapor pressure was computed 

from hourly weather data from the HPRCC and was entered into the ETr calculations. 
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The Crop Coefficient Spreadsheet and Procedure 

A spreadsheet published in 1998 with FAO-56 and available at web site 

http://extension.uidaho.edu/kimberly/2013/04/spreadsheets-supporting-fao-56-example-calculations/ was utilized in 

this study, with the following modifications: 

1. The Kc basis was converted to an alfalfa (tall reference) basis rather than the original grass reference basis.   
2. The spreadsheet was modified to link to daily ET data based on the Mead eddy covariance measurements 
3. Graphical summaries were updated. 

Figure 2 shows a screenshot of the spreadsheet where colored areas are primary places where parameters are specified 

regarding the lengths and magnitude of the linear Kcb curve and parameters describing soil and rooting properties. 

 

Procedure for fitting daily simulated Kc to measured values. 

The procedure for fitting the simulated Kc to measured values was as follows: 
1. Linking of data columns to daily reference ET, precipitation, ET measurements and documented irrigation 

dates. 
2. Calculating ‘measured Kc’ by dividing measured ET, following adjustment for energy balance closure, by 

daily reference ET. 
3. For a presumed midseason Kcb of 1.05 and beginning and ending Kcb values of 0.15, fitting the Kcb curve to 

the measured Kc data for the two irrigated sites by adjusting the four "L" stage length values.   
4. Adjustment of the Kcb value for midseason based on measured Kc. 

 
Data from irrigated sites were used to determine best stage lengths and value for the midseason Kcb since 
there was generally little or no stress for the irrigated fields.  The rainfed data exhibited substantial stress 
and therefore could not be used as a consistent target. 

The spreadsheet simulated total ET using the Kc = Ks Kcb + Ke procedure and automatically updated with changes in 

parameters, with values for Kc reflecting documented irrigation and precipitation depths. 

Following establishment of stage lengths of Kcb that tended to reproduce measured Kc, Kc was simulated for actual Kc 

= Ks Kcb + Ke for the rainfed EC treatment using a similar value for Kcb and stage lengths fitted to the irrigated 

treatment.  In addition, values for beginning and ending rooting depths, initiation of root development and attainment 

of maximum values and values for management allowable depletion for the initial period and other periods were 

established through a trial-and-error process that noted the visual fit of daily Kc vs. measured Kc as well as error 

statistics between simulated and measured.  The value for available water (AW) was calculated from field capacity 

and wilting point based on the general soil and estimated to be 170 mm m-1.  A simple, linear root growth rate was 

used in the simulations, with the start of effective growth and duration of that growth being the two parameters 

required.  Prior to start of effective root growth, a minimum specified rooting depth was applied. 
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Figure 2.  Screen shot of the daily dual Kc spreadsheet used to fit the dual FAO-56 Kc procedure to measured ET data based on an alfalfa reference basis.  The two 
figures in the spreadsheet are repeated later in this paper with larger scale.



Sensitivity analyses were conducted on what are considered to be the more uncertain, but important parameters in the dual 

Kc application to gain familiarity with the response of the simulations to their values and to assess to what degree the values 

specified for parameters helped to reproduce ET measurements. These parameters included the Kcb for midseason, Kcmax, 

TEW, REW, maximum rooting depth, time to develop maximum rooting depth, MAD and available water holding capacity 

of the soil. As one might expect, with the eight parameters having varying values, there were a number of combinations that 

produced similar outcomes.  However, the analyses helped to identify what can be considered to be central values for the 

best performing parameters.   

Parameters having the most impact on simulations and fit to measurements for the irrigated fields were a) lengths of growing 

periods and b) TEW and REW.  For the dryland treatments, results were substantially impacted by values for rooting depth, 

MAD, and dates for start and end of root growth.  These three parameters impact the timing and magnitude of the soil water 

reservoir available to the crop.  Values for rooting depth and MAD had little effect on simulations for the irrigated treatments 

since those treatments held water above MAD levels. The value for Kcb during midseason did not generally impact 

simulation results, especially for the irrigated treatments since an increase or decrease in Kcb mid, given a constant value for 

Kc max, typically changed the partitioning of E and T with little change in total ET. This occurred since the irrigations by 

center pivot were frequent enough to keep soil surface water contents at relatively high levels and therefore, values for Ke 

near maximum.  This phenomenon makes it difficult to establish a basal Kcb value for the midseason period and the 

sensitivity analyses reinforced this, as well as reinforcing the value of using the dual Kc approach to simultaneously parse 

measured ET into E and T while determining best parameters for the simulations. 

For background, FAO-56 tables for Kcb for corn are 1.15 for the midseason for a grass based reference, example growth 

stage lengths are 30/40/50/50 days for a northern, temperate climate and maximum rooting depth is estimated as 1.0 to 1.7 

m, with MAD = 55%.  Wright (1982) suggested a maximum Kcb value for corn of 0.96, when converted to the ASCE 

Penman-Monteith basis for the tall (alfalfa) reference. 

Results and Comments on Results 

A large number of sensitivity analyses were done and are expressed in the form of side-by-side graphics showing, on the 

left, the day by day simulation (blue line) and measured Kc values (tan triangles), and on the right, a scatter plot of daily ET 

from the simulation vs. daily measured ET by eddy covariance.  The scatter plots also contain slope of regression through 

the origin, R2, root mean square error (RMSE), and an estimate of the fraction of total ET that occurred in the form of 

evaporation.  The latter was calculated by taking the ratio of Ke ETr to Kc ETr when summed over the growing season.  A 

standard period length of May 10 to September 21 was used in computing statistics during the growing season, for 

consistency.  

Because of the large number of sensitivity runs, the resulting graphics are presented in a sequence of figures showing clusters 

of simulation results, and with comments preceding each figure. The large number of graphics are presented to illustrate the 

relative sensitivities of the simulations to various parameter values. 

The following sequence of results begins with year 2003 and site 2, which is an irrigated site, and using ASCE PM-based 

alfalfa reference ET following adjustment of solar radiation based on QAQC analyses as recommended in ASCE (2005).  

The value for Kcmax was initially set to 1.20, which is a relatively high value, and stronger than generally recommended in 

practice.  The 1.20 value was selected to cause simulated Kc on ‘wet’ days to reach many of the ‘measured’ Kc values during 

midseason.  Values for TEW and REW were set to 15 mm and 4 mm to reflect the impact of organic mulch on the surface 
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in reducing total evaporable depths during stage 1 and stage 2.  Sensitivity analyses were performed on these parameters 

during later steps. 

Values for growth stage lengths were visually fitted so that the linear Kcb segments just bounded the lower measured Kc 

values.  Values for the four stages, in days are: 

  Lini 30 

  Ldev 35 

  Lmid 35 
  Llate 50 

Figure 3a-e show results for a progression of Kcb mid values of 1.00, 1.05, 1.10 and 1.15 as well as 0.95.  As noted previously, 

the change in Kcb had little impact on statistics, due to the tendency of the Kcmax value of 1.20 to absorb the change in Kcb 

when the simulation indicated water in the evaporation layer due to rain or irrigation.  Increases in Kcb mid resulted in 

reductions in Ke and reductions in percentages of estimated evaporation.  This essentially ‘transferred’ evaporation during 

the partitioning of ET into transpiration. Visually, the Kcb mid = 1.0 tended to undergird the measured Kc values, whereas, 

Kcb mid = 1.05 allowed some measured Kc values to lie below the Kcb curve, but within the range of likely error in 

measurements.  Kcb mid = 0.95 (Figure 3e) left some ‘space’ between the Kcb curve and the lowest measured Kc’s during 

midseason. 

 

 

(a) 

(b) 



2013 ASABE Annual International Meeting Paper Page 2 

 

 

 

Figure 3.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Irrigated Site 2 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for (a) Kcb = 1.00, (b) 
Kcb = 1.05, (c) Kcb = 1.10, (d) Kcb = 1.15 and (e) Kcb = 0.95.  

Figure 4 shows three sets of graphics that illustrate impacts of reducing the value for Kcmax from 1.20 to 1.10 and 1.15, for 

values of Kcb of 1.00 and 1.05.  The reduction of Kcmax from 1.20 to 1.10 reduced the slope of the scatter plot by about 5% 

due to lowering of midseason maximum values for simulated Kc.  RMSE was reduced to below 1 mm/day. 

(c) 

(d) 

(e) 
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Figure 4.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Irrigated Site 2 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for (a) Kcmax = 1.10 
and Kcb = 1.00, (b) Kcmax = 1.10 and Kcb = 1.05, and (c) Kcmax = 1.15 and Kcb = 1.05.  

The set of 6 graphs in Figure 5 illustrates sensitivity analyses on values for TEW and REW, for values of Kemax = 1.15 and 

1.10, and TEW and REW set to 10 mm and 6 mm, respectively, in various combinations and for Kcb mid = 1.00 and 1.05.  

(a) 

(b) 

(c) 
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Overall, simulation error tended to be smallest with TEW = 15 mm, REW = 4 mm and Kemax = 1.00 and Kcb mid = 1.0, even 

though the Kcmax = 1.00 tended to cause simulated Kc during midseason to underestimate some measurements. Those EC 

measurements, however, contain some random error components, so that some underestimation relative to up to one-half of 

all measurements should be expected, in proportion to the expected magnitude of random measurement error. Equation 2 

for Ke adds 0.05 to Kemax, which causes the total Kc to exceed Kemax, even when Kemax is set to 1.0.  This tended to cause the 

total simulated Kc to follow measured Kc more closely on some of the higher Kc days. 

 

 

 

(a) 

(b) 

(c) 
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Figure 5.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Irrigated Site 2 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of Kemax = 
1.15 and 1.10 and (a) TEW = 15 mm and REW = 6 mm and (b) TEW = 10 mm and REW = 4 mm,  (c) with TEW = 10 mm, 
REW = 4 mm, Kcmax = 1.10 and Kcb = 1.05, (d) with TEW = 10 mm, REW = 4 mm, Kcmax = 1.10 and Kcb = 1.00, (e) with 
TEW = 15 mm, REW = 4 mm, Kcmax = 1.10 and Kcb = 1.00,  and (f) with TEW = 15 mm, REW = 4 mm, Kcmax = 1.00 and 
Kcb = 1.00.  

 

(d) 

(e) 

(f) 
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Simulations for the Mead irrigated site 1, which was one field over from site 2, were similar as for site 2, but with not quite 

as good of fit in early season or late season, as indicated in Figure 6 for similar combinations of Kcmax, Kcb, TEW and REW 

as were applied to site 2. In general, for site 1, Kcmax = 1.00, TEW = 10 mm, REW = 4 mm and Kcb mid = 1.00 tended to 

produce the best results, visually. 
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Figure 6.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Irrigated Site 1 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of  (a) TEW 
= 15 mm, REW = 4 mm, Kcmax = 1.10 and Kcb = 1.00, (b) TEW = 15 mm, REW = 4 mm, Kcmax = 1.10 and Kcb = 1.05,  (c) 
TEW = 10 mm, REW = 4 mm, Kcmax = 1.10 and Kcb = 1.00, and (d) TEW = 10 mm, REW = 4 mm, Kcmax = 1.00 and Kcb = 
1.00.  

 

Impact of QAQC on Solar Radiation 

Proper and accurate simulation of ET via the reference ET x crop coefficient method and accurate determination of values 

for Kc require accurate estimates of reference ET that serves as the basis for Kc. Reference ET is, of course, impacted by 

error in weather data inputs, and can develop a systematically high or low error bias when such a bias occurs in the weather 

data. The following three graphics show simulation results for site 2 during 2003 when using reference ET calculated using 

original Rs measurements without QAQC analyses.  Table 1 shows ratios of measured Rs on clear days to the theoretical 

clear sky curve values (Rso) for intervals of 60 days during 2003, and their impact on ETr:, where ETr_adj is the tall reference 

ET estimate following correction of Rs data.  Rs data were by dividing by adjustment ratios recomputed for clear days each 

60 day period.  That adjustment was done using the University of Idaho QAQC software that is distributed with the REF-

ET software (http://extension.uidaho.edu/kimberly/2013/04/ref-et-reference-evapotranspiration-calculator/). 

Table 1. Ratios of measured Rs on clear days to the theoretical clear sky curve values (Rso) for intervals of 60 days during 

2003, and their impact on ETr 

’60 day period Rs_clear/Rso ETr_adj/ETr_orig 

2003.001~2003.060 0.98 1.001 

2003.061~2003.120 0.94 1.012 

2003.121~2003.180 0.91 1.029 

2003.181~2003.240 0.90 1.035 

2003.241~2003.300 0.96 1.021 

2003.301~2003.365 0.96 1.030 

 

The use of original, undermeasured Rs caused ETr to be understated and consequently ‘measured’ Kc that was determined 

using ETr as a basis, to be higher in value.  The use of undermeasured Rs did have the effect of bringing the scatter plot of 

modeled to measured ET closer to a slope of 1.00 and reducing RMSE, as shown in Figure 7 below.  These figures can be 

(d) 
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compared with figures 4a and 4b previously used that were based on corrected Rs. 

 

 

 

Figure 7.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Irrigated Site 2 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) prior to correcting 
measured solar radiation for undermeasurement for values of  TEW = 15 mm, REW = 4 mm and (a) Kcmax = 1.10 and Kcb = 
1.05, (b) Kcmax = 1.10 and Kcb = 1.00, and (c) Kcmax = 1.15 and Kcb = 1.00.  

 

(a) 

(b) 

(c) 
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The Dryland site 3 

The dryland site 3 exhibited substantial stress during 2003 as illustrated in the following graphics. Because of the stress 

effects, it is not possible to establish the best values for Kcb mid.  Therefore, the strategy was followed, where the value for 

Kcmid (listed as “Kcb” on the figure) was based on the analysis of irrigated site 2, and applied to the dryland condition. 

Different values for growth stage lengths were explored for site 3, even though the cultivar was the same as for irrigated 

sites.  Different lengths could be caused by early season stresses and the more sparse planting density for the rainfed site.  

Figure 8 shows results for the following growth stage lengths.  The stage lengths suggested in FAO-56 for maize in Idaho 

are 30, 40, 50 and 50 days for the four periods. 

  Lini 25 

  Ldev 40 

  Lmid 35 

  Llate 60 

The simulation of reduction in Kc due to water stress was quite sensitive to the values used for maximum rooting depth, 

available water, and MAD level, as expected, and on the time length specified for root development.  The values determined 

for Rootmax, MAD and root development were a combination of values that caused the simulated Kc to best follow measured 

values over time.  The MAD of 60% is higher than the value of 50% recommended in FAO-56, suggesting that the particular 

corn hybrid had better tolerance to low soil water content than traditional varieties.   

 

Figure 8.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for best performing 
values of parameters as shown on the graphic.  

Figure 9 shows simulations when the length of the first growth stage (initial period) was extended by five days and the end 

period shortened by 10 days.  This alternation of stage lengths substantially improved the fit of the Kcb curve during the 

development period.  The longer period for development may be a reflection of the corn cultivar grown on the rainfed field 

as compared to the irrigated fields.   The period lengths are also more in line with those of FAO-56 noted earlier with the 

exception of the shorter midseason period which may have been caused by the water stress or may be an artifact of growing 

a shorter season variety for drought mitigation. 
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  Lini 30 

  Ldev 40 

  Lmid 35 

  Llate 50 

 

The two graphs in Figure 9 show results for Kcb mid = 1.05 and Kcb mid = 1.00 for a maximum rooting depth of 2.2 m.  That 

depth was required to cause the simulated Kc to most closely follow the measured Kc during the midseason when stress was 

large.  The simulated Kc from Eq. 1 did a good job of simulating measurements during all periods except during the last 30 

days of the season. Both Kcb = 1.00 and 1.05 performed equally well with Kcmax = 1.1.  The value for Kcmax had little effect 

since measured Kc only approached Kcmax during the initial and development periods. 

 

 

Figure 9.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for best performing 
values of parameters as shown on the graphic, for Kcb mid = 1.05 (a) and Kcb mid = 1.00 (b) and where of the first growth stage 
(initial period) was extended by five days and the end period shortened by 10 days as compared to Figure 8.  

The next sequence explored the impact of reducing maximum rooting depth to 1.5 and 2.0 m, which are more in line with 

other publications, for example, FAO-56 that suggests a maximum rooting depth range of 1.0 to 1.7 m for maize. University 

(a) 

(b) 
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of Nebraska NebGuide 1850 (http://www.ianrpubs.unl.edu/pages/publicationD.jsp?publicationId=1004) suggests a 

maximum rooting depth for corn of 5 to 6 feet which is equivalent to 1.5 to 1.8 m.   

The use of 1.5 m in Figure 10 suggests that this depth does not provide sufficient moisture reservoir to support the observed 

ET.  This assumes that the value for available water (AW) of 170 mm/m was appropriate.  Therefore, a 2.0 to 2.2 m root 

zone depth appears to be more appropriate to use with the particular rainfed corn cultivar grown. 

 

 

Figure 10.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 1.5 m, for Kcb mid = 1.00.  

The use of maximum rooting depth of 2.0 m shown in Figure 11, did not perform as well as the use of 2.2 m.  It is possible 

that the deep silty clay loam exhibited the capability of upward movement of water from below the actual rooting depth and 

therefore produced a deeper effective rooting zone value. In addition, the particular cultivar may have been bred for deep 

rooting. 

 

Figure 11.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.0 m, for Kcb mid = 1.00.  
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Use of a maximum rooting depth of 2.5 m overstated water reservoir capacity and did not allow initiation of stress until later 

than observed as shown in Figure 12 below. 

 

Figure 12.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.5 m, for Kcb mid = 1.00.  

 

Changing the MAD value during midseason from 60% to 50% had a similar effect as making the root zone more shallow, 

as shown in Figure 13, where initiation of stress appears to be overstated for some days around DOY 200.  However, the 

stress effect did tend to capture all of the lower bound of measured Kc during the midseason period.  The cause of the day-

to-day fluctuation in measured values during that period is unclear. 

 

 

Figure 13.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.2 m and MAD for midseason of 50%, for Kcb mid = 1.00.  

 

Increasing MAD to 70% delayed initiation of stress during the late vegetative development period and early midseason 

period, resulting in departure from most observed values during midseason as shown in Figure 14. 
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Figure 14.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.2 m and MAD for initial and midseason of 70%, for Kcb mid 
= 1.00.  

 

The reduction of AW to 150 mm/m had similar effect, as expected, to reducing MAD or reducing root zone depth (Figure 

15): 

 

Figure 15.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.2 m and MAD for midseason of 60%, available water of 
150 mm/m, and Kcb mid = 1.00.  

 

Increasing AW resulted in a delay of initiation of stress, similar to using a higher value for MAD as shown in Figure 16: 
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Figure 16.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.2 m and MAD for midseason of 60%, available water of 
190 mm/m, and Kcb mid = 1.00.  

 

Shortening the time for root growth from 60 days to 50 days caused more rapid expansion of the root zone and effectively 

delayed the onset of water stress during the first part of the midseason period, as shown in Figure 17.  This result indicates 

the substantial sensitivity of the simulation of stress to the dynamics of root growth.  Those dynamics are often uncertain 

and poorly modeled in many applications.  The impact can be reduced accuracy in yield estimation in models that utilize 

severity of stress during specific crop stages to estimate reductions in yield. 

 

Figure 17.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.2 m and MAD for midseason of 60%, available water of 
170 mm/m, Kcb mid = 1.00, and a 50 day period for root zone development.  

 

Lengthening the time for root growth retarded the growth rate for the root zone and accelerated the onset of stress as shownin 

Figure 18. 
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Figure 18.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.2 m and MAD for midseason of 60%, available water of 
170 mm/m, Kcb mid = 1.00, and a 70 day period for root zone development.  

 

Advancing the date of the start of rapid root growth expanded the water reservoir earlier and delayed onset of stress. 

 

Figure 19.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.2 m and MAD for midseason of 60%, available water of 
170 mm/m, Kcb mid = 1.00, a 60 day period for root zone development, and earlier start of root depth of DoY 155. 

 

Delaying the date of the start of rapid root growth to DoY 175 moved the onset of stress forward in time and reduced the 

estimated stress later in the midseason as shown in Figure 20: 
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Figure 20.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2003 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.2 m and MAD for midseason of 60%, available water of 
170 mm/m, Kcb mid = 1.00, a 60 day period for root zone development, and later start of root depth of DoY 175. 

 

In general, the use of maximum rooting depth of 2.2 m, coupled with MAD = 60% and AW = 170 mm m-1 and beginning 

of root growth on DoY 165 with 60 day duration tended to produce the best agreement between simulated and observed Kc 

during the midseason period which was entirely under stress.  Those parameter settings were used in Figures 8 and 9. 

The two large wetting events simulated towards the end of season (after day 250) were caused by two large precipitation 

events totaling 70 mm.  Those events were not as pronounced in the measured Kc values as for the simulated Kc, possibly 

due to the influence of senesced vegetation on shading the wet soil and reducing total evaporation in reality.  In contrast, the 

simulation assumed complete ‘rebound’ of the vegetation to the Kcb curve following rehydration of the soil. 

 

Year 2005 

Simulations for year 2005 were initially made using reference ET as calculated with what is referred to as the HPRCC 

Penman equation (http://www.hprcc.unl.edu/awdn/et/), which is a Penman-style equation with a linear wind function having 

wind and vapor pressure limits.  Use of that method is explored in this section to evaluate the effect of reference method on 

simulated crop ET.  It is noteworthy that the HPRCC Penman equation estimates very similar to the ASCE Standardized 

Penman-Monteith equation for the tall (alfalfa) reference. 

Growth stage length of the initial period was longer for year 2005 in order to fit observations.  The longer initial period may 

have been caused by a cooler spring with cooler soil temperature that impacted germination rate. 

 

  Lini 40 

  Ldev 30 

  Lmid 35 

  Llate 45 
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Figure 21.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Irrigated Site 1 
during the growing season of 2005 (left) and simulated ET vs. measured ET for the same days (right) with maximum rooting 
depth of 2.2 m and MAD for midseason of 60%, available water of 170 mm/m, a 60 day period for root zone development, 
and Kcb mid = 1.00 (a) and Kcb mid = 1.05 (b), with reference ET calculated using the HPRCC Penman equation.  

Simulation results were relatively good for year 2005 for the irrigated conditions, with R2 of about 0.83 and RMSE of about 

1.15 mm/day for Kcb mid of 1.00 and 1.05.  Agreement was good across the range of Kc values including for days following 

irrigation. A few spuriously high values for ‘observed’ Kc occurred due to understatement of  ETr by the HPRCC method. 

Using Reference ET based on the ASCE PM equation 

Solar radiation required adjustment in 2005, with measurements being about 5% low. Adjustments were made prior to 

calculation of the ASCE PM-based reference ET.  No adjustments to solar radiation data were required for 2003. 

Period during 2005 
Year.DoY 

Ratio of ETr prior to adjustment to 
after adjustment of solar radiation 

2005.001~2005.060 0.96 

2005.061~2005.120 0.95 

2005.121~2005.180 0.95 

2005.181~2005.240 0.95 

2005.241~2005.300 0.97 

2005.301~2005.365 1 

(a) 

(b) 
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The use of corrected solar produced about 5% stronger estimates of reference ET, which in turn produced estimates of 

observed Kc, computed as Kc = ET/ETr, to be reduced by about 5%. 

Statistics for 2005 are similar to those obtained in 2003, which also used the ASCE PM tall reference, with R2 of about 0.76 

and RMSE of about 1.2 mm/day for Kcb = 1.00 and Kcb = 1.05 (Figure 22). 

 

 

Figure 22.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Irrigated Site 1 
during the growing season of 2005 (left) and simulated ET vs. measured ET for the same days (right) with maximum rooting 
depth of 2.2 m and MAD for midseason of 60%, available water of 170 mm/m, a 60 day period for root zone development, 
and Kcb mid = 1.00 (a) and Kcb mid = 1.05 (b), with reference ET calculated using ASCE PM equation following correction of 
solar radiation data.  

 

Site 2 (Figure 23) had similar results as for site 1 with higher R2 of about 0.82 and lower RMSE of about 1.1 mm/day: 

 

 

(a) 

(b) 
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Figure 23.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Irrigated Site 2 
during the growing season of 2005 (left) and simulated ET vs. measured ET for the same days (right) with maximum rooting 
depth of 2.2 m and MAD for midseason of 60%, available water of 170 mm/m, a 60 day period for root zone development, 
and Kcb mid = 1.00 (a) and Kcb mid = 1.05 (b), with reference ET calculated using ASCE PM equation following correction of 
solar radiation data.  

 

As for 2003, Kcb = 1.00 or 1.05 did not impact the slope of the scatter plots significantly, nor the RMSE, since with the same 

Kcmax = 1.10, the upper bound on estimates during midseason was largely unchanged with high frequency wetting by 

irrigation, and Ke simulated above the Kcb was essentially exchanged for transpiration when Kcb was shifted upward.  The 

scatter plots look very similar. Is is noted that observed Kc during the initial period generally only reached values of 1.0 

following wetting events, which is a widely recommended value.  Therefore the use of Kc max of 1.0 would produce slightly 

better error statistics during that period. 

 

Consistency of Eddy Covariance Data 

The following scatter plot shows ET derived from eddy covariance at site 2 during the 2005 growing period plotted against 

ET derived from eddy covariance at site 1.  The agreement between the two fields and systems is quite good, with R2 of 

0.95, slope of 1.04 and RMSE 0.63 mm day-1.  That RMSE is about ½ of the RMSE values for simulated Kc vs. EC-based 

(a) 

(b) 
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Kc.  This suggests that most of the ‘random error’ for the simulations was likely due to random error in the simulation model 

or impact of parameter settings, rather than due to error in the EC measurements and handling. It is possible that the EC data 

exhibits some systematic error, even following the energy balance closure adjustments, which was done on a 24-hour basis 

by multiplying latent heat flux density LE by the ratio of (Rn – G) to (LE + H), where G is ground heat flux and H is sensible 

heat flux.  The consistent agreement between the two EC measurements for irrigated fields representing full water supplies 

does indicate that both systems were operating similarly in regard to instrumentation and measurements. Both fields of corn 

were of the same variety and were planted within two days of one another and irrigated with similar schedules via center 

pivot during 2005. 

 

Figure 24.  Daily measured ET from the Mead EC2 site vs. tha from the Mead EC1 site during the 2005 growing season.  

 

Dryland Site 3 in year 2005 

The corn crop for the dryland site 3 was planted about ten days earlier (4/26/2005) than the two irrigated sites.  Year 2005 

had more stress early in the midseason, with less stress late in the midseason due to several large rain events in July.  The 

Kc simulations did a relatively good job of reproducing the observed values during a majority of the season.  As with 2003, 

the simulations overestimated following rain events and lessoning of stress levels, possibly due to less than full rebound by 

the actual crop due to damaged leaves, senescence and drought conditioning.  Results for the ‘standard’ soil parameter 

settings as used in earlier figures 7 and 8 are shown in Figure 25 for year 2005.  The ASCE PM equation was used as the 

reference basis following correction of solar radiation data as noted earlier. 

The following 2 sets of graphics in Figure 26 show impacts of beginning root growth five days earlier than the standard 

DoY = 165 as applied for Figure 25.  Even a five day earlier start on root growth in either direction impacted the fit and 

prediction of the onset of stress. 
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Figure 25.  Daily simulated and measured crop coefficients vs. day of year for the Mead Dryland Site 3 during the growing 
season of 2005 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters as shown on the 
graphic, including maximum rooting depth of 2.2 m and MAD for midseason of 60%, available water of 170 mm/m, a 60 
day period for root zone development, Kcb mid = 1.00 and start of root development of DoY = 165. 

 

 

Figure 26.  Daily simulated and measured crop coefficients vs. day of year for the Mead Dryland Site 3 during the growing 
season of 2005 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters as shown on the 
graphic, including maximum rooting depth of 2.2 m and MAD for midseason of 60%, available water of 170 mm/m, a 60 
day period for root zone develop., Kcb mid = 1.00 and start of root develop. of DoY = 160 (a) and DoY = 170 (b). 

(a) 

(b) 
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Reducing rooting depth to 2 m (Figure 27) did not impact the simulation in August, since the soil was recharged to above 

MAD during that period by July rain events. 

 

 

Figure 27.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2005 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.0 m and MAD for midseason of 60%, available water of 
170 mm/m, a 60 day period for root zone development, Kcb mid = 1.00 and start of root development of DoY = 165. 

 

Year 2007 

Lengths of growth stages that best fit for year 2007 were similar between the irrigated and dryland sites, but with slight 

differences by 5 days in two stages: 

 

Irrigated: 

  Lini 30 

  Ldev 35 

  Lmid 40 

  Llate 45 
 
Dryland: 

  Lini 35 

  Ldev 35 

  Lmid 35 

  Llate 45 
 

Planting dates were essentially the same among all three sites in 2007: 5/1, 5/2, and 5/2.  

Solar radiation required 5 to 7% upward adjustment during the entire calendar year of 2007, with 11% upward adjustment 

during May and June: 
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Period during 2005 
Year.DoY 

Ratio of ETr prior to adjustment to 
after adjustment of solar radiation 

2007.001~2007.060 0.95 

2007.061~2007.120 0.93 

2007.121~2007.180 0.89 

2007.181~2007.240 0.93 

2007.241~2007.300 0.97 

2007.301~2007.365 0.93 

 

Results based on the ASCE PM reference ET are shown in Figure 28 a-d for Irrigated Sites 1 and 2 during 2007 using similar 

variation in Kcmid as conducted for the years 2003 and 2007: 

 

 

(b) 

(b) 
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Figure 28.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Irrigated Sites 1 
and 2 during the growing season of 2007 (left) and simulated ET vs. measured ET for the same days (right) for values of 
parameters as shown on the graphic, including maximum rooting depth of 2.2 m and MAD for midseason of 60%, available 
water of 170 mm/m, a 60 day period for root zone development and start of root development of DoY = 165 for Site 1 and 
Kcb mid = 1.00 (a), Site 1 and Kcb mid = 1.05 (b), Site 2 and Kcb mid = 1.00 (c) and Site 2 and Kcb mid = 1.05 (d). 

 

Values for measured Kc that lie below the Kcb = 1.00 and 1.05 line during midsummer in Figure 28 are not explained. As 

expected, fewer values lie below the Kcb line when Kcb = 1.00.  Agreement between EC of the two fields suggests that these 

data points are valid.  That they occurred for both fields might suggest either some stress occurring during irrigation events, 

or some impacts on EC measurements due to large-scale eddy mixing associated with regional advective conditions that can 

cause undermeasurement by eddy covariance (Foken et al 2010). Agreement between the EC-measured ET for the two 

irrigated fields was similar for 2007 as shown in Figure 29, with field two 3.5% lower than field one. 

 

The ASCE PM was applied using Mead HPRCC daily data from the ‘standard’ HPRCC Mead stations using mean daily 

vapor pressure estimated from summed hourly vapor pressure. 

 

 

(c) 

(d) 
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Figure 29.  Daily measured ET from the Mead EC2 site vs. tha from the Mead EC1 site during the 2007 growing season. 

The rainfed site had less stress in 2007 than in 2003 and 2005 due to more abundant rainfall during summer, as shown in 

Figure 30.  The fit is good using same parameters for rooting and soil as for previous years.  The only difference was 

adjustment to the four growth lengths for the Kcb curve.   

 

Figure 30.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2007 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.0 m and MAD for midseason of 60%, available water of 
170 mm/m, a 60 day period for root zone development, Kcb mid = 1.00 and start of root development of DoY = 165. 

 

Estimation of impact of surface mulch on evaporation losses 

The evaporation percentage was estimated to be 23% of total ET, based on the dual Kc FAO-56 simulation method, which 

suggests some opportunity to conserve water by reducing opportunities for evaporation during early season so as to convert 

it into transpiration later on during the growing season. The web site at http://fluxnet.ornl.gov/site/951 describes crop residue 

management at the Mead sites and the objective to leave 1/3 surface covered by residue. 

The settings for REW (4 mm) and TEW (15 mm) that were found to best reproduce observed ET represent some impacts of 
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surface residue that existed on the Mead fields on reducing amounts of water available for evaporation.  When more general 

settings for bare soil are used (REW = 8 mm; TEW = 25 mm (FAO-56), the estimated evaporation percentage increased by 

6% to 30% (and with worse fit with EC data).  This suggests that the surface residue did reduce total ET lost by evaporation 

from soil by 6% as compared to conventional (bare) tillage.  

 

Figure 31.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2007 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.0 m and MAD for midseason of 60%, available water of 
170 mm/m, a 60 day period for root zone development, Kcb mid = 1.00 and start of root development of DoY = 165, and with 
TEW = 25 mm and REW = 8 mm. 

 

A reduction in TEW to 10 mm improved the fit to the 2007 dryland data, as shown in Figure 32, suggesting that surface 

mulching by minimum tillage does substantially reduce evaporation losses.  In this case, evaporation from soil percentage 

was 10% less than for conventional tillage. Total ET was similar, indicating that more stored water may have been available 

for transpiration and yield increases because of the retention of crop residue on the surface. 

 

Figure 32.  Daily simulated crop coefficients and measured crop coefficients vs. day of year for the Mead Dryland Site 3 
during the growing season of 2007 (left) and simulated ET vs. measured ET for the same days (right) for values of parameters 
as shown on the graphic, including maximum rooting depth of 2.0 m and MAD for midseason of 60%, available water of 
170 mm/m, a 60 day period for root zone development, Kcb mid = 1.00 and start of root development of DoY = 165, and with 
TEW = 10 mm and REW = 4 mm. 
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Conclusions 

The dual crop coefficient approach is an efficient and capable method for simulating effects of both vegetation growth and 

wetting frequency on total evapotranspiration and water consumption.  The method provides a simple visual means of 

determining values for parameters to fit measurements.  Fitted parameters tend to be consistent from field to field and from 

year to year.  The multiplicative nature of some parameters, such as rooting depth, available water, and management allowed 

depletion creates a relatively broad range of combinations of those parameters in nearly equally fitting measured ET data.  

Examination of timing and duration of stressed reduced ET and responses to precipitation inputs can provide some indication 

of best combinations.  Similar tradeoffs exist between the value established for the midseason basal crop coefficient, Kcb mid, 

and the maximum daily Kc, Kcmax.  That additive tradeoff occurs from transfer of estimated energy consumption by 

vegetation into estimated energy consumption by evaporation from wet soil and canopy. 

Root mean squared error (RMSE) averaged about 1.1 to 1.5 mm d-1, which can be considered to be acceptable accuracy.  

RMSE of eddy covariance-determined ET from adjacent fields was 0.57 to 0.62 mm d-1, indicating that consistency, and 

hopefully accuracy, of measurements was about twice that of day-to-day accuracy of the simulations.  The application of 

the dual crop coefficient to the corn crops in eastern Nebraska suggests that the linear style FAO method for constructing a 

seasonal Kcb curve using four line segments provides sufficient accuracy, given the uncertainty in measurements and in other 

parameters such as Kcmax.  The dual Kc method provides the means to estimate the relative fraction of consumed water that 

is evaporated from soil and plant surfaces.  However uncertainty exists on the most correct partitioning between transpiration 

and evaporation according to values set for parameters.  More research is needed in this area, since reduction of evaporation 

is a relatively straight-forward means to reduce total water consumption without substantial impact on plant transpiration 

and yield. It appears that using a midseason Kcb value of 1.00 to 1.05 and Kcmax of 1.00 to 1.10 best reproduced measured 

ET from the eddy covariance stations, based on the tall alfalfa reference crop of ASCE (2005) and following QAQC of 

weather data and adjustment of eddy covariance data for energy balance closure. Best combinations of model parameters 

tended toward maximum rooting depth of 2.0 to 2.2 m, MAD for midseason of 60%, available water of 170 mm/m, a 60 

day period for root zone development, Kcb mid = 1.00 and Kc max = 1.0 or 1.10, start of root development of DoY = 165, REW 

= 4 mm and TEW = 15 mm (representing impacts of surface crop residue). 

The large number of sets of results and graphics produced provide a good glimpse of both sensitivity and consistency of 

daily ET simulations to variation in model parameters and performance among years.  The various types of variations 

explored for parameters can provide practitioners with ideas and insights and behavior of the FAO-style dual Kc method and 

ways to parameterize it to fit observed data. 
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