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Accurate crop yield estimation is important for agronomic and economic decision-making.

This study evaluated the performance of imagery data acquired using a unmanned aerial

vehicle (UAV)-based imaging system for estimating yield of maize (Zea mays L.) and the

effects of variable-rate nitrogen (N) application on crops. Images of a 27-ha maize field were

captured using a UAV with a consumer-grade RGB camera flying at ~100 m above ground

level at three maize growth stages. The collected sequential images were stitched and the

Excess Green (ExG) colour feature was extracted to develop prediction models for maize

yield and to examine the effect of the variable-rate N application. Various linear regression

models between ExG and maize yield were developed for three sample area sizes (21, 106,

and 1058 m2). The model performance was evaluated using coefficient of determination

(R2), F-test and the mean absolute percentage error (MAPE) between estimated and actual

yield. All linear regression models between ExG and yield were significant (p � 0.05). The

MAPE ranged from 6.2 to 15.1% at the three sample sizes, although R2 values were all <0.5.

Prediction error was lower at the later growth stages, as the crop approached maturity, and

at the largest sample level. The ExG image feature showed potential for evaluating the

effect of variable-rate N application on crop growth. Overall, the low-cost UAV imaging

system provided useful information for field management.

© 2019 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Crop yield prediction is important for farmers to improve crop

managementbothwithin thegrowingseasonand fromoneyear

to thenext, especially for applicationsof crop insurance,harvest

planning, grain storage requirements, cash flow budgeting, and

for determining inputs like nutrients, pesticides, and water

(Geipel, Link & Claupein, 2014). Crop yield may be estimated
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usingdestructivesamplingmethods,whichare labour intensive

and time consuming (Lauer, 2002). In many cases, yield is esti-

mated based on the expert knowledge of farmers and/or other

professionals, or yield maps from previous years (Blackmore,

2000), methods which are subjective and not accurate. In addi-

tion, crop growth models have been used to predict yield based

on historical data that might vary year by year (Corbeels, Chirat

&Messad, 2016;Krishnanetal., 2016;Wang, Li, Lu,& Fang, 2013).

With the development of remote sensing technology, various

systems have been applied for larger-scale and non-destructive

crop monitoring and measurement that can be used for yield

estimation (Aasen, Honkavaara, Lucieer, & Zarco-Tejada, 2018;

Lamb & Brown, 2001; MarketsandMarkets, 2013; Zhang &

Kovacs, 2012; Zhang, Qin, Liu, & Ustin, 2003). However, some

issues for cropyieldestimation include lowestimationaccuracy

and high cost of sensors and imaging systems.

Compared with satellite remote sensing systems, low-

altitude remote sensing systems based on UAVs have been

found appropriate for crop field scoutingwith the advantages of

lower cost, user-friendly operation, flexibility, and very-high

image resolution (less than 1 cm pixel�1) (Colomina & Molina,

2014; Jannoura, Brinkmann, Uteau, Bruns & Joergensen, 2015;

Vega, Ramı́rez, Saiz & Rosúa, 2015). UAV-based remote

sensing systems usually include various imaging sensors to

capture different types of structure and reflectance information

of crops, including visible, hyper- or multi-spectral, or thermal

cameras. Information collected from remote sensing systems

can be used to calculate different image features (e.g., colour,

spectral, temperature, and crop morphological features) for

evaluation of agronomic crop traits and performance, including

yield. Colour features derived fromvisible range ofwavelengths

(400e700 nm) have been used to recognise plant type or

discriminate fruits from background (e.g., soil, weeds)

(Jannoura et al., 2015; Woebbecke, Meyer, Vonbargen &

Mortensen, 1995; Zheng, Zhu, Huang, Guo & Qin, 2017; Zhou,

Damerow, Sun & Blanke, 2012). Spectral features based on

combinations of visible and near-infrared (700e1000 nm)

wavelengths, including vegetation indices (VIs) such as the

normalised difference vegetation index (NDVI), have often been

used to monitor crop growth or predict crop yield (Guo et al.,

2017; Nebiker, Lack, Ab€acherli & L€aderach, 2016; Panda,

Panigrahi & Ames, 2010; Xue & Su, 2017). Data from infrared

wavelengths (7500e13,000 nm) can estimate surface tempera-

ture andmaybe used to provide an early response to cropwater

stress prior to appearance of visual symptoms (Bulanon, Burks

& Alchanatis, 2008; Khanal, Fulton & Shearer, 2017; Mangus,

Sharda & Zhang, 2016; Sepulcre-Cant�o et al., 2006). In recent

years, crop height quantified from a crop surface model (CSM)

obtained using a UAV imaging system has been used to predict

yield (Feng, Zhang, Sudduth, Vories & Zhou, 2019; Huang et al.,

2016; Malambo et al., 2018; Yin, Jaja, McClure & Hayes, 2011).

Integration of multiple sensors can improve the sensing accu-

racy and reliability (Bendig et al., 2015; Maimaitijiang et al.,

2017; Pantazi, Moshou, Alexandridis, Whetton & Mouazen,

2016; Turner, Lucieer, Malenovský, King & Robinson, 2014),

but increased payload weight, cost (i.e., computing and hard-

ware) and complexity in system architecture and data analysis

(Zhang & Kovacs, 2012) are obstacles that must be overcome.

Compared with spectral, temperature, and crop morpho-

logical features, visible colour as a compositae of red-green-

blue (RGB) values, may represent the most intuitive way to

monitor the status of crops. A simple-to-use and low-cost tool

used to assess crop health and make N application recom-

mendations since the 1990s was the Leaf Colour Chart (LCC)

with four or six panels of gradient green colour

(Balasubramanian, Morales, Cruz & Abdulrachman, 1998;

Friedman, Hunt & Mutters, 2016; Shukla et al., 2004). This

widely-used measurement can be inexpensively obtained

using a consumer grade RGB camera. The crop canopy can

exhibit a different colour due to different growing conditions

and variation in chlorophyll content (H€ortensteiner & Matile,

2004, pp. 189e202). For instance, crop canopy colour has

been used to diagnose nitrogen (N) deficiency since N-defi-

cient crops are lighter green in colour than healthy crops

(Stevens, Motavalli, Scharf, Nathan&Dunn, 2002). Crop colour

features have been used to monitor crop biomass and growth

status based on single or combined indices from different

colour models, including RGB, HSI (hue, saturation, intensity)

and Lab (lightness, greenered and blueeyellow). Some ex-

amples of features include simple ratios [G/R (G-B)/(G þ B) and

(G-R)/(G þ R)], combinations [2G-R-B (2G-R-B)/(2G þ R þ B)],

normalised RGB [R/(Rþ Bþ G), G/(Rþ Bþ G) and B/(Rþ Bþ G)],

hue in HSI, and lightness in Lab (Ahmad & Reid, 1996; Du &

Noguchi, 2017; Garcı́a-Mateos, Hern�andez-Hern�andez,

Escarabajal-Henarejos, Ja�en-Terrones & Molina-Martı́nez,

2015; Gracia-Romero et al., 2017; Jannoura et al., 2015; Lee &

Lee, 2013; Meyer & Neto, 2008; Xue et al., 2017; Yang, Wang,

Zhao, Zhang, & Feng, 2015). Gracia-Romero et al. (2017) found

that RGB-based indices were the best option for evaluating

maize performance and grain yield under different phos-

phorus nutrient conditions. Additional evaluation of the use

of RGB colour features for yield estimation of various crop

under a wide range of environmental conditions is worthy of

additional study.

Mathematical models for crop yield estimation can be

divided into two main methods, i.e. classification and

regression. The classification method can use statistical or

machine-learning methods to classify crop yields into several

classes based on image features. Panda et al. (2010) classified

maize yield to low, medium and high classes by using a self-

organizing map and Supervised Kohonen Networks (SKNs)

for predicting maize yield in a 65-ha field. Pantazi et al. (2016)

classified wheat yield to low, medium and high classes by

using counter-propagation artificial neural networks, XY-

fused networks and SKNs for predicting wheat yield in a 22-

ha field. Prediction models based on machine learning are

powerful in dealing with complicated datasets with multiple

inputs and outputs (Chlingaryan, Sukkarieh & Whelan, 2018);

however, using complicated statistical algorithms increases

the potential of overfitting. One the other hand, simple

regression models, including linear regression have the fea-

tures of simplicity, expandability and acceptable perfor-

mance, which is why linear regression has often been used in

research to develop models for crop yield prediction. For

example, Yin et al. (2011) compared linear regression models

with quadratic, square root, logarithmic and exponential

models in assessing the relationship of maize yield to plant

height, and found that the linear regression model gave the

best results. Geipel et al. (2014) used three different linear

regression models for predicting maize yield based on plant
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height and crop canopy coverage. The models exhibited R2 up

to 0.74 and root mean squared error (RMSE) of prediction from

0.67 to 1.28 t ha�1 (8.8%e16.9%). Du and Noguchi (2017)

developed stepwise multiple linear regression models for

predicting wheat yield based on RGB colour indices, including

the excess green vegetation index (ExG ¼ 2G-R-B). The pub-

lished research indicates that there is high potential to use a

UAV imaging system as a tool to estimate crop yield.

The UAVmarket is growing at a fast pace and in 2017 it was

expected to triple from the annual value of $4 billion to $14

billion by 2027 (Canetta, Mattei & Guanziroli, 2017). Many

commercial services have begun providing services to farmers

and researchers for data collection and analysis. However,

commercial algorithms are often secret and proprietary, and

may have been developed for specific conditions. Therefore,

more public studies are needed to bridge the gap between the

technologies and their applications. The data provided by

companiesmay be based on limited experiments with specific

crops and field conditions. More research to confirm the po-

tential of such technologies in different environmental con-

ditions is needed. The primary objective of this investigation

was to predict maize yield using a colour feature extracted

from UAV-based consumer-grade RGB images (400e700 nm)

of a maize field. A secondary objective was to evaluate the

colour feature for distinguishing crop response to variable-

rate N application.

2. Materials and methods

2.1. Field experiment

The experiment was performed on a portion of a 36-ha

experimental field located near Centralia, Missouri, USA

(39�13046.300N, 92�07011.300W). Soils on the field using the USDA

classification (USDANRCS, 2000) were predominately Adco silt

loam (fine, smectic, mesic VerticAlbaqualfs) with 0e1% slopes

at the summit position, Mexico silty clay loam (fine, smectic,

mesic VerticEpiaqualfs) with 1e3% slopes at the back slope

position, and Mexico silt loam or silty clay loam with <1%
slope at the foot slope position. These soils are typical claypan

soils with abrupt clay-rich layers at shallow depths, and

equivalent to Luvisols using the FAO classification system

(FAO/ISRIC/ISSS, 1998). The portion of the field included in this

assessment was ~450 � 600 m2 (27 ha).

Maize (Golden Harvest G14R38-3000 GT) was planted using

a 6-row planter on April 15, 2016 at a population of 79K seeds

ha�1 on a 76-cm row spacing. Fertiliser N was broadcast

applied at planting at a fixed rate of 54 kg N ha�1, with a small

portion of the field (<6%) receiving an additional 222 kg N ha�1

to provide an N-rich reference strip used for determining in-

season variable-rate N applications. On June 3, at ~ V6

growth stage (Hanway, 1986), Fertiliser N was again broadcast

applied at a fixed rate of 54 kg N ha�1. On June 22, at ~ V10

growth stage, a variable-rate N application was side-dressed

(i.e. placed between the crop rows) on the soil surface. After

broadcasting Fertiliser on the whole field, the maize plant still

grew differently under different conditions, a function of

variable soil across the landscape impacting Nmineralization,

transport, and loss processes (Kitchen, Goulding & Shanahan,

2008). Therefore, side-dress application was used to help

those unhealthy plants growhealthy based on a ground-based

canopy reflectance sensing. The side-dress application rate

was determined using ground-based canopy reflectance sen-

sors and a decision algorithm as previously documented

(Kitchen et al., 2010; Sudduth, Drummond & Kitchen, 2015).

The working width of the Fertiliser applicator was six rows.

The Fertiliser application rate and the corresponding GPS data

were recorded at 1Hz, giving 14,665 N application data points.

Eight discrete N rates ranging from 0 to 115 kg N ha�1 on an

increment of 19 kg N ha�1 were used in the variable-rate

application. By merging those N rates that were applied on

only small areas, the field was classified into four levels of N

application. As shown in Fig. 1b, N rate Level 1 referred to

108 kg ha�1, accounting for 39.2% of field area; Level 2 referred

to 127,146 and 166 kg ha�1, accounting for 11.0% of field area;

Level 3 referred to 185, 204 and 223 kg ha�1, accounting for

10.5% of field area; and Level 4 referred to 242 kg ha�1, ac-

counting for 33.3% of field area. The spatial variation in overall

N application (i.e., combining all three applications) is illus-

trated in Fig. 1a.

Grain was harvested on September 30, 2016 with a Gleaner

R42 combine harvester (AGCO Corporation, Duluth, GA, USA),

equipped with an Ag Leader yield monitor (Ag Leader Tech-

nology, Ames, IA, USA) that recorded the geo-referenced

maize yield and grain moisture at a 1 Hz frequency. The har-

vest width was six rows, following the same 6-row swaths

used in planting and variable-rate N application. After har-

vesting, raw yield data (n ¼ 14,705) were processed with Yield

Editor software (Sudduth, Drummond & Myers, 2012) to

remove data artefacts.

2.2. RGB image collection

Images of the maize field were collected using a UAV (Phan-

tom 3, DJI, Shenzhen, China) equipped with an on-board dig-

ital RGB camera (resolution: 4000 � 3000 pixels) at sample rate

of 0.5 frame per second. RGB images were collected using the

UAV at three reproductive growth stages: kernel development

(~R2; July 12), grain filling (~R3; July 18), and physiological

maturity (~R6; August 19). The UAV system flew at a height of

100 m above ground level. A UAV flight control app (Drone-

Deploy, San Francisco, CA, USA) was used to plan the flights,

including waypoints, flight height, and camera snapshot rate,

to acquire images with 75% overlap. The sequential images

were geo-referenced using the GPS of the UAV. Images were

uploaded to a commercial cloud server (DroneDeploy) to

generate “stitched” panoramic images for further processing.

2.3. Geo-registration

To estimate the maize yield and evaluate the effect of N

application on crop growth, the geo-referenced yield data

(map) and the N application data were registered with the

imagery data collected on each of the three days. The only

connection between imagery data and ground data was the

geo-referencing information. Therefore, the GPS coordinates

of the stitched images were first adjusted using Google Earth

(Benker, Langford & Pavlis, 2011; Mohammed, Ghazi &

Mustafa, 2013). Three fixed objects in the maize field,
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including one building, one tree and one fence gate, that were

visible in all the stitched images and the Google Earth image

were selected as ground control points (GCPs), and their GPS

coordinates were extracted from Google Earth. One GCP was

set as the origin point for GPS data (xg0, yg0) and the corre-

sponding pixels in the image (xp0, yp0), and another two GCPs

were used to calculate the scale factor (kx, ky) using GPS data

(xg1, yg1) and (xg2, yg2) and two corresponding image pixels (xp1,

yp1) and (xp2, yp2). The conversion formulae used were are as

follows:

8>>><>>>:
xy pi ¼

�
xy gi � xg0

�
� kx þ xp0

yy pi ¼
�
yy gi � yg0

�
� ky þ yp0

xn pi ¼
�
xn gi � xg0

�� kx þ xp0

yn pi ¼
�
yn gi � yg0

�
� ky þ yp0

;

� kx ¼
��xp1 � xp2

�����xg1 � xg2

��
ky ¼

���yp1 � yp2

���.���yg1 � yg2

���
(1)

where, (xy_gi, yy_gi) and (xy_pi, yy_pi) are a yield GPS coordinate

and its converted image coordinate of the ith yield data, and

(xn_gi, yn_gi) and (xn_pi, yn_pi) are a N application GPS coordinate

and its converted image coordinate of the ith N application

data. The adjusted geo-referenced stitched images were

matched separately to the geo-referenced yield and N appli-

cation data. Each yield data point represented an approximate

field area of 4.6 m � 4.6 m based on the harvest width (six

rows), the travel speed of the combine harvester, and the

sampling frequency of the yield monitor. A region-of-interest

(92 � 92 pixels) in the images corresponding to each yield

point was defined as a sample cell {ðxy gi; yy giÞ , i ¼ 1, 2, 3… ny}

and was used in further analysis. As shown in Fig. 2, the blue

points in the left image were yield points distributed on the

adjusted images, and the red squares are the sample cells

corresponding to each yield point. The same procedure was

also used to define the sample cells { ðxn gi; yn giÞ , i ¼ 1, 2, 3 …,

nn} for the N application data.

2.4. Extraction of image feature

Colour features extracted from the RGB images of the three

growth stages were used to evaluate the potential of image

data for the estimation of maize yield and evaluation of

variable-rate N application. Among different existing colour

models, the RGB colour model is the most commonly used in

various applications and can be converted to other colour

spaces (e.g. HSV, HSI or Lab) through linear or nonlinear

conversion (Łuszczkiewicz-Piątek, 2014). Different combina-

tions of the three components in the RGB model have been

used to enhance the contrast of crop to background pixels for

removing backgrounds, including ExG, normalised RGB and

differences [(ReB) and (GeR)] (Jannoura et al., 2015; Zheng

et al., 2017; Zhou et al., 2012). Among the colour features,

ExG has been widely used to segment plants from back-

ground, monitor crop N stress and estimate yield (Du &

Noguchi, 2017; Geipel et al., 2014; Woebbecke et al., 1995;

Zheng et al., 2017). Given these previous findings, ExG was

selected as the colour feature for developing yield estimation

models. The mean of ExG in each sample cell as defined in

Fig. 2 was calculated as the value corresponding to the yield

data point in that cell, and the resulting data pairs were used

as data sets for modelling.

2.5. Modelling and evaluation indexes

Yield estimation models were developed using the developed

data sets (pairs) of the three growth stages separately. Various

linear and nonlinear regression models including parametric,

Fig. 1 e Illustration of total N application rate. (a) Application map, where intermediate N rates are grouped together for

visualization. (b) N rate application levels and the corresponding percentages of field area.
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least-square, polynomial, exponential and power fittings in

the Curve Fitting Toolbox of Matlab were tested to estimate

crop yield with the colour feature ExG. After comparing the

preliminary results (not reported), linear regression models

showed the least errors. Therefore, a linear regression was

used to estimate crop yield using the colour feature ExG, with

80% of the data at each stage randomly chosen as the training

data for developing the models and the remaining 20% used

for evaluating the model accuracy. The slopes and intercepts

of the models were calculated by the Curve Fitting Toolbox

based on the least squares method (Martin, 2012). The oper-

ation was repeated by choosing sequential partitions of the

data sets with a random initial value (Kamilaris & Prenafeta-

Boldú, 2018). The standardised residual e*i (Eq. (2); Hayter,

2012) of the model was analysed to characterise the distribu-

tion of the outliers in the field.

e*i y
eibs ¼ yi � byiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

ðyi�byiÞ2
n�2

s ;
Xn
i¼1

ei ¼0 (2)

where, yi is the observed values, byi is the corresponding fitted

values, and n is the number of points. Themodel performance

was evaluated using the coefficient of determination (R2), p-

value, and mean absolute percentage error (MAPE) between

estimated and measured data. The R2 was used to measure

model adequacy, the p-value was used to analyse the signifi-

cance of the model by F-test based on analysis of variance

(ANOVA) (Hayter, 2012), andMAPEwas used to evaluatemodel

accuracy. Whether the model accuracy (MAPE) was affected

by crop growth stage and area size was evaluated by ANOVA

(Hayter, 2012). The MAPE was examined at three area sizes: 1)

one sample cell per area (21 m2); 2) five sample cells per area

(106 m2); and 3) 50 sample cells per area (1058 m2). In the

testing data (20% of whole data, 12,500 � 0.2 ¼ 2500), there

were 2500 samples in 21 m2 (one sample cell per area), 500

samples in 106 m2 (five sample cells per area), and 50 samples

in1058 m2 (50 sample cells per area) as listed in Table 1. The

equations used to calculate the MAPEs are given in Table 1.

2.6. Evaluation of variable-rate fertilization

The goal of variable-rate N application is to optimise the

amount of fertiliser applied to match crop need at each point

in the field. However, crop growth and yield potential at any

given crop growth stage could vary spatially due to soil and

field topography, resulting in unique responses to N applica-

tion in different areas of the field. To evaluate crop response to

the variable-rate N application, the means and standard de-

viations of ExG within four levels (Fig. 1) of applied N were

analysed by ANOVA at each of the three crop growth stages to

examine spatial and temporal crop variation.

3. Results and discussion

3.1. Cleaned yield data

Raw yield data were cleaned using the Yield Editor 2.0 pro-

gram to eliminate artefacts of the data collection procedure

such as errors where the combine harvester entered and

exited from the crop. About 15% of the raw datawere removed

using the filters and procedures described in Sudduth et al.

(2012). The distribution of the raw yield data over the field is

shown in Fig. 3a, and the histograms of both raw and pre-

processed data are provided in Fig. 3b. The histogram of

Fig. 3b shows that data removal largely came from the tails of

the distribution and cleaned yield data was approximately

normal in distribution. Removed data (pink in Fig. 3a) were

mainly on the field edges (in the case of the south and east

edges, adjacent tree lines created resource competition be-

tween crop and trees), and along a major water flow channel

running north and south near the centre of the field.While the

crop was planted continuously through the flow channel,

persistent wet conditions during germination and emergence

resulted in a poor crop stand in this part of the field and the

area was dominated by weeds by mid-summer. Data removal

was justified because crop growth and/or stand were

compromised in these areas.

Fig. 2 e Images show an example of how a stitched image was processed into 92 £ 92 pixel sample cells for yield data, with

an area of ~ 4.6 £ 4.6 m per cell, which was equivalent to the 6-row combine width. Right photo shows one sample cell

including six rows.
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3.2. Image data processing

The stitched RGB images and ExG images for the three growth

stages (R2, R3, and R6) are shown in Fig. 4. As the crop

matured, spatial differences in the RGB images became more

apparent, with a pattern similar to the pattern of N application

(Fig. 1). There was an obvious difference between the ExG

image collected at growth stage R6 (Fig. 4f) and the ExG images

at R2 and R3 (Fig. 4d, e) because the crop colour transformed

from green to yellow as the crop developed towards physio-

logical maturity (R6). The test area of the field was approxi-

mately 450 m � 600 m for a corresponding image size of

9000 � 12,000 pixels, resulting in a resolution of ~400 pixels

m�2. The position of each yield data point on the images was

calculated according to Eq. (1), and yield points are shown in a

portion of the field as blue dots (Fig. 2, left). The sample area

corresponding to each yield point was approximately

4.6 m � 4.6 m, therefore, sample cells on the image were

defined with size 92 � 92 pixels around each yield data point

as shown by the red squares in Fig. 2. Some cells overlapped

due to GPS coordinate errors, variation in travel speed, or

changes in harvester heading. However, only a small portion

of each cell overlapped and therefore this overlap was ignored

in the analysis. The average ExG value was calculated for each

cell and matched with the corresponding yield, resulting in a

total of 12,500 cells of merged data.

3.3. Prediction models for yield

Yield prediction models were developed using the UAV-based

ExG colour feature extracted at the three maize growth stages

(R2, R3, and R6) to test yield estimation potential in

Table 1 e Equations and information about MAPE.

Level Sample area (m2) Number of samples Measured yield in each samplea MAPEb

1 21 n1 ¼ 2500 y1 j ¼ yi
i ¼ j ¼ 1; 2; 3…n1 MAPE1 ¼ 1

n1

Xn1

j¼1

 ���y1 j � by1 j

���
y1 j

� 100%

!
2 106 n2 ¼ 500

y2 j ¼
Xiþ4

i

yi

j ¼ 1; 2; 3…n2

i ¼ 1; 5; 10…n1

MAPE2 ¼ 1
n2

Xn2

j¼1

 ���y2 j � by2 j

���
y2 j

� 100%

!

3 1058 n3 ¼ 50
y3 j ¼

Xiþ49

i

yi

j ¼ 1; 2; 3…n3

i ¼ 1; 50; 100…n1

MAPE3 ¼ 1
n3

Xn3

j¼1

 ���y3 j � by3 j

���
y3 j

� 100%

!

a There was no overlap between the samples.
b by1 j , by2 j and by3 j are the estimated yield in each sample size, and estimated yield value was set to zero if less than zero because the yield data

were all non-negative values.

Fig. 3 e Illustration of yield data in the field. (a) Yield map. (b) Histograms of raw and cleaned yield data.
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reproductive growth stages. Regression results showing yield

as a function of ExG at the three stages are shown in Fig. 5aec.

Results show that Yield was correlated to ExG at all growth

stages (p < 0.05), but the correlation was stronger in later

stages, as seen by the higher R2 and regression slope at the R6

stage. It can be seen that the R2 for all models were less than

0.5, which might be due to the limitations of the low-cost

sensor (camera). According to the study conducted by Jang,

Sudduth, Hong, Kitchen & Palm (2006) in the same field as

this study, the spectral bands in the near infrared range

(780e850 nm) had higher correlation with maize yield than

visible bands in early growth stages, but r was still in a low

range (around 0.2e0.8). However, the combination of short

near infrared (849 nm) and red (716 nm) obtained a stronger

correlation (r ¼ ~0.85). By reviewing the published studies, we

also found that the R2 for regression models or r for correla-

tions between predicated andmeasured yield were always not

high regardless of data collection platforms and models. For

example in the study reported by Panda et al. (2010), the cor-

relation coefficients between measured yield and estimated

yield using different models ranged from 0.20 to 0.78 for

different years, although the reported estimation accuracy

was as high as 95%. Geipel et al. (2014) reported that the R2s for

maize yield using ExG derived from UAV-based imagery could

be as low as 0.48, even with high-resolution images and

complicated strategies. A more recent study estimating maize

yield (Gao, Anderson, Daughtry & Jonson, 2018) showed a

range of r ¼ 0.46e0.63 with different high-resolution satellite

imagery.

To explore the errors that may cause low R2 in regression

models based on the ExG colour feature, the standardised

residuals of the models for the three stages were plotted in

Fig. 5def, which show approximately 15% of the data exhibi-

ted an absolute standardised residual >3 (as marked in red in

Fig. 5). These points were considered to be outliers (Hayter,

2012). The residuals for these points were negative, indi-

cating that estimated yield was considerably greater than

measured yield. To identify the potential reasons for such

outliers, these data points were overlaid on the corresponding

RGB images (Fig. 6), but no consistent spatial pattern was

observed. These outliersmight be the result of random system

error, perhaps due to GPS or yieldmonitoring system errors, or

non-uniformity of the image cells.

For each growth stage, MAPEwas calculated based on three

levels of sample area size, 21 m2, 106 m2 and 1058 m2. The

average values of MAPEwith ±1.96� SE (Standard Error at 95%

confidence interval) were used to analyse prediction error

(Hayter, 2012). Results from ANOVA comparing the difference

in mean yield prediction errors for the three crop growth

stages are shown in Fig. 7. Analyses comparemeans of growth

stage within each sample area size (7a), as well as the sample

area size within each growth stage (7b). Prediction error was

Fig. 4 e Stitched panoramic RGB and ExG images. (a)e(c) are the stitched panoramic images acquired at maize growth stages

of R2, R3, and R6 (taken on July 12, July 18 and August 19, 2016, respectively). (d)e(f) are pseudo-colour ExG images converted

from three stitched RGB images (a)e(c), respectively.
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affected by the growth stage for sample areas of 21 and 105m2,

with significantly lower error as growth stage progressed. The

lack of difference between growth stages at the largest sample

area could be explained by the equalizing of crop variation

with the larger sample area. When sample size was examined

within each growth stage (7b), prediction error decreasedwith

increasing sample size for all growth stages. However, it is

important to note that the largest sample area used here

would generally be considered too large for site-specific in-

formation collection and subsequent precision management

(Heege, 2015). Overall, the yield estimation errors of 6.2e15.1%

were comparable with other remote sensing studies; errors

ranged from 8.8 to 16.9% in Geipel et al. (2014) and were ~20%

in Panda et al. (2010).

3.4. Evaluation of variable-rate fertilization

Crop differences represented by the ExG colour feature were

related to spatial variations in N application that occurred

earlier in the season. The results of an ANOVA F-test

Fig. 5 e Regression analysis between the colour feature (ExG) and yield using data sets obtained at three growth stages. Sub-

figures (a)e(c) are scatter plots of regression fits for training data in growth stages of R2, R3 and R6, respectively. The

corresponding regressionmodels are y ¼ � 38:7xþ 1:4� 104, y ¼ � 44:2xþ 1:5� 104, and y ¼ � 93:2xþ 1:6� 104. Sub-figures

(d)e(f) are standardised residual plots associated with themodels in (a)e(c), respectively. (For interpretation of the references

to colour in this figure legend, the reader is referred to the Web version of this article.)

b i o s y s t em s e ng i n e e r i n g 1 8 9 ( 2 0 2 0 ) 2 4e3 5 31

https://doi.org/10.1016/j.biosystemseng.2019.11.001
https://doi.org/10.1016/j.biosystemseng.2019.11.001


Fig. 6 e Distribution of outliers on the field at the three growth stages of R2 (a), R3 (b), and R6(c).

Fig. 7 e ANOVA analysis of MAPE at three area levels using data acquired at three growth stages of R2, R3 and R6. (a)

Comparison of mean MAPE (with standard deviations) at different growth stages within each sample area with ±1.96 £ SE

(Standard Error) error bar. (b) Comparison of mean MAPE (with standard deviations) at different levels of sample area within

each growth stage with ±1.96 £ SE error bar. Mean MAPE bars with different lower case letters are significantly different

within each group.

Fig. 8 e ANOVA analysis of crop growth at four N rate levels using data acquired at R2, R3 and R6. (a) Comparison of mean

ExG (with standard deviations) at different crop growth stages within different levels of N application with ±1.96 £ SE

(Standard Error) error bars. (b) Comparison of mean ExG (with standard deviations) at different N application rates within

three growth stages with ±1.96 £ SE error bars. The different lower case letters indicate significant differences in mean ExG

within each group.
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examining colour feature differences as a function of crop

growth stages and N levels are shown in Fig. 8. The ExG value

within each N level was significantly different by growth stage

(Fig. 8a). Mean ExG values increased from growth stage R2 to

R3, but decreased dramatically between R3 and R6 because the

crop colour transformed from green to yellow with physio-

logical maturity. The effects of variable-rate fertilization at

different growth stages are shown in Fig. 8b. In the early

growth stages, ExG was different by N level because N fertil-

iser was not fully absorbed by the crop. For the R6 growth

stage the relatively small ExG differences between N levels

suggest the crop condition relative to N health was similar,

meaning that the goal of variable-rate fertilization to provide

sufficient N in all parts of the field was at least somewhat

successful.

In addition, Fig. 9 shows the standard deviation of ExG

under different fertilization levels. Overall, the standard de-

viation in ExG increased from R2 to R3 (fertiliser application

was prior to R2), and decreased from R3 to R6 (closer to

physiological maturity). Regions with the lowest N application

(Level 1, Fig. 9), due to exhibiting less N need at the time of

side-dress fertilization, had the lowest ExG standard de-

viations, suggesting amore homogenous and steady growth of

the crop. In contrast, regions with the highest N application

(Level 4), due to exhibiting more N need at the time of side-

dressing, had the highest ExG standard deviation. This sug-

gests that non-N fertility factors causing differential crop

development may have been more important in the Level 4

parts of the field.

4. Conclusion

In this study, maize yield was predicted using remote colour

imagery captured by a UAV imaging system. Multi-temporal

images of a maize field were collected by the UAV system

and the ExG colour parameter was calculated based on the

RGB colour model to monitor the continuous spatial variation

of the crop at three important growth stages, i.e. R2, R3 and R6.

Linear regression models predicted maize yield using 80% of

the raw data for training and 20% for testing. The accuracy of

the predictionmodels was evaluated usingMAPE based on the

test data in three levels of sample area (21 m2, 106 m2, and

1058 m2). Models estimating yield from ExG were all statisti-

cally significant at the 5% level. Specific conclusions were:

� A low-cost UAV RGB imaging system was able to esti-

mate maize yield with mean absolute percentage error

(MAPE) ranging from 6.2 to 15.1%, indicating a potential

to be used in practise.

� The error of yield estimation was lower when using

images closer to maturity.

� The UAV RGB images might be used to evaluate the ef-

fect of variable-rate N application.

In summary, this study demonstrated that a UAV imaging

system can be a good tool for collecting site-specific field and

crop information in precision agriculture. The crop colour

information (ExG) shows promise in predicting within-field

spatial variations in crop yield. The predicted maize yield

data can be used as a feedback for harvesting operation de-

cisions in the current year and fertilization decisions in the

next year. Further studies are needed investigate the ability of

remotely-sensed data to more accurately estimate within-

field spatial variations in crop growth and yield. Better

designed experiments will be needed to calibrate the imagery

data to evaluate the effect variable-rate N application on plant

growth.
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